Leukemia Image Segmentation Using a Hybrid Histogram-Based Soft Covering Rough K-Means Clustering Algorithm
Segmenting an image of a nucleus is one of the most essential tasks in a leukemia diagnostic system. Accurate and rapid segmentation methods help the physicians identify the diseases and provide better treatment at the appropriate time. Recently, hybrid clustering algorithms have started being widel...
Saved in:
Published in | Electronics (Basel) Vol. 9; no. 1; p. 188 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.01.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2079-9292 2079-9292 |
DOI | 10.3390/electronics9010188 |
Cover
Abstract | Segmenting an image of a nucleus is one of the most essential tasks in a leukemia diagnostic system. Accurate and rapid segmentation methods help the physicians identify the diseases and provide better treatment at the appropriate time. Recently, hybrid clustering algorithms have started being widely used for image segmentation in medical image processing. In this article, a novel hybrid histogram-based soft covering rough k-means clustering (HSCRKM) algorithm for leukemia nucleus image segmentation is discussed. This algorithm combines the strengths of a soft covering rough set and rough k-means clustering. The histogram method was utilized to identify the number of clusters to avoid random initialization. Different types of features such as gray level co-occurrence matrix (GLCM), color, and shape-based features were extracted from the segmented image of the nucleus. Machine learning prediction algorithms were applied to classify the cancerous and non-cancerous cells. The proposed strategy is compared with an existing clustering algorithm, and the efficiency is evaluated based on the prediction metrics. The experimental results show that the HSCRKM method efficiently segments the nucleus, and it is also inferred that logistic regression and neural network perform better than other prediction algorithms. |
---|---|
AbstractList | Segmenting an image of a nucleus is one of the most essential tasks in a leukemia diagnostic system. Accurate and rapid segmentation methods help the physicians identify the diseases and provide better treatment at the appropriate time. Recently, hybrid clustering algorithms have started being widely used for image segmentation in medical image processing. In this article, a novel hybrid histogram-based soft covering rough k-means clustering (HSCRKM) algorithm for leukemia nucleus image segmentation is discussed. This algorithm combines the strengths of a soft covering rough set and rough k-means clustering. The histogram method was utilized to identify the number of clusters to avoid random initialization. Different types of features such as gray level co-occurrence matrix (GLCM), color, and shape-based features were extracted from the segmented image of the nucleus. Machine learning prediction algorithms were applied to classify the cancerous and non-cancerous cells. The proposed strategy is compared with an existing clustering algorithm, and the efficiency is evaluated based on the prediction metrics. The experimental results show that the HSCRKM method efficiently segments the nucleus, and it is also inferred that logistic regression and neural network perform better than other prediction algorithms. |
Author | Azar, Ahmad Taher G, Jothi Inbarani H., Hannah |
Author_xml | – sequence: 1 givenname: Hannah surname: Inbarani H. fullname: Inbarani H., Hannah – sequence: 2 givenname: Ahmad Taher orcidid: 0000-0002-7869-6373 surname: Azar fullname: Azar, Ahmad Taher – sequence: 3 givenname: Jothi orcidid: 0000-0002-0527-4858 surname: G fullname: G, Jothi |
BookMark | eNqNkFFLwzAUhYNMcM79AZ8CPleTtmmTxznUDSeCm88la2-7bG0yk1TZv7ejPoiCeF_uhXu-w-Gco4E2GhC6pOQ6igS5gRpyb41WuROEEsr5CRqGJBWBCEU4-HafobFzW9KNoBGPyBDtFtDuoFESzxtZAV5C1YD20iuj8atTusISzw5rqwo8U86bysomuJUOCrw0pcdT8w72KHsxbbXBj8ETSO3wtG6d7x-TujJW-U1zgU5LWTsYf-0RWt3fraazYPH8MJ9OFkEeUeEDKEsQBWWkpADAaM5JTERKQ0hSRnkRSZbIJFwnwJKk4FIUEKeSE5avS54k0QhFvW2r9_LwIes621vVSHvIKMmOjWW_G-uoq57aW_PWgvPZ1rRWdzmzkMU8ZjENWacKe1VujXMWyv9Z8x9QrvqGvZWq_gv9BCYKla8 |
CitedBy_id | crossref_primary_10_3390_membranes11050303 crossref_primary_10_48084_etasr_9788 crossref_primary_10_4018_IJSKD_324164 crossref_primary_10_4018_IJSKD_301263 crossref_primary_10_4015_S101623722450011X crossref_primary_10_1109_ACCESS_2025_3525518 crossref_primary_10_4018_IJSKD_289036 crossref_primary_10_1007_s42235_023_00392_4 crossref_primary_10_32604_cmc_2021_015249 crossref_primary_10_1016_j_cmpb_2024_108484 crossref_primary_10_4018_IJSKD_326629 crossref_primary_10_7717_peerj_cs_2008 crossref_primary_10_4018_IJSKD_290657 crossref_primary_10_1109_ACCESS_2022_3182800 crossref_primary_10_4018_IJSKD_315750 crossref_primary_10_22399_ijcesen_773 crossref_primary_10_1155_2022_5914893 crossref_primary_10_17798_bitlisfen_1376817 crossref_primary_10_2196_36490 crossref_primary_10_48084_etasr_8728 crossref_primary_10_1007_s11831_021_09629_z crossref_primary_10_3390_electronics9050794 crossref_primary_10_4018_IJSSMET_313175 crossref_primary_10_1088_1742_6596_2392_1_012005 crossref_primary_10_1109_ACCESS_2022_3171916 crossref_primary_10_4018_IJSKD_289041 crossref_primary_10_1007_s11042_023_16921_6 crossref_primary_10_2174_1573405616666201118143935 crossref_primary_10_4018_IJSSMET_326801 crossref_primary_10_1016_j_engappai_2024_109229 crossref_primary_10_4018_IJSKD_330150 crossref_primary_10_1007_s10462_024_10814_2 crossref_primary_10_1007_s11042_022_12518_7 crossref_primary_10_3390_electronics10151841 crossref_primary_10_3390_electronics12214467 crossref_primary_10_4018_IJSSMET_323452 crossref_primary_10_32604_cmc_2022_030879 crossref_primary_10_1145_3514495 crossref_primary_10_1007_s11042_024_18486_4 crossref_primary_10_1016_j_asoc_2023_110268 crossref_primary_10_1007_s00521_023_08486_0 crossref_primary_10_1109_ACCESS_2024_3371490 crossref_primary_10_3390_diagnostics13122121 crossref_primary_10_1007_s11831_024_10065_y crossref_primary_10_3847_1538_3881_ace778 |
Cites_doi | 10.1109/IMTC.2006.328170 10.3390/diagnostics9030104 10.1007/s00521-016-2514-2 10.1016/j.asoc.2017.03.024 10.1016/j.eswa.2017.09.027 10.1016/j.cmpb.2016.11.011 10.2298/FIL1501209Y 10.1016/j.cmpb.2013.10.007 10.1155/2014/970893 10.1177/0144598717690090 10.1007/s00521-016-2412-7 10.1007/s41870-017-0039-2 10.1016/j.procs.2015.08.082 10.2139/ssrn.3131633 10.4103/2278-330X.187591 10.1007/BF00994018 10.1016/j.patrec.2005.10.010 10.1109/5326.897072 10.1016/j.cmpb.2017.09.011 10.1016/j.asoc.2016.03.014 10.1080/10798587.2016.1231472 10.1007/BF01001956 10.1016/j.patcog.2006.02.002 10.1016/j.asoc.2016.08.020 10.1016/j.compbiomed.2017.04.004 10.2307/2529310 10.1016/S0898-1221(99)00056-5 10.1016/j.inffus.2016.10.003 10.1109/TKDE.2007.1044 10.1023/A:1007465528199 10.1016/S0898-1221(03)00016-6 10.1007/s00521-016-2287-7 10.1109/ICIP.2011.6115881 10.1016/j.ins.2006.06.009 |
ContentType | Journal Article |
Copyright | 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTOC UNPAY |
DOI | 10.3390/electronics9010188 |
DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2079-9292 |
ExternalDocumentID | 10.3390/electronics9010188 10_3390_electronics9010188 |
GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC PUEGO 7SP 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQQKQ PQUKI PRINS ADTOC IPNFZ ITC RIG UNPAY |
ID | FETCH-LOGICAL-c319t-effe9d150f1eee51c80409712e67518d3a56a62b6e566d8a9de47a805cbf8663 |
IEDL.DBID | UNPAY |
ISSN | 2079-9292 |
IngestDate | Tue Aug 19 23:21:39 EDT 2025 Fri Jul 25 06:47:23 EDT 2025 Thu Apr 24 23:09:41 EDT 2025 Wed Oct 01 02:42:24 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-effe9d150f1eee51c80409712e67518d3a56a62b6e566d8a9de47a805cbf8663 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0527-4858 0000-0002-7869-6373 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2079-9292/9/1/188/pdf?version=1579422372 |
PQID | 2548454125 |
PQPubID | 2032404 |
ParticipantIDs | unpaywall_primary_10_3390_electronics9010188 proquest_journals_2548454125 crossref_primary_10_3390_electronics9010188 crossref_citationtrail_10_3390_electronics9010188 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Electronics (Basel) |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Zhu (ref_5) 2007; 19 Polat (ref_22) 2016; 27 Tozlu (ref_31) 2015; 29 Viera (ref_43) 2005; 37 Peters (ref_32) 2006; 39 ref_36 ref_13 Ganesh (ref_27) 2017; 23 ref_35 ref_34 ref_11 ref_33 ref_10 Fawcett (ref_44) 2006; 27 ref_30 Kumar (ref_7) 2017; 28 Cortes (ref_14) 1995; 20 Srisukkham (ref_18) 2017; 56 Zhu (ref_6) 2007; 177 ref_39 Cabria (ref_21) 2017; 36 Maji (ref_9) 2003; 45 Patel (ref_17) 2015; 58 Namburu (ref_23) 2017; 54 Arora (ref_2) 2016; 5 Su (ref_19) 2017; 152 Kaya (ref_20) 2017; 140 Esposito (ref_25) 2017; Volume 69 Zhang (ref_26) 2017; 35 Dhane (ref_29) 2017; 89 Molodtsov (ref_8) 1999; 37 Liaw (ref_16) 2002; 2 Ganesan (ref_41) 2017; 28 Jothi (ref_38) 2013; 3 ref_1 Pawlak (ref_4) 1982; 11 ref_3 Landis (ref_42) 1977; 33 ref_28 Jothi (ref_37) 2016; 46 Inbarani (ref_40) 2014; 113 Ali (ref_24) 2018; 91 Zhang (ref_12) 2000; 30 Friedman (ref_15) 1997; 29 |
References_xml | – ident: ref_34 doi: 10.1109/IMTC.2006.328170 – volume: 2 start-page: 18 year: 2002 ident: ref_16 article-title: Classification and regression by random Forest publication-title: R News – ident: ref_3 – ident: ref_30 doi: 10.3390/diagnostics9030104 – volume: 28 start-page: 2995 year: 2017 ident: ref_41 article-title: Tolerance rough set firefly-based quick reduct publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2514-2 – volume: 56 start-page: 405 year: 2017 ident: ref_18 article-title: Intelligent leukaemia diagnosis with bare-bones PSO based feature optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.03.024 – volume: 91 start-page: 434 year: 2018 ident: ref_24 article-title: Segmentation of Dental X-ray Images in Medical Imaging using Neutrosophic Orthogonal Matrices publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.09.027 – volume: 140 start-page: 19 year: 2017 ident: ref_20 article-title: PCA based clustering for brain tumor segmentation of T1w MRI images publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2016.11.011 – volume: 29 start-page: 209 year: 2015 ident: ref_31 article-title: An application of multicriteria group decision making by soft covering based rough sets publication-title: Filomat doi: 10.2298/FIL1501209Y – volume: 113 start-page: 175 year: 2014 ident: ref_40 article-title: Supervised hybrid feature selection based on PSO and rough sets for medical diagnosis publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2013.10.007 – ident: ref_10 doi: 10.1155/2014/970893 – volume: 35 start-page: 281 year: 2017 ident: ref_26 article-title: Multi-component segmentation of X-ray computed tomography (CT) image using multi-Otsu thresholding algorithm and scanning electron microscopy publication-title: Energy Explor. Exploit. doi: 10.1177/0144598717690090 – volume: 28 start-page: 2879 year: 2017 ident: ref_7 article-title: Covering-based rough set classification system publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2412-7 – ident: ref_28 doi: 10.1007/s41870-017-0039-2 – ident: ref_39 – ident: ref_1 – volume: 58 start-page: 635 year: 2015 ident: ref_17 article-title: Automated Leukaemia Detection Using Microscopic Images publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2015.08.082 – ident: ref_35 – ident: ref_11 doi: 10.2139/ssrn.3131633 – volume: 5 start-page: 155 year: 2016 ident: ref_2 article-title: Acute leukemia in children: A review of the current Indian data publication-title: South Asian J. Cancer doi: 10.4103/2278-330X.187591 – volume: 20 start-page: 273 year: 1995 ident: ref_14 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 27 start-page: 861 year: 2006 ident: ref_44 article-title: An introduction to ROC analysis publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2005.10.010 – volume: 30 start-page: 451 year: 2000 ident: ref_12 article-title: Neural networks for classification: A survey publication-title: IEEE Trans. Syst. Man Cybern. Part C doi: 10.1109/5326.897072 – volume: 152 start-page: 115 year: 2017 ident: ref_19 article-title: A segmentation method based on HMRF for the aided diagnosis of acute myeloid leukemia publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2017.09.011 – volume: 46 start-page: 639 year: 2016 ident: ref_37 article-title: Hybrid Tolerance Rough Set–Firefly based supervised feature selection for MRI brain tumor image classification publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.03.014 – volume: 23 start-page: 325 year: 2017 ident: ref_27 article-title: MRI Brain Image Segmentation Using Enhanced Adaptive Fuzzy K-Means Algorithm publication-title: Intell. Autom. Soft Comput. doi: 10.1080/10798587.2016.1231472 – volume: 37 start-page: 360 year: 2005 ident: ref_43 article-title: Understanding interobserver agreement: The kappa statistic publication-title: Fam. Med. – volume: 11 start-page: 341 year: 1982 ident: ref_4 article-title: Rough sets publication-title: Int. J. Comput. Inf. Sci. doi: 10.1007/BF01001956 – volume: 39 start-page: 1481 year: 2006 ident: ref_32 article-title: Some refinements of rough k-means clustering publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2006.02.002 – volume: 54 start-page: 456 year: 2017 ident: ref_23 article-title: Soft fuzzy rough set-based MR brain image segmentation publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.08.020 – volume: 89 start-page: 551 year: 2017 ident: ref_29 article-title: Fuzzy spectral clustering for automated delineation of chronic wound region using digital images publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.04.004 – volume: 33 start-page: 159 year: 1977 ident: ref_42 article-title: The measurement of observer agreement for categorical data publication-title: Biometrics doi: 10.2307/2529310 – volume: 37 start-page: 19 year: 1999 ident: ref_8 article-title: Soft set theory—first results publication-title: Comput. Math. Appl. doi: 10.1016/S0898-1221(99)00056-5 – volume: 36 start-page: 1 year: 2017 ident: ref_21 article-title: MRI segmentation fusion for brain tumor detection publication-title: Inf. Fusion doi: 10.1016/j.inffus.2016.10.003 – volume: 19 start-page: 1131 year: 2007 ident: ref_5 article-title: On three types of covering-based rough sets publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2007.1044 – volume: 29 start-page: 131 year: 1997 ident: ref_15 article-title: Bayesian network classifiers publication-title: Mach. Learn. doi: 10.1023/A:1007465528199 – ident: ref_13 – ident: ref_36 – volume: Volume 69 start-page: 23 year: 2017 ident: ref_25 article-title: Fully Automatic Multispectral MR Image Segmentation of Prostate Gland Based on the Fuzzy C-Means Clustering Algorithm publication-title: Multidisciplinary Approaches to Neural Computing. Smart Innovation, Systems and Technologies – volume: 45 start-page: 555 year: 2003 ident: ref_9 article-title: Softset theory publication-title: Comput. Math. Appl. doi: 10.1016/S0898-1221(03)00016-6 – volume: 27 start-page: 1445 year: 2016 ident: ref_22 article-title: Histogram-based automatic segmentation of images publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2287-7 – volume: 3 start-page: 15 year: 2013 ident: ref_38 article-title: Hybrid Tolerance Rough Set: PSO Based Supervised Feature Selection for Digital Mammogram Images publication-title: Int. J. Fuzzy Syst. Appl. – ident: ref_33 doi: 10.1109/ICIP.2011.6115881 – volume: 177 start-page: 1499 year: 2007 ident: ref_6 article-title: Topological approaches to covering rough sets publication-title: Inf. Sci. doi: 10.1016/j.ins.2006.06.009 |
SSID | ssj0000913830 |
Score | 2.4364915 |
Snippet | Segmenting an image of a nucleus is one of the most essential tasks in a leukemia diagnostic system. Accurate and rapid segmentation methods help the... |
SourceID | unpaywall proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 188 |
SubjectTerms | Accuracy Algorithms Approximation Blood Cancer Cluster analysis Clustering Cytoplasm Diagnostic systems Feature extraction Histograms Image classification Image processing Image segmentation Intelligence Internet of Things Leukemia Machine learning Medical imaging Medical research Neural networks Optimization Performance evaluation Physicians Set theory Support vector machines Vector quantization |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4oHtSD8RlRNHvwpg1t6WP3ZJCI-MCDYMKt2W6naCgFBWL4986U8khMiOd9HGZ3Z76ZnfmGsStEtBrQcTCkktJwQGh8cyG6KhpcgYt8P-MpaL56jXfnqeN28oDbKE-rnOvETFFHA00x8jI6MsJxHbTHt8Mvg7pG0e9q3kJjk21ZNt4kqhSvPyxiLMR5KSrmrFamgt59edlbZkR5CVbWcGXFHi1B5vYkHarpj0qSFXtT32d7OVDk1dnJHrANSA_Z7gp94BHrvcCkB_1PxR_7qBZ4C7r9vJQo5VkuAFe8MaWaLJ7RgVAmlnGHdiviLVS_vEb5mzTtjXr18GejCWi5eC2ZEH0CDVSTLgph_NE_Zu36fbvWMPLmCYbGVzU2KB1ERgj3YgsAXEsLk6itLBs8-mmJKsr1lGeHHiCgi4SSETi-Eqarw1ggDDlhhXSQwinjSmoEHXEllk7oWEIq20ef0Ndghp4fSVlk1lyCgc6Jxam_RRKgg0FSD_5KvciuF2uGM1qNtbNL84MJ8ic2CpYXoshuFof1j93O1u92znZs8qmzMEuJFcbfE7hA4DEOL7Pb9Qs4xtt6 priority: 102 providerName: ProQuest |
Title | Leukemia Image Segmentation Using a Hybrid Histogram-Based Soft Covering Rough K-Means Clustering Algorithm |
URI | https://www.proquest.com/docview/2548454125 https://www.mdpi.com/2079-9292/9/1/188/pdf?version=1579422372 |
UnpaywallVersion | publishedVersion |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: ADMLS dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: 8FG dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF7R5AAcCi2tCJRoD71RN1nHj90TSqOE8EhU9SGVk7Vej0sUx40au6gc-O3MOJs2AgmVHi3vWrJmdub7dme_YWwfEa0BJA6O0ko5HkiDay5GqmLAlzgpDCudgtE4GJ57ny_8C1ubs7BllUjFJ1WQdtuhcjB_uy3VEi2BXG2epB9u7EaS8NGXMLuFGIHrAZ0v1Vj9fHzc_UYN5VZTlxdlOkjtW_eNZRZUlCCqbitryegeYT4t87m-_aGzbC3ZDF4sO6ouKo1CqjGZHpZFfGh-_qHg-Oj_eMk2LQzl3aXfbLEnkG-z52vihK_Y9CuUU5hNNP80w6DDT-FyZi8q5byqNOCaD2_pxhevxEaozss5wqyY8FMM7rxH1aE07IQ6AfEvzggwL_JeVpI4A73oZpdX15Pi-2yHnQ36Z72hY1szOAbXbOFQsYlKEEymAgB8YWSbhLOECwGd4yQd7Qc6cOMAEC4mUqsEvFDLtm_iVCLI2WW1_CqH14xrZRDSpJ1UebEnpNJuiIwzNNCOgzBRqsHEykSRsbLl1D0ji5C-kFmjv83aYO_v5syXoh3_HL23snxkF_AiQt4sPd9D-NdgB3fe8ICvvfm_4W_ZM5cYfLWps8dqxXUJ7xDmFHGTbcjBxyarH_XHxyf4NPrVb1oH_w0ygP-1 |
linkProvider | Unpaywall |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5ReqAcEKVUTRvoHtpTsfDbuweEQmiakIRDSSVu1no9oQjHpE0ilB_Ff2TGsZNIlVAvnPdxmJ2dx-7M9wF8oYjWICUOltJKWT5KQ3cuoVTFYCBpURQVOAX9y7D9y7-4Dq434LHqheGyysomFoY6vTf8Rn5MiYz0A5_88en4j8WsUfy7WlFoLNSii_MHStkmJ51zOt-vrtv6Pmi2rZJVwDKkblOL6yRUSnHQ0EHEwDHSZswnx8WQvyBSTwehDt0kRIp0UqlVin6kpR2YZCjJP9O2r-C173keQ_XL1o_lkw5DbErPXrTmeJ6yj1dUNhMug3AKfpc197eKabdm-VjPH3SWrbm31i7slHGpaCwU6S1sYL4H22tohe_groezOxzdatEZkRUSV3gzKjuXclGUHggt2nNuARMF-ggXflln5CZTcUXWXjS5XJSn_WRqING1-kiOUjSzGaM18EAjuyGZT3-P9mHwElJ9D5v5fY4fQGhlKMYZekPlJ74jlXYjSkEjg3YSRqlSNXAqCcamxDFnOo0spnyGpR7_K_UafFuuGS9QPJ6dXa8OJi5v9CRe6V8NjpaH9R-7fXx-t8-w1R70e3Gvc9n9BG9cTueLF546bE7_zvCAYp5pclhomoD4hTX7CRXaF_U |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxNBDLZKKvE4IF4VgQJzgBOssu-dOVSoTRslpI2qtki9rWZnvQV1sw0kUZWfyL_C3swmkZAqLj3P42B7xvaM_X0AHymiNUiJg6O0Uk6I0tCZyyhVMRhJWpQkNU7BySjufw-_XUaXW_Cn6YXhssrmTqwv6vzG8Bt5hxIZGUYh-eNOYcsiTg97Xye_HGaQ4p_Whk5DW5qFfK-GG7NNHkNc3FI6N90bHJLuP_l-7-ii23cs44BjyBRnDtdQqJxipMJDxMgz0mU8KM_HmL8n8kBHsY79LEaKgnKpVY5hoqUbmayQ5Ltp2wewnXC7aAu2D45Gp2erBx8G4JSBu2zcCQLldtZEN1MukvBq9pcN57iOeB_Nq4le3Oqy3HB-vWfw1EatYn9pZs9hC6sX8GQDy_AlXB_j_BrHP7UYjOmOEud4NbZ9TZWoCxOEFv0FN4iJGpuEy8KcA3KiuTgnXyC6XEzK086YOEgMnRMkNyq65ZyxHHhgv7wiLcx-jF_BxX3IdQda1U2Fr0FoZUirRVCoMAs9qbSfUIKaGHSzOMmVaoPXSDA1FuWcyTbKlLIdlnr6r9Tb8Hm1ZrLE-Lhz9m6jmNSe92m6ts42fFkp6z92e3P3bh_gIVl5ejwYDd_CY59z_fr5Zxdas99zfEcB0Sx7b01NQHrPxv0XeDgizw |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF2h9AA9QIGiBkK1h97ASdbx155QiBoFaCJEEqmcrPV6HKI4TpTYoPbXd8bZfIhKqPTsXUvW7M68t377hrELRLQakDhYUklpORBo3HMRUhUNboCTfL_0KegPvN7Y-XrtXhttztrIKpGKT8skbTd9aWH9thuyIRoCudoyTj79NgdJwsW1hNXNxwx85NH_pQo7Gg--t39SQ7nt1M1FmRZS-8a-scyaRAmi7LZyUIz2CPNpkS3VzR-VpgfFpvti01F1XXoUksZkVi_yqK5v_3JwfPR3nLDnBoby9mbdvGRPIHvFjg_MCV-z2RUUM5hPFf8yx6TDhzCZm4tKGS-VBlzx3g3d-OKl2QjpvKzPWBVjPsTkzjukDqVhP6gTEP9m9QHrIu-kBZkz0IN2Olmspvmv-SkbdS9HnZ5lWjNYGvdsbpHYRMYIJhMBAK7QQZOMs4QNHv3HiVvK9ZRnRx4gXIwDJWNwfBU0XR0lAYKcN6ySLTI4Y1xJjZAmaSXSiRwRSGX7yDh9Dc3I82Mpq0xsQxRqY1tO3TPSEOkLhTW8H9Yq-7Cbs9yYdvxzdG0b-dBs4HWIvDlwXAfhX5V93K2GB7zt7f8Nf8ee2cTgy0OdGqvkqwLeI8zJo3OzmO8AZKH8BA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leukemia+Image+Segmentation+Using+a+Hybrid+Histogram-Based+Soft+Covering+Rough+K-Means+Clustering+Algorithm&rft.jtitle=Electronics+%28Basel%29&rft.au=Hannah%2C+Inbarani+H&rft.au=Ahmad+Taher+Azar&rft.au=Jothi%2C+G&rft.date=2020-01-01&rft.pub=MDPI+AG&rft.eissn=2079-9292&rft.volume=9&rft.issue=1&rft.spage=188&rft_id=info:doi/10.3390%2Felectronics9010188&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |