Tumor Localization and Classification from MRI of Brain using Deep Convolution Neural Network and Salp Swarm Algorithm

Early diagnosis of brain tumors is crucial for treatment planning and increasing the survival rates of infected patients. In fact, brain tumors exist in a range of different forms, sizes, and features, as well as treatment choices. One of the essential roles of neurologists and radiologists is the d...

Full description

Saved in:
Bibliographic Details
Published inCognitive computation Vol. 16; no. 4; pp. 2036 - 2046
Main Authors Alyami, Jaber, Rehman, Amjad, Almutairi, Fahad, Fayyaz, Abdul Muiz, Roy, Sudipta, Saba, Tanzila, Alkhurim, Alhassan
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1866-9956
1866-9964
DOI10.1007/s12559-022-10096-2

Cover

Abstract Early diagnosis of brain tumors is crucial for treatment planning and increasing the survival rates of infected patients. In fact, brain tumors exist in a range of different forms, sizes, and features, as well as treatment choices. One of the essential roles of neurologists and radiologists is the diagnosis of brain tumors in their early stages. However, manual brain tumor diagnosis is difficult, time-consuming, and prone to error. Based on the problem highlighted, an automated brain tumor detection system is mandatory to identify the tumor in its initial stages. This research presents an efficient deep learning-based system for the classification of brain tumors from brain MRI using the deep convolutional network and salp swarm algorithm. All experiments are performed using the publicly available brain tumor Kaggle dataset. To enhance the classification rate, preprocessing and data augmentation such as skewed data ideas are devised. In addition, AlexNet and VGG19 are leveraged to perform specific functionality. Finally, all features merged into a single feature vector for brain tumor classification. Some of the extracted features found insignificant towards effective classification. Hence, we employed an efficient feature selection technique named slap swarm to find the most discriminative features to attain best tumor classification rate. Finally, several SVM kernels are merged for the final classification and 99.1% accuracy is achieved by selecting 4111 optimal features from 8192.
AbstractList Early diagnosis of brain tumors is crucial for treatment planning and increasing the survival rates of infected patients. In fact, brain tumors exist in a range of different forms, sizes, and features, as well as treatment choices. One of the essential roles of neurologists and radiologists is the diagnosis of brain tumors in their early stages. However, manual brain tumor diagnosis is difficult, time-consuming, and prone to error. Based on the problem highlighted, an automated brain tumor detection system is mandatory to identify the tumor in its initial stages. This research presents an efficient deep learning-based system for the classification of brain tumors from brain MRI using the deep convolutional network and salp swarm algorithm. All experiments are performed using the publicly available brain tumor Kaggle dataset. To enhance the classification rate, preprocessing and data augmentation such as skewed data ideas are devised. In addition, AlexNet and VGG19 are leveraged to perform specific functionality. Finally, all features merged into a single feature vector for brain tumor classification. Some of the extracted features found insignificant towards effective classification. Hence, we employed an efficient feature selection technique named slap swarm to find the most discriminative features to attain best tumor classification rate. Finally, several SVM kernels are merged for the final classification and 99.1% accuracy is achieved by selecting 4111 optimal features from 8192.
Author Rehman, Amjad
Almutairi, Fahad
Roy, Sudipta
Saba, Tanzila
Alyami, Jaber
Fayyaz, Abdul Muiz
Alkhurim, Alhassan
Author_xml – sequence: 1
  givenname: Jaber
  surname: Alyami
  fullname: Alyami, Jaber
  organization: Department of Diagnostic Radiology, Faculty of Applied Medical Sciences, King Abdulaziz University, Animal House Unit, King Fahd Medical Research Center, King Abdulaziz University, Smart Medical Imaging Research Group, King Abdulaziz University
– sequence: 2
  givenname: Amjad
  orcidid: 0000-0002-0101-0329
  surname: Rehman
  fullname: Rehman, Amjad
  email: arkhan@psu.edu.sa
  organization: Artificial Intelligence & Data Analytics Lab (AIDA), CCIS Prince Sultan University
– sequence: 3
  givenname: Fahad
  surname: Almutairi
  fullname: Almutairi, Fahad
  organization: Department of Diagnostic Radiology, Faculty of Applied Medical Sciences, King Abdulaziz University, Animal House Unit, King Fahd Medical Research Center, King Abdulaziz University, Smart Medical Imaging Research Group, King Abdulaziz University
– sequence: 4
  givenname: Abdul Muiz
  surname: Fayyaz
  fullname: Fayyaz, Abdul Muiz
  organization: Artificial Intelligence & Data Analytics Lab (AIDA), CCIS Prince Sultan University, Department of Computer Science, University of Wah
– sequence: 5
  givenname: Sudipta
  surname: Roy
  fullname: Roy, Sudipta
  organization: Artificial Intelligence & Data Science, Jio Institute
– sequence: 6
  givenname: Tanzila
  surname: Saba
  fullname: Saba, Tanzila
  organization: Artificial Intelligence & Data Analytics Lab (AIDA), CCIS Prince Sultan University
– sequence: 7
  givenname: Alhassan
  surname: Alkhurim
  fullname: Alkhurim, Alhassan
  organization: Department of Diagnostic Radiology, Faculty of Applied Medical Sciences, King Abdulaziz University, Animal House Unit, King Fahd Medical Research Center, King Abdulaziz University, Smart Medical Imaging Research Group, King Abdulaziz University
BookMark eNp9kElLxDAYhoMoOC5_wFPAczVLmzbHsa4wKricQ9omY7RNxqR10F9vbEXBg6dv4X2-5d0Bm9ZZBcABRkcYofw4YJJlPEGEJLHmLCEbYIYLxhLOWbr5k2dsG-yE8IwQy3hGZuDtYeichwtXy9Z8yN44C6VtYNnKEIw29dTS3nXw-u4KOg1PvDQWDsHYJTxVagVLZ99cO4zCGzV42cbQr51_GUfdy3YF79fSd3DeLp03_VO3B7a0bIPa_4674PH87KG8TBa3F1flfJHUFPM-0ZQUSGuS5U3BqMJKcZwXBa2RbKqGVpI0nFQ4r0lecZ0yiiqVapmnvCBM84LugsNp7sq710GFXjy7wdu4UlCUMxy3EBRVxaSqvQvBKy1q04-P9_HXVmAkvlwWk8siuixGlwWJKPmDrrzppH__H6ITFKLYLpX_veof6hO09pI6
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3412412
crossref_primary_10_48084_etasr_8702
crossref_primary_10_1109_ACCESS_2023_3313977
crossref_primary_10_1038_s41598_025_93718_7
crossref_primary_10_1016_j_compbiomed_2025_109916
crossref_primary_10_3390_ma16103777
crossref_primary_10_56294_saludcyt20241079
crossref_primary_10_3389_fnins_2024_1288274
crossref_primary_10_3389_fnins_2023_1269100
crossref_primary_10_1007_s40998_024_00726_w
crossref_primary_10_1007_s12065_024_00925_8
crossref_primary_10_1007_s00521_025_11031_w
crossref_primary_10_3390_biomedicines11051354
crossref_primary_10_1007_s13369_023_08607_w
crossref_primary_10_1108_ACI_12_2023_0167
crossref_primary_10_1007_s11042_024_18923_4
crossref_primary_10_1007_s12559_025_10419_z
crossref_primary_10_1007_s13721_023_00428_z
crossref_primary_10_3390_diagnostics13071229
Cites_doi 10.21873/anticanres.13949
10.1109/CONIT51480.2021.9498384
10.1109/ACCESS.2019.2927433
10.1109/TITS.2021.3130403
10.3390/healthcare10040697
10.1007/s10489-021-02893-3
10.5455/aim.2020.28.29-36
10.1109/ACCESS.2021.3105874
10.1109/JTEHM.2022.3176737
10.1007/s10916-019-1453-8
10.1016/j.compbiomed.2020.103758
10.1109/JBHI.2021.3083187
10.1007/978-981-15-6067-5_30
10.1109/TNB.2015.2450365
10.1016/j.patrec.2019.11.020
10.3390/sym12081256
10.1109/JBHI.2021.3100758
10.3390/s20102809
10.3390/computation7020031
10.1155/2021/3365043
10.1007/s11042-022-12956-3
10.47750/jptcp.2022.873
10.1007/978-3-030-31635-8_221
10.3390/app10103429
10.1002/jemt.23694
10.1145/3065386
10.1016/j.patrec.2019.11.019
10.1109/TIP.2022.3207006
10.1016/j.mehy.2020.109684
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s12559-022-10096-2
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
Computer Science
EISSN 1866-9964
EndPage 2046
ExternalDocumentID 10_1007_s12559_022_10096_2
GrantInformation_xml – fundername: King Abdulaziz University
  grantid: G: 219 – 142-1443
  funderid: http://dx.doi.org/10.13039/501100004054
GroupedDBID -56
-5G
-BR
-EM
-~C
06C
06D
0R~
0VY
1N0
203
29F
29~
2JY
2KG
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
67N
67Z
6NX
875
8TC
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABMQK
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ARAPS
AUKKA
AXYYD
BA0
BENPR
BGLVJ
BGNMA
CAG
CCPQU
COF
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
EN4
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KOV
KPH
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
PT4
QOR
QOS
R89
RLLFE
ROL
RSV
S1Z
S27
S3A
S3B
SBL
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
T13
TSG
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z7R
Z7X
Z83
Z88
ZMTXR
ZOVNA
~A9
AAFWJ
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-f3280ff257d863e1ee917883c0adbd3ba2d92b17c27b9f4630be4fa749826f983
IEDL.DBID BENPR
ISSN 1866-9956
IngestDate Fri Jul 25 09:07:56 EDT 2025
Wed Oct 01 02:03:15 EDT 2025
Thu Apr 24 23:05:33 EDT 2025
Fri Feb 21 02:40:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Brain tumor
Deep learning
MRI
Transfer learning
Public health
Health risks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-f3280ff257d863e1ee917883c0adbd3ba2d92b17c27b9f4630be4fa749826f983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0101-0329
PQID 3076131920
PQPubID 6623279
PageCount 11
ParticipantIDs proquest_journals_3076131920
crossref_citationtrail_10_1007_s12559_022_10096_2
crossref_primary_10_1007_s12559_022_10096_2
springer_journals_10_1007_s12559_022_10096_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240700
2024-07-00
20240701
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 7
  year: 2024
  text: 20240700
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Cognitive computation
PublicationTitleAbbrev Cogn Comput
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Gull S, Akbar S, Khan HU. Automated detection of brain tumor through magnetic resonance images using convolutional neural network. BioMed Res Int. 2021.
RajinikanthVJoseph RajANThanarajKPNaikGRA customized VGG19 network with concatenation of deep and handcrafted features for brain tumor detectionAppl Sci20201010342910.3390/app10103429
KhalilHADarwishSIbrahimYMHassanOF3D-MRI brain tumor detection model using modified version of level set segmentation based on dragonfly algorithmSymmetry2020128125610.3390/sym12081256
Ijaz MF, Attique M, Son Y. Data-driven cervical cancer prediction model with outlier detection and over-sampling methods. Sensors. 2020(10):2809.
Chakrabarty N. Brain tumor dataset. [Online]. Retrieved February 7, 2022, from https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection.
BeheshtiIGanaieMAPaliwalVRastogiAPredicting brain age using machine learning algorithms: a comprehensive evaluationIEEE J Biomed Health Inform20212641432144010.1109/JBHI.2021.3083187
SharifMILiJPKhanMASaleemMAActive deep neural network features selection for segmentation and recognition of brain tumors using MRI imagesPattern Recogn Lett202012918118910.1016/j.patrec.2019.11.019
Sun W, Dai L, Zhang X, Chang P, He X. RSOD: real-time small object detection algorithm in UAV-based traffic monitoring. Appl Intell. 2021;pp. 1–16.
KrizhevskyASutskeverIHintonGEImageNet classification with deep convolutional neural networksCommun ACM2017606849010.1145/3065386
Yar H, Hussain T, Agarwal M, Khan ZA, Gupta SK, Baik SW. Optimized Dual Fire Attention Network and Medium-Scale Fire Classification Benchmark. IEEE Transact Image Process. 2022;31:6331-43.
Saxena P, Maheshwari A, Maheshwari S. Predictive modeling of brain tumor: a deep learning approach. In Innovations in computational intelligence and computer vision. 2021;pp. 275-285. Springer, Singapore.
AbunadiIAlthobaitiMMAl-WesabiFNHilalAMMedaniMFederated learning with blockchain assisted image classification for clustered UAV networksComput mater contin202272111951212
TiwariASrivastavaSPantMBrain tumor segmentation and classification from magnetic resonance images: review of selected methods from 2014 to 2019Pattern Recogn Lett202013124426010.1016/j.patrec.2019.11.020
AbunadiIAlbraikanAAAlzahraniJSEltahirMMHilalAMEldesoukiMIMotwakelAYaseenIAn automated glowworm swarm optimization with an inception-based deep convolutional neural network for COVID-19 diagnosis and classificationHealthcare20221069710.3390/healthcare10040697
Sun W, Dai GZ, Zhang XR, He XZ, Chen X. TBE-Net: a three-branch embedding network with part-aware ability and feature complementary learning for vehicle re-identification. IEEE Transact Intell Transp Syst. 2021;pp. 1–13. https://doi.org/10.1109/TITS.2021.3130403.
SallemiLNjehILehericySTowards a computer aided prognosis for brain glioblastomas tumor growth estimationIEEE Trans Nanobiosci201514772773310.1109/TNB.2015.2450365
NaserMADeenMJBrain tumor segmentation and grading of lower-grade glioma using deep learning in MRI imagesComput Biol Med202012110.1016/j.compbiomed.2020.103758
SafdarMFAlkobaisiSSZahraFTA comparative analysis of data augmentation approaches for magnetic resonance imaging (MRI) scan images of brain tumorActa informatica medica20202812910.5455/aim.2020.28.29-36
Khanna P, Tanveer M, Prasad M, Lin CT. Artificial intelligence and deep learning for biomedical applications. Multimed Tools Appl. 2022;81:13137.
Rai S, Chowdhury S, Sarkar S, Chowdhury K, Singh KP. A hybrid approach to brain tumor detection from MRI images using computer vision. J Innov Comput Sci Eng. 2019;8(2):8-12.
Carlo R, Renato C, Giuseppe C, Lorenzo U, et al. Distinguishing functional from non-functional pituitary macroadenomas with a machine learning analysis. Mediterr Conf Med Biol Eng Comput. 2019;pp. 1822–1829.
SekharABiswasSHazraRSunaniyaAKMukherjeeAYangLBrain tumor classification using fine-tuned GoogLeNet features and machine learning algorithms: IoMT enabled CAD systemIEEE J Biomed Health Inform202126398399110.1109/JBHI.2021.3100758
AminJSharifMYasminMSabaTAnjumMAFernandesSLA new approach for brain tumor segmentation and classification based on score level fusion using transfer learningJ Med Syst2019431111610.1007/s10916-019-1453-8
Dipu NM, Shohan SA, Salam K. Deep learning based brain tumor detection and classification. Int Conf Intell Technol (CONIT), IEEE. 2021;pp. 1–6.
ÇinarAYildirimMDetection of tumors on brain MRI images using the hybrid convolutional neural network architectureMed Hypotheses202013910.1016/j.mehy.2020.109684
HuKGanQZhangYDengSXiaoFBrain tumor segmentation using multi-cascaded convolutional neural networks and conditional random fieldIEEE Access20197926159262910.1109/ACCESS.2019.2927433
Ottom MA, Rahman HA, Dinov ID. Znet: deep learning approach for 2D MRI brain tumor segmentation. IEEE J Transl Eng Health Med. 2022.
Too J, Abdullah AR, Mohd Saad N. Binary competitive swarm optimizer approaches for feature selection. Computation. 2019;7(2):31.
Mohan R, Ganapathy K, Rama A. Brain tumour classification of magnetic resonance images using a novel CNN based medical image analysis and detection network in comparison with VGG16. J Popul Ther Clin Pharmacol. 2021;28(2).
MajibMSRahmanMMSazzadTSKhanNIDeySKVGG-SCNet: a VGG Net-based deep learning framework for brain tumor detection on MRI imagesIEEE Access2021911694211695210.1109/ACCESS.2021.3105874
KhanARKhanSHarouniMAbbasiRIqbalSMehmoodZBrain tumor segmentation using K-means clustering and deep learning with synthetic data augmentation for classificationMicrosc Res Tech20218471389139910.1002/jemt.23694
RomeoVCuocoloRRicciardiCUggaLCocozzaSPrediction of tumor grade and nodal status in oropharyngeal and oral cavity squamous-cell carcinoma using a radiomic approachAnticancer Res202040127128010.21873/anticanres.13949
10096_CR32
10096_CR31
I Beheshti (10096_CR13) 2021; 26
10096_CR30
L Sallemi (10096_CR18) 2015; 14
A Çinar (10096_CR7) 2020; 139
HA Khalil (10096_CR5) 2020; 12
10096_CR6
10096_CR2
10096_CR3
10096_CR1
A Sekhar (10096_CR17) 2021; 26
I Abunadi (10096_CR22) 2022; 10
10096_CR29
10096_CR27
V Rajinikanth (10096_CR12) 2020; 10
10096_CR23
I Abunadi (10096_CR24) 2022; 72
10096_CR21
10096_CR20
K Hu (10096_CR8) 2019; 7
MI Sharif (10096_CR11) 2020; 129
MS Majib (10096_CR28) 2021; 9
A Krizhevsky (10096_CR19) 2017; 60
MA Naser (10096_CR9) 2020; 121
AR Khan (10096_CR14) 2021; 84
10096_CR16
MF Safdar (10096_CR25) 2020; 28
V Romeo (10096_CR10) 2020; 40
10096_CR15
J Amin (10096_CR26) 2019; 43
A Tiwari (10096_CR4) 2020; 131
References_xml – reference: Yar H, Hussain T, Agarwal M, Khan ZA, Gupta SK, Baik SW. Optimized Dual Fire Attention Network and Medium-Scale Fire Classification Benchmark. IEEE Transact Image Process. 2022;31:6331-43.
– reference: AminJSharifMYasminMSabaTAnjumMAFernandesSLA new approach for brain tumor segmentation and classification based on score level fusion using transfer learningJ Med Syst2019431111610.1007/s10916-019-1453-8
– reference: AbunadiIAlthobaitiMMAl-WesabiFNHilalAMMedaniMFederated learning with blockchain assisted image classification for clustered UAV networksComput mater contin202272111951212
– reference: Saxena P, Maheshwari A, Maheshwari S. Predictive modeling of brain tumor: a deep learning approach. In Innovations in computational intelligence and computer vision. 2021;pp. 275-285. Springer, Singapore.
– reference: KhalilHADarwishSIbrahimYMHassanOF3D-MRI brain tumor detection model using modified version of level set segmentation based on dragonfly algorithmSymmetry2020128125610.3390/sym12081256
– reference: HuKGanQZhangYDengSXiaoFBrain tumor segmentation using multi-cascaded convolutional neural networks and conditional random fieldIEEE Access20197926159262910.1109/ACCESS.2019.2927433
– reference: Ijaz MF, Attique M, Son Y. Data-driven cervical cancer prediction model with outlier detection and over-sampling methods. Sensors. 2020(10):2809.
– reference: Khanna P, Tanveer M, Prasad M, Lin CT. Artificial intelligence and deep learning for biomedical applications. Multimed Tools Appl. 2022;81:13137.
– reference: Sun W, Dai GZ, Zhang XR, He XZ, Chen X. TBE-Net: a three-branch embedding network with part-aware ability and feature complementary learning for vehicle re-identification. IEEE Transact Intell Transp Syst. 2021;pp. 1–13. https://doi.org/10.1109/TITS.2021.3130403.
– reference: Mohan R, Ganapathy K, Rama A. Brain tumour classification of magnetic resonance images using a novel CNN based medical image analysis and detection network in comparison with VGG16. J Popul Ther Clin Pharmacol. 2021;28(2).
– reference: SallemiLNjehILehericySTowards a computer aided prognosis for brain glioblastomas tumor growth estimationIEEE Trans Nanobiosci201514772773310.1109/TNB.2015.2450365
– reference: Too J, Abdullah AR, Mohd Saad N. Binary competitive swarm optimizer approaches for feature selection. Computation. 2019;7(2):31.
– reference: KhanARKhanSHarouniMAbbasiRIqbalSMehmoodZBrain tumor segmentation using K-means clustering and deep learning with synthetic data augmentation for classificationMicrosc Res Tech20218471389139910.1002/jemt.23694
– reference: Rai S, Chowdhury S, Sarkar S, Chowdhury K, Singh KP. A hybrid approach to brain tumor detection from MRI images using computer vision. J Innov Comput Sci Eng. 2019;8(2):8-12.
– reference: NaserMADeenMJBrain tumor segmentation and grading of lower-grade glioma using deep learning in MRI imagesComput Biol Med202012110.1016/j.compbiomed.2020.103758
– reference: SafdarMFAlkobaisiSSZahraFTA comparative analysis of data augmentation approaches for magnetic resonance imaging (MRI) scan images of brain tumorActa informatica medica20202812910.5455/aim.2020.28.29-36
– reference: Ottom MA, Rahman HA, Dinov ID. Znet: deep learning approach for 2D MRI brain tumor segmentation. IEEE J Transl Eng Health Med. 2022.
– reference: MajibMSRahmanMMSazzadTSKhanNIDeySKVGG-SCNet: a VGG Net-based deep learning framework for brain tumor detection on MRI imagesIEEE Access2021911694211695210.1109/ACCESS.2021.3105874
– reference: BeheshtiIGanaieMAPaliwalVRastogiAPredicting brain age using machine learning algorithms: a comprehensive evaluationIEEE J Biomed Health Inform20212641432144010.1109/JBHI.2021.3083187
– reference: Dipu NM, Shohan SA, Salam K. Deep learning based brain tumor detection and classification. Int Conf Intell Technol (CONIT), IEEE. 2021;pp. 1–6.
– reference: RomeoVCuocoloRRicciardiCUggaLCocozzaSPrediction of tumor grade and nodal status in oropharyngeal and oral cavity squamous-cell carcinoma using a radiomic approachAnticancer Res202040127128010.21873/anticanres.13949
– reference: KrizhevskyASutskeverIHintonGEImageNet classification with deep convolutional neural networksCommun ACM2017606849010.1145/3065386
– reference: Sun W, Dai L, Zhang X, Chang P, He X. RSOD: real-time small object detection algorithm in UAV-based traffic monitoring. Appl Intell. 2021;pp. 1–16.
– reference: Carlo R, Renato C, Giuseppe C, Lorenzo U, et al. Distinguishing functional from non-functional pituitary macroadenomas with a machine learning analysis. Mediterr Conf Med Biol Eng Comput. 2019;pp. 1822–1829.
– reference: ÇinarAYildirimMDetection of tumors on brain MRI images using the hybrid convolutional neural network architectureMed Hypotheses202013910.1016/j.mehy.2020.109684
– reference: TiwariASrivastavaSPantMBrain tumor segmentation and classification from magnetic resonance images: review of selected methods from 2014 to 2019Pattern Recogn Lett202013124426010.1016/j.patrec.2019.11.020
– reference: SharifMILiJPKhanMASaleemMAActive deep neural network features selection for segmentation and recognition of brain tumors using MRI imagesPattern Recogn Lett202012918118910.1016/j.patrec.2019.11.019
– reference: Chakrabarty N. Brain tumor dataset. [Online]. Retrieved February 7, 2022, from https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection.
– reference: Gull S, Akbar S, Khan HU. Automated detection of brain tumor through magnetic resonance images using convolutional neural network. BioMed Res Int. 2021.
– reference: RajinikanthVJoseph RajANThanarajKPNaikGRA customized VGG19 network with concatenation of deep and handcrafted features for brain tumor detectionAppl Sci20201010342910.3390/app10103429
– reference: SekharABiswasSHazraRSunaniyaAKMukherjeeAYangLBrain tumor classification using fine-tuned GoogLeNet features and machine learning algorithms: IoMT enabled CAD systemIEEE J Biomed Health Inform202126398399110.1109/JBHI.2021.3100758
– reference: AbunadiIAlbraikanAAAlzahraniJSEltahirMMHilalAMEldesoukiMIMotwakelAYaseenIAn automated glowworm swarm optimization with an inception-based deep convolutional neural network for COVID-19 diagnosis and classificationHealthcare20221069710.3390/healthcare10040697
– volume: 40
  start-page: 271
  issue: 1
  year: 2020
  ident: 10096_CR10
  publication-title: Anticancer Res
  doi: 10.21873/anticanres.13949
– volume: 72
  start-page: 1195
  issue: 1
  year: 2022
  ident: 10096_CR24
  publication-title: Comput mater contin
– ident: 10096_CR3
  doi: 10.1109/CONIT51480.2021.9498384
– volume: 7
  start-page: 92615
  year: 2019
  ident: 10096_CR8
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2927433
– ident: 10096_CR1
  doi: 10.1109/TITS.2021.3130403
– volume: 10
  start-page: 697
  year: 2022
  ident: 10096_CR22
  publication-title: Healthcare
  doi: 10.3390/healthcare10040697
– ident: 10096_CR20
  doi: 10.1007/s10489-021-02893-3
– volume: 28
  start-page: 29
  issue: 1
  year: 2020
  ident: 10096_CR25
  publication-title: Acta informatica medica
  doi: 10.5455/aim.2020.28.29-36
– volume: 9
  start-page: 116942
  year: 2021
  ident: 10096_CR28
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3105874
– ident: 10096_CR16
  doi: 10.1109/JTEHM.2022.3176737
– volume: 43
  start-page: 1
  issue: 11
  year: 2019
  ident: 10096_CR26
  publication-title: J Med Syst
  doi: 10.1007/s10916-019-1453-8
– volume: 121
  year: 2020
  ident: 10096_CR9
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2020.103758
– volume: 26
  start-page: 1432
  issue: 4
  year: 2021
  ident: 10096_CR13
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2021.3083187
– ident: 10096_CR31
  doi: 10.1007/978-981-15-6067-5_30
– volume: 14
  start-page: 727
  issue: 7
  year: 2015
  ident: 10096_CR18
  publication-title: IEEE Trans Nanobiosci
  doi: 10.1109/TNB.2015.2450365
– volume: 131
  start-page: 244
  year: 2020
  ident: 10096_CR4
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2019.11.020
– volume: 12
  start-page: 1256
  issue: 8
  year: 2020
  ident: 10096_CR5
  publication-title: Symmetry
  doi: 10.3390/sym12081256
– volume: 26
  start-page: 983
  issue: 3
  year: 2021
  ident: 10096_CR17
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2021.3100758
– ident: 10096_CR23
  doi: 10.3390/s20102809
– ident: 10096_CR29
  doi: 10.3390/computation7020031
– ident: 10096_CR15
  doi: 10.1155/2021/3365043
– ident: 10096_CR2
  doi: 10.1007/s11042-022-12956-3
– ident: 10096_CR27
  doi: 10.47750/jptcp.2022.873
– ident: 10096_CR6
  doi: 10.1007/978-3-030-31635-8_221
– volume: 10
  start-page: 3429
  issue: 10
  year: 2020
  ident: 10096_CR12
  publication-title: Appl Sci
  doi: 10.3390/app10103429
– volume: 84
  start-page: 1389
  issue: 7
  year: 2021
  ident: 10096_CR14
  publication-title: Microsc Res Tech
  doi: 10.1002/jemt.23694
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  ident: 10096_CR19
  publication-title: Commun ACM
  doi: 10.1145/3065386
– volume: 129
  start-page: 181
  year: 2020
  ident: 10096_CR11
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2019.11.019
– ident: 10096_CR21
  doi: 10.1109/TIP.2022.3207006
– ident: 10096_CR32
– volume: 139
  year: 2020
  ident: 10096_CR7
  publication-title: Med Hypotheses
  doi: 10.1016/j.mehy.2020.109684
– ident: 10096_CR30
SSID ssj0065952
Score 2.460938
Snippet Early diagnosis of brain tumors is crucial for treatment planning and increasing the survival rates of infected patients. In fact, brain tumors exist in a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2036
SubjectTerms Accuracy
Algorithms
Artificial Intelligence
Artificial neural networks
Brain
Brain cancer
Brain research
Classification
Computation by Abstract Devices
Computational Biology/Bioinformatics
Computer Science
Data augmentation
Datasets
Deep learning
Diagnosis
Effectiveness
Feature extraction
Feature selection
Machine learning
Magnetic resonance imaging
Regression analysis
Tomography
Tumors
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQLF14FBCFgjywgaXEeTljKVQF0Q60lbpFsWMXpDap0rSIf4_tOI1AgMSaOM7jfHefc3ffAXBNhRVy22aIYmEhl_gc0cBhSCJl6Y4EY5Ym0h4M_f7EfZp6U1MUtqqy3auQpLbUdbGbQr9IZZ_bCngjaXj3PEXnJVfxBHcq-6sI8nSMk_g-UnWbplTm5zm-uqMaY34Li2pv0zsE-wYmwk4p1yOww9MmOKhaMECjkU3Q2Bqwj2OwGa8XWQ6flXsy5ZUwThOoG1-qlKDykKoogYOXR5gJeKc6RECV_D6D95wvYTdLN2Y1QkXcIR9iWGaK66lG8XwJR-9xvoCd-SzL34rXxQmY9B7G3T4yfRUQkwpXIOFgYgkhlTUhvsNtzuWejRCHWXFCE4fGOAkxtQOGAxoK13csyl0RB24o9yIiJM4p2E2zlJ8BSC2uGMhYwmPbxYlHmMcYsX3mUcLkDVrArj5vxAzpuOp9MY9qumQlkkiKJNIiiXAL3GyvWZaUG3-ObldSi4z6rSJH_Z2R74qtFritJFmf_n228_8NvwANLEFOmb7bBrtFvuaXEqQU9EqvyU9YHdzr
  priority: 102
  providerName: Springer Nature
Title Tumor Localization and Classification from MRI of Brain using Deep Convolution Neural Network and Salp Swarm Algorithm
URI https://link.springer.com/article/10.1007/s12559-022-10096-2
https://www.proquest.com/docview/3076131920
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1866-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065952
  issn: 1866-9956
  databaseCode: AFBBN
  dateStart: 20090301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1866-9964
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0065952
  issn: 1866-9956
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1866-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065952
  issn: 1866-9956
  databaseCode: AGYKE
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1866-9964
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065952
  issn: 1866-9956
  databaseCode: U2A
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwEB5Be-Gy4rFoy6PygRtYJE6aOgeECrS8lgoBleAUxa9yaJNSCoh_jydxqECCq5PY0ufxzDgz8w3AjjBerH1fUsGMR0MeaSragaTWU7bmyEjpFUTaV_3obBBe3LfuF6Bf1cJgWmWlEwtFrXKJ_8j3A7xwW3lh3uHkiWLXKIyuVi00UtdaQR0UFGOLUGfIjFWD-lG3f31T6WYkzyvinzyKKNZ0ujKaspgOvWuK2e0-OvaUfTVVc__zW8i0sES9ZfjjXEjSKfd8BRZ0tgpLn5rsfQ1e717G-ZT8Rzvl6ixJmilSdMDE3KByCEtLyNXNOckNOcJWEQSz4IfkROsJOc6zVyeWBBk87Ir9MmW8mOo2HU3I7Vs6HZPOaGiBmj2O_8Kg1707PqOuwQKVFskZNQHjnjH21CoeBdrX2l7eOA-klyqhApEyFTPhtyVri9iEUeAJHZq0Hcb2UmJiHqxDLcsz_Q-I8DQCLpVO_ZCpFpctKbkfyZbg0i7QAL_CMpGOfRybYIySOW8y4p9Y_JMC_4Q1YPfzm0nJvfHr21vVFiXuHD4nc6lpwF61bfPHP8-28ftsm7DErHdT5u1uQW02fdHb1juZiSYs8t5pE-qd04fLbtMJoB0dsM4Hy6LjjA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9kAviKcIFNgDnGCFves460OF-lRCkwi1qdSb8b7aQ2KHNG3VP8dvY8ZeNwKJ3nr1YyzNzO7MeGe-D-Cj9lHm4thwLXzEE5U6rnvScMyUMRx5Y6IaSHs0Tvunyfez7tka_G5nYaitst0T643aVob-kX-VVHCjv4jo2_wXJ9YoOl1tKTSKQK1gt2uIsTDYceRub7CEu9we7KO9PwlxeDDZ6_PAMsANiltyL4WKvEfXtSqVLnYOKxilpIkKq63UhbCZ0HHPiJ7OfJLKSLvEF70kw8zcZ0qi3Eewkcgkw-JvY_dg_OO4jQUE1left6o05TRDGsZ2muE9yuY5ddPHVEhw8XdoXOW7_xzR1pHv8Ck8CSkr22l87BmsufI5bN7tnLcv4HpyNasWbEhxMcx1sqK0rGbcpF6k5hKNsrDR8YBVnu0SNQWjrvtztu_cnO1V5XVYBowQQ_CL46ZFvRZ1Ukzn7OSmWMzYzvQcDbO8mL2E0wdR9StYL6vSvQamI0fQZ8a6Ik6E7SrTNUbFqelqZfADHYhbXeYmoJ0T6cY0X-E0k_5z1H9e6z8XHfh89868wfq49-mt1kR5WPeX-cpLO_ClNdvq9v-lvblf2gd43J-MhvlwMD56C5sCM6umZ3gL1peLK_cOM6Olfh_cj8HPh_b4P2TJHSY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVQkRAXlgKirD5wA6uJkybOsSwVBVoh2kq9RbFjF6Q2iUIK4u_xZKGAAIlr4jjLeDzP8bw3CJ1wZXjSNAXhVBnEZo4k3LUE0UhZhyMlhJELaff6zvXIvhm3xp9Y_Hm2e7UlWXAaQKUpyppJqJoL4hsgYQKZ6CaAcKIn4WUbhBL0iB7RdjUXg1hevt_JHIcAh7Okzfzcx9fQtMCb37ZI88jT2UBrJWTE7cLGm2hJRnW0XpVjwKV31tHqx2T2toVehvNZnOI7CFUl1RIHUYjzIpiQHlQcAnYJ7j10cazwOVSLwJAIP8GXUib4Io5eypGJQcRDP0S_yBrPuxoE0wQPXoN0htvTSZw-ZY-zbTTqXA0vrklZY4EI7XwZURZlhlLacUPmWNKUUq_fGLOEEYQ8tHhAQ49y0xXU5Z6yHcvg0laBa3t6XaI8Zu2gWhRHchdhbkhQIxOhDEybhi0mWkIw0xEtzoS-QQOZ1ef1RSlADnUwpv5COhlM4muT-LlJfNpApx_XJIX8xp-tDyqr-aUrPvsW_KnR70qNBjqrLLk4_Xtve_9rfoxW7i87_l23f7uPVqnGPkVW7wGqZelcHmrskvGjfHi-A-ad5BM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tumor+Localization+and+Classification+from+MRI+of+Brain+using+Deep+Convolution+Neural+Network+and+Salp+Swarm+Algorithm&rft.jtitle=Cognitive+computation&rft.au=Alyami%2C+Jaber&rft.au=Rehman%2C+Amjad&rft.au=Almutairi%2C+Fahad&rft.au=Fayyaz%2C+Abdul+Muiz&rft.date=2024-07-01&rft.pub=Springer+Nature+B.V&rft.issn=1866-9956&rft.eissn=1866-9964&rft.volume=16&rft.issue=4&rft.spage=2036&rft.epage=2046&rft_id=info:doi/10.1007%2Fs12559-022-10096-2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-9956&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-9956&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-9956&client=summon