Improved fast compressive tracking for low-altitude flying target tracking

Effective and efficient low-altitude flying target tracking in the field of visual tracking is challenging due to factors such as background interference, a small target imaging area, scale changes, and in-plane/out-of-plane rotation. Fast compressive tracking is an effective algorithm that combines...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 80; no. 7; pp. 11239 - 11254
Main Authors Cheng, Yuanhao, Wang, Sun’an, Yu, Dehong
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1380-7501
1573-7721
DOI10.1007/s11042-020-10343-4

Cover

Abstract Effective and efficient low-altitude flying target tracking in the field of visual tracking is challenging due to factors such as background interference, a small target imaging area, scale changes, and in-plane/out-of-plane rotation. Fast compressive tracking is an effective algorithm that combines compressive sensing theory and the naive Bayes classifier to track targets in real-time. Since the target motion information is not used in the tracking process and a fixed learning rate is adopted, the target may be lost during tracking, especially when the background interference is considerable or when in-plane/out-of-plane rotation exists. To solve this problem, first, target motion information was introduced to reduce the search area for predicting the target position. Then, the confidence calculation was optimized by comprehensively considering the posterior probability of the candidate region and the positive sample membership value. Finally, the learning rate was dynamically adjusted according to the target velocity and optimized confidence. Experimental results verified that the proposed method could effectively improve the efficiency, accuracy, and robustness of target tracking.
AbstractList Effective and efficient low-altitude flying target tracking in the field of visual tracking is challenging due to factors such as background interference, a small target imaging area, scale changes, and in-plane/out-of-plane rotation. Fast compressive tracking is an effective algorithm that combines compressive sensing theory and the naive Bayes classifier to track targets in real-time. Since the target motion information is not used in the tracking process and a fixed learning rate is adopted, the target may be lost during tracking, especially when the background interference is considerable or when in-plane/out-of-plane rotation exists. To solve this problem, first, target motion information was introduced to reduce the search area for predicting the target position. Then, the confidence calculation was optimized by comprehensively considering the posterior probability of the candidate region and the positive sample membership value. Finally, the learning rate was dynamically adjusted according to the target velocity and optimized confidence. Experimental results verified that the proposed method could effectively improve the efficiency, accuracy, and robustness of target tracking.
Author Cheng, Yuanhao
Yu, Dehong
Wang, Sun’an
Author_xml – sequence: 1
  givenname: Yuanhao
  orcidid: 0000-0003-3102-3208
  surname: Cheng
  fullname: Cheng, Yuanhao
  email: cyhv2006@126.com
  organization: School of Mechanical Engineering, Xi’an Jiaotong University
– sequence: 2
  givenname: Sun’an
  surname: Wang
  fullname: Wang, Sun’an
  email: sawang@xjtu.edu.cn
  organization: School of Mechanical Engineering, Xi’an Jiaotong University
– sequence: 3
  givenname: Dehong
  surname: Yu
  fullname: Yu, Dehong
  organization: School of Mechanical Engineering, Xi’an Jiaotong University
BookMark eNp9kEtLAzEUhYMo2Fb_gKsB19GbV5MupfioFNzoOqSZpEydTmqSVvrvTR1RcNHVfXC-ew9niE670DmErgjcEAB5mwgBTjFQwAQYZ5ifoAERkmEpKTktPVOApQByjoYprQDIWFA-QM-z9SaGnasrb1KubCijS6nZuSpHY9-bbln5EKs2fGLT5iZva1f5dn_YZxOXLv_qLtCZN21ylz91hN4e7l-nT3j-8jib3s2xZWSSsZ_UioqF56I2zhFiJtYYZQUDIZW14JyqF0JIbhcgak6UUUqyifCkHhPwlI3QdX-3GP_YupT1KmxjV15qKkBQITiFolK9ysaQUnRe2yab3ISu-G1aTUAfktN9crokp7-T07yg9B-6ic3axP1xiPVQKuJu6eKfqyPUFyq2gxQ
CitedBy_id crossref_primary_10_3390_g12040075
crossref_primary_10_1109_ACCESS_2023_3292302
Cites_doi 10.1007/s11042-015-2519-3
10.1007/s11042-018-5661-x
10.1007/s11042-018-5770-6
10.1109/tcyb.2016.2514714
10.1109/tip.2017.2781304
10.1007/s11263-017-1061-3
10.1007/s11042-019-7514-7
10.1007/s11263-018-1076-4
10.1109/tpami.2011.239
10.1007/s11042-019-7439-1
10.1109/tip.2017.2777183
10.1007/s11042-018-6180-5
10.1109/tpami.2014.2315808
10.1109/TPAMI.2004.53
10.1049/iet-cvi.2014.0431
10.1007/s11042-018-6956-7
10.1109/tpami.2018.2797062
10.1016/j.patcog.2017.11.007
10.1016/j.patcog.2019.107027
10.1109/access.2017.2764419
10.1109/tpami.2010.226
10.1007/s11042-016-3647-0
10.1109/tpami.2016.2577031
10.1007/s11042-018-5781-3
10.1016/j.sigpro.2019.107324
10.1109/tpami.2015.2509974
10.1109/tip.2019.2942506
10.1016/j.patrec.2015.10.014
10.1017/aer.2018.158
10.1007/s11042-018-6132-0
10.1007/s11263-007-0075-7
10.1007/s11263-014-0738-0
10.1109/CCDC.2016.7531819
10.1051/matecconf/20165901003
10.1007/978-3-642-33712-3_62
10.5244/C.20.6
10.1109/CVPR.2019.00552
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s11042-020-10343-4
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
ProQuest Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 11254
ExternalDocumentID 10_1007_s11042_020_10343_4
GrantInformation_xml – fundername: Shaanxi Key Research and Development Program of China
  grantid: 2018NY-111
– fundername: National Nature Science Foundation of China
  grantid: 51375368
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-f9d825bf45daee11a9caa8c530578cc0ee8db5574cb05d418a887395f1d610f23
IEDL.DBID U2A
ISSN 1380-7501
IngestDate Sat Jul 26 00:08:38 EDT 2025
Wed Oct 01 04:51:11 EDT 2025
Thu Apr 24 22:57:22 EDT 2025
Fri Feb 21 02:49:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Visual tracking
Improved fast compressive tracking
Object tracking
Low-altitude flying target
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-f9d825bf45daee11a9caa8c530578cc0ee8db5574cb05d418a887395f1d610f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3102-3208
PQID 2505255420
PQPubID 54626
PageCount 16
ParticipantIDs proquest_journals_2505255420
crossref_citationtrail_10_1007_s11042_020_10343_4
crossref_primary_10_1007_s11042_020_10343_4
springer_journals_10_1007_s11042_020_10343_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210300
2021-03-00
20210301
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 3
  year: 2021
  text: 20210300
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Ren, He, Girshick, Sun (CR26) 2017; 39
Ma, Huang, Yang, Yang (CR23) 2018; 126
Kalal, Mikolajczyk, Matas (CR18) 2012; 34
Babenko, Yang, Belongie (CR3) 2011; 33
Huang, Lin, Huang, Lin, Zhang (CR16) 2019; 78
Ross, Lim, Lin, Yang (CR27) 2008; 77
Zhang, Xu, Yang (CR38) 2019; 41
CR34
CR11
CR33
Lan, Zhang, Yuen, Chellappa (CR19) 2018; 27
CR32
Zhao, Zhang, Cao (CR39) 2018; 77
Fu, Xiong, Lin, Yue (CR9) 2020; 167
Han, Zhang, Huang, Zha, Cooper, Zhang (CR12) 2020; 97
He, Yi, Cheung, You, Tang (CR15) 2017; 47
Hardalac, Kutbay, Sahin, Akyel (CR13) 2018; 77
Avidan (CR2) 2004; 26
Hare, Golodetz, Saffari, Vineet, Cheng, Hicks, Torr (CR14) 2016; 38
Chen, Liu, Li (CR5) 2019; 123
Li, Wang, Wang, Lu (CR20) 2018; 76
CR7
Badal, Nain, Ahmed (CR4) 2018; 77
Zhang, Zhang, Yang (CR35) 2014; 36
Truong, Pak, Kim (CR30) 2018; 77
Jenkins, Barrie, Buggy, Morison (CR17) 2016; 69
CR24
CR22
Pan, Liu, Fu (CR25) 2017; 76
Shen, Zhang, Wang, Yang, Xue, Hu (CR28) 2018; 77
Abdelpakey, Shehata (CR1) 2020; 29
Zhang, Liu, Ahuja, Yang, Ghanem (CR36) 2015; 111
Lukezic, Vojir, Zajc, Matas, Kristan (CR21) 2018; 126
Zhang, Liu, Xu, Liu, Yang (CR37) 2018; 27
Gao, Zhou, Zhang (CR10) 2015; 9
Wu, Sui, Wang (CR31) 2017; 5
Chen, Li, Wang, Ma, Xu (CR6) 2019; 78
Sliti, Hamam (CR29) 2019; 78
Fu, Zhou, Ma (CR8) 2016; 75
YM Han (10343_CR12) 2020; 97
TZ Zhang (10343_CR36) 2015; 111
PX Li (10343_CR20) 2018; 76
KH Zhang (10343_CR35) 2014; 36
MH Abdelpakey (10343_CR1) 2020; 29
O Sliti (10343_CR29) 2019; 78
Y Gao (10343_CR10) 2015; 9
T Badal (10343_CR4) 2018; 77
S Hare (10343_CR14) 2016; 38
ZY He (10343_CR15) 2017; 47
MY Shen (10343_CR28) 2018; 77
W Huang (10343_CR16) 2019; 78
JG Chen (10343_CR6) 2019; 78
10343_CR24
Z Pan (10343_CR25) 2017; 76
A Lukezic (10343_CR21) 2018; 126
SQ Ren (10343_CR26) 2017; 39
MTN Truong (10343_CR30) 2018; 77
10343_CR22
S Avidan (10343_CR2) 2004; 26
YW Wu (10343_CR31) 2017; 5
TZ Zhang (10343_CR37) 2018; 27
B Babenko (10343_CR3) 2011; 33
Z Kalal (10343_CR18) 2012; 34
JW Zhao (10343_CR39) 2018; 77
MD Jenkins (10343_CR17) 2016; 69
WN Fu (10343_CR8) 2016; 75
C Ma (10343_CR23) 2018; 126
WS Chen (10343_CR5) 2019; 123
F Hardalac (10343_CR13) 2018; 77
XY Lan (10343_CR19) 2018; 27
TZ Zhang (10343_CR38) 2019; 41
10343_CR34
10343_CR7
CH Fu (10343_CR9) 2020; 167
DA Ross (10343_CR27) 2008; 77
10343_CR11
10343_CR33
10343_CR32
References_xml – volume: 75
  start-page: 15553
  issue: 23
  year: 2016
  end-page: 15570
  ident: CR8
  article-title: Moving tracking with approximate topological isomorphism
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-015-2519-3
– volume: 77
  start-page: 24059
  issue: 18
  year: 2018
  end-page: 24072
  ident: CR13
  article-title: A novel method for robust object tracking with K-means clustering using histogram back-projection technique
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-018-5661-x
– volume: 77
  start-page: 25109
  issue: 19
  year: 2018
  end-page: 25129
  ident: CR28
  article-title: Robust object tracking via superpixels and keypoints
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-018-5770-6
– volume: 47
  start-page: 354
  issue: 2
  year: 2017
  end-page: 364
  ident: CR15
  article-title: Robust object tracking via key patch sparse representation
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/tcyb.2016.2514714
– ident: CR22
– volume: 27
  start-page: 2676
  issue: 6
  year: 2018
  end-page: 2687
  ident: CR37
  article-title: Correlation particle filter for visual tracking
  publication-title: IEEE Trans Image Process
  doi: 10.1109/tip.2017.2781304
– volume: 126
  start-page: 671
  issue: 7
  year: 2018
  end-page: 688
  ident: CR21
  article-title: Discriminative correlation filter tracker with channel and spatial reliability
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-017-1061-3
– volume: 78
  start-page: 22463
  issue: 16
  year: 2019
  end-page: 22477
  ident: CR6
  article-title: Fast compressive tracking combined with Kalman filter
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-019-7514-7
– volume: 126
  start-page: 771
  issue: 8
  year: 2018
  end-page: 796
  ident: CR23
  article-title: Adaptive correlation filters with long-term and short-term memory for object tracking
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-018-1076-4
– ident: CR33
– volume: 34
  start-page: 1409
  issue: 7
  year: 2012
  end-page: 1422
  ident: CR18
  article-title: Tracking-learning-detection
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/tpami.2011.239
– volume: 78
  start-page: 21759
  issue: 15
  year: 2019
  end-page: 21783
  ident: CR29
  article-title: Efficient visual tracking via sparse representation and back-projection histogram
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-019-7439-1
– volume: 27
  start-page: 2022
  issue: 4
  year: 2018
  end-page: 2037
  ident: CR19
  article-title: Learning common and feature-specific patterns: a novel multiple-sparse-representation-based tracker
  publication-title: IEEE Trans Image Process
  doi: 10.1109/tip.2017.2777183
– volume: 77
  start-page: 30067
  issue: 22
  year: 2018
  end-page: 30088
  ident: CR30
  article-title: Single object tracking using particle filter framework and saliency-based weighted color histogram
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-018-6180-5
– volume: 36
  start-page: 2002
  issue: 10
  year: 2014
  end-page: 2015
  ident: CR35
  article-title: Fast compressive tracking
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/tpami.2014.2315808
– volume: 26
  start-page: 1064
  issue: 8
  year: 2004
  end-page: 1072
  ident: CR2
  article-title: Support vector tracking
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2004.53
– volume: 9
  start-page: 857
  issue: 6
  year: 2015
  end-page: 863
  ident: CR10
  article-title: Enhanced fast compressive tracking based on adaptive measurement matrix
  publication-title: IET Comput Vis
  doi: 10.1049/iet-cvi.2014.0431
– volume: 78
  start-page: 16011
  issue: 12
  year: 2019
  end-page: 16032
  ident: CR16
  article-title: Scale-adaptive tracking based on perceptual hash and correlation filter
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-018-6956-7
– volume: 41
  start-page: 365
  issue: 2
  year: 2019
  end-page: 378
  ident: CR38
  article-title: Learning multi-task correlation particle filters for visual tracking
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/tpami.2018.2797062
– volume: 76
  start-page: 323
  year: 2018
  end-page: 338
  ident: CR20
  article-title: Deep visual tracking: review and experimental comparison
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2017.11.007
– volume: 97
  start-page: 15
  year: 2020
  ident: CR12
  article-title: Robust visual tracking based on adversarial Unlabeled instance generation with label smoothing loss regularization
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2019.107027
– volume: 5
  start-page: 23969
  year: 2017
  end-page: 23978
  ident: CR31
  article-title: Vision-based real-time aerial object localization and tracking for UAV sensing system
  publication-title: IEEE Access
  doi: 10.1109/access.2017.2764419
– ident: CR11
– volume: 33
  start-page: 1619
  issue: 8
  year: 2011
  end-page: 1632
  ident: CR3
  article-title: Robust object tracking with online multiple instance learning
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/tpami.2010.226
– volume: 76
  start-page: 16989
  issue: 16
  year: 2017
  end-page: 17018
  ident: CR25
  article-title: A review of visual moving target tracking
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-016-3647-0
– volume: 39
  start-page: 1137
  issue: 6
  year: 2017
  end-page: 1149
  ident: CR26
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/tpami.2016.2577031
– volume: 77
  start-page: 25199
  issue: 19
  year: 2018
  end-page: 25221
  ident: CR4
  article-title: Online multi-object tracking: multiple instance based target appearance model
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-018-5781-3
– ident: CR32
– volume: 167
  start-page: 17
  year: 2020
  ident: CR9
  article-title: Surrounding-aware correlation filter for UAV tracking with selective spatial regularization
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2019.107324
– volume: 38
  start-page: 2096
  issue: 10
  year: 2016
  end-page: 2109
  ident: CR14
  article-title: Struck: structured output tracking with kernels
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/tpami.2015.2509974
– ident: CR34
– ident: CR7
– volume: 29
  start-page: 1479
  year: 2020
  end-page: 1492
  ident: CR1
  article-title: DP-Siam: dynamic policy Siamese network for robust object tracking
  publication-title: IEEE Trans Image Process
  doi: 10.1109/tip.2019.2942506
– volume: 69
  start-page: 82
  year: 2016
  end-page: 87
  ident: CR17
  article-title: Extended fast compressive tracking with weighted multi-frame template matching for fast motion tracking
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2015.10.014
– volume: 123
  start-page: 191
  issue: 1260
  year: 2019
  end-page: 211
  ident: CR5
  article-title: Classification of UAV and bird target in low-altitude airspace with surveillance radar data
  publication-title: The Aeronautical Journal
  doi: 10.1017/aer.2018.158
– volume: 77
  start-page: 30969
  issue: 23
  year: 2018
  end-page: 30991
  ident: CR39
  article-title: Robust object tracking using a sparse coadjutant observation model
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-018-6132-0
– ident: CR24
– volume: 77
  start-page: 125
  issue: 1–3
  year: 2008
  end-page: 141
  ident: CR27
  article-title: Incremental learning for robust visual tracking
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-007-0075-7
– volume: 111
  start-page: 171
  issue: 2
  year: 2015
  end-page: 190
  ident: CR36
  article-title: Robust visual tracking via consistent low-rank sparse learning
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-014-0738-0
– volume: 78
  start-page: 16011
  issue: 12
  year: 2019
  ident: 10343_CR16
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-018-6956-7
– volume: 123
  start-page: 191
  issue: 1260
  year: 2019
  ident: 10343_CR5
  publication-title: The Aeronautical Journal
  doi: 10.1017/aer.2018.158
– volume: 39
  start-page: 1137
  issue: 6
  year: 2017
  ident: 10343_CR26
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/tpami.2016.2577031
– volume: 27
  start-page: 2022
  issue: 4
  year: 2018
  ident: 10343_CR19
  publication-title: IEEE Trans Image Process
  doi: 10.1109/tip.2017.2777183
– ident: 10343_CR22
  doi: 10.1109/CCDC.2016.7531819
– ident: 10343_CR33
  doi: 10.1051/matecconf/20165901003
– volume: 26
  start-page: 1064
  issue: 8
  year: 2004
  ident: 10343_CR2
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2004.53
– volume: 47
  start-page: 354
  issue: 2
  year: 2017
  ident: 10343_CR15
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/tcyb.2016.2514714
– volume: 77
  start-page: 25109
  issue: 19
  year: 2018
  ident: 10343_CR28
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-018-5770-6
– volume: 27
  start-page: 2676
  issue: 6
  year: 2018
  ident: 10343_CR37
  publication-title: IEEE Trans Image Process
  doi: 10.1109/tip.2017.2781304
– ident: 10343_CR32
– volume: 126
  start-page: 771
  issue: 8
  year: 2018
  ident: 10343_CR23
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-018-1076-4
– volume: 78
  start-page: 22463
  issue: 16
  year: 2019
  ident: 10343_CR6
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-019-7514-7
– volume: 78
  start-page: 21759
  issue: 15
  year: 2019
  ident: 10343_CR29
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-019-7439-1
– volume: 77
  start-page: 25199
  issue: 19
  year: 2018
  ident: 10343_CR4
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-018-5781-3
– volume: 167
  start-page: 17
  year: 2020
  ident: 10343_CR9
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2019.107324
– volume: 97
  start-page: 15
  year: 2020
  ident: 10343_CR12
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2019.107027
– volume: 38
  start-page: 2096
  issue: 10
  year: 2016
  ident: 10343_CR14
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/tpami.2015.2509974
– volume: 41
  start-page: 365
  issue: 2
  year: 2019
  ident: 10343_CR38
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/tpami.2018.2797062
– ident: 10343_CR24
– volume: 76
  start-page: 16989
  issue: 16
  year: 2017
  ident: 10343_CR25
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-016-3647-0
– volume: 75
  start-page: 15553
  issue: 23
  year: 2016
  ident: 10343_CR8
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-015-2519-3
– ident: 10343_CR34
  doi: 10.1007/978-3-642-33712-3_62
– volume: 111
  start-page: 171
  issue: 2
  year: 2015
  ident: 10343_CR36
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-014-0738-0
– ident: 10343_CR11
  doi: 10.5244/C.20.6
– volume: 5
  start-page: 23969
  year: 2017
  ident: 10343_CR31
  publication-title: IEEE Access
  doi: 10.1109/access.2017.2764419
– ident: 10343_CR7
  doi: 10.1109/CVPR.2019.00552
– volume: 29
  start-page: 1479
  year: 2020
  ident: 10343_CR1
  publication-title: IEEE Trans Image Process
  doi: 10.1109/tip.2019.2942506
– volume: 77
  start-page: 30067
  issue: 22
  year: 2018
  ident: 10343_CR30
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-018-6180-5
– volume: 76
  start-page: 323
  year: 2018
  ident: 10343_CR20
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2017.11.007
– volume: 126
  start-page: 671
  issue: 7
  year: 2018
  ident: 10343_CR21
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-017-1061-3
– volume: 77
  start-page: 24059
  issue: 18
  year: 2018
  ident: 10343_CR13
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-018-5661-x
– volume: 69
  start-page: 82
  year: 2016
  ident: 10343_CR17
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2015.10.014
– volume: 36
  start-page: 2002
  issue: 10
  year: 2014
  ident: 10343_CR35
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/tpami.2014.2315808
– volume: 77
  start-page: 125
  issue: 1–3
  year: 2008
  ident: 10343_CR27
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-007-0075-7
– volume: 77
  start-page: 30969
  issue: 23
  year: 2018
  ident: 10343_CR39
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-018-6132-0
– volume: 33
  start-page: 1619
  issue: 8
  year: 2011
  ident: 10343_CR3
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/tpami.2010.226
– volume: 9
  start-page: 857
  issue: 6
  year: 2015
  ident: 10343_CR10
  publication-title: IET Comput Vis
  doi: 10.1049/iet-cvi.2014.0431
– volume: 34
  start-page: 1409
  issue: 7
  year: 2012
  ident: 10343_CR18
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/tpami.2011.239
SSID ssj0016524
Score 2.253974
Snippet Effective and efficient low-altitude flying target tracking in the field of visual tracking is challenging due to factors such as background interference, a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 11239
SubjectTerms Accuracy
Algorithms
Altitude
Computer Communication Networks
Computer Science
Conditional probability
Data Structures and Information Theory
Efficiency
Interference
Kalman filters
Learning
Low altitude
Multimedia
Multimedia Information Systems
Optical tracking
Rotation
Sparsity
Special Purpose and Application-Based Systems
Target recognition
Visual fields
Visual flight
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwIxEJ4gXPTgAzWiaHrwpo3b3Xa3HIxRAyEkEmMk4bbp9nEigLDo37fd7YKayHm7Pcx0Hp3ONx_AtWTcmFgkuCNFhimPKRYx11hmJEwSrniYOLzzyzDuj-hgzMY1GFZYGNdWWfnEwlGrmXQ18ruwYFxjNAwe5h_YsUa519WKQkN4agV1X4wY24FG6CZj1aHx1B2-vq3fFWLmaW55gG2sJB5GU4LpiIOquOsUCSIaYfo7VG3yzz9PpkUk6h3Cvk8h0WOp8yOo6WkTDip6BuSttQl7P2YNHsOgLB9ohYxY5si1khctsJ8a5QshXcUc2QQWTWZfWDhQ7kppZCYOBYXKdvH1uhMY9brvz33siRSwtBaWY9OxMmeZoUwJrQkRVjGCS2ZtPeFSBlpzlTGWUJkFTFHChXU9UYcZomx2ZcLoFOrT2VSfAbK3tUwHOgsEjSiz3lLJDuE2qTCKWR2rFpBKZqn0U8Yd2cUk3cxHdnJOrZzTQs4pbcHN-p95OWNj6-p2pYrU29sy3ZyOFtxW6tl8_n-38-27XcBu6JpYiqazNtTzxUpf2iwkz6780foGZxXXjw
  priority: 102
  providerName: ProQuest
Title Improved fast compressive tracking for low-altitude flying target tracking
URI https://link.springer.com/article/10.1007/s11042-020-10343-4
https://www.proquest.com/docview/2505255420
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: ADMLS
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-7721
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RdoGBRwFRKJUHNrAUJ3bijAX1oSIqhKhUpsjxY6pa1Kbw97HzaAEBElOGnD3c-R723XcHcCUZNyYUEY6lSDHlIcUi5BrLlPhRxBX3I4d3fhiHwwkdTdm0BIWtqmr3KiWZW-ot2I04KIm77hAvoAGmNWgw187LnuKJ393kDkJWjrLlHrb-kJRQmZ_3-OqOtjHmt7Ro7m36h7BfhomoW8j1CHb0vAkH1QgGVGpkE_Y-9RM8hlHxRKAVMmKVIVcunpe5vmmULYV0r-LIBqlotnjHwgFv10ojM3NIJ1SUhG_oTmDS7z3fDXE5LAFLq0UZNrHlK0sNZUpoTYiwzBdcMqvPEZfS05qrlLGIytRjihIurHkJYmaIshGU8YNTqM8Xc30GyN7IUu3p1BM0oMxaRCVjwm3gYBSzclQtIBXPEll2EncDLWbJtgey43Ni-ZzkfE5oC643a16LPhp_UrcrUSSlTq0SP5-5x6jvteCmEs_29--7nf-P_AJ2fVe4kheataGeLdf60kYeWdqBGu8POtDoDl7ue_Z72xs_PnXy4_cBuozR9w
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTuQwEC0hOMAchm1G06w-wImxJk7biXNAiFXN1kIIJG4Zx8up1Q10APFzfBvlxOkGJLhxjmNZ5XItdr16ABtaSOcSldJMq4JymXCqEmmpLlicptLIOPV45_Nu0rnmJzfiZgJeGiyML6tsbGJlqM1A-zvyf3HFuCZ4HO3c3lHPGuVfVxsKDRWoFcx21WIsADtO7fMTpnDD7eMD3O_NOD46vNrv0MAyQDWqX0ldhgsShePCKGsZU7hqJbXAg5BKrSNrpSmESLkuImE4kwrPZTsTjhkMPZxvfIAuYIq3eYbJ39TeYfficvSOkYhAqysjir6ZBdhODd5jHhrj0zcWtXmb8veucRzvfniirTzf0Rz8DCEr2a11bB4mbH8BZhs6CBKswwL8eNPbcBFO6usKa4hTw5L40vWq5PbRkvJeaX9DTzBgJr3BE1UeBPxgLHE9j7oidXn6aNwvuP4Wkf6Gyf6gb_8AweywsJEtIoUCFmidjc6YxCDGGYE6ZVrAGpnlOnQ19-QavXzcj9nLOUc555Wcc96CrdE_t3VPjy9HrzRbkYfzPczH2tiCv832jD9_PtvS17Otw3Tn6vwsPzvuni7DTOwLaKqCtxWYLO8f7CpGQGWxFtSMwP_v1uxXIMwVKg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB4hkBAcYIFFFFjwYTmBRZzaiXtAaLVQXgviABK3rOPHqWqBBhB_jV_HTB4tIMGNcxzLGn8ej-3vmwH4bZUOITEp71iTc6kTyU2iPbe5iNNUOx2npHc-v0iOr-XpjbqZgJdGC0O0ysYnlo7aDSzdke_GZcU1JeNoN9S0iMuD7v7tHacKUvTS2pTTqCBy5p-f8Pg23Ds5wLneiuPu4dXfY15XGOAWoVfw0MHBqDxI5Yz3QhgcsdFW4SJItbWR99rlSqXS5pFyUmiDa7LdUUE4DDsCJT1A9z-VUhZ3Uql3j0YvGImqC-rqiOOuLGrBTiXbEySKoYObiNqyzeX7TXEc6X54nC33vO4PmKuDVfanQtcCTPj-Isw3hSBY7RcWYfZNVsMlOK0uKrxjwQwLRqT1kmz76FlxbyzdzTMMlVlv8MQNyX8fnGehR3orVhHTR-1-wvW3GHQZJvuDvl8BhufC3Ec-j4xsS4V-2dmO0Bi-BKcQTa4ForFZZut85lRWo5eNMzGTnTO0c1baOZMt2B79c1tl8_iy9XozFVm9sofZGIct2GmmZ_z5895Wv-5tE6YRz9m_k4uzNZiJiTlTMt3WYbK4f_C_MPQp8o0SYwz-fzeoXwF-FhLE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+fast+compressive+tracking+for+low-altitude+flying+target+tracking&rft.jtitle=Multimedia+tools+and+applications&rft.au=Cheng%2C+Yuanhao&rft.au=Wang%2C+Sun%E2%80%99an&rft.au=Yu%2C+Dehong&rft.date=2021-03-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=80&rft.issue=7&rft.spage=11239&rft.epage=11254&rft_id=info:doi/10.1007%2Fs11042-020-10343-4&rft.externalDocID=10_1007_s11042_020_10343_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon