An improved moth flame optimization algorithm based on modified dynamic opposite learning strategy
Moth flame optimization (MFO) algorithm is a relatively new nature-inspired optimization algorithm based on the moth’s movement towards the moon. Premature convergence and convergence to local optima are the main demerits of the algorithm. To avoid these drawbacks, a modified dynamic opposite learni...
Saved in:
| Published in | The Artificial intelligence review Vol. 56; no. 4; pp. 2811 - 2869 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Dordrecht
Springer Netherlands
01.04.2023
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0269-2821 1573-7462 |
| DOI | 10.1007/s10462-022-10218-0 |
Cover
| Summary: | Moth flame optimization (MFO) algorithm is a relatively new nature-inspired optimization algorithm based on the moth’s movement towards the moon. Premature convergence and convergence to local optima are the main demerits of the algorithm. To avoid these drawbacks, a modified dynamic opposite learning-based MFO algorithm (m-DMFO) is presented in this paper, incorporating a modified dynamic opposite learning (DOL) strategy. To validate the performance of the proposed m-DMFO algorithm, it is tested via twenty-three benchmark functions, IEEE CEC’2014 test functions and compared with a wide range of optimization algorithms. Moreover, Friedman rank test, Wilcoxon rank test, convergence analysis, and diversity measurement have been conducted to measure the robustness of the proposed m-DMFO algorithm. The numerical results show that, the proposed m-DMFO algorithm achieved superior results in more than 90% occasions. The proposed m-DMFO achieves the best rank in Friedman rank test and Wilcoxon rank test respectively. In addition, four engineering design problems have been solved by the suggested m-DMFO algorithm. According to the results, it achieves extremely impressive results, which also illustrates that the algorithm is qualified in solving real-world problems. Analyses of numerical results, diversity measure, statistical tests and convergence results ensure the enhanced performance of the proposed m-DMFO algorithm. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0269-2821 1573-7462 |
| DOI: | 10.1007/s10462-022-10218-0 |