Tumor Localization and Classification from MRI of Brain using Deep Convolution Neural Network and Salp Swarm Algorithm
Early diagnosis of brain tumors is crucial for treatment planning and increasing the survival rates of infected patients. In fact, brain tumors exist in a range of different forms, sizes, and features, as well as treatment choices. One of the essential roles of neurologists and radiologists is the d...
        Saved in:
      
    
          | Published in | Cognitive computation Vol. 16; no. 4; pp. 2036 - 2046 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Springer US
    
        01.07.2024
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1866-9956 1866-9964  | 
| DOI | 10.1007/s12559-022-10096-2 | 
Cover
| Abstract | Early diagnosis of brain tumors is crucial for treatment planning and increasing the survival rates of infected patients. In fact, brain tumors exist in a range of different forms, sizes, and features, as well as treatment choices. One of the essential roles of neurologists and radiologists is the diagnosis of brain tumors in their early stages. However, manual brain tumor diagnosis is difficult, time-consuming, and prone to error. Based on the problem highlighted, an automated brain tumor detection system is mandatory to identify the tumor in its initial stages. This research presents an efficient deep learning-based system for the classification of brain tumors from brain MRI using the deep convolutional network and salp swarm algorithm. All experiments are performed using the publicly available brain tumor Kaggle dataset. To enhance the classification rate, preprocessing and data augmentation such as skewed data ideas are devised. In addition, AlexNet and VGG19 are leveraged to perform specific functionality. Finally, all features merged into a single feature vector for brain tumor classification. Some of the extracted features found insignificant towards effective classification. Hence, we employed an efficient feature selection technique named slap swarm to find the most discriminative features to attain best tumor classification rate. Finally, several SVM kernels are merged for the final classification and 99.1% accuracy is achieved by selecting 4111 optimal features from 8192. | 
    
|---|---|
| AbstractList | Early diagnosis of brain tumors is crucial for treatment planning and increasing the survival rates of infected patients. In fact, brain tumors exist in a range of different forms, sizes, and features, as well as treatment choices. One of the essential roles of neurologists and radiologists is the diagnosis of brain tumors in their early stages. However, manual brain tumor diagnosis is difficult, time-consuming, and prone to error. Based on the problem highlighted, an automated brain tumor detection system is mandatory to identify the tumor in its initial stages. This research presents an efficient deep learning-based system for the classification of brain tumors from brain MRI using the deep convolutional network and salp swarm algorithm. All experiments are performed using the publicly available brain tumor Kaggle dataset. To enhance the classification rate, preprocessing and data augmentation such as skewed data ideas are devised. In addition, AlexNet and VGG19 are leveraged to perform specific functionality. Finally, all features merged into a single feature vector for brain tumor classification. Some of the extracted features found insignificant towards effective classification. Hence, we employed an efficient feature selection technique named slap swarm to find the most discriminative features to attain best tumor classification rate. Finally, several SVM kernels are merged for the final classification and 99.1% accuracy is achieved by selecting 4111 optimal features from 8192. | 
    
| Author | Rehman, Amjad Almutairi, Fahad Roy, Sudipta Saba, Tanzila Alyami, Jaber Fayyaz, Abdul Muiz Alkhurim, Alhassan  | 
    
| Author_xml | – sequence: 1 givenname: Jaber surname: Alyami fullname: Alyami, Jaber organization: Department of Diagnostic Radiology, Faculty of Applied Medical Sciences, King Abdulaziz University, Animal House Unit, King Fahd Medical Research Center, King Abdulaziz University, Smart Medical Imaging Research Group, King Abdulaziz University – sequence: 2 givenname: Amjad orcidid: 0000-0002-0101-0329 surname: Rehman fullname: Rehman, Amjad email: arkhan@psu.edu.sa organization: Artificial Intelligence & Data Analytics Lab (AIDA), CCIS Prince Sultan University – sequence: 3 givenname: Fahad surname: Almutairi fullname: Almutairi, Fahad organization: Department of Diagnostic Radiology, Faculty of Applied Medical Sciences, King Abdulaziz University, Animal House Unit, King Fahd Medical Research Center, King Abdulaziz University, Smart Medical Imaging Research Group, King Abdulaziz University – sequence: 4 givenname: Abdul Muiz surname: Fayyaz fullname: Fayyaz, Abdul Muiz organization: Artificial Intelligence & Data Analytics Lab (AIDA), CCIS Prince Sultan University, Department of Computer Science, University of Wah – sequence: 5 givenname: Sudipta surname: Roy fullname: Roy, Sudipta organization: Artificial Intelligence & Data Science, Jio Institute – sequence: 6 givenname: Tanzila surname: Saba fullname: Saba, Tanzila organization: Artificial Intelligence & Data Analytics Lab (AIDA), CCIS Prince Sultan University – sequence: 7 givenname: Alhassan surname: Alkhurim fullname: Alkhurim, Alhassan organization: Department of Diagnostic Radiology, Faculty of Applied Medical Sciences, King Abdulaziz University, Animal House Unit, King Fahd Medical Research Center, King Abdulaziz University, Smart Medical Imaging Research Group, King Abdulaziz University  | 
    
| BookMark | eNp9kElLxDAYhoMoOC5_wFPAczVLmzbHsa4wKricQ9omY7RNxqR10F9vbEXBg6dv4X2-5d0Bm9ZZBcABRkcYofw4YJJlPEGEJLHmLCEbYIYLxhLOWbr5k2dsG-yE8IwQy3hGZuDtYeichwtXy9Z8yN44C6VtYNnKEIw29dTS3nXw-u4KOg1PvDQWDsHYJTxVagVLZ99cO4zCGzV42cbQr51_GUfdy3YF79fSd3DeLp03_VO3B7a0bIPa_4674PH87KG8TBa3F1flfJHUFPM-0ZQUSGuS5U3BqMJKcZwXBa2RbKqGVpI0nFQ4r0lecZ0yiiqVapmnvCBM84LugsNp7sq710GFXjy7wdu4UlCUMxy3EBRVxaSqvQvBKy1q04-P9_HXVmAkvlwWk8siuixGlwWJKPmDrrzppH__H6ITFKLYLpX_veof6hO09pI6 | 
    
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3412412 crossref_primary_10_48084_etasr_8702 crossref_primary_10_1109_ACCESS_2023_3313977 crossref_primary_10_1038_s41598_025_93718_7 crossref_primary_10_1016_j_compbiomed_2025_109916 crossref_primary_10_3390_ma16103777 crossref_primary_10_56294_saludcyt20241079 crossref_primary_10_3389_fnins_2024_1288274 crossref_primary_10_3389_fnins_2023_1269100 crossref_primary_10_1007_s40998_024_00726_w crossref_primary_10_1007_s12065_024_00925_8 crossref_primary_10_1007_s00521_025_11031_w crossref_primary_10_3390_biomedicines11051354 crossref_primary_10_1007_s13369_023_08607_w crossref_primary_10_1108_ACI_12_2023_0167 crossref_primary_10_1007_s11042_024_18923_4 crossref_primary_10_1007_s12559_025_10419_z crossref_primary_10_1007_s13721_023_00428_z crossref_primary_10_3390_diagnostics13071229  | 
    
| Cites_doi | 10.21873/anticanres.13949 10.1109/CONIT51480.2021.9498384 10.1109/ACCESS.2019.2927433 10.1109/TITS.2021.3130403 10.3390/healthcare10040697 10.1007/s10489-021-02893-3 10.5455/aim.2020.28.29-36 10.1109/ACCESS.2021.3105874 10.1109/JTEHM.2022.3176737 10.1007/s10916-019-1453-8 10.1016/j.compbiomed.2020.103758 10.1109/JBHI.2021.3083187 10.1007/978-981-15-6067-5_30 10.1109/TNB.2015.2450365 10.1016/j.patrec.2019.11.020 10.3390/sym12081256 10.1109/JBHI.2021.3100758 10.3390/s20102809 10.3390/computation7020031 10.1155/2021/3365043 10.1007/s11042-022-12956-3 10.47750/jptcp.2022.873 10.1007/978-3-030-31635-8_221 10.3390/app10103429 10.1002/jemt.23694 10.1145/3065386 10.1016/j.patrec.2019.11.019 10.1109/TIP.2022.3207006 10.1016/j.mehy.2020.109684  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | 
    
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS  | 
    
| DOI | 10.1007/s12559-022-10096-2 | 
    
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China  | 
    
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Advanced Technologies & Aerospace Collection  | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Psychology Computer Science  | 
    
| EISSN | 1866-9964 | 
    
| EndPage | 2046 | 
    
| ExternalDocumentID | 10_1007_s12559_022_10096_2 | 
    
| GrantInformation_xml | – fundername: King Abdulaziz University grantid: G: 219 – 142-1443 funderid: http://dx.doi.org/10.13039/501100004054  | 
    
| GroupedDBID | -56 -5G -BR -EM -~C 06C 06D 0R~ 0VY 1N0 203 29F 29~ 2JY 2KG 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 67N 67Z 6NX 875 8TC 96X AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABMQK ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ARAPS AUKKA AXYYD BA0 BENPR BGLVJ BGNMA CAG CCPQU COF CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD EN4 ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI G-Y G-Z GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG6 HLICF HMJXF HQYDN HRMNR HZ~ I0C IJ- IKXTQ IWAJR IXC IXD IZIGR I~X J-C J0Z JBSCW JCJTX JZLTJ K7- KOV KPH LLZTM M4Y NPVJJ NQJWS NU0 O9- O93 O9I O9J OAM PT4 QOR QOS R89 RLLFE ROL RSV S1Z S27 S3A S3B SBL SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE T13 TSG U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z7R Z7X Z83 Z88 ZMTXR ZOVNA ~A9 AAFWJ AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS  | 
    
| ID | FETCH-LOGICAL-c319t-f3280ff257d863e1ee917883c0adbd3ba2d92b17c27b9f4630be4fa749826f983 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 1866-9956 | 
    
| IngestDate | Fri Jul 25 09:07:56 EDT 2025 Wed Oct 01 02:03:15 EDT 2025 Thu Apr 24 23:05:33 EDT 2025 Fri Feb 21 02:40:17 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Keywords | Brain tumor Deep learning MRI Transfer learning Public health Health risks  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c319t-f3280ff257d863e1ee917883c0adbd3ba2d92b17c27b9f4630be4fa749826f983 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-0101-0329 | 
    
| PQID | 3076131920 | 
    
| PQPubID | 6623279 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | proquest_journals_3076131920 crossref_citationtrail_10_1007_s12559_022_10096_2 crossref_primary_10_1007_s12559_022_10096_2 springer_journals_10_1007_s12559_022_10096_2  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20240700 2024-07-00 20240701  | 
    
| PublicationDateYYYYMMDD | 2024-07-01 | 
    
| PublicationDate_xml | – month: 7 year: 2024 text: 20240700  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | Cognitive computation | 
    
| PublicationTitleAbbrev | Cogn Comput | 
    
| PublicationYear | 2024 | 
    
| Publisher | Springer US Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer US – name: Springer Nature B.V  | 
    
| References | Gull S, Akbar S, Khan HU. Automated detection of brain tumor through magnetic resonance images using convolutional neural network. BioMed Res Int. 2021. RajinikanthVJoseph RajANThanarajKPNaikGRA customized VGG19 network with concatenation of deep and handcrafted features for brain tumor detectionAppl Sci20201010342910.3390/app10103429 KhalilHADarwishSIbrahimYMHassanOF3D-MRI brain tumor detection model using modified version of level set segmentation based on dragonfly algorithmSymmetry2020128125610.3390/sym12081256 Ijaz MF, Attique M, Son Y. Data-driven cervical cancer prediction model with outlier detection and over-sampling methods. Sensors. 2020(10):2809. Chakrabarty N. Brain tumor dataset. [Online]. Retrieved February 7, 2022, from https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection. BeheshtiIGanaieMAPaliwalVRastogiAPredicting brain age using machine learning algorithms: a comprehensive evaluationIEEE J Biomed Health Inform20212641432144010.1109/JBHI.2021.3083187 SharifMILiJPKhanMASaleemMAActive deep neural network features selection for segmentation and recognition of brain tumors using MRI imagesPattern Recogn Lett202012918118910.1016/j.patrec.2019.11.019 Sun W, Dai L, Zhang X, Chang P, He X. RSOD: real-time small object detection algorithm in UAV-based traffic monitoring. Appl Intell. 2021;pp. 1–16. KrizhevskyASutskeverIHintonGEImageNet classification with deep convolutional neural networksCommun ACM2017606849010.1145/3065386 Yar H, Hussain T, Agarwal M, Khan ZA, Gupta SK, Baik SW. Optimized Dual Fire Attention Network and Medium-Scale Fire Classification Benchmark. IEEE Transact Image Process. 2022;31:6331-43. Saxena P, Maheshwari A, Maheshwari S. Predictive modeling of brain tumor: a deep learning approach. In Innovations in computational intelligence and computer vision. 2021;pp. 275-285. Springer, Singapore. AbunadiIAlthobaitiMMAl-WesabiFNHilalAMMedaniMFederated learning with blockchain assisted image classification for clustered UAV networksComput mater contin202272111951212 TiwariASrivastavaSPantMBrain tumor segmentation and classification from magnetic resonance images: review of selected methods from 2014 to 2019Pattern Recogn Lett202013124426010.1016/j.patrec.2019.11.020 AbunadiIAlbraikanAAAlzahraniJSEltahirMMHilalAMEldesoukiMIMotwakelAYaseenIAn automated glowworm swarm optimization with an inception-based deep convolutional neural network for COVID-19 diagnosis and classificationHealthcare20221069710.3390/healthcare10040697 Sun W, Dai GZ, Zhang XR, He XZ, Chen X. TBE-Net: a three-branch embedding network with part-aware ability and feature complementary learning for vehicle re-identification. IEEE Transact Intell Transp Syst. 2021;pp. 1–13. https://doi.org/10.1109/TITS.2021.3130403. SallemiLNjehILehericySTowards a computer aided prognosis for brain glioblastomas tumor growth estimationIEEE Trans Nanobiosci201514772773310.1109/TNB.2015.2450365 NaserMADeenMJBrain tumor segmentation and grading of lower-grade glioma using deep learning in MRI imagesComput Biol Med202012110.1016/j.compbiomed.2020.103758 SafdarMFAlkobaisiSSZahraFTA comparative analysis of data augmentation approaches for magnetic resonance imaging (MRI) scan images of brain tumorActa informatica medica20202812910.5455/aim.2020.28.29-36 Khanna P, Tanveer M, Prasad M, Lin CT. Artificial intelligence and deep learning for biomedical applications. Multimed Tools Appl. 2022;81:13137. Rai S, Chowdhury S, Sarkar S, Chowdhury K, Singh KP. A hybrid approach to brain tumor detection from MRI images using computer vision. J Innov Comput Sci Eng. 2019;8(2):8-12. Carlo R, Renato C, Giuseppe C, Lorenzo U, et al. Distinguishing functional from non-functional pituitary macroadenomas with a machine learning analysis. Mediterr Conf Med Biol Eng Comput. 2019;pp. 1822–1829. SekharABiswasSHazraRSunaniyaAKMukherjeeAYangLBrain tumor classification using fine-tuned GoogLeNet features and machine learning algorithms: IoMT enabled CAD systemIEEE J Biomed Health Inform202126398399110.1109/JBHI.2021.3100758 AminJSharifMYasminMSabaTAnjumMAFernandesSLA new approach for brain tumor segmentation and classification based on score level fusion using transfer learningJ Med Syst2019431111610.1007/s10916-019-1453-8 Dipu NM, Shohan SA, Salam K. Deep learning based brain tumor detection and classification. Int Conf Intell Technol (CONIT), IEEE. 2021;pp. 1–6. ÇinarAYildirimMDetection of tumors on brain MRI images using the hybrid convolutional neural network architectureMed Hypotheses202013910.1016/j.mehy.2020.109684 HuKGanQZhangYDengSXiaoFBrain tumor segmentation using multi-cascaded convolutional neural networks and conditional random fieldIEEE Access20197926159262910.1109/ACCESS.2019.2927433 Ottom MA, Rahman HA, Dinov ID. Znet: deep learning approach for 2D MRI brain tumor segmentation. IEEE J Transl Eng Health Med. 2022. Too J, Abdullah AR, Mohd Saad N. Binary competitive swarm optimizer approaches for feature selection. Computation. 2019;7(2):31. Mohan R, Ganapathy K, Rama A. Brain tumour classification of magnetic resonance images using a novel CNN based medical image analysis and detection network in comparison with VGG16. J Popul Ther Clin Pharmacol. 2021;28(2). MajibMSRahmanMMSazzadTSKhanNIDeySKVGG-SCNet: a VGG Net-based deep learning framework for brain tumor detection on MRI imagesIEEE Access2021911694211695210.1109/ACCESS.2021.3105874 KhanARKhanSHarouniMAbbasiRIqbalSMehmoodZBrain tumor segmentation using K-means clustering and deep learning with synthetic data augmentation for classificationMicrosc Res Tech20218471389139910.1002/jemt.23694 RomeoVCuocoloRRicciardiCUggaLCocozzaSPrediction of tumor grade and nodal status in oropharyngeal and oral cavity squamous-cell carcinoma using a radiomic approachAnticancer Res202040127128010.21873/anticanres.13949 10096_CR32 10096_CR31 I Beheshti (10096_CR13) 2021; 26 10096_CR30 L Sallemi (10096_CR18) 2015; 14 A Çinar (10096_CR7) 2020; 139 HA Khalil (10096_CR5) 2020; 12 10096_CR6 10096_CR2 10096_CR3 10096_CR1 A Sekhar (10096_CR17) 2021; 26 I Abunadi (10096_CR22) 2022; 10 10096_CR29 10096_CR27 V Rajinikanth (10096_CR12) 2020; 10 10096_CR23 I Abunadi (10096_CR24) 2022; 72 10096_CR21 10096_CR20 K Hu (10096_CR8) 2019; 7 MI Sharif (10096_CR11) 2020; 129 MS Majib (10096_CR28) 2021; 9 A Krizhevsky (10096_CR19) 2017; 60 MA Naser (10096_CR9) 2020; 121 AR Khan (10096_CR14) 2021; 84 10096_CR16 MF Safdar (10096_CR25) 2020; 28 V Romeo (10096_CR10) 2020; 40 10096_CR15 J Amin (10096_CR26) 2019; 43 A Tiwari (10096_CR4) 2020; 131  | 
    
| References_xml | – reference: Yar H, Hussain T, Agarwal M, Khan ZA, Gupta SK, Baik SW. Optimized Dual Fire Attention Network and Medium-Scale Fire Classification Benchmark. IEEE Transact Image Process. 2022;31:6331-43. – reference: AminJSharifMYasminMSabaTAnjumMAFernandesSLA new approach for brain tumor segmentation and classification based on score level fusion using transfer learningJ Med Syst2019431111610.1007/s10916-019-1453-8 – reference: AbunadiIAlthobaitiMMAl-WesabiFNHilalAMMedaniMFederated learning with blockchain assisted image classification for clustered UAV networksComput mater contin202272111951212 – reference: Saxena P, Maheshwari A, Maheshwari S. Predictive modeling of brain tumor: a deep learning approach. In Innovations in computational intelligence and computer vision. 2021;pp. 275-285. Springer, Singapore. – reference: KhalilHADarwishSIbrahimYMHassanOF3D-MRI brain tumor detection model using modified version of level set segmentation based on dragonfly algorithmSymmetry2020128125610.3390/sym12081256 – reference: HuKGanQZhangYDengSXiaoFBrain tumor segmentation using multi-cascaded convolutional neural networks and conditional random fieldIEEE Access20197926159262910.1109/ACCESS.2019.2927433 – reference: Ijaz MF, Attique M, Son Y. Data-driven cervical cancer prediction model with outlier detection and over-sampling methods. Sensors. 2020(10):2809. – reference: Khanna P, Tanveer M, Prasad M, Lin CT. Artificial intelligence and deep learning for biomedical applications. Multimed Tools Appl. 2022;81:13137. – reference: Sun W, Dai GZ, Zhang XR, He XZ, Chen X. TBE-Net: a three-branch embedding network with part-aware ability and feature complementary learning for vehicle re-identification. IEEE Transact Intell Transp Syst. 2021;pp. 1–13. https://doi.org/10.1109/TITS.2021.3130403. – reference: Mohan R, Ganapathy K, Rama A. Brain tumour classification of magnetic resonance images using a novel CNN based medical image analysis and detection network in comparison with VGG16. J Popul Ther Clin Pharmacol. 2021;28(2). – reference: SallemiLNjehILehericySTowards a computer aided prognosis for brain glioblastomas tumor growth estimationIEEE Trans Nanobiosci201514772773310.1109/TNB.2015.2450365 – reference: Too J, Abdullah AR, Mohd Saad N. Binary competitive swarm optimizer approaches for feature selection. Computation. 2019;7(2):31. – reference: KhanARKhanSHarouniMAbbasiRIqbalSMehmoodZBrain tumor segmentation using K-means clustering and deep learning with synthetic data augmentation for classificationMicrosc Res Tech20218471389139910.1002/jemt.23694 – reference: Rai S, Chowdhury S, Sarkar S, Chowdhury K, Singh KP. A hybrid approach to brain tumor detection from MRI images using computer vision. J Innov Comput Sci Eng. 2019;8(2):8-12. – reference: NaserMADeenMJBrain tumor segmentation and grading of lower-grade glioma using deep learning in MRI imagesComput Biol Med202012110.1016/j.compbiomed.2020.103758 – reference: SafdarMFAlkobaisiSSZahraFTA comparative analysis of data augmentation approaches for magnetic resonance imaging (MRI) scan images of brain tumorActa informatica medica20202812910.5455/aim.2020.28.29-36 – reference: Ottom MA, Rahman HA, Dinov ID. Znet: deep learning approach for 2D MRI brain tumor segmentation. IEEE J Transl Eng Health Med. 2022. – reference: MajibMSRahmanMMSazzadTSKhanNIDeySKVGG-SCNet: a VGG Net-based deep learning framework for brain tumor detection on MRI imagesIEEE Access2021911694211695210.1109/ACCESS.2021.3105874 – reference: BeheshtiIGanaieMAPaliwalVRastogiAPredicting brain age using machine learning algorithms: a comprehensive evaluationIEEE J Biomed Health Inform20212641432144010.1109/JBHI.2021.3083187 – reference: Dipu NM, Shohan SA, Salam K. Deep learning based brain tumor detection and classification. Int Conf Intell Technol (CONIT), IEEE. 2021;pp. 1–6. – reference: RomeoVCuocoloRRicciardiCUggaLCocozzaSPrediction of tumor grade and nodal status in oropharyngeal and oral cavity squamous-cell carcinoma using a radiomic approachAnticancer Res202040127128010.21873/anticanres.13949 – reference: KrizhevskyASutskeverIHintonGEImageNet classification with deep convolutional neural networksCommun ACM2017606849010.1145/3065386 – reference: Sun W, Dai L, Zhang X, Chang P, He X. RSOD: real-time small object detection algorithm in UAV-based traffic monitoring. Appl Intell. 2021;pp. 1–16. – reference: Carlo R, Renato C, Giuseppe C, Lorenzo U, et al. Distinguishing functional from non-functional pituitary macroadenomas with a machine learning analysis. Mediterr Conf Med Biol Eng Comput. 2019;pp. 1822–1829. – reference: ÇinarAYildirimMDetection of tumors on brain MRI images using the hybrid convolutional neural network architectureMed Hypotheses202013910.1016/j.mehy.2020.109684 – reference: TiwariASrivastavaSPantMBrain tumor segmentation and classification from magnetic resonance images: review of selected methods from 2014 to 2019Pattern Recogn Lett202013124426010.1016/j.patrec.2019.11.020 – reference: SharifMILiJPKhanMASaleemMAActive deep neural network features selection for segmentation and recognition of brain tumors using MRI imagesPattern Recogn Lett202012918118910.1016/j.patrec.2019.11.019 – reference: Chakrabarty N. Brain tumor dataset. [Online]. Retrieved February 7, 2022, from https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection. – reference: Gull S, Akbar S, Khan HU. Automated detection of brain tumor through magnetic resonance images using convolutional neural network. BioMed Res Int. 2021. – reference: RajinikanthVJoseph RajANThanarajKPNaikGRA customized VGG19 network with concatenation of deep and handcrafted features for brain tumor detectionAppl Sci20201010342910.3390/app10103429 – reference: SekharABiswasSHazraRSunaniyaAKMukherjeeAYangLBrain tumor classification using fine-tuned GoogLeNet features and machine learning algorithms: IoMT enabled CAD systemIEEE J Biomed Health Inform202126398399110.1109/JBHI.2021.3100758 – reference: AbunadiIAlbraikanAAAlzahraniJSEltahirMMHilalAMEldesoukiMIMotwakelAYaseenIAn automated glowworm swarm optimization with an inception-based deep convolutional neural network for COVID-19 diagnosis and classificationHealthcare20221069710.3390/healthcare10040697 – volume: 40 start-page: 271 issue: 1 year: 2020 ident: 10096_CR10 publication-title: Anticancer Res doi: 10.21873/anticanres.13949 – volume: 72 start-page: 1195 issue: 1 year: 2022 ident: 10096_CR24 publication-title: Comput mater contin – ident: 10096_CR3 doi: 10.1109/CONIT51480.2021.9498384 – volume: 7 start-page: 92615 year: 2019 ident: 10096_CR8 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2927433 – ident: 10096_CR1 doi: 10.1109/TITS.2021.3130403 – volume: 10 start-page: 697 year: 2022 ident: 10096_CR22 publication-title: Healthcare doi: 10.3390/healthcare10040697 – ident: 10096_CR20 doi: 10.1007/s10489-021-02893-3 – volume: 28 start-page: 29 issue: 1 year: 2020 ident: 10096_CR25 publication-title: Acta informatica medica doi: 10.5455/aim.2020.28.29-36 – volume: 9 start-page: 116942 year: 2021 ident: 10096_CR28 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3105874 – ident: 10096_CR16 doi: 10.1109/JTEHM.2022.3176737 – volume: 43 start-page: 1 issue: 11 year: 2019 ident: 10096_CR26 publication-title: J Med Syst doi: 10.1007/s10916-019-1453-8 – volume: 121 year: 2020 ident: 10096_CR9 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2020.103758 – volume: 26 start-page: 1432 issue: 4 year: 2021 ident: 10096_CR13 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2021.3083187 – ident: 10096_CR31 doi: 10.1007/978-981-15-6067-5_30 – volume: 14 start-page: 727 issue: 7 year: 2015 ident: 10096_CR18 publication-title: IEEE Trans Nanobiosci doi: 10.1109/TNB.2015.2450365 – volume: 131 start-page: 244 year: 2020 ident: 10096_CR4 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2019.11.020 – volume: 12 start-page: 1256 issue: 8 year: 2020 ident: 10096_CR5 publication-title: Symmetry doi: 10.3390/sym12081256 – volume: 26 start-page: 983 issue: 3 year: 2021 ident: 10096_CR17 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2021.3100758 – ident: 10096_CR23 doi: 10.3390/s20102809 – ident: 10096_CR29 doi: 10.3390/computation7020031 – ident: 10096_CR15 doi: 10.1155/2021/3365043 – ident: 10096_CR2 doi: 10.1007/s11042-022-12956-3 – ident: 10096_CR27 doi: 10.47750/jptcp.2022.873 – ident: 10096_CR6 doi: 10.1007/978-3-030-31635-8_221 – volume: 10 start-page: 3429 issue: 10 year: 2020 ident: 10096_CR12 publication-title: Appl Sci doi: 10.3390/app10103429 – volume: 84 start-page: 1389 issue: 7 year: 2021 ident: 10096_CR14 publication-title: Microsc Res Tech doi: 10.1002/jemt.23694 – volume: 60 start-page: 84 issue: 6 year: 2017 ident: 10096_CR19 publication-title: Commun ACM doi: 10.1145/3065386 – volume: 129 start-page: 181 year: 2020 ident: 10096_CR11 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2019.11.019 – ident: 10096_CR21 doi: 10.1109/TIP.2022.3207006 – ident: 10096_CR32 – volume: 139 year: 2020 ident: 10096_CR7 publication-title: Med Hypotheses doi: 10.1016/j.mehy.2020.109684 – ident: 10096_CR30  | 
    
| SSID | ssj0065952 | 
    
| Score | 2.460938 | 
    
| Snippet | Early diagnosis of brain tumors is crucial for treatment planning and increasing the survival rates of infected patients. In fact, brain tumors exist in a... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 2036 | 
    
| SubjectTerms | Accuracy Algorithms Artificial Intelligence Artificial neural networks Brain Brain cancer Brain research Classification Computation by Abstract Devices Computational Biology/Bioinformatics Computer Science Data augmentation Datasets Deep learning Diagnosis Effectiveness Feature extraction Feature selection Machine learning Magnetic resonance imaging Regression analysis Tomography Tumors  | 
    
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQLF14FBCFgjywgaXEeTljKVQF0Q60lbpFsWMXpDap0rSIf4_tOI1AgMSaOM7jfHefc3ffAXBNhRVy22aIYmEhl_gc0cBhSCJl6Y4EY5Ym0h4M_f7EfZp6U1MUtqqy3auQpLbUdbGbQr9IZZ_bCngjaXj3PEXnJVfxBHcq-6sI8nSMk_g-UnWbplTm5zm-uqMaY34Li2pv0zsE-wYmwk4p1yOww9MmOKhaMECjkU3Q2Bqwj2OwGa8XWQ6flXsy5ZUwThOoG1-qlKDykKoogYOXR5gJeKc6RECV_D6D95wvYTdLN2Y1QkXcIR9iWGaK66lG8XwJR-9xvoCd-SzL34rXxQmY9B7G3T4yfRUQkwpXIOFgYgkhlTUhvsNtzuWejRCHWXFCE4fGOAkxtQOGAxoK13csyl0RB24o9yIiJM4p2E2zlJ8BSC2uGMhYwmPbxYlHmMcYsX3mUcLkDVrArj5vxAzpuOp9MY9qumQlkkiKJNIiiXAL3GyvWZaUG3-ObldSi4z6rSJH_Z2R74qtFritJFmf_n228_8NvwANLEFOmb7bBrtFvuaXEqQU9EqvyU9YHdzr priority: 102 providerName: Springer Nature  | 
    
| Title | Tumor Localization and Classification from MRI of Brain using Deep Convolution Neural Network and Salp Swarm Algorithm | 
    
| URI | https://link.springer.com/article/10.1007/s12559-022-10096-2 https://www.proquest.com/docview/3076131920  | 
    
| Volume | 16 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1866-9964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065952 issn: 1866-9956 databaseCode: AFBBN dateStart: 20090301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1866-9964 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0065952 issn: 1866-9956 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1866-9964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065952 issn: 1866-9956 databaseCode: AGYKE dateStart: 20090101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1866-9964 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065952 issn: 1866-9956 databaseCode: U2A dateStart: 20090301 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwEB5Be-Gy4rFoy6PygRtYJE6aOgeECrS8lgoBleAUxa9yaJNSCoh_jydxqECCq5PY0ufxzDgz8w3AjjBerH1fUsGMR0MeaSragaTWU7bmyEjpFUTaV_3obBBe3LfuF6Bf1cJgWmWlEwtFrXKJ_8j3A7xwW3lh3uHkiWLXKIyuVi00UtdaQR0UFGOLUGfIjFWD-lG3f31T6WYkzyvinzyKKNZ0ujKaspgOvWuK2e0-OvaUfTVVc__zW8i0sES9ZfjjXEjSKfd8BRZ0tgpLn5rsfQ1e717G-ZT8Rzvl6ixJmilSdMDE3KByCEtLyNXNOckNOcJWEQSz4IfkROsJOc6zVyeWBBk87Ir9MmW8mOo2HU3I7Vs6HZPOaGiBmj2O_8Kg1707PqOuwQKVFskZNQHjnjH21CoeBdrX2l7eOA-klyqhApEyFTPhtyVri9iEUeAJHZq0Hcb2UmJiHqxDLcsz_Q-I8DQCLpVO_ZCpFpctKbkfyZbg0i7QAL_CMpGOfRybYIySOW8y4p9Y_JMC_4Q1YPfzm0nJvfHr21vVFiXuHD4nc6lpwF61bfPHP8-28ftsm7DErHdT5u1uQW02fdHb1juZiSYs8t5pE-qd04fLbtMJoB0dsM4Hy6LjjA | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9kAviKcIFNgDnGCFves460OF-lRCkwi1qdSb8b7aQ2KHNG3VP8dvY8ZeNwKJ3nr1YyzNzO7MeGe-D-Cj9lHm4thwLXzEE5U6rnvScMyUMRx5Y6IaSHs0Tvunyfez7tka_G5nYaitst0T643aVob-kX-VVHCjv4jo2_wXJ9YoOl1tKTSKQK1gt2uIsTDYceRub7CEu9we7KO9PwlxeDDZ6_PAMsANiltyL4WKvEfXtSqVLnYOKxilpIkKq63UhbCZ0HHPiJ7OfJLKSLvEF70kw8zcZ0qi3Eewkcgkw-JvY_dg_OO4jQUE1left6o05TRDGsZ2muE9yuY5ddPHVEhw8XdoXOW7_xzR1pHv8Ck8CSkr22l87BmsufI5bN7tnLcv4HpyNasWbEhxMcx1sqK0rGbcpF6k5hKNsrDR8YBVnu0SNQWjrvtztu_cnO1V5XVYBowQQ_CL46ZFvRZ1Ukzn7OSmWMzYzvQcDbO8mL2E0wdR9StYL6vSvQamI0fQZ8a6Ik6E7SrTNUbFqelqZfADHYhbXeYmoJ0T6cY0X-E0k_5z1H9e6z8XHfh89868wfq49-mt1kR5WPeX-cpLO_ClNdvq9v-lvblf2gd43J-MhvlwMD56C5sCM6umZ3gL1peLK_cOM6Olfh_cj8HPh_b4P2TJHSY | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVQkRAXlgKirD5wA6uJkybOsSwVBVoh2kq9RbFjF6Q2iUIK4u_xZKGAAIlr4jjLeDzP8bw3CJ1wZXjSNAXhVBnEZo4k3LUE0UhZhyMlhJELaff6zvXIvhm3xp9Y_Hm2e7UlWXAaQKUpyppJqJoL4hsgYQKZ6CaAcKIn4WUbhBL0iB7RdjUXg1hevt_JHIcAh7Okzfzcx9fQtMCb37ZI88jT2UBrJWTE7cLGm2hJRnW0XpVjwKV31tHqx2T2toVehvNZnOI7CFUl1RIHUYjzIpiQHlQcAnYJ7j10cazwOVSLwJAIP8GXUib4Io5eypGJQcRDP0S_yBrPuxoE0wQPXoN0htvTSZw-ZY-zbTTqXA0vrklZY4EI7XwZURZlhlLacUPmWNKUUq_fGLOEEYQ8tHhAQ49y0xXU5Z6yHcvg0laBa3t6XaI8Zu2gWhRHchdhbkhQIxOhDEybhi0mWkIw0xEtzoS-QQOZ1ef1RSlADnUwpv5COhlM4muT-LlJfNpApx_XJIX8xp-tDyqr-aUrPvsW_KnR70qNBjqrLLk4_Xtve_9rfoxW7i87_l23f7uPVqnGPkVW7wGqZelcHmrskvGjfHi-A-ad5BM | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tumor+Localization+and+Classification+from+MRI+of+Brain+using+Deep+Convolution+Neural+Network+and+Salp+Swarm+Algorithm&rft.jtitle=Cognitive+computation&rft.au=Alyami%2C+Jaber&rft.au=Rehman%2C+Amjad&rft.au=Almutairi%2C+Fahad&rft.au=Fayyaz%2C+Abdul+Muiz&rft.date=2024-07-01&rft.pub=Springer+Nature+B.V&rft.issn=1866-9956&rft.eissn=1866-9964&rft.volume=16&rft.issue=4&rft.spage=2036&rft.epage=2046&rft_id=info:doi/10.1007%2Fs12559-022-10096-2 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-9956&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-9956&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-9956&client=summon |