A Hf-doped dual-phase high-entropy alloy: phase evolution and wear features
Initially defined high entropy alloys (HEAs) usually exhibit a single-phase solid-solution structure. However, two and/or more types of phases in HEAs possibly induce the desired microstructure features, which contribute to improving the wear properties of HEAs. Here, we prepare a series of (AlCoCrF...
Saved in:
Published in | Rare metals Vol. 43; no. 1; pp. 324 - 333 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Nonferrous Metals Society of China
01.01.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1001-0521 1867-7185 |
DOI | 10.1007/s12598-023-02410-0 |
Cover
Abstract | Initially defined high entropy alloys (HEAs) usually exhibit a single-phase solid-solution structure. However, two and/or more types of phases in HEAs possibly induce the desired microstructure features, which contribute to improving the wear properties of HEAs. Here, we prepare a series of (AlCoCrFeNi)
100−
x
Hf
x
(
x
= 0, 2, 4 and 6; at%) HEAs and concern their phase compositions, microstructures and wear properties. Hf leads to the formation of (Ni, Co)
2
Hf-type Laves phase and tailors the microstructure from a body-centered cubic (BCC) single-phase structure to a hypoeutectic structure. An increased hardness from ~ HV 512.3 to ~ HV 734.1 is due to solid-solution strengthening, grain refinement strengthening and precipitated phase strengthening. And a few oxides (Al
2
O
3
+ Cr
2
O
3
) caused by the wear heating contribute to an 85.5% decrease in wear rate of the HEA system from 6.71 × 10
−5
to 0.97 × 10
−5
m
3
·N
−1
·m
−1
. In addition, Hf addition changes the wear mechanism from abrasive wear, mild oxidative wear and adhesive wear to oxidative wear and adhesive wear. |
---|---|
AbstractList | Initially defined high entropy alloys (HEAs) usually exhibit a single-phase solid-solution structure. However, two and/or more types of phases in HEAs possibly induce the desired microstructure features, which contribute to improving the wear properties of HEAs. Here, we prepare a series of (AlCoCrFeNi)
100−
x
Hf
x
(
x
= 0, 2, 4 and 6; at%) HEAs and concern their phase compositions, microstructures and wear properties. Hf leads to the formation of (Ni, Co)
2
Hf-type Laves phase and tailors the microstructure from a body-centered cubic (BCC) single-phase structure to a hypoeutectic structure. An increased hardness from ~ HV 512.3 to ~ HV 734.1 is due to solid-solution strengthening, grain refinement strengthening and precipitated phase strengthening. And a few oxides (Al
2
O
3
+ Cr
2
O
3
) caused by the wear heating contribute to an 85.5% decrease in wear rate of the HEA system from 6.71 × 10
−5
to 0.97 × 10
−5
m
3
·N
−1
·m
−1
. In addition, Hf addition changes the wear mechanism from abrasive wear, mild oxidative wear and adhesive wear to oxidative wear and adhesive wear. Initially defined high entropy alloys (HEAs) usually exhibit a single-phase solid-solution structure. However, two and/or more types of phases in HEAs possibly induce the desired microstructure features, which contribute to improving the wear properties of HEAs. Here, we prepare a series of (AlCoCrFeNi)100−xHfx (x = 0, 2, 4 and 6; at%) HEAs and concern their phase compositions, microstructures and wear properties. Hf leads to the formation of (Ni, Co)2Hf-type Laves phase and tailors the microstructure from a body-centered cubic (BCC) single-phase structure to a hypoeutectic structure. An increased hardness from ~ HV 512.3 to ~ HV 734.1 is due to solid-solution strengthening, grain refinement strengthening and precipitated phase strengthening. And a few oxides (Al2O3 + Cr2O3) caused by the wear heating contribute to an 85.5% decrease in wear rate of the HEA system from 6.71 × 10−5 to 0.97 × 10−5 m3·N−1·m−1. In addition, Hf addition changes the wear mechanism from abrasive wear, mild oxidative wear and adhesive wear to oxidative wear and adhesive wear. |
Author | Ren, Hao Chiu, Yu-Lung Gao, Xue-Feng Qin, Gang Liu, Tong Wu, Shi-Ping Chen, Rui-Run Guo, Jing-Jie |
Author_xml | – sequence: 1 givenname: Hao surname: Ren fullname: Ren, Hao organization: National Key Laboratory for Precision Hot Processing of Metals, School of Materials Science and Engineering, Harbin Institute of Technology – sequence: 2 givenname: Rui-Run orcidid: 0000-0003-3695-997X surname: Chen fullname: Chen, Rui-Run email: ruirunchen@hit.edu.cn organization: National Key Laboratory for Precision Hot Processing of Metals, School of Materials Science and Engineering, Harbin Institute of Technology – sequence: 3 givenname: Xue-Feng surname: Gao fullname: Gao, Xue-Feng organization: National Key Laboratory for Precision Hot Processing of Metals, School of Materials Science and Engineering, Harbin Institute of Technology – sequence: 4 givenname: Tong surname: Liu fullname: Liu, Tong organization: National Key Laboratory for Precision Hot Processing of Metals, School of Materials Science and Engineering, Harbin Institute of Technology – sequence: 5 givenname: Gang surname: Qin fullname: Qin, Gang organization: National Key Laboratory for Precision Hot Processing of Metals, School of Materials Science and Engineering, Harbin Institute of Technology – sequence: 6 givenname: Yu-Lung surname: Chiu fullname: Chiu, Yu-Lung organization: School of Metallurgy and Materials, University of Birmingham – sequence: 7 givenname: Shi-Ping surname: Wu fullname: Wu, Shi-Ping organization: National Key Laboratory for Precision Hot Processing of Metals, School of Materials Science and Engineering, Harbin Institute of Technology – sequence: 8 givenname: Jing-Jie surname: Guo fullname: Guo, Jing-Jie organization: National Key Laboratory for Precision Hot Processing of Metals, School of Materials Science and Engineering, Harbin Institute of Technology |
BookMark | eNp9kE1PwzAMhiMEEtvgD3CKxDngfDRtuU0TMMQkLnCO0szdOpWmJC1o_56OIiFx2MGyJfvxa79Tctr4Bgm54nDDAdLbyEWSZwyEHEJxYHBCJjzTKUt5lpwONQBnkAh-TqYx7gCU0hom5HlOlyVb-xbXdN3bmrVbG5Fuq82WYdMF3-6prWu_v6NjBz993XeVb6ht1vQLbaAl2q4PGC_IWWnriJe_eUbeHu5fF0u2enl8WsxXzEmed6xEXRQy4ynmiUYNUkGKDnWZJkImCq0SPHWJKCV3rlCFlEWWc7SaOw2QlXJGrse9bfAfPcbO7HwfmkHSiByUhlRmcpgS45QLPsaApWlD9W7D3nAwB9PMaJoZTDM_phkYoOwf5KrOHt7tgq3q46gc0TjoNBsMf1cdob4BVyaB1A |
CitedBy_id | crossref_primary_10_1007_s12598_024_03075_z crossref_primary_10_1007_s12598_024_02890_8 |
Cites_doi | 10.1016/S0301-679X(98)00008-5 10.1016/j.actamat.2021.116763 10.1016/j.jallcom.2022.167374 10.1016/j.surfcoat.2022.129129 10.1016/j.msea.2022.144425 10.1021/acsami.1c16949 10.1016/j.actamat.2022.117700 10.1063/1.1721448 10.1016/j.msea.2018.06.030 10.1016/j.actamat.2011.06.041 10.1016/j.wear.2020.203493 10.1016/S1359-6454(99)00377-8 10.1016/j.matdes.2017.08.030 10.1039/C7NR07281C 10.1007/s12598-018-1161-4 10.1007/s12598-021-01867-1 10.1007/s11661-006-0081-3 10.1016/j.wear.2005.12.008 10.1088/0370-1301/64/9/303 10.1016/j.msea.2022.144156 10.1016/j.msea.2011.10.110 10.1007/s12598-021-01931-w 10.1016/j.jallcom.2013.08.176 10.1007/s12598-021-01926-7 10.1016/j.jallcom.2019.02.223 10.1016/j.surfcoat.2020.126328 10.1016/j.matchar.2023.112879 10.1016/j.msea.2018.04.058 10.1016/S1002-0071(12)60080-X 10.1016/j.matdes.2016.01.033 10.1016/0301-679X(83)90086-5 10.1016/j.wear.2009.12.033 10.1016/j.jallcom.2021.162380 10.1016/j.scriptamat.2021.114429 10.13373/j.cnki.cjrm.XY20080042 10.1016/j.actamat.2018.05.002 10.1007/s40843-017-9195-8 10.1016/j.surfcoat.2020.126522 10.2320/matertrans.46.2817 10.1007/s11661-004-0254-x 10.1007/s10853-022-07066-2 10.1038/s41467-018-06757-2 10.1016/j.scriptamat.2018.10.007 10.1016/j.mattod.2015.11.026 10.1016/j.scriptamat.2017.06.015 10.1016/j.msea.2003.10.257 10.1038/s41578-019-0121-4 10.1016/j.triboint.2021.106912 10.1016/j.actamat.2018.01.050 10.1016/j.pmatsci.2013.10.001 10.1016/S1359-6454(97)00050-5 10.1016/j.triboint.2020.106599 10.1016/j.actamat.2018.01.014 10.1016/j.jmst.2021.12.055 10.1016/j.jmst.2016.09.016 10.13373/j.cnki.cjrm.xy19060029 10.1016/j.pmatsci.2021.100777 10.1007/s12598-021-01953-4 10.1016/0013-7944(87)90050-6 10.1016/B978-0-08-096986-2.00032-1 |
ContentType | Journal Article |
Copyright | Youke Publishing Co.,Ltd 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: Youke Publishing Co.,Ltd 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 8BQ 8FD JG9 |
DOI | 10.1007/s12598-023-02410-0 |
DatabaseName | CrossRef METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1867-7185 |
EndPage | 333 |
ExternalDocumentID | 10_1007_s12598_023_02410_0 |
GrantInformation_xml | – fundername: Research Foundation of HIT – fundername: National Outstanding Youth Science Fund Project of National Natural Science Foundation of China grantid: 51825401 – fundername: Natural Science Foundation of Heilongjiang Province grantid: LH2020E031 funderid: http://dx.doi.org/10.13039/501100005046 – fundername: Postdoctoral Foundation of Heilongjiang Province grantid: LBH-Z19154 |
GroupedDBID | --K -EM -SB -S~ 06D 0R~ 0VY 188 1B1 29P 2B. 2C0 2KG 2VQ 30V 4.4 406 408 40D 5VR 5VS 5XA 5XC 8FE 8FG 8RM 8TC 92H 92I 92R 93N 96X AAAVM AACDK AAEDT AAHNG AAIAL AAJBT AAJKR AALRI AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAXUO AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTD ABFTV ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWVN ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACRPL ACZOJ ADHHG ADHIR ADINQ ADKNI ADMLS ADMUD ADNMO ADRFC ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG AXYYD BA0 BENPR BGLVJ BGNMA CAG CAJEB CCEZO CCPQU CDRFL CHBEP COF CW9 D1I DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EO9 ESBYG FA0 FDB FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 H13 HCIFZ HF~ HG6 HLICF HMJXF HRMNR HZ~ I0C IKXTQ IWAJR I~X J-C JBSCW JZLTJ KB. KOV LLZTM M41 M4Y MA- NPVJJ NQJWS NU0 O9- O9J P9N PDBOC PT4 Q-- Q2X R9I RIG RLLFE ROL RSV S1Z S27 S3B SCL SCM SDC SDG SDH SHX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TCJ TGT TSG U1G U2A U5L UG4 UGNYK UOJIU UTJUX UY8 UZ4 UZXMN VC2 VFIZW W48 WK8 Z7R Z7V Z7X Z7Y Z7Z Z85 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIGII AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8BQ 8FD ABRTQ JG9 |
ID | FETCH-LOGICAL-c319t-fe6bb3817e956e603407ece6f752354ea4217c52f31ccb4b33b891ea61c6008f3 |
IEDL.DBID | U2A |
ISSN | 1001-0521 |
IngestDate | Thu Sep 25 00:43:11 EDT 2025 Tue Jul 01 01:30:15 EDT 2025 Thu Apr 24 22:52:34 EDT 2025 Fri Feb 21 02:41:01 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Wear mechanism High entropy alloy Hardness Laves phase |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-fe6bb3817e956e603407ece6f752354ea4217c52f31ccb4b33b891ea61c6008f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3695-997X |
PQID | 2904607383 |
PQPubID | 326325 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2904607383 crossref_primary_10_1007_s12598_023_02410_0 crossref_citationtrail_10_1007_s12598_023_02410_0 springer_journals_10_1007_s12598_023_02410_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240100 2024-01-00 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 1 year: 2024 text: 20240100 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing |
PublicationTitle | Rare metals |
PublicationTitleAbbrev | Rare Met |
PublicationYear | 2024 |
Publisher | Nonferrous Metals Society of China Springer Nature B.V |
Publisher_xml | – name: Nonferrous Metals Society of China – name: Springer Nature B.V |
References | Ma, Wang, Jiang, Li, Hao, Li, Dong, Nieh (CR57) 2018; 147 Li, Che, Yang, Huang, Ning, Sun, Fan (CR28) 2022; 41 Stott (CR61) 1998; 31 Sriharitha, Murty, Kottada (CR55) 2014; 583 Geng, Chen, Tan, Cheng, Zhu, Yang (CR24) 2021; 157 Wu, Lin, Yeh, Chen, Huang, Chen (CR32) 2006; 261 Chen, Lin, Yeh, Chuang, Chen, Huang (CR33) 2006; 37 Chattopadhyay, Prasad, Murty (CR41) 2018; 153 Kumar, Pang, Liu, Horton, Kenik (CR51) 2000; 48 Jin, Zhang, Yin (CR36) 2022; 121 Ren, Chen, Gao, Liu, Qin, Wu, Guo (CR42) 2022; 858 Ye, Liu, Wang, Nieh (CR1) 2018; 147 Jiang, Jiang, Qiao, Lu, Wang, Cao, Li (CR35) 2017; 33 Zhang, Zhang, Zhou, Fan, Cui, Yu, Jing, Ma, Liaw, Li, Liu (CR12) 2018; 725 Ye, Wang, Lu, Liu, Yang (CR20) 2016; 19 Guo, Liu (CR48) 2011; 21 Ren, Chen, Gao, Liu, Qin, Wu, Guo (CR30) 2023; 200 Zhao, Kong, Huang, Wang, Yamaguchi, Wang (CR38) 2022; 210 Takeuchi, Inoue (CR47) 2005; 46 Huo, Zhou, Fang, Xie, Jiang (CR52) 2017; 134 CR46 Lu, Li, Tian, Zhai, Kou (CR3) 2022; 46 Chuang, Tsai, Wang, Lin, Yeh (CR31) 2011; 59 Ma, Zhang (CR44) 2012; 532 Qin, Chen, Mao, Yan, Li, Schönecker, Vitos, Li (CR40) 2021; 208 Hall (CR54) 1951; 64 Li, Feng, Liu, Yi, Yang, Zhang, Chen, Liu, Bai (CR10) 2019; 788 Santodonato, Liaw, Unocic, Bei, Morris (CR39) 2018; 9 Hsu, Yeh, Chen, Shun (CR37) 2004; 35 Kumar, Liu (CR50) 1997; 45 Petch (CR53) 1953; 174 Zhang, Liaw, Zhang (CR19) 2018; 61 Archard (CR21) 1953; 24 Luo, Zhou, Ye, Ren, Greiner, He, Wang (CR22) 2021; 13 Ren, Chen, Gao, Liu, Qin, Wu, Guo (CR43) 2023; 862 Miao, Liang, Zhang, He, Meng, Lu (CR25) 2021; 153 Chen, Niu, Liu, Lu, Wang, Peng, Liu (CR45) 2016; 94 Hou, Cao, Xiao, Jiao, Yang (CR15) 2022; 41 Quinn (CR60) 1983; 16 Tabor (CR56) 1951 Wang, He, Yang (CR16) 2022; 41 Verma, Tarate, Abhyankar, Mohape, Gowtam, Deshmukh, Shanmugasundaram (CR4) 2019; 161 Zhang, Zuo, Tang, Gao, Dahmen, Liaw, Lu (CR7) 2014; 61 Ren, Chen, Gao, Liu, Qin, Wu, Guo (CR11) 2022; 929 Gao, Chen, Liu, Fang, Qin, Su, Guo (CR8) 2022; 57 Wu, Chen, Xu, Li (CR9) 2020; 462–463 Jin, Zhang, Yu, Hao, Ma (CR26) 2020; 402 An, Liu, Zhang, Zou, Xu, Chu, Wei, Sun (CR34) 2022; 227 Linden, Pinkas, Munitz, Meshi (CR49) 2017; 139 Li, Xie, Li, Zhang, Gao, Liaw (CR5) 2021; 118 Xian, Zhong, Lin, Zhu, Chen, Wu (CR17) 2022; 41 Zhang, Han, Su, Meng (CR27) 2018; 731 CR62 Lu, Gao, Dong, Wang, Chen, Mao, Zhao, Jiang, Cao, Li, Guo (CR13) 2018; 10 Cantor, Chang, Knight, Vincent (CR6) 2004; 375–377 Wang, Kou, Fu, Wu, Liu, Yan, Wang, Lan, Hahn, Feng (CR18) 2022; 41 Miao, Yao, Wang, Lu, Wang, Li (CR23) 2022; 894 George, Raabe, Ritchie (CR14) 2019; 4 Li, He, Ding, Lian, Liu, Chen, Dai (CR29) 2023; 452 Liu, Sun, Zhang, Zhang, Yang, Hao (CR58) 2021; 405 Meng, Loh, Tay, Fu, Tor (CR59) 2010; 268 Lu, Miao, Lu (CR2) 2021; 45 HG Li (2410_CR28) 2022; 41 WY Huo (2410_CR52) 2017; 134 EP George (2410_CR14) 2019; 4 EO Hall (2410_CR54) 1951; 64 CY Hsu (2410_CR37) 2004; 35 KS Kumar (2410_CR50) 1997; 45 SG Ma (2410_CR44) 2012; 532 MH Chuang (2410_CR31) 2011; 59 JJ Wang (2410_CR18) 2022; 41 MR Chen (2410_CR33) 2006; 37 D Tabor (2410_CR56) 1951 Y Zhang (2410_CR7) 2014; 61 YP Lu (2410_CR13) 2018; 10 DC Zhao (2410_CR38) 2022; 210 H Ren (2410_CR43) 2023; 862 H Ren (2410_CR42) 2022; 858 2410_CR46 LJ Santodonato (2410_CR39) 2018; 9 JM Wu (2410_CR32) 2006; 261 BQ Jin (2410_CR36) 2022; 121 A Takeuchi (2410_CR47) 2005; 46 H Jiang (2410_CR35) 2017; 33 G Qin (2410_CR40) 2021; 208 YS Geng (2410_CR24) 2021; 157 XF Gao (2410_CR8) 2022; 57 JX Hou (2410_CR15) 2022; 41 J Chen (2410_CR45) 2016; 94 JH Meng (2410_CR59) 2010; 268 TFJ Quinn (2410_CR60) 1983; 16 WR Zhang (2410_CR19) 2018; 61 Y Ma (2410_CR57) 2018; 147 Y Lu (2410_CR3) 2022; 46 Y Linden (2410_CR49) 2017; 139 FH Stott (2410_CR61) 1998; 31 JW Miao (2410_CR25) 2021; 153 C Chattopadhyay (2410_CR41) 2018; 153 JF Archard (2410_CR21) 1953; 24 X Xian (2410_CR17) 2022; 41 YX Ye (2410_CR1) 2018; 147 H Ren (2410_CR30) 2023; 200 R Sriharitha (2410_CR55) 2014; 583 DW Luo (2410_CR22) 2021; 13 WD Li (2410_CR5) 2021; 118 LJ Zhang (2410_CR12) 2018; 725 S Guo (2410_CR48) 2011; 21 XF Li (2410_CR10) 2019; 788 ZJ Li (2410_CR29) 2023; 452 BQ Jin (2410_CR26) 2020; 402 SY Lu (2410_CR2) 2021; 45 JW Miao (2410_CR23) 2022; 894 NJ Petch (2410_CR53) 1953; 174 2410_CR62 H Ren (2410_CR11) 2022; 929 H Liu (2410_CR58) 2021; 405 AJ Zhang (2410_CR27) 2018; 731 MY Wu (2410_CR9) 2020; 462–463 XL An (2410_CR34) 2022; 227 KS Kumar (2410_CR51) 2000; 48 YF Ye (2410_CR20) 2016; 19 A Verma (2410_CR4) 2019; 161 B Cantor (2410_CR6) 2004; 375–377 H Wang (2410_CR16) 2022; 41 |
References_xml | – volume: 31 start-page: 61 issue: 1 year: 1998 ident: CR61 article-title: The role of oxidation in the wear of alloys publication-title: Tribol Int doi: 10.1016/S0301-679X(98)00008-5 – volume: 208 start-page: 116763 year: 2021 ident: CR40 article-title: Experimental and theoretical investigations on the phase stability and mechanical properties of Cr Mn Co Ni Cu high-entropy alloy publication-title: Acta Mater doi: 10.1016/j.actamat.2021.116763 – volume: 929 start-page: 167374 year: 2022 ident: CR11 article-title: Insights on mechanical properties of dual-phase high entropy alloys via Y introduction publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2022.167374 – volume: 452 start-page: 129129 year: 2023 ident: CR29 article-title: Tailoring the surface microstructures and enhancing wear performance of Al CoCrFeNiSi high-entropy alloys via laser remelting publication-title: Surf Coat Tech doi: 10.1016/j.surfcoat.2022.129129 – volume: 862 start-page: 144425 year: 2023 ident: CR43 article-title: Sc doping induced the mechanical property improvement of dual-phase high-entropy alloy publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2022.144425 – volume: 13 start-page: 55712 issue: 46 year: 2021 ident: CR22 article-title: Design and characterization of self-lubricating refractory high entropy alloy-based multilayered films publication-title: ACS Appl Mater Inter doi: 10.1021/acsami.1c16949 – volume: 227 start-page: 117700 year: 2022 ident: CR34 article-title: A new strong pearlitic multi-principal element alloy to withstand wear at elevated temperatures publication-title: Acta Mater doi: 10.1016/j.actamat.2022.117700 – volume: 24 start-page: 981 issue: 8 year: 1953 ident: CR21 article-title: Contact and rubbing of flat surfaces publication-title: J Appl Phys doi: 10.1063/1.1721448 – year: 1951 ident: CR56 publication-title: The Hardness of Metals – volume: 731 start-page: 36 year: 2018 ident: CR27 article-title: A promising new high temperature self-lubricating material: CoCrFeNiS high entropy alloy publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2018.06.030 – volume: 59 start-page: 6308 issue: 16 year: 2011 ident: CR31 article-title: Microstructure and wear behavior of Al Co CrFeNi Ti high-entropy alloys publication-title: Acta Mater doi: 10.1016/j.actamat.2011.06.041 – ident: CR46 – volume: 462–463 start-page: 203493 year: 2020 ident: CR9 article-title: Effect of Ti addition on the sliding wear behavior of AlCrFeCoNi high-entropy alloy publication-title: Wear doi: 10.1016/j.wear.2020.203493 – volume: 48 start-page: 911 issue: 4 year: 2000 ident: CR51 article-title: Structural stability of the Laves phase Cr Ta in a two-phase Cr–Cr Ta alloy publication-title: Acta Mater doi: 10.1016/S1359-6454(99)00377-8 – volume: 134 start-page: 226 year: 2017 ident: CR52 article-title: Microstructure and mechanical properties of CoCrFeNiZr eutectic high-entropy alloys publication-title: Mater Des doi: 10.1016/j.matdes.2017.08.030 – volume: 10 start-page: 1912 issue: 4 year: 2018 ident: CR13 article-title: Preparing bulk ultrafine-microstructure high-entropy alloys via direct solidification publication-title: Nanoscale doi: 10.1039/C7NR07281C – volume: 41 start-page: 1015 issue: 3 year: 2022 ident: CR17 article-title: Tailoring strength and ductility of high-entropy CrMnFeCoNi alloy by adding Al publication-title: Rare Met doi: 10.1007/s12598-018-1161-4 – volume: 41 start-page: 1210 issue: 4 year: 2022 ident: CR28 article-title: Enhanced tensile properties and wear resistance of additively manufactured CoCrFeMnNi high-entropy alloy at cryogenic temperature publication-title: Rare Met doi: 10.1007/s12598-021-01867-1 – volume: 37 start-page: 1363 issue: 5 year: 2006 ident: CR33 article-title: Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al CoCrCuFeNi high-entropy alloy publication-title: Metall Mater Trans A doi: 10.1007/s11661-006-0081-3 – volume: 261 start-page: 513 issue: 5 year: 2006 ident: CR32 article-title: Adhesive wear behavior of Al CoCrCuFeNi high-entropy alloys as a function of aluminum content publication-title: Wear doi: 10.1016/j.wear.2005.12.008 – volume: 64 start-page: 747 issue: 9 year: 1951 ident: CR54 article-title: The deformation and ageing of mild steel: III discussion of results publication-title: Proc Phys Soc Sect B doi: 10.1088/0370-1301/64/9/303 – volume: 858 start-page: 144156 year: 2022 ident: CR42 article-title: Phase formation and mechanical features in (AlCoCrFeNi) Hf high-entropy alloys: the role of Hf publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2022.144156 – volume: 532 start-page: 480 year: 2012 ident: CR44 article-title: Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2011.10.110 – volume: 41 start-page: 2038 issue: 6 year: 2022 ident: CR18 article-title: Microstructure and magnetic properties evolution of Al/CoCrFeNi nanocrystalline high-entropy alloy composite publication-title: Rare Met doi: 10.1007/s12598-021-01931-w – volume: 583 start-page: 419 year: 2014 ident: CR55 article-title: Alloying, thermal stability and strengthening in spark plasma sintered Al CoCrCuFeNi high entropy alloys publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2013.08.176 – volume: 41 start-page: 1989 issue: 6 year: 2022 ident: CR16 article-title: High-entropy intermetallics: from alloy design to structural and functional properties publication-title: Rare Met doi: 10.1007/s12598-021-01926-7 – volume: 788 start-page: 485 year: 2019 ident: CR10 article-title: Influence of NbC particles on microstructure and mechanical properties of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2019.02.223 – volume: 402 start-page: 126328 year: 2020 ident: CR26 article-title: Al CoCrFeNiSi high entropy alloy coatings with high microhardness and improved wear resistance publication-title: Surf Coat Tech doi: 10.1016/j.surfcoat.2020.126328 – volume: 200 start-page: 112879 year: 2023 ident: CR30 article-title: Development of wear-resistant dual-phase high-entropy alloys enhanced by C15 Laves phase publication-title: Mater Charact doi: 10.1016/j.matchar.2023.112879 – volume: 725 start-page: 437 year: 2018 ident: CR12 article-title: Effects of rare-earth element, Y, additions on the microstructure and mechanical properties of CoCrFeNi high entropy alloy publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2018.04.058 – volume: 21 start-page: 433 issue: 6 year: 2011 ident: CR48 article-title: Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase publication-title: Prog Nat Sci: Mater Int doi: 10.1016/S1002-0071(12)60080-X – volume: 94 start-page: 39 year: 2016 ident: CR45 article-title: Effect of Zr content on microstructure and mechanical properties of AlCoCrFeNi high entropy alloy publication-title: Mater Des doi: 10.1016/j.matdes.2016.01.033 – volume: 16 start-page: 257 issue: 5 year: 1983 ident: CR60 article-title: Review of oxidational wear: part I: the origins of oxidational wear publication-title: Tribol Int doi: 10.1016/0301-679X(83)90086-5 – volume: 268 start-page: 1013 issue: 7 year: 2010 ident: CR59 article-title: Tribological behavior of 316L stainless steel fabricated by micro powder injection molding publication-title: Wear doi: 10.1016/j.wear.2009.12.033 – volume: 894 start-page: 162380 year: 2022 ident: CR23 article-title: Surface modification for AlCoCrFeNi eutectic high-entropy alloy via laser remelting technology and subsequent aging heat treatment publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2021.162380 – volume: 210 start-page: 114429 year: 2022 ident: CR38 article-title: Achieving the lightweight wear-resistant TiC reinforced AlFeCrCo medium-entropy alloy coating on Mg alloy via resistance seam processing publication-title: Scripta Mater doi: 10.1016/j.scriptamat.2021.114429 – volume: 45 start-page: 530 issue: 5 year: 2021 ident: CR2 article-title: Strengthening and toughening of multi-principal high-entropy alloys publication-title: Chin J Rare Met doi: 10.13373/j.cnki.cjrm.XY20080042 – volume: 153 start-page: 214 year: 2018 ident: CR41 article-title: Phase prediction in high entropy alloys – a kinetic approach publication-title: Acta Mater doi: 10.1016/j.actamat.2018.05.002 – volume: 61 start-page: 2 issue: 1 year: 2018 ident: CR19 article-title: Science and technology in high-entropy alloys publication-title: Sci China Mater doi: 10.1007/s40843-017-9195-8 – volume: 405 start-page: 126522 year: 2021 ident: CR58 article-title: Effect of Si addition on microstructure and wear behavior of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding publication-title: Surf Coat Tech doi: 10.1016/j.surfcoat.2020.126522 – volume: 46 start-page: 2817 issue: 12 year: 2005 ident: CR47 article-title: Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element publication-title: Mater Trans doi: 10.2320/matertrans.46.2817 – volume: 35 start-page: 1465 issue: 5 year: 2004 ident: CR37 article-title: Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl Fe alloy with boron addition publication-title: Metall Mater Trans A doi: 10.1007/s11661-004-0254-x – volume: 57 start-page: 6573 issue: 12 year: 2022 ident: CR8 article-title: High-entropy alloys: a review of mechanical properties and deformation mechanisms at cryogenic temperatures publication-title: J Mater Sci doi: 10.1007/s10853-022-07066-2 – volume: 9 start-page: 4520 issue: 1 year: 2018 ident: CR39 article-title: Predictive multiphase evolution in Al-containing high-entropy alloys publication-title: Nat Commun doi: 10.1038/s41467-018-06757-2 – volume: 161 start-page: 28 year: 2019 ident: CR4 article-title: High temperature wear in CoCrFeNiCu high entropy alloys: the role of Cu publication-title: Scripta Mater doi: 10.1016/j.scriptamat.2018.10.007 – volume: 19 start-page: 349 issue: 6 year: 2016 ident: CR20 article-title: High-entropy alloy: challenges and prospects publication-title: Mater Today doi: 10.1016/j.mattod.2015.11.026 – volume: 139 start-page: 49 year: 2017 ident: CR49 article-title: Long-period antiphase domains and short-range order in a B2 matrix of the AlCoCrFeNi high-entropy alloy publication-title: Scripta Mater doi: 10.1016/j.scriptamat.2017.06.015 – volume: 375–377 start-page: 213 year: 2004 ident: CR6 article-title: Microstructural development in equiatomic multicomponent alloys publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2003.10.257 – volume: 4 start-page: 515 issue: 8 year: 2019 ident: CR14 article-title: High-entropy alloys publication-title: Nat Rev Mater doi: 10.1038/s41578-019-0121-4 – volume: 157 start-page: 106912 year: 2021 ident: CR24 article-title: Tribological performances of CoCrFeNiAl high entropy alloy matrix solid-lubricating composites over a wide temperature range publication-title: Tribol Int doi: 10.1016/j.triboint.2021.106912 – volume: 147 start-page: 213 year: 2018 ident: CR57 article-title: Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al (Ni Co, Fe, Cr) compositions publication-title: Acta Mater doi: 10.1016/j.actamat.2018.01.050 – volume: 61 start-page: 1 year: 2014 ident: CR7 article-title: Microstructures and properties of high-entropy alloys publication-title: Prog Mater Sci doi: 10.1016/j.pmatsci.2013.10.001 – volume: 45 start-page: 3671 issue: 9 year: 1997 ident: CR50 article-title: Precipitation in a Cr–Cr Nb alloy publication-title: Acta Mater doi: 10.1016/S1359-6454(97)00050-5 – volume: 153 start-page: 106599 year: 2021 ident: CR25 article-title: Tribological behavior of an AlCoCrFeNi eutectic high entropy alloy sliding against different counterfaces publication-title: Tribol Int doi: 10.1016/j.triboint.2020.106599 – volume: 147 start-page: 78 year: 2018 ident: CR1 article-title: Friction and wear behavior of a single-phase equiatomic TiZrHfNb high-entropy alloy studied using a nanoscratch technique publication-title: Acta Mater doi: 10.1016/j.actamat.2018.01.014 – volume: 121 start-page: 163 year: 2022 ident: CR36 article-title: Strengthening behavior of AlCoCrFeNi(TiN) high-entropy alloy coatings fabricated by plasma spraying and laser remelting publication-title: J Mater Sci Technol doi: 10.1016/j.jmst.2021.12.055 – ident: CR62 – volume: 33 start-page: 712 issue: 7 year: 2017 ident: CR35 article-title: Effect of niobium on microstructure and properties of the CoCrFeNb Ni high entropy alloys publication-title: J Mater Sci Technol doi: 10.1016/j.jmst.2016.09.016 – volume: 46 start-page: 1352 issue: 10 year: 2022 ident: CR3 article-title: Research progress on properties of high-entropy alloys publication-title: Chin J Rare Met doi: 10.13373/j.cnki.cjrm.xy19060029 – volume: 118 start-page: 100777 year: 2021 ident: CR5 article-title: Mechanical behavior of high-entropy alloys publication-title: Prog Mater Sci doi: 10.1016/j.pmatsci.2021.100777 – volume: 41 start-page: 2002 issue: 6 year: 2022 ident: CR15 article-title: Compositionally complex coherent precipitation-strengthened high-entropy alloys: a critical review publication-title: Rare Met doi: 10.1007/s12598-021-01953-4 – volume: 174 start-page: 25 year: 1953 ident: CR53 article-title: The cleavage strength of polycrystals publication-title: Journal of the Iron and Steel Institute doi: 10.1016/0013-7944(87)90050-6 – volume: 462–463 start-page: 203493 year: 2020 ident: 2410_CR9 publication-title: Wear doi: 10.1016/j.wear.2020.203493 – ident: 2410_CR46 – volume: 57 start-page: 6573 issue: 12 year: 2022 ident: 2410_CR8 publication-title: J Mater Sci doi: 10.1007/s10853-022-07066-2 – volume: 31 start-page: 61 issue: 1 year: 1998 ident: 2410_CR61 publication-title: Tribol Int doi: 10.1016/S0301-679X(98)00008-5 – volume: 41 start-page: 1210 issue: 4 year: 2022 ident: 2410_CR28 publication-title: Rare Met doi: 10.1007/s12598-021-01867-1 – volume: 33 start-page: 712 issue: 7 year: 2017 ident: 2410_CR35 publication-title: J Mater Sci Technol doi: 10.1016/j.jmst.2016.09.016 – volume: 94 start-page: 39 year: 2016 ident: 2410_CR45 publication-title: Mater Des doi: 10.1016/j.matdes.2016.01.033 – volume: 583 start-page: 419 year: 2014 ident: 2410_CR55 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2013.08.176 – volume: 452 start-page: 129129 year: 2023 ident: 2410_CR29 publication-title: Surf Coat Tech doi: 10.1016/j.surfcoat.2022.129129 – ident: 2410_CR62 doi: 10.1016/B978-0-08-096986-2.00032-1 – volume: 46 start-page: 1352 issue: 10 year: 2022 ident: 2410_CR3 publication-title: Chin J Rare Met doi: 10.13373/j.cnki.cjrm.xy19060029 – volume: 45 start-page: 3671 issue: 9 year: 1997 ident: 2410_CR50 publication-title: Acta Mater doi: 10.1016/S1359-6454(97)00050-5 – volume: 61 start-page: 1 year: 2014 ident: 2410_CR7 publication-title: Prog Mater Sci doi: 10.1016/j.pmatsci.2013.10.001 – volume: 731 start-page: 36 year: 2018 ident: 2410_CR27 publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2018.06.030 – volume: 134 start-page: 226 year: 2017 ident: 2410_CR52 publication-title: Mater Des doi: 10.1016/j.matdes.2017.08.030 – volume: 929 start-page: 167374 year: 2022 ident: 2410_CR11 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2022.167374 – volume: 13 start-page: 55712 issue: 46 year: 2021 ident: 2410_CR22 publication-title: ACS Appl Mater Inter doi: 10.1021/acsami.1c16949 – volume: 37 start-page: 1363 issue: 5 year: 2006 ident: 2410_CR33 publication-title: Metall Mater Trans A doi: 10.1007/s11661-006-0081-3 – volume: 61 start-page: 2 issue: 1 year: 2018 ident: 2410_CR19 publication-title: Sci China Mater doi: 10.1007/s40843-017-9195-8 – volume: 24 start-page: 981 issue: 8 year: 1953 ident: 2410_CR21 publication-title: J Appl Phys doi: 10.1063/1.1721448 – volume: 858 start-page: 144156 year: 2022 ident: 2410_CR42 publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2022.144156 – volume: 19 start-page: 349 issue: 6 year: 2016 ident: 2410_CR20 publication-title: Mater Today doi: 10.1016/j.mattod.2015.11.026 – volume: 41 start-page: 2038 issue: 6 year: 2022 ident: 2410_CR18 publication-title: Rare Met doi: 10.1007/s12598-021-01931-w – volume: 862 start-page: 144425 year: 2023 ident: 2410_CR43 publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2022.144425 – volume: 59 start-page: 6308 issue: 16 year: 2011 ident: 2410_CR31 publication-title: Acta Mater doi: 10.1016/j.actamat.2011.06.041 – volume: 41 start-page: 1989 issue: 6 year: 2022 ident: 2410_CR16 publication-title: Rare Met doi: 10.1007/s12598-021-01926-7 – volume: 153 start-page: 106599 year: 2021 ident: 2410_CR25 publication-title: Tribol Int doi: 10.1016/j.triboint.2020.106599 – volume: 121 start-page: 163 year: 2022 ident: 2410_CR36 publication-title: J Mater Sci Technol doi: 10.1016/j.jmst.2021.12.055 – volume: 139 start-page: 49 year: 2017 ident: 2410_CR49 publication-title: Scripta Mater doi: 10.1016/j.scriptamat.2017.06.015 – volume: 227 start-page: 117700 year: 2022 ident: 2410_CR34 publication-title: Acta Mater doi: 10.1016/j.actamat.2022.117700 – volume: 16 start-page: 257 issue: 5 year: 1983 ident: 2410_CR60 publication-title: Tribol Int doi: 10.1016/0301-679X(83)90086-5 – volume: 788 start-page: 485 year: 2019 ident: 2410_CR10 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2019.02.223 – volume: 261 start-page: 513 issue: 5 year: 2006 ident: 2410_CR32 publication-title: Wear doi: 10.1016/j.wear.2005.12.008 – volume: 48 start-page: 911 issue: 4 year: 2000 ident: 2410_CR51 publication-title: Acta Mater doi: 10.1016/S1359-6454(99)00377-8 – volume: 147 start-page: 78 year: 2018 ident: 2410_CR1 publication-title: Acta Mater doi: 10.1016/j.actamat.2018.01.014 – volume: 4 start-page: 515 issue: 8 year: 2019 ident: 2410_CR14 publication-title: Nat Rev Mater doi: 10.1038/s41578-019-0121-4 – volume: 9 start-page: 4520 issue: 1 year: 2018 ident: 2410_CR39 publication-title: Nat Commun doi: 10.1038/s41467-018-06757-2 – volume: 46 start-page: 2817 issue: 12 year: 2005 ident: 2410_CR47 publication-title: Mater Trans doi: 10.2320/matertrans.46.2817 – volume: 118 start-page: 100777 year: 2021 ident: 2410_CR5 publication-title: Prog Mater Sci doi: 10.1016/j.pmatsci.2021.100777 – volume: 21 start-page: 433 issue: 6 year: 2011 ident: 2410_CR48 publication-title: Prog Nat Sci: Mater Int doi: 10.1016/S1002-0071(12)60080-X – volume: 147 start-page: 213 year: 2018 ident: 2410_CR57 publication-title: Acta Mater doi: 10.1016/j.actamat.2018.01.050 – volume: 268 start-page: 1013 issue: 7 year: 2010 ident: 2410_CR59 publication-title: Wear doi: 10.1016/j.wear.2009.12.033 – volume: 725 start-page: 437 year: 2018 ident: 2410_CR12 publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2018.04.058 – volume: 41 start-page: 2002 issue: 6 year: 2022 ident: 2410_CR15 publication-title: Rare Met doi: 10.1007/s12598-021-01953-4 – volume: 174 start-page: 25 year: 1953 ident: 2410_CR53 publication-title: Journal of the Iron and Steel Institute doi: 10.1016/0013-7944(87)90050-6 – volume: 405 start-page: 126522 year: 2021 ident: 2410_CR58 publication-title: Surf Coat Tech doi: 10.1016/j.surfcoat.2020.126522 – volume-title: The Hardness of Metals year: 1951 ident: 2410_CR56 – volume: 157 start-page: 106912 year: 2021 ident: 2410_CR24 publication-title: Tribol Int doi: 10.1016/j.triboint.2021.106912 – volume: 200 start-page: 112879 year: 2023 ident: 2410_CR30 publication-title: Mater Charact doi: 10.1016/j.matchar.2023.112879 – volume: 35 start-page: 1465 issue: 5 year: 2004 ident: 2410_CR37 publication-title: Metall Mater Trans A doi: 10.1007/s11661-004-0254-x – volume: 210 start-page: 114429 year: 2022 ident: 2410_CR38 publication-title: Scripta Mater doi: 10.1016/j.scriptamat.2021.114429 – volume: 375–377 start-page: 213 year: 2004 ident: 2410_CR6 publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2003.10.257 – volume: 161 start-page: 28 year: 2019 ident: 2410_CR4 publication-title: Scripta Mater doi: 10.1016/j.scriptamat.2018.10.007 – volume: 41 start-page: 1015 issue: 3 year: 2022 ident: 2410_CR17 publication-title: Rare Met doi: 10.1007/s12598-018-1161-4 – volume: 402 start-page: 126328 year: 2020 ident: 2410_CR26 publication-title: Surf Coat Tech doi: 10.1016/j.surfcoat.2020.126328 – volume: 10 start-page: 1912 issue: 4 year: 2018 ident: 2410_CR13 publication-title: Nanoscale doi: 10.1039/C7NR07281C – volume: 894 start-page: 162380 year: 2022 ident: 2410_CR23 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2021.162380 – volume: 45 start-page: 530 issue: 5 year: 2021 ident: 2410_CR2 publication-title: Chin J Rare Met doi: 10.13373/j.cnki.cjrm.XY20080042 – volume: 153 start-page: 214 year: 2018 ident: 2410_CR41 publication-title: Acta Mater doi: 10.1016/j.actamat.2018.05.002 – volume: 532 start-page: 480 year: 2012 ident: 2410_CR44 publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2011.10.110 – volume: 64 start-page: 747 issue: 9 year: 1951 ident: 2410_CR54 publication-title: Proc Phys Soc Sect B doi: 10.1088/0370-1301/64/9/303 – volume: 208 start-page: 116763 year: 2021 ident: 2410_CR40 publication-title: Acta Mater doi: 10.1016/j.actamat.2021.116763 |
SSID | ssj0044660 |
Score | 2.337859 |
Snippet | Initially defined high entropy alloys (HEAs) usually exhibit a single-phase solid-solution structure. However, two and/or more types of phases in HEAs possibly... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 324 |
SubjectTerms | Abrasive wear Adhesive wear Aluminum oxide Biomaterials Chemistry and Materials Science Energy Grain refinement High entropy alloys Hypoeutectic structures Laves phase Materials Engineering Materials Science Metallic Materials Microstructure Nanoscale Science and Technology Original Article Phase composition Physical Chemistry Solid phases Solid solutions Solution strengthening Wear mechanisms Wear rate |
Title | A Hf-doped dual-phase high-entropy alloy: phase evolution and wear features |
URI | https://link.springer.com/article/10.1007/s12598-023-02410-0 https://www.proquest.com/docview/2904607383 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1Bu8CA-BSFgjywgaUmdtKELYKWilIWqFSmKLYvYkBpRAuo_55zPiggQGKIEslOhuez784v9wxwEnhpt-u5hgvpaS6lMTxwE81DY52VEyZSW0Z3dOsPxvJ64k2qorBZ_bd7TUkWK_Wy2I0i9YCTj6FLWgp3FZqe1ZMiKx67Ub3-WoKy1CCwiTJ5p6pU5udvfHVHyxjzGy1aeJv-JmxUYSKLynHdghXMtmH9k3jgDgwjNki5meZomC2o4vkjeSRm9Ye53bKd5gtmWfXFOStb8LUyM5Zkhr2RibMUC13P2S6M-737iwGvjkbgmubMnKfoK2XF9ZDyG_Q7gvIy1OinhLvwJCaSUg3tualwtFZSCaGC0MHEdzRFOEEq9qCRTTPcB4ZIXjsRwhGGoBMq8TFUrvENCmPV41rg1AjFutINt8dXPMVLxWOLakyoxgWqcacFpx_v5KVqxp-92zXwcTWDZrEbWsq2Swl0C87qwVg2__61g_91P4Q1lx7LXZU2NObPL3hEccZcHUMzuhzd3Nn71cOwd1yY2TvW_Mkn |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDMCAeIpCAQ9sYKmJnTRhqxBVoI-plbpZiX0RA2ojWkD999zlQQABEkOW2PHw-ey785f7zNhl4KWdjudaIZVnhFLWisCNjQgtOSsnjJUhRnc48qOJeph607IobFH97V5RkvlOXRe7YaQeCPQx-CiicNfZBtGMlHJN3G61_xJBWWgQUKKM3qkslfl5jK_uqI4xv9Giubfp7bKdMkzk3WJe99gazPbZ9ifxwAPW7_IoFXaegeVUUCWyR_RInPSHBR3ZzrMVJ1Z9dcOLFngtzYzHM8vf0MR5Crmu5-KQTXp349tIlFcjCINrZilS8JOExPUA8xvw2xLzMjDgp4i79BTEClMN47mpdIxJVCJlEoQOxL5jMMIJUnnEGrP5DI4ZB0CvHUvpSIvQyST2IUxc61uQltTjmsypENKm1A2n6yuedK14TKhqRFXnqOp2k119fJMVqhl_9m5VwOtyBS20GxJl28EEusmuq8mom38f7eR_3S_YZjQeDvTgftQ_ZVsuvi5OWFqssXx-gTOMOZbJeW5i77RcyOI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgSAgOvBHjmQM3CNAm7VpuEzAGA8QBJDhVTeIKCdRV0IHGr8dZWwYIkBCHXpo0au2ktvPFnwE2Ay9pNDzXcCE9zaU0hgdurHlorLFywlhqi-ieX_jta3l64918yOIfnHavIMkip8GyNKX5bmaS3WHiG3ntASd7Q5e0cO4ojElbQ6IGY83j285R9Te2cGXBSGDDZrJVZeLM96N8Nk5Dj_MLSDqwPa1piKu3Lo6c3O_0crWjX78QOv7ns2ZgqnRMWbOYSbMwgukcTH6gK5yHTpO1E266GRpmU7h4dkc2kFnGY243ibtZn1kcv7_PihZ8Lic2i1PDXmhRsQQHTKJPC3DdOro6aPOyGAPXtEpznqCvlKXzQ4qo0N8TFAmiRj8hTQtPYiwpuNGemwhHayWVECoIHYx9R5NPFSRiEWppN8UlYIjkJ8RCOMKQeoSKfQyVa3yDwli-ujo4lRYiXTKV24IZD9GQY9kKKiJBRQNBRXt12Hp_Jit4On7tvVopNyrX7FPkhhYkblDIXoftSlfD5p9HW_5b9w0YvzxsRWcnF50VmHDpbrGlswq1_LGHa-Tk5Gq9nMdvgh3usw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hf-doped+dual-phase+high-entropy+alloy%3A+phase+evolution+and+wear+features&rft.jtitle=Rare+metals&rft.au=Ren%2C+Hao&rft.au=Chen%2C+Rui-Run&rft.au=Gao%2C+Xue-Feng&rft.au=Liu%2C+Tong&rft.date=2024-01-01&rft.issn=1001-0521&rft.eissn=1867-7185&rft.volume=43&rft.issue=1&rft.spage=324&rft.epage=333&rft_id=info:doi/10.1007%2Fs12598-023-02410-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12598_023_02410_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1001-0521&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1001-0521&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1001-0521&client=summon |