An Adaptive Weighted Min-Mid-Max Value Based Filter for Eliminating High Density Impulsive Noise

This paper presents a novel algorithm to filter impulsive noise at very high noise density ( ≥ 85 % ). The proposed algorithm initially makes an accurate decision and selects a window which has sufficient information for denoising. Within the selected window, the proposed algorithm computes maximum,...

Full description

Saved in:
Bibliographic Details
Published inWireless personal communications Vol. 119; no. 3; pp. 1975 - 1992
Main Authors Sharma, Nikhil, Sohi, Prateek Jeet Singh, Garg, Bharat
Format Journal Article
LanguageEnglish
Published New York Springer US 01.08.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0929-6212
1572-834X
DOI10.1007/s11277-021-08314-5

Cover

Abstract This paper presents a novel algorithm to filter impulsive noise at very high noise density ( ≥ 85 % ). The proposed algorithm initially makes an accurate decision and selects a window which has sufficient information for denoising. Within the selected window, the proposed algorithm computes maximum, minimum, middle values along with their weights to restore noisy pixel. The performance of proposed filter is evaluated on natural and medical images with varying noise density. The proposed filter showed tremendous performance at high noise densities in terms of quantitative metrics and visual representation. Even at noise densities as high as 97% and 99%, the proposed filter is able to retrieve the details of the image. The proposed filter on an average improves the peak signal to noise ratio value by 10% in medical images over the existing.
AbstractList This paper presents a novel algorithm to filter impulsive noise at very high noise density ( ≥ 85 % ). The proposed algorithm initially makes an accurate decision and selects a window which has sufficient information for denoising. Within the selected window, the proposed algorithm computes maximum, minimum, middle values along with their weights to restore noisy pixel. The performance of proposed filter is evaluated on natural and medical images with varying noise density. The proposed filter showed tremendous performance at high noise densities in terms of quantitative metrics and visual representation. Even at noise densities as high as 97% and 99%, the proposed filter is able to retrieve the details of the image. The proposed filter on an average improves the peak signal to noise ratio value by 10% in medical images over the existing.
This paper presents a novel algorithm to filter impulsive noise at very high noise density (≥85%). The proposed algorithm initially makes an accurate decision and selects a window which has sufficient information for denoising. Within the selected window, the proposed algorithm computes maximum, minimum, middle values along with their weights to restore noisy pixel. The performance of proposed filter is evaluated on natural and medical images with varying noise density. The proposed filter showed tremendous performance at high noise densities in terms of quantitative metrics and visual representation. Even at noise densities as high as 97% and 99%, the proposed filter is able to retrieve the details of the image. The proposed filter on an average improves the peak signal to noise ratio value by 10% in medical images over the existing.
Author Sharma, Nikhil
Sohi, Prateek Jeet Singh
Garg, Bharat
Author_xml – sequence: 1
  givenname: Nikhil
  surname: Sharma
  fullname: Sharma, Nikhil
  organization: Thapar Institute of Engineering and Technology, Patiala
– sequence: 2
  givenname: Prateek Jeet Singh
  surname: Sohi
  fullname: Sohi, Prateek Jeet Singh
  organization: Thapar Institute of Engineering and Technology, Patiala
– sequence: 3
  givenname: Bharat
  orcidid: 0000-0002-2904-3720
  surname: Garg
  fullname: Garg, Bharat
  email: bharat.garg@thapar.edu
  organization: Thapar Institute of Engineering and Technology, Patiala
BookMark eNp9kM1OAjEUhRuDiYi-gKsmrqttZzozXSKCkIBu_NvV0nawZOhgW4y8vUVMTFywOsnN-c6995yCjmudAeCC4CuCcXkdCKFliTAlCFcZyRE7Al3CSoqqLH_tgC7mlKOCEnoCTkNYYpwwTrvgre9gX8t1tJ8Gvhi7eI9Gw5l1aGY1mskv-CybjYE3MqT5yDbReFi3Hg4bu7JORusWcJwweGtcsHELJ6v1pgm7uPvWBnMGjmvZBHP-qz3wNBo-DsZo-nA3GfSnSGWER1Qzqoq6qpWinOCCKjbXspYcM81LOS-SslwWhZZzzTXNDWO6UtXcKK5IrknWA5f73LVvPzYmRLFsN96llYIylmWE8bxKrmrvUr4NwZtaKBvTE62LXtpGECx2fYp9nyL1KX76FCyh9B-69nYl_fYwlO2hkMxuYfzfVQeob9gPikU
CitedBy_id crossref_primary_10_1145_3582005
crossref_primary_10_1007_s11042_022_12847_7
crossref_primary_10_3390_s24051619
crossref_primary_10_1080_00032719_2023_2207023
crossref_primary_10_1007_s11277_021_09379_y
Cites_doi 10.1007/s10916-018-1133-0
10.1109/83.370679
10.1109/LSP.2002.805310
10.1109/ICCMS.2010.310
10.1016/j.compeleceng.2018.01.019
10.1016/j.ijleo.2019.163677
10.1049/iet-ipr.2019.0096
10.1007/s11042-020-09557-3
10.1007/s11760-013-0517-3
10.1016/j.patrec.2013.12.022
10.1016/j.patrec.2016.06.026
10.1007/s11760-013-0487-5
10.1109/LSP.2011.2122333
10.1007/978-981-15-6067-5_18
10.1007/s10916-018-1124-1
10.1016/j.aeue.2014.06.002
10.1007/s11760-020-01695-3
10.1504/IJAHUC.2020.109795
10.1109/LSP.2020.3016868
10.1109/TIP.2005.871129
10.1016/j.aeue.2016.04.018
10.1016/j.patrec.2018.06.002
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11277-021-08314-5
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Journalism & Communications
Engineering
EISSN 1572-834X
EndPage 1992
ExternalDocumentID 10_1007_s11277_021_08314_5
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEGXH
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FD6
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9P
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
U5U
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
_50
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c319t-f52c6f8fcc291062c5bdafa905d97ab605d54a66dabd9d24e55d8c8bec9c14d13
IEDL.DBID AGYKE
ISSN 0929-6212
IngestDate Thu Sep 25 00:56:24 EDT 2025
Wed Oct 01 03:57:39 EDT 2025
Thu Apr 24 23:07:57 EDT 2025
Fri Feb 21 02:48:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Impulse noise
Mean filter
Image processing
Salt and pepper noise
Median filters
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-f52c6f8fcc291062c5bdafa905d97ab605d54a66dabd9d24e55d8c8bec9c14d13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2904-3720
PQID 2553315948
PQPubID 2043826
PageCount 18
ParticipantIDs proquest_journals_2553315948
crossref_citationtrail_10_1007_s11277_021_08314_5
crossref_primary_10_1007_s11277_021_08314_5
springer_journals_10_1007_s11277_021_08314_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Wireless personal communications
PublicationTitleAbbrev Wireless Pers Commun
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References VijaykumarVMariGSEbenezerDFast switching based median-mean filter for high density salt and pepper noise removalAEU-International Journal of Electronics and Communications201468121145115510.1016/j.aeue.2014.06.002
EsakkirajanSVeerakumarTSubramanyamANPremChandCRemoval of high density salt and pepper noise through modified decision based unsymmetric trimmed median filterIEEE Signal Processing Letters201118528729010.1109/LSP.2011.2122333
ChenJLiFDenoising convolutional neural network with mask for salt and pepper noiseIET Image Processing201913132604261310.1049/iet-ipr.2019.0096
BhadouriaVSGhoshalDSiddiqiAHA new approach for high density saturated impulse noise removal using decision-based coupled window median filterSignal, Image and Video Processing201481718410.1007/s11760-013-0487-5
SattiPSharmaNGargBMin–Max average pooling based filter for impulse noise removalIEEE Signal Processing Letters2020271475147910.1109/LSP.2020.3016868
LuC-TChenY-YWangL-LChangC-FRemoval of salt-and-pepper noise in corrupted image using three-values-weighted approach with variable-size windowPattern Recognition Letters20168018819910.1016/j.patrec.2016.06.026
MuruganKArunachalamVKarthikSHybrid filtering approach for retrieval of MRI imageJournal of Medical Systems2019431910.1007/s10916-018-1124-1
Aiswarya, K., Jayaraj, V., & Ebenezer, D. (2010). A new and efficient algorithm for the removal of high density salt and pepper noise in images and videos. In 2010 second international conference on computer modeling and simulation (Vol. 4). IEEE, pp. 409–413.
RamachandranVKishorebabuVA tri-state filter for the removal of salt and pepper noise in mammogram imagesJournal of Medical Systems20194324010.1007/s10916-018-1133-0
GargBAryaKVFour stage median-average filter for healing high density salt and pepper noise corrupted imagesMultimedia Tools and Applications20207943323053232910.1007/s11042-020-09557-3
Arora, S., Hanmandlu, M., & Gupta, G. (2018). Filtering impulse noise in medical images using information sets. Pattern Recognition Letters.
VeerakumarTEsakkirajanSVennilaIRecursive cubic spline interpolation filter approach for the removal of high density salt-and-pepper noiseSignal, Image and Video Processing20148115916810.1007/s11760-013-0517-3
Erkan, U.(2018).Different applied median filter in salt and pepper noise. Computers and Electrical Engineering, 70, 789–798.
NgP-EMaK-KA switching median filter with boundary discriminative noise detection for extremely corrupted imagesIEEE Transactions on Image Processing20061561506151610.1109/TIP.2005.871129
Sohi, P. J. S., Sharma, N., Garg, B., & Arya, K. Noise density range sensitive mean-median filter for impulse noise removal. In Innovations in computational intelligence and computer vision (pp. 150–162). Springer.
HwangHHaddadRAAdaptive median filters: New algorithms and resultsIEEE Transactions on Image Processing19954449950210.1109/83.370679
FaragallahOSIbrahemHMAdaptive switching weighted median filter framework for suppressing salt-and-pepper noiseAEU-International Journal of Electronics and Communications20167081034104010.1016/j.aeue.2016.04.018
Pitas, I., & Venetsanopoulos, A. N. (2013). Nonlinear digital filters: Principles and applications (Vol. 84). Springer.
ZhangSKarimMAA new impulse detector for switching median filtersIEEE Signal Processing Letters200291136036310.1109/LSP.2002.805310
LiZLiuGXuYChengYModified directional weighted filter for removal of salt and pepper noisePattern Recognition Letters20144011312010.1016/j.patrec.2013.12.022
GargBAn adaptive minimum–maximum value-based weighted median filter for removing high density salt and pepper noise in medical imagesInternational Journal of Ad Hoc and Ubiquitous Computing2020352849510.1504/IJAHUC.2020.109795
GargBRestoration of highly salt-and-pepper-noise-corrupted images using novel adaptive trimmed median filterSignal, Image and Video Processing2020141555156310.1007/s11760-020-01695-3
ThanhDNHHienNNPrasathSAdaptive total variation L1 regularization for salt and pepper image denoisingOptik202020816367710.1016/j.ijleo.2019.163677
AstolaJKuosmaneenPFundamentals of nonlinear digital filtering1997Boca Raton, FLCRC
K Murugan (8314_CR9) 2019; 43
8314_CR7
J Chen (8314_CR17) 2019; 13
H Hwang (8314_CR10) 1995; 4
8314_CR2
B Garg (8314_CR19) 2020; 79
OS Faragallah (8314_CR15) 2016; 70
VS Bhadouria (8314_CR11) 2014; 8
8314_CR13
8314_CR24
P Satti (8314_CR21) 2020; 27
C-T Lu (8314_CR23) 2016; 80
V Vijaykumar (8314_CR12) 2014; 68
8314_CR18
J Astola (8314_CR1) 1997
P-E Ng (8314_CR4) 2006; 15
T Veerakumar (8314_CR14) 2014; 8
DNH Thanh (8314_CR16) 2020; 208
B Garg (8314_CR20) 2020; 14
V Ramachandran (8314_CR8) 2019; 43
Z Li (8314_CR6) 2014; 40
S Zhang (8314_CR3) 2002; 9
S Esakkirajan (8314_CR5) 2011; 18
B Garg (8314_CR22) 2020; 35
References_xml – reference: GargBRestoration of highly salt-and-pepper-noise-corrupted images using novel adaptive trimmed median filterSignal, Image and Video Processing2020141555156310.1007/s11760-020-01695-3
– reference: MuruganKArunachalamVKarthikSHybrid filtering approach for retrieval of MRI imageJournal of Medical Systems2019431910.1007/s10916-018-1124-1
– reference: GargBAryaKVFour stage median-average filter for healing high density salt and pepper noise corrupted imagesMultimedia Tools and Applications20207943323053232910.1007/s11042-020-09557-3
– reference: VeerakumarTEsakkirajanSVennilaIRecursive cubic spline interpolation filter approach for the removal of high density salt-and-pepper noiseSignal, Image and Video Processing20148115916810.1007/s11760-013-0517-3
– reference: SattiPSharmaNGargBMin–Max average pooling based filter for impulse noise removalIEEE Signal Processing Letters2020271475147910.1109/LSP.2020.3016868
– reference: ZhangSKarimMAA new impulse detector for switching median filtersIEEE Signal Processing Letters200291136036310.1109/LSP.2002.805310
– reference: HwangHHaddadRAAdaptive median filters: New algorithms and resultsIEEE Transactions on Image Processing19954449950210.1109/83.370679
– reference: BhadouriaVSGhoshalDSiddiqiAHA new approach for high density saturated impulse noise removal using decision-based coupled window median filterSignal, Image and Video Processing201481718410.1007/s11760-013-0487-5
– reference: ThanhDNHHienNNPrasathSAdaptive total variation L1 regularization for salt and pepper image denoisingOptik202020816367710.1016/j.ijleo.2019.163677
– reference: RamachandranVKishorebabuVA tri-state filter for the removal of salt and pepper noise in mammogram imagesJournal of Medical Systems20194324010.1007/s10916-018-1133-0
– reference: ChenJLiFDenoising convolutional neural network with mask for salt and pepper noiseIET Image Processing201913132604261310.1049/iet-ipr.2019.0096
– reference: EsakkirajanSVeerakumarTSubramanyamANPremChandCRemoval of high density salt and pepper noise through modified decision based unsymmetric trimmed median filterIEEE Signal Processing Letters201118528729010.1109/LSP.2011.2122333
– reference: AstolaJKuosmaneenPFundamentals of nonlinear digital filtering1997Boca Raton, FLCRC
– reference: NgP-EMaK-KA switching median filter with boundary discriminative noise detection for extremely corrupted imagesIEEE Transactions on Image Processing20061561506151610.1109/TIP.2005.871129
– reference: GargBAn adaptive minimum–maximum value-based weighted median filter for removing high density salt and pepper noise in medical imagesInternational Journal of Ad Hoc and Ubiquitous Computing2020352849510.1504/IJAHUC.2020.109795
– reference: VijaykumarVMariGSEbenezerDFast switching based median-mean filter for high density salt and pepper noise removalAEU-International Journal of Electronics and Communications201468121145115510.1016/j.aeue.2014.06.002
– reference: Pitas, I., & Venetsanopoulos, A. N. (2013). Nonlinear digital filters: Principles and applications (Vol. 84). Springer.
– reference: FaragallahOSIbrahemHMAdaptive switching weighted median filter framework for suppressing salt-and-pepper noiseAEU-International Journal of Electronics and Communications20167081034104010.1016/j.aeue.2016.04.018
– reference: Sohi, P. J. S., Sharma, N., Garg, B., & Arya, K. Noise density range sensitive mean-median filter for impulse noise removal. In Innovations in computational intelligence and computer vision (pp. 150–162). Springer.
– reference: LuC-TChenY-YWangL-LChangC-FRemoval of salt-and-pepper noise in corrupted image using three-values-weighted approach with variable-size windowPattern Recognition Letters20168018819910.1016/j.patrec.2016.06.026
– reference: LiZLiuGXuYChengYModified directional weighted filter for removal of salt and pepper noisePattern Recognition Letters20144011312010.1016/j.patrec.2013.12.022
– reference: Aiswarya, K., Jayaraj, V., & Ebenezer, D. (2010). A new and efficient algorithm for the removal of high density salt and pepper noise in images and videos. In 2010 second international conference on computer modeling and simulation (Vol. 4). IEEE, pp. 409–413.
– reference: Erkan, U.(2018).Different applied median filter in salt and pepper noise. Computers and Electrical Engineering, 70, 789–798.
– reference: Arora, S., Hanmandlu, M., & Gupta, G. (2018). Filtering impulse noise in medical images using information sets. Pattern Recognition Letters.
– volume: 43
  start-page: 40
  issue: 2
  year: 2019
  ident: 8314_CR8
  publication-title: Journal of Medical Systems
  doi: 10.1007/s10916-018-1133-0
– volume: 4
  start-page: 499
  issue: 4
  year: 1995
  ident: 8314_CR10
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/83.370679
– ident: 8314_CR2
– volume: 9
  start-page: 360
  issue: 11
  year: 2002
  ident: 8314_CR3
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/LSP.2002.805310
– ident: 8314_CR13
  doi: 10.1109/ICCMS.2010.310
– ident: 8314_CR24
  doi: 10.1016/j.compeleceng.2018.01.019
– volume-title: Fundamentals of nonlinear digital filtering
  year: 1997
  ident: 8314_CR1
– volume: 208
  start-page: 163677
  year: 2020
  ident: 8314_CR16
  publication-title: Optik
  doi: 10.1016/j.ijleo.2019.163677
– volume: 13
  start-page: 2604
  issue: 13
  year: 2019
  ident: 8314_CR17
  publication-title: IET Image Processing
  doi: 10.1049/iet-ipr.2019.0096
– volume: 79
  start-page: 32305
  issue: 43
  year: 2020
  ident: 8314_CR19
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-020-09557-3
– volume: 8
  start-page: 159
  issue: 1
  year: 2014
  ident: 8314_CR14
  publication-title: Signal, Image and Video Processing
  doi: 10.1007/s11760-013-0517-3
– volume: 40
  start-page: 113
  year: 2014
  ident: 8314_CR6
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2013.12.022
– volume: 80
  start-page: 188
  year: 2016
  ident: 8314_CR23
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2016.06.026
– volume: 8
  start-page: 71
  issue: 1
  year: 2014
  ident: 8314_CR11
  publication-title: Signal, Image and Video Processing
  doi: 10.1007/s11760-013-0487-5
– volume: 18
  start-page: 287
  issue: 5
  year: 2011
  ident: 8314_CR5
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/LSP.2011.2122333
– ident: 8314_CR18
  doi: 10.1007/978-981-15-6067-5_18
– volume: 43
  start-page: 9
  issue: 1
  year: 2019
  ident: 8314_CR9
  publication-title: Journal of Medical Systems
  doi: 10.1007/s10916-018-1124-1
– volume: 68
  start-page: 1145
  issue: 12
  year: 2014
  ident: 8314_CR12
  publication-title: AEU-International Journal of Electronics and Communications
  doi: 10.1016/j.aeue.2014.06.002
– volume: 14
  start-page: 1555
  year: 2020
  ident: 8314_CR20
  publication-title: Signal, Image and Video Processing
  doi: 10.1007/s11760-020-01695-3
– volume: 35
  start-page: 84
  issue: 2
  year: 2020
  ident: 8314_CR22
  publication-title: International Journal of Ad Hoc and Ubiquitous Computing
  doi: 10.1504/IJAHUC.2020.109795
– volume: 27
  start-page: 1475
  year: 2020
  ident: 8314_CR21
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/LSP.2020.3016868
– volume: 15
  start-page: 1506
  issue: 6
  year: 2006
  ident: 8314_CR4
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2005.871129
– volume: 70
  start-page: 1034
  issue: 8
  year: 2016
  ident: 8314_CR15
  publication-title: AEU-International Journal of Electronics and Communications
  doi: 10.1016/j.aeue.2016.04.018
– ident: 8314_CR7
  doi: 10.1016/j.patrec.2018.06.002
SSID ssj0010092
Score 2.3003476
Snippet This paper presents a novel algorithm to filter impulsive noise at very high noise density ( ≥ 85 % ). The proposed algorithm initially makes an accurate...
This paper presents a novel algorithm to filter impulsive noise at very high noise density (≥85%). The proposed algorithm initially makes an accurate decision...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1975
SubjectTerms Algorithms
Communications Engineering
Computer Communication Networks
Density
Engineering
Image filters
Medical imaging
Networks
Noise
Signal to noise ratio
Signal,Image and Speech Processing
Title An Adaptive Weighted Min-Mid-Max Value Based Filter for Eliminating High Density Impulsive Noise
URI https://link.springer.com/article/10.1007/s11277-021-08314-5
https://www.proquest.com/docview/2553315948
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1572-834X
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0010092
  issn: 0929-6212
  databaseCode: ADMLS
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1572-834X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010092
  issn: 0929-6212
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1572-834X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010092
  issn: 0929-6212
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1572-834X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0010092
  issn: 0929-6212
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWWDgjSgtlQfEAkZxEqftmELLS-1EeUzBsR0pooSKpBLw6_GlCQUESMxxrMQ-38P33XcAe45ymGaySd2WFVGj_TgVlqWocY5tE40ZA5Jf5vQH3tnQvbjlt0VRWFqi3cuUZK6pZ8VuDNONCCnA7lgu5fOwkPNtVWDBP7277H5kD5BIKOfYQ2iH0c1FsczPs3w1SDMv81tiNLc3vRUYll86hZk8HE2y8Ei-fSNx_O-vrMJy4YASfyoxazCnk3VY-kRLuA61YlCcPpJ98qWEJN2Aez8hvhJj1JPkJr9Z1Yr044T2Y0X74oVci9FEk46xj4r0YkzHE-Mak-4o7yCGOGuC8BJyguD57JWcP44nI4TRk8FTnOpNGPa6V8dntOjTQKU5wBmNuC29qBVJaRvnw7MlD5WIRNviqt0UoQmYFHeF5ykRqrayXc25asmWkZ62ZK5izhZUkqdEbwNBh45HJmxGWhxXNkOGs2jHkcJRTNtVYOVmBbIgMcdeGqNgRr-MaxuYtQ3ytQ14FQ4-3hlPKTz-HF0vZSAojnMamLjLcRgy21ThsNzS2ePfZ9v53_AaLNpTqaAWq0Mle57oXeP0ZGHDyHiv0xk0CllvwPzQ9t8BIab21A
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7xGIAB8RSFAh4QC1iKkzhtx_CoWiCdKLAFx3akSGlakVaCf48vTQggQGKO4yEX333n--47gBNHOUwz2aJu24qp8X6cCstS1IBj22RjJoAUlznBwOsN3Zsn_lQ2heUV270qSRaeum52Y1huREoBTsdyKV-EZRSwQsX8oe1_1A5QRqhQ2ENih_HMZavMz3t8DUc1xvxWFi2iTXcD1kuYSPy5XTdhQWdbsPZJPHALDspFST4ip-RLo0e-Dc9-RnwlJujNyGNx_6kVCZKMBomigXglDyKdaXJhopgi3QSL5sQAWHKdFnO-kA1NkARCrpDiPn0j_dFkliLZnQzGSa53YNi9vr_s0XKaApXmmE1pzG3pxe1YSttABM-WPFIiFh2Lq05LRCatUdwVnqdEpDrKdjXnqi3bxsYdyVzFnF1YysaZ3gOCsIvHJrlF8RpXtiKGu2jHkcJRTNsNYNVHDWUpNY4TL9KwFklGQ4TGEGFhiJA34OzjnclcaOPP1c3KVmF56PLQZEeOw1B_pgHnlf3qx7_vtv-_5cew0rsP7sK7_uD2AFbt-e9ELdaEpenLTB8amDKNjoq_8h38stpc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5RTIwejD8jgtqD8aKN67YOOE6RiArxIMptdm2XLIFBZCT639u3DUGjJp7X9dCv7Xuv73vfAzhxlMM0kzXq1q2ImtuPU2FZihrn2DbRmDEg2WNOp-vd9NzbPu8vVPFnbPdZSjKvaUCVpiS9GKvoYl74xjD1iPQC7JTlUr4MKy4KJZgd3bP9zzwCSgplantI8jC3dFE28_McX03T3N_8liLNLE9rEzYKl5H4OcZbsKSTbVhfEBLchkoxKJ4MySn5UvQx2YEXPyG-EmO82chz9haqFenECe3EinbEG3kSg6kml8aiKdKKMYFOjDNLrgdZzy9kRhMkhJAm0t3Td9IejqcDJL6T7iie6F3ota4fr25o0VmBSnPkUhpxW3pRPZLSNu6CZ0seKhGJhsVVoyZCE-Io7grPUyJUDWW7mnNVl3WDd0MyVzFnD0rJKNH7QNAF45EJdFHIxpW1kOEs2nGkcBTTdhnYbFEDWciOY_eLQTAXTEYgAgNEkAER8DKcff4zzkU3_hxdnWEVFAdwEphIyXEYatGU4XyG3_zz77Md_G_4Maw-NFvBfbt7V4E1O99N1GJVKKWvU31oPJY0PMo25QfSgt6Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Adaptive+Weighted+Min-Mid-Max+Value+Based+Filter+for+Eliminating+High+Density+Impulsive+Noise&rft.jtitle=Wireless+personal+communications&rft.au=Sharma%2C+Nikhil&rft.au=Sohi+Prateek+Jeet+Singh&rft.au=Garg+Bharat&rft.date=2021-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0929-6212&rft.eissn=1572-834X&rft.volume=119&rft.issue=3&rft.spage=1975&rft.epage=1992&rft_id=info:doi/10.1007%2Fs11277-021-08314-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0929-6212&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0929-6212&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0929-6212&client=summon