Improved fast compressive tracking for low-altitude flying target tracking
Effective and efficient low-altitude flying target tracking in the field of visual tracking is challenging due to factors such as background interference, a small target imaging area, scale changes, and in-plane/out-of-plane rotation. Fast compressive tracking is an effective algorithm that combines...
Saved in:
| Published in | Multimedia tools and applications Vol. 80; no. 7; pp. 11239 - 11254 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.03.2021
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1380-7501 1573-7721 |
| DOI | 10.1007/s11042-020-10343-4 |
Cover
| Abstract | Effective and efficient low-altitude flying target tracking in the field of visual tracking is challenging due to factors such as background interference, a small target imaging area, scale changes, and in-plane/out-of-plane rotation. Fast compressive tracking is an effective algorithm that combines compressive sensing theory and the naive Bayes classifier to track targets in real-time. Since the target motion information is not used in the tracking process and a fixed learning rate is adopted, the target may be lost during tracking, especially when the background interference is considerable or when in-plane/out-of-plane rotation exists. To solve this problem, first, target motion information was introduced to reduce the search area for predicting the target position. Then, the confidence calculation was optimized by comprehensively considering the posterior probability of the candidate region and the positive sample membership value. Finally, the learning rate was dynamically adjusted according to the target velocity and optimized confidence. Experimental results verified that the proposed method could effectively improve the efficiency, accuracy, and robustness of target tracking. |
|---|---|
| AbstractList | Effective and efficient low-altitude flying target tracking in the field of visual tracking is challenging due to factors such as background interference, a small target imaging area, scale changes, and in-plane/out-of-plane rotation. Fast compressive tracking is an effective algorithm that combines compressive sensing theory and the naive Bayes classifier to track targets in real-time. Since the target motion information is not used in the tracking process and a fixed learning rate is adopted, the target may be lost during tracking, especially when the background interference is considerable or when in-plane/out-of-plane rotation exists. To solve this problem, first, target motion information was introduced to reduce the search area for predicting the target position. Then, the confidence calculation was optimized by comprehensively considering the posterior probability of the candidate region and the positive sample membership value. Finally, the learning rate was dynamically adjusted according to the target velocity and optimized confidence. Experimental results verified that the proposed method could effectively improve the efficiency, accuracy, and robustness of target tracking. |
| Author | Cheng, Yuanhao Yu, Dehong Wang, Sun’an |
| Author_xml | – sequence: 1 givenname: Yuanhao orcidid: 0000-0003-3102-3208 surname: Cheng fullname: Cheng, Yuanhao email: cyhv2006@126.com organization: School of Mechanical Engineering, Xi’an Jiaotong University – sequence: 2 givenname: Sun’an surname: Wang fullname: Wang, Sun’an email: sawang@xjtu.edu.cn organization: School of Mechanical Engineering, Xi’an Jiaotong University – sequence: 3 givenname: Dehong surname: Yu fullname: Yu, Dehong organization: School of Mechanical Engineering, Xi’an Jiaotong University |
| BookMark | eNp9kEtLAzEUhYMo2Fb_gKsB19GbV5MupfioFNzoOqSZpEydTmqSVvrvTR1RcNHVfXC-ew9niE670DmErgjcEAB5mwgBTjFQwAQYZ5ifoAERkmEpKTktPVOApQByjoYprQDIWFA-QM-z9SaGnasrb1KubCijS6nZuSpHY9-bbln5EKs2fGLT5iZva1f5dn_YZxOXLv_qLtCZN21ylz91hN4e7l-nT3j-8jib3s2xZWSSsZ_UioqF56I2zhFiJtYYZQUDIZW14JyqF0JIbhcgak6UUUqyifCkHhPwlI3QdX-3GP_YupT1KmxjV15qKkBQITiFolK9ysaQUnRe2yab3ISu-G1aTUAfktN9crokp7-T07yg9B-6ic3axP1xiPVQKuJu6eKfqyPUFyq2gxQ |
| CitedBy_id | crossref_primary_10_3390_g12040075 crossref_primary_10_1109_ACCESS_2023_3292302 |
| Cites_doi | 10.1007/s11042-015-2519-3 10.1007/s11042-018-5661-x 10.1007/s11042-018-5770-6 10.1109/tcyb.2016.2514714 10.1109/tip.2017.2781304 10.1007/s11263-017-1061-3 10.1007/s11042-019-7514-7 10.1007/s11263-018-1076-4 10.1109/tpami.2011.239 10.1007/s11042-019-7439-1 10.1109/tip.2017.2777183 10.1007/s11042-018-6180-5 10.1109/tpami.2014.2315808 10.1109/TPAMI.2004.53 10.1049/iet-cvi.2014.0431 10.1007/s11042-018-6956-7 10.1109/tpami.2018.2797062 10.1016/j.patcog.2017.11.007 10.1016/j.patcog.2019.107027 10.1109/access.2017.2764419 10.1109/tpami.2010.226 10.1007/s11042-016-3647-0 10.1109/tpami.2016.2577031 10.1007/s11042-018-5781-3 10.1016/j.sigpro.2019.107324 10.1109/tpami.2015.2509974 10.1109/tip.2019.2942506 10.1016/j.patrec.2015.10.014 10.1017/aer.2018.158 10.1007/s11042-018-6132-0 10.1007/s11263-007-0075-7 10.1007/s11263-014-0738-0 10.1109/CCDC.2016.7531819 10.1051/matecconf/20165901003 10.1007/978-3-642-33712-3_62 10.5244/C.20.6 10.1109/CVPR.2019.00552 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.1007/s11042-020-10343-4 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database ProQuest Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business (UW System Shared) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1573-7721 |
| EndPage | 11254 |
| ExternalDocumentID | 10_1007_s11042_020_10343_4 |
| GrantInformation_xml | – fundername: Shaanxi Key Research and Development Program of China grantid: 2018NY-111 – fundername: National Nature Science Foundation of China grantid: 51375368 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c319t-f9d825bf45daee11a9caa8c530578cc0ee8db5574cb05d418a887395f1d610f23 |
| IEDL.DBID | U2A |
| ISSN | 1380-7501 |
| IngestDate | Sat Jul 26 00:08:38 EDT 2025 Wed Oct 01 04:51:11 EDT 2025 Thu Apr 24 22:57:22 EDT 2025 Fri Feb 21 02:49:40 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Visual tracking Improved fast compressive tracking Object tracking Low-altitude flying target |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-f9d825bf45daee11a9caa8c530578cc0ee8db5574cb05d418a887395f1d610f23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3102-3208 |
| PQID | 2505255420 |
| PQPubID | 54626 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_2505255420 crossref_citationtrail_10_1007_s11042_020_10343_4 crossref_primary_10_1007_s11042_020_10343_4 springer_journals_10_1007_s11042_020_10343_4 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20210300 2021-03-00 20210301 |
| PublicationDateYYYYMMDD | 2021-03-01 |
| PublicationDate_xml | – month: 3 year: 2021 text: 20210300 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Multimedia tools and applications |
| PublicationTitleAbbrev | Multimed Tools Appl |
| PublicationYear | 2021 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Ren, He, Girshick, Sun (CR26) 2017; 39 Ma, Huang, Yang, Yang (CR23) 2018; 126 Kalal, Mikolajczyk, Matas (CR18) 2012; 34 Babenko, Yang, Belongie (CR3) 2011; 33 Huang, Lin, Huang, Lin, Zhang (CR16) 2019; 78 Ross, Lim, Lin, Yang (CR27) 2008; 77 Zhang, Xu, Yang (CR38) 2019; 41 CR34 CR11 CR33 Lan, Zhang, Yuen, Chellappa (CR19) 2018; 27 CR32 Zhao, Zhang, Cao (CR39) 2018; 77 Fu, Xiong, Lin, Yue (CR9) 2020; 167 Han, Zhang, Huang, Zha, Cooper, Zhang (CR12) 2020; 97 He, Yi, Cheung, You, Tang (CR15) 2017; 47 Hardalac, Kutbay, Sahin, Akyel (CR13) 2018; 77 Avidan (CR2) 2004; 26 Hare, Golodetz, Saffari, Vineet, Cheng, Hicks, Torr (CR14) 2016; 38 Chen, Liu, Li (CR5) 2019; 123 Li, Wang, Wang, Lu (CR20) 2018; 76 CR7 Badal, Nain, Ahmed (CR4) 2018; 77 Zhang, Zhang, Yang (CR35) 2014; 36 Truong, Pak, Kim (CR30) 2018; 77 Jenkins, Barrie, Buggy, Morison (CR17) 2016; 69 CR24 CR22 Pan, Liu, Fu (CR25) 2017; 76 Shen, Zhang, Wang, Yang, Xue, Hu (CR28) 2018; 77 Abdelpakey, Shehata (CR1) 2020; 29 Zhang, Liu, Ahuja, Yang, Ghanem (CR36) 2015; 111 Lukezic, Vojir, Zajc, Matas, Kristan (CR21) 2018; 126 Zhang, Liu, Xu, Liu, Yang (CR37) 2018; 27 Gao, Zhou, Zhang (CR10) 2015; 9 Wu, Sui, Wang (CR31) 2017; 5 Chen, Li, Wang, Ma, Xu (CR6) 2019; 78 Sliti, Hamam (CR29) 2019; 78 Fu, Zhou, Ma (CR8) 2016; 75 YM Han (10343_CR12) 2020; 97 TZ Zhang (10343_CR36) 2015; 111 PX Li (10343_CR20) 2018; 76 KH Zhang (10343_CR35) 2014; 36 MH Abdelpakey (10343_CR1) 2020; 29 O Sliti (10343_CR29) 2019; 78 Y Gao (10343_CR10) 2015; 9 T Badal (10343_CR4) 2018; 77 S Hare (10343_CR14) 2016; 38 ZY He (10343_CR15) 2017; 47 MY Shen (10343_CR28) 2018; 77 W Huang (10343_CR16) 2019; 78 JG Chen (10343_CR6) 2019; 78 10343_CR24 Z Pan (10343_CR25) 2017; 76 A Lukezic (10343_CR21) 2018; 126 SQ Ren (10343_CR26) 2017; 39 MTN Truong (10343_CR30) 2018; 77 10343_CR22 S Avidan (10343_CR2) 2004; 26 YW Wu (10343_CR31) 2017; 5 TZ Zhang (10343_CR37) 2018; 27 B Babenko (10343_CR3) 2011; 33 Z Kalal (10343_CR18) 2012; 34 JW Zhao (10343_CR39) 2018; 77 MD Jenkins (10343_CR17) 2016; 69 WN Fu (10343_CR8) 2016; 75 C Ma (10343_CR23) 2018; 126 WS Chen (10343_CR5) 2019; 123 F Hardalac (10343_CR13) 2018; 77 XY Lan (10343_CR19) 2018; 27 TZ Zhang (10343_CR38) 2019; 41 10343_CR34 10343_CR7 CH Fu (10343_CR9) 2020; 167 DA Ross (10343_CR27) 2008; 77 10343_CR11 10343_CR33 10343_CR32 |
| References_xml | – volume: 75 start-page: 15553 issue: 23 year: 2016 end-page: 15570 ident: CR8 article-title: Moving tracking with approximate topological isomorphism publication-title: Multimed Tools Appl doi: 10.1007/s11042-015-2519-3 – volume: 77 start-page: 24059 issue: 18 year: 2018 end-page: 24072 ident: CR13 article-title: A novel method for robust object tracking with K-means clustering using histogram back-projection technique publication-title: Multimed Tools Appl doi: 10.1007/s11042-018-5661-x – volume: 77 start-page: 25109 issue: 19 year: 2018 end-page: 25129 ident: CR28 article-title: Robust object tracking via superpixels and keypoints publication-title: Multimed Tools Appl doi: 10.1007/s11042-018-5770-6 – volume: 47 start-page: 354 issue: 2 year: 2017 end-page: 364 ident: CR15 article-title: Robust object tracking via key patch sparse representation publication-title: IEEE Transactions on Cybernetics doi: 10.1109/tcyb.2016.2514714 – ident: CR22 – volume: 27 start-page: 2676 issue: 6 year: 2018 end-page: 2687 ident: CR37 article-title: Correlation particle filter for visual tracking publication-title: IEEE Trans Image Process doi: 10.1109/tip.2017.2781304 – volume: 126 start-page: 671 issue: 7 year: 2018 end-page: 688 ident: CR21 article-title: Discriminative correlation filter tracker with channel and spatial reliability publication-title: Int J Comput Vis doi: 10.1007/s11263-017-1061-3 – volume: 78 start-page: 22463 issue: 16 year: 2019 end-page: 22477 ident: CR6 article-title: Fast compressive tracking combined with Kalman filter publication-title: Multimed Tools Appl doi: 10.1007/s11042-019-7514-7 – volume: 126 start-page: 771 issue: 8 year: 2018 end-page: 796 ident: CR23 article-title: Adaptive correlation filters with long-term and short-term memory for object tracking publication-title: Int J Comput Vis doi: 10.1007/s11263-018-1076-4 – ident: CR33 – volume: 34 start-page: 1409 issue: 7 year: 2012 end-page: 1422 ident: CR18 article-title: Tracking-learning-detection publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/tpami.2011.239 – volume: 78 start-page: 21759 issue: 15 year: 2019 end-page: 21783 ident: CR29 article-title: Efficient visual tracking via sparse representation and back-projection histogram publication-title: Multimed Tools Appl doi: 10.1007/s11042-019-7439-1 – volume: 27 start-page: 2022 issue: 4 year: 2018 end-page: 2037 ident: CR19 article-title: Learning common and feature-specific patterns: a novel multiple-sparse-representation-based tracker publication-title: IEEE Trans Image Process doi: 10.1109/tip.2017.2777183 – volume: 77 start-page: 30067 issue: 22 year: 2018 end-page: 30088 ident: CR30 article-title: Single object tracking using particle filter framework and saliency-based weighted color histogram publication-title: Multimed Tools Appl doi: 10.1007/s11042-018-6180-5 – volume: 36 start-page: 2002 issue: 10 year: 2014 end-page: 2015 ident: CR35 article-title: Fast compressive tracking publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/tpami.2014.2315808 – volume: 26 start-page: 1064 issue: 8 year: 2004 end-page: 1072 ident: CR2 article-title: Support vector tracking publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2004.53 – volume: 9 start-page: 857 issue: 6 year: 2015 end-page: 863 ident: CR10 article-title: Enhanced fast compressive tracking based on adaptive measurement matrix publication-title: IET Comput Vis doi: 10.1049/iet-cvi.2014.0431 – volume: 78 start-page: 16011 issue: 12 year: 2019 end-page: 16032 ident: CR16 article-title: Scale-adaptive tracking based on perceptual hash and correlation filter publication-title: Multimed Tools Appl doi: 10.1007/s11042-018-6956-7 – volume: 41 start-page: 365 issue: 2 year: 2019 end-page: 378 ident: CR38 article-title: Learning multi-task correlation particle filters for visual tracking publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/tpami.2018.2797062 – volume: 76 start-page: 323 year: 2018 end-page: 338 ident: CR20 article-title: Deep visual tracking: review and experimental comparison publication-title: Pattern Recogn doi: 10.1016/j.patcog.2017.11.007 – volume: 97 start-page: 15 year: 2020 ident: CR12 article-title: Robust visual tracking based on adversarial Unlabeled instance generation with label smoothing loss regularization publication-title: Pattern Recogn doi: 10.1016/j.patcog.2019.107027 – volume: 5 start-page: 23969 year: 2017 end-page: 23978 ident: CR31 article-title: Vision-based real-time aerial object localization and tracking for UAV sensing system publication-title: IEEE Access doi: 10.1109/access.2017.2764419 – ident: CR11 – volume: 33 start-page: 1619 issue: 8 year: 2011 end-page: 1632 ident: CR3 article-title: Robust object tracking with online multiple instance learning publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/tpami.2010.226 – volume: 76 start-page: 16989 issue: 16 year: 2017 end-page: 17018 ident: CR25 article-title: A review of visual moving target tracking publication-title: Multimed Tools Appl doi: 10.1007/s11042-016-3647-0 – volume: 39 start-page: 1137 issue: 6 year: 2017 end-page: 1149 ident: CR26 article-title: Faster R-CNN: towards real-time object detection with region proposal networks publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/tpami.2016.2577031 – volume: 77 start-page: 25199 issue: 19 year: 2018 end-page: 25221 ident: CR4 article-title: Online multi-object tracking: multiple instance based target appearance model publication-title: Multimed Tools Appl doi: 10.1007/s11042-018-5781-3 – ident: CR32 – volume: 167 start-page: 17 year: 2020 ident: CR9 article-title: Surrounding-aware correlation filter for UAV tracking with selective spatial regularization publication-title: Signal Process doi: 10.1016/j.sigpro.2019.107324 – volume: 38 start-page: 2096 issue: 10 year: 2016 end-page: 2109 ident: CR14 article-title: Struck: structured output tracking with kernels publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/tpami.2015.2509974 – ident: CR34 – ident: CR7 – volume: 29 start-page: 1479 year: 2020 end-page: 1492 ident: CR1 article-title: DP-Siam: dynamic policy Siamese network for robust object tracking publication-title: IEEE Trans Image Process doi: 10.1109/tip.2019.2942506 – volume: 69 start-page: 82 year: 2016 end-page: 87 ident: CR17 article-title: Extended fast compressive tracking with weighted multi-frame template matching for fast motion tracking publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2015.10.014 – volume: 123 start-page: 191 issue: 1260 year: 2019 end-page: 211 ident: CR5 article-title: Classification of UAV and bird target in low-altitude airspace with surveillance radar data publication-title: The Aeronautical Journal doi: 10.1017/aer.2018.158 – volume: 77 start-page: 30969 issue: 23 year: 2018 end-page: 30991 ident: CR39 article-title: Robust object tracking using a sparse coadjutant observation model publication-title: Multimed Tools Appl doi: 10.1007/s11042-018-6132-0 – ident: CR24 – volume: 77 start-page: 125 issue: 1–3 year: 2008 end-page: 141 ident: CR27 article-title: Incremental learning for robust visual tracking publication-title: Int J Comput Vis doi: 10.1007/s11263-007-0075-7 – volume: 111 start-page: 171 issue: 2 year: 2015 end-page: 190 ident: CR36 article-title: Robust visual tracking via consistent low-rank sparse learning publication-title: Int J Comput Vis doi: 10.1007/s11263-014-0738-0 – volume: 78 start-page: 16011 issue: 12 year: 2019 ident: 10343_CR16 publication-title: Multimed Tools Appl doi: 10.1007/s11042-018-6956-7 – volume: 123 start-page: 191 issue: 1260 year: 2019 ident: 10343_CR5 publication-title: The Aeronautical Journal doi: 10.1017/aer.2018.158 – volume: 39 start-page: 1137 issue: 6 year: 2017 ident: 10343_CR26 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/tpami.2016.2577031 – volume: 27 start-page: 2022 issue: 4 year: 2018 ident: 10343_CR19 publication-title: IEEE Trans Image Process doi: 10.1109/tip.2017.2777183 – ident: 10343_CR22 doi: 10.1109/CCDC.2016.7531819 – ident: 10343_CR33 doi: 10.1051/matecconf/20165901003 – volume: 26 start-page: 1064 issue: 8 year: 2004 ident: 10343_CR2 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2004.53 – volume: 47 start-page: 354 issue: 2 year: 2017 ident: 10343_CR15 publication-title: IEEE Transactions on Cybernetics doi: 10.1109/tcyb.2016.2514714 – volume: 77 start-page: 25109 issue: 19 year: 2018 ident: 10343_CR28 publication-title: Multimed Tools Appl doi: 10.1007/s11042-018-5770-6 – volume: 27 start-page: 2676 issue: 6 year: 2018 ident: 10343_CR37 publication-title: IEEE Trans Image Process doi: 10.1109/tip.2017.2781304 – ident: 10343_CR32 – volume: 126 start-page: 771 issue: 8 year: 2018 ident: 10343_CR23 publication-title: Int J Comput Vis doi: 10.1007/s11263-018-1076-4 – volume: 78 start-page: 22463 issue: 16 year: 2019 ident: 10343_CR6 publication-title: Multimed Tools Appl doi: 10.1007/s11042-019-7514-7 – volume: 78 start-page: 21759 issue: 15 year: 2019 ident: 10343_CR29 publication-title: Multimed Tools Appl doi: 10.1007/s11042-019-7439-1 – volume: 77 start-page: 25199 issue: 19 year: 2018 ident: 10343_CR4 publication-title: Multimed Tools Appl doi: 10.1007/s11042-018-5781-3 – volume: 167 start-page: 17 year: 2020 ident: 10343_CR9 publication-title: Signal Process doi: 10.1016/j.sigpro.2019.107324 – volume: 97 start-page: 15 year: 2020 ident: 10343_CR12 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2019.107027 – volume: 38 start-page: 2096 issue: 10 year: 2016 ident: 10343_CR14 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/tpami.2015.2509974 – volume: 41 start-page: 365 issue: 2 year: 2019 ident: 10343_CR38 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/tpami.2018.2797062 – ident: 10343_CR24 – volume: 76 start-page: 16989 issue: 16 year: 2017 ident: 10343_CR25 publication-title: Multimed Tools Appl doi: 10.1007/s11042-016-3647-0 – volume: 75 start-page: 15553 issue: 23 year: 2016 ident: 10343_CR8 publication-title: Multimed Tools Appl doi: 10.1007/s11042-015-2519-3 – ident: 10343_CR34 doi: 10.1007/978-3-642-33712-3_62 – volume: 111 start-page: 171 issue: 2 year: 2015 ident: 10343_CR36 publication-title: Int J Comput Vis doi: 10.1007/s11263-014-0738-0 – ident: 10343_CR11 doi: 10.5244/C.20.6 – volume: 5 start-page: 23969 year: 2017 ident: 10343_CR31 publication-title: IEEE Access doi: 10.1109/access.2017.2764419 – ident: 10343_CR7 doi: 10.1109/CVPR.2019.00552 – volume: 29 start-page: 1479 year: 2020 ident: 10343_CR1 publication-title: IEEE Trans Image Process doi: 10.1109/tip.2019.2942506 – volume: 77 start-page: 30067 issue: 22 year: 2018 ident: 10343_CR30 publication-title: Multimed Tools Appl doi: 10.1007/s11042-018-6180-5 – volume: 76 start-page: 323 year: 2018 ident: 10343_CR20 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2017.11.007 – volume: 126 start-page: 671 issue: 7 year: 2018 ident: 10343_CR21 publication-title: Int J Comput Vis doi: 10.1007/s11263-017-1061-3 – volume: 77 start-page: 24059 issue: 18 year: 2018 ident: 10343_CR13 publication-title: Multimed Tools Appl doi: 10.1007/s11042-018-5661-x – volume: 69 start-page: 82 year: 2016 ident: 10343_CR17 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2015.10.014 – volume: 36 start-page: 2002 issue: 10 year: 2014 ident: 10343_CR35 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/tpami.2014.2315808 – volume: 77 start-page: 125 issue: 1–3 year: 2008 ident: 10343_CR27 publication-title: Int J Comput Vis doi: 10.1007/s11263-007-0075-7 – volume: 77 start-page: 30969 issue: 23 year: 2018 ident: 10343_CR39 publication-title: Multimed Tools Appl doi: 10.1007/s11042-018-6132-0 – volume: 33 start-page: 1619 issue: 8 year: 2011 ident: 10343_CR3 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/tpami.2010.226 – volume: 9 start-page: 857 issue: 6 year: 2015 ident: 10343_CR10 publication-title: IET Comput Vis doi: 10.1049/iet-cvi.2014.0431 – volume: 34 start-page: 1409 issue: 7 year: 2012 ident: 10343_CR18 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/tpami.2011.239 |
| SSID | ssj0016524 |
| Score | 2.253974 |
| Snippet | Effective and efficient low-altitude flying target tracking in the field of visual tracking is challenging due to factors such as background interference, a... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 11239 |
| SubjectTerms | Accuracy Algorithms Altitude Computer Communication Networks Computer Science Conditional probability Data Structures and Information Theory Efficiency Interference Kalman filters Learning Low altitude Multimedia Multimedia Information Systems Optical tracking Rotation Sparsity Special Purpose and Application-Based Systems Target recognition Visual fields Visual flight |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwIxEJ4gXPTgAzWiaHrwpo3b3Xa3HIxRAyEkEmMk4bbp9nEigLDo37fd7YKayHm7Pcx0Hp3ONx_AtWTcmFgkuCNFhimPKRYx11hmJEwSrniYOLzzyzDuj-hgzMY1GFZYGNdWWfnEwlGrmXQ18ruwYFxjNAwe5h_YsUa519WKQkN4agV1X4wY24FG6CZj1aHx1B2-vq3fFWLmaW55gG2sJB5GU4LpiIOquOsUCSIaYfo7VG3yzz9PpkUk6h3Cvk8h0WOp8yOo6WkTDip6BuSttQl7P2YNHsOgLB9ohYxY5si1khctsJ8a5QshXcUc2QQWTWZfWDhQ7kppZCYOBYXKdvH1uhMY9brvz33siRSwtBaWY9OxMmeZoUwJrQkRVjGCS2ZtPeFSBlpzlTGWUJkFTFHChXU9UYcZomx2ZcLoFOrT2VSfAbK3tUwHOgsEjSiz3lLJDuE2qTCKWR2rFpBKZqn0U8Yd2cUk3cxHdnJOrZzTQs4pbcHN-p95OWNj6-p2pYrU29sy3ZyOFtxW6tl8_n-38-27XcBu6JpYiqazNtTzxUpf2iwkz6780foGZxXXjw priority: 102 providerName: ProQuest |
| Title | Improved fast compressive tracking for low-altitude flying target tracking |
| URI | https://link.springer.com/article/10.1007/s11042-020-10343-4 https://www.proquest.com/docview/2505255420 |
| Volume | 80 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1573-7721 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: ADMLS dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-7721 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-7721 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RdoGBRwFRKJUHNrAUJ3bijAX1oSIqhKhUpsjxY6pa1Kbw97HzaAEBElOGnD3c-R723XcHcCUZNyYUEY6lSDHlIcUi5BrLlPhRxBX3I4d3fhiHwwkdTdm0BIWtqmr3KiWZW-ot2I04KIm77hAvoAGmNWgw187LnuKJ393kDkJWjrLlHrb-kJRQmZ_3-OqOtjHmt7Ro7m36h7BfhomoW8j1CHb0vAkH1QgGVGpkE_Y-9RM8hlHxRKAVMmKVIVcunpe5vmmULYV0r-LIBqlotnjHwgFv10ojM3NIJ1SUhG_oTmDS7z3fDXE5LAFLq0UZNrHlK0sNZUpoTYiwzBdcMqvPEZfS05qrlLGIytRjihIurHkJYmaIshGU8YNTqM8Xc30GyN7IUu3p1BM0oMxaRCVjwm3gYBSzclQtIBXPEll2EncDLWbJtgey43Ni-ZzkfE5oC643a16LPhp_UrcrUSSlTq0SP5-5x6jvteCmEs_29--7nf-P_AJ2fVe4kheataGeLdf60kYeWdqBGu8POtDoDl7ue_Z72xs_PnXy4_cBuozR9w |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTuQwEC0hOMAchm1G06w-wImxJk7biXNAiFXN1kIIJG4Zx8up1Q10APFzfBvlxOkGJLhxjmNZ5XItdr16ABtaSOcSldJMq4JymXCqEmmpLlicptLIOPV45_Nu0rnmJzfiZgJeGiyML6tsbGJlqM1A-zvyf3HFuCZ4HO3c3lHPGuVfVxsKDRWoFcx21WIsADtO7fMTpnDD7eMD3O_NOD46vNrv0MAyQDWqX0ldhgsShePCKGsZU7hqJbXAg5BKrSNrpSmESLkuImE4kwrPZTsTjhkMPZxvfIAuYIq3eYbJ39TeYfficvSOkYhAqysjir6ZBdhODd5jHhrj0zcWtXmb8veucRzvfniirTzf0Rz8DCEr2a11bB4mbH8BZhs6CBKswwL8eNPbcBFO6usKa4hTw5L40vWq5PbRkvJeaX9DTzBgJr3BE1UeBPxgLHE9j7oidXn6aNwvuP4Wkf6Gyf6gb_8AweywsJEtIoUCFmidjc6YxCDGGYE6ZVrAGpnlOnQ19-QavXzcj9nLOUc555Wcc96CrdE_t3VPjy9HrzRbkYfzPczH2tiCv832jD9_PtvS17Otw3Tn6vwsPzvuni7DTOwLaKqCtxWYLO8f7CpGQGWxFtSMwP_v1uxXIMwVKg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB4hkBAcYIFFFFjwYTmBRZzaiXtAaLVQXgviABK3rOPHqWqBBhB_jV_HTB4tIMGNcxzLGn8ej-3vmwH4bZUOITEp71iTc6kTyU2iPbe5iNNUOx2npHc-v0iOr-XpjbqZgJdGC0O0ysYnlo7aDSzdke_GZcU1JeNoN9S0iMuD7v7tHacKUvTS2pTTqCBy5p-f8Pg23Ds5wLneiuPu4dXfY15XGOAWoVfw0MHBqDxI5Yz3QhgcsdFW4SJItbWR99rlSqXS5pFyUmiDa7LdUUE4DDsCJT1A9z-VUhZ3Uql3j0YvGImqC-rqiOOuLGrBTiXbEySKoYObiNqyzeX7TXEc6X54nC33vO4PmKuDVfanQtcCTPj-Isw3hSBY7RcWYfZNVsMlOK0uKrxjwQwLRqT1kmz76FlxbyzdzTMMlVlv8MQNyX8fnGehR3orVhHTR-1-wvW3GHQZJvuDvl8BhufC3Ec-j4xsS4V-2dmO0Bi-BKcQTa4ForFZZut85lRWo5eNMzGTnTO0c1baOZMt2B79c1tl8_iy9XozFVm9sofZGIct2GmmZ_z5895Wv-5tE6YRz9m_k4uzNZiJiTlTMt3WYbK4f_C_MPQp8o0SYwz-fzeoXwF-FhLE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+fast+compressive+tracking+for+low-altitude+flying+target+tracking&rft.jtitle=Multimedia+tools+and+applications&rft.au=Cheng%2C+Yuanhao&rft.au=Wang%2C+Sun%E2%80%99an&rft.au=Yu%2C+Dehong&rft.date=2021-03-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=80&rft.issue=7&rft.spage=11239&rft.epage=11254&rft_id=info:doi/10.1007%2Fs11042-020-10343-4&rft.externalDocID=10_1007_s11042_020_10343_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |