Leukemia Image Segmentation Using a Hybrid Histogram-Based Soft Covering Rough K-Means Clustering Algorithm

Segmenting an image of a nucleus is one of the most essential tasks in a leukemia diagnostic system. Accurate and rapid segmentation methods help the physicians identify the diseases and provide better treatment at the appropriate time. Recently, hybrid clustering algorithms have started being widel...

Full description

Saved in:
Bibliographic Details
Published inElectronics (Basel) Vol. 9; no. 1; p. 188
Main Authors Inbarani H., Hannah, Azar, Ahmad Taher, G, Jothi
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2020
Subjects
Online AccessGet full text
ISSN2079-9292
2079-9292
DOI10.3390/electronics9010188

Cover

Abstract Segmenting an image of a nucleus is one of the most essential tasks in a leukemia diagnostic system. Accurate and rapid segmentation methods help the physicians identify the diseases and provide better treatment at the appropriate time. Recently, hybrid clustering algorithms have started being widely used for image segmentation in medical image processing. In this article, a novel hybrid histogram-based soft covering rough k-means clustering (HSCRKM) algorithm for leukemia nucleus image segmentation is discussed. This algorithm combines the strengths of a soft covering rough set and rough k-means clustering. The histogram method was utilized to identify the number of clusters to avoid random initialization. Different types of features such as gray level co-occurrence matrix (GLCM), color, and shape-based features were extracted from the segmented image of the nucleus. Machine learning prediction algorithms were applied to classify the cancerous and non-cancerous cells. The proposed strategy is compared with an existing clustering algorithm, and the efficiency is evaluated based on the prediction metrics. The experimental results show that the HSCRKM method efficiently segments the nucleus, and it is also inferred that logistic regression and neural network perform better than other prediction algorithms.
AbstractList Segmenting an image of a nucleus is one of the most essential tasks in a leukemia diagnostic system. Accurate and rapid segmentation methods help the physicians identify the diseases and provide better treatment at the appropriate time. Recently, hybrid clustering algorithms have started being widely used for image segmentation in medical image processing. In this article, a novel hybrid histogram-based soft covering rough k-means clustering (HSCRKM) algorithm for leukemia nucleus image segmentation is discussed. This algorithm combines the strengths of a soft covering rough set and rough k-means clustering. The histogram method was utilized to identify the number of clusters to avoid random initialization. Different types of features such as gray level co-occurrence matrix (GLCM), color, and shape-based features were extracted from the segmented image of the nucleus. Machine learning prediction algorithms were applied to classify the cancerous and non-cancerous cells. The proposed strategy is compared with an existing clustering algorithm, and the efficiency is evaluated based on the prediction metrics. The experimental results show that the HSCRKM method efficiently segments the nucleus, and it is also inferred that logistic regression and neural network perform better than other prediction algorithms.
Author Azar, Ahmad Taher
G, Jothi
Inbarani H., Hannah
Author_xml – sequence: 1
  givenname: Hannah
  surname: Inbarani H.
  fullname: Inbarani H., Hannah
– sequence: 2
  givenname: Ahmad Taher
  orcidid: 0000-0002-7869-6373
  surname: Azar
  fullname: Azar, Ahmad Taher
– sequence: 3
  givenname: Jothi
  orcidid: 0000-0002-0527-4858
  surname: G
  fullname: G, Jothi
BookMark eNqNkFFLwzAUhYNMcM79AZ8CPleTtmmTxznUDSeCm88la2-7bG0yk1TZv7ejPoiCeF_uhXu-w-Gco4E2GhC6pOQ6igS5gRpyb41WuROEEsr5CRqGJBWBCEU4-HafobFzW9KNoBGPyBDtFtDuoFESzxtZAV5C1YD20iuj8atTusISzw5rqwo8U86bysomuJUOCrw0pcdT8w72KHsxbbXBj8ETSO3wtG6d7x-TujJW-U1zgU5LWTsYf-0RWt3fraazYPH8MJ9OFkEeUeEDKEsQBWWkpADAaM5JTERKQ0hSRnkRSZbIJFwnwJKk4FIUEKeSE5avS54k0QhFvW2r9_LwIes621vVSHvIKMmOjWW_G-uoq57aW_PWgvPZ1rRWdzmzkMU8ZjENWacKe1VujXMWyv9Z8x9QrvqGvZWq_gv9BCYKla8
CitedBy_id crossref_primary_10_3390_membranes11050303
crossref_primary_10_48084_etasr_9788
crossref_primary_10_4018_IJSKD_324164
crossref_primary_10_4018_IJSKD_301263
crossref_primary_10_4015_S101623722450011X
crossref_primary_10_1109_ACCESS_2025_3525518
crossref_primary_10_4018_IJSKD_289036
crossref_primary_10_1007_s42235_023_00392_4
crossref_primary_10_32604_cmc_2021_015249
crossref_primary_10_1016_j_cmpb_2024_108484
crossref_primary_10_4018_IJSKD_326629
crossref_primary_10_7717_peerj_cs_2008
crossref_primary_10_4018_IJSKD_290657
crossref_primary_10_1109_ACCESS_2022_3182800
crossref_primary_10_4018_IJSKD_315750
crossref_primary_10_22399_ijcesen_773
crossref_primary_10_1155_2022_5914893
crossref_primary_10_17798_bitlisfen_1376817
crossref_primary_10_2196_36490
crossref_primary_10_48084_etasr_8728
crossref_primary_10_1007_s11831_021_09629_z
crossref_primary_10_3390_electronics9050794
crossref_primary_10_4018_IJSSMET_313175
crossref_primary_10_1088_1742_6596_2392_1_012005
crossref_primary_10_1109_ACCESS_2022_3171916
crossref_primary_10_4018_IJSKD_289041
crossref_primary_10_1007_s11042_023_16921_6
crossref_primary_10_2174_1573405616666201118143935
crossref_primary_10_4018_IJSSMET_326801
crossref_primary_10_1016_j_engappai_2024_109229
crossref_primary_10_4018_IJSKD_330150
crossref_primary_10_1007_s10462_024_10814_2
crossref_primary_10_1007_s11042_022_12518_7
crossref_primary_10_3390_electronics10151841
crossref_primary_10_3390_electronics12214467
crossref_primary_10_4018_IJSSMET_323452
crossref_primary_10_32604_cmc_2022_030879
crossref_primary_10_1145_3514495
crossref_primary_10_1007_s11042_024_18486_4
crossref_primary_10_1016_j_asoc_2023_110268
crossref_primary_10_1007_s00521_023_08486_0
crossref_primary_10_1109_ACCESS_2024_3371490
crossref_primary_10_3390_diagnostics13122121
crossref_primary_10_1007_s11831_024_10065_y
crossref_primary_10_3847_1538_3881_ace778
Cites_doi 10.1109/IMTC.2006.328170
10.3390/diagnostics9030104
10.1007/s00521-016-2514-2
10.1016/j.asoc.2017.03.024
10.1016/j.eswa.2017.09.027
10.1016/j.cmpb.2016.11.011
10.2298/FIL1501209Y
10.1016/j.cmpb.2013.10.007
10.1155/2014/970893
10.1177/0144598717690090
10.1007/s00521-016-2412-7
10.1007/s41870-017-0039-2
10.1016/j.procs.2015.08.082
10.2139/ssrn.3131633
10.4103/2278-330X.187591
10.1007/BF00994018
10.1016/j.patrec.2005.10.010
10.1109/5326.897072
10.1016/j.cmpb.2017.09.011
10.1016/j.asoc.2016.03.014
10.1080/10798587.2016.1231472
10.1007/BF01001956
10.1016/j.patcog.2006.02.002
10.1016/j.asoc.2016.08.020
10.1016/j.compbiomed.2017.04.004
10.2307/2529310
10.1016/S0898-1221(99)00056-5
10.1016/j.inffus.2016.10.003
10.1109/TKDE.2007.1044
10.1023/A:1007465528199
10.1016/S0898-1221(03)00016-6
10.1007/s00521-016-2287-7
10.1109/ICIP.2011.6115881
10.1016/j.ins.2006.06.009
ContentType Journal Article
Copyright 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.3390/electronics9010188
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID 10.3390/electronics9010188
10_3390_electronics9010188
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PUEGO
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
IPNFZ
ITC
RIG
UNPAY
ID FETCH-LOGICAL-c319t-effe9d150f1eee51c80409712e67518d3a56a62b6e566d8a9de47a805cbf8663
IEDL.DBID UNPAY
ISSN 2079-9292
IngestDate Tue Aug 19 23:21:39 EDT 2025
Fri Jul 25 06:47:23 EDT 2025
Thu Apr 24 23:09:41 EDT 2025
Wed Oct 01 02:42:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-effe9d150f1eee51c80409712e67518d3a56a62b6e566d8a9de47a805cbf8663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0527-4858
0000-0002-7869-6373
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2079-9292/9/1/188/pdf?version=1579422372
PQID 2548454125
PQPubID 2032404
ParticipantIDs unpaywall_primary_10_3390_electronics9010188
proquest_journals_2548454125
crossref_primary_10_3390_electronics9010188
crossref_citationtrail_10_3390_electronics9010188
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zhu (ref_5) 2007; 19
Polat (ref_22) 2016; 27
Tozlu (ref_31) 2015; 29
Viera (ref_43) 2005; 37
Peters (ref_32) 2006; 39
ref_36
ref_13
Ganesh (ref_27) 2017; 23
ref_35
ref_34
ref_11
ref_33
ref_10
Fawcett (ref_44) 2006; 27
ref_30
Kumar (ref_7) 2017; 28
Cortes (ref_14) 1995; 20
Srisukkham (ref_18) 2017; 56
Zhu (ref_6) 2007; 177
ref_39
Cabria (ref_21) 2017; 36
Maji (ref_9) 2003; 45
Patel (ref_17) 2015; 58
Namburu (ref_23) 2017; 54
Arora (ref_2) 2016; 5
Su (ref_19) 2017; 152
Kaya (ref_20) 2017; 140
Esposito (ref_25) 2017; Volume 69
Zhang (ref_26) 2017; 35
Dhane (ref_29) 2017; 89
Molodtsov (ref_8) 1999; 37
Liaw (ref_16) 2002; 2
Ganesan (ref_41) 2017; 28
Jothi (ref_38) 2013; 3
ref_1
Pawlak (ref_4) 1982; 11
ref_3
Landis (ref_42) 1977; 33
ref_28
Jothi (ref_37) 2016; 46
Inbarani (ref_40) 2014; 113
Ali (ref_24) 2018; 91
Zhang (ref_12) 2000; 30
Friedman (ref_15) 1997; 29
References_xml – ident: ref_34
  doi: 10.1109/IMTC.2006.328170
– volume: 2
  start-page: 18
  year: 2002
  ident: ref_16
  article-title: Classification and regression by random Forest
  publication-title: R News
– ident: ref_3
– ident: ref_30
  doi: 10.3390/diagnostics9030104
– volume: 28
  start-page: 2995
  year: 2017
  ident: ref_41
  article-title: Tolerance rough set firefly-based quick reduct
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2514-2
– volume: 56
  start-page: 405
  year: 2017
  ident: ref_18
  article-title: Intelligent leukaemia diagnosis with bare-bones PSO based feature optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.03.024
– volume: 91
  start-page: 434
  year: 2018
  ident: ref_24
  article-title: Segmentation of Dental X-ray Images in Medical Imaging using Neutrosophic Orthogonal Matrices
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.09.027
– volume: 140
  start-page: 19
  year: 2017
  ident: ref_20
  article-title: PCA based clustering for brain tumor segmentation of T1w MRI images
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2016.11.011
– volume: 29
  start-page: 209
  year: 2015
  ident: ref_31
  article-title: An application of multicriteria group decision making by soft covering based rough sets
  publication-title: Filomat
  doi: 10.2298/FIL1501209Y
– volume: 113
  start-page: 175
  year: 2014
  ident: ref_40
  article-title: Supervised hybrid feature selection based on PSO and rough sets for medical diagnosis
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2013.10.007
– ident: ref_10
  doi: 10.1155/2014/970893
– volume: 35
  start-page: 281
  year: 2017
  ident: ref_26
  article-title: Multi-component segmentation of X-ray computed tomography (CT) image using multi-Otsu thresholding algorithm and scanning electron microscopy
  publication-title: Energy Explor. Exploit.
  doi: 10.1177/0144598717690090
– volume: 28
  start-page: 2879
  year: 2017
  ident: ref_7
  article-title: Covering-based rough set classification system
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2412-7
– ident: ref_28
  doi: 10.1007/s41870-017-0039-2
– ident: ref_39
– ident: ref_1
– volume: 58
  start-page: 635
  year: 2015
  ident: ref_17
  article-title: Automated Leukaemia Detection Using Microscopic Images
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.08.082
– ident: ref_35
– ident: ref_11
  doi: 10.2139/ssrn.3131633
– volume: 5
  start-page: 155
  year: 2016
  ident: ref_2
  article-title: Acute leukemia in children: A review of the current Indian data
  publication-title: South Asian J. Cancer
  doi: 10.4103/2278-330X.187591
– volume: 20
  start-page: 273
  year: 1995
  ident: ref_14
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 27
  start-page: 861
  year: 2006
  ident: ref_44
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2005.10.010
– volume: 30
  start-page: 451
  year: 2000
  ident: ref_12
  article-title: Neural networks for classification: A survey
  publication-title: IEEE Trans. Syst. Man Cybern. Part C
  doi: 10.1109/5326.897072
– volume: 152
  start-page: 115
  year: 2017
  ident: ref_19
  article-title: A segmentation method based on HMRF for the aided diagnosis of acute myeloid leukemia
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2017.09.011
– volume: 46
  start-page: 639
  year: 2016
  ident: ref_37
  article-title: Hybrid Tolerance Rough Set–Firefly based supervised feature selection for MRI brain tumor image classification
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.03.014
– volume: 23
  start-page: 325
  year: 2017
  ident: ref_27
  article-title: MRI Brain Image Segmentation Using Enhanced Adaptive Fuzzy K-Means Algorithm
  publication-title: Intell. Autom. Soft Comput.
  doi: 10.1080/10798587.2016.1231472
– volume: 37
  start-page: 360
  year: 2005
  ident: ref_43
  article-title: Understanding interobserver agreement: The kappa statistic
  publication-title: Fam. Med.
– volume: 11
  start-page: 341
  year: 1982
  ident: ref_4
  article-title: Rough sets
  publication-title: Int. J. Comput. Inf. Sci.
  doi: 10.1007/BF01001956
– volume: 39
  start-page: 1481
  year: 2006
  ident: ref_32
  article-title: Some refinements of rough k-means clustering
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2006.02.002
– volume: 54
  start-page: 456
  year: 2017
  ident: ref_23
  article-title: Soft fuzzy rough set-based MR brain image segmentation
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.08.020
– volume: 89
  start-page: 551
  year: 2017
  ident: ref_29
  article-title: Fuzzy spectral clustering for automated delineation of chronic wound region using digital images
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.04.004
– volume: 33
  start-page: 159
  year: 1977
  ident: ref_42
  article-title: The measurement of observer agreement for categorical data
  publication-title: Biometrics
  doi: 10.2307/2529310
– volume: 37
  start-page: 19
  year: 1999
  ident: ref_8
  article-title: Soft set theory—first results
  publication-title: Comput. Math. Appl.
  doi: 10.1016/S0898-1221(99)00056-5
– volume: 36
  start-page: 1
  year: 2017
  ident: ref_21
  article-title: MRI segmentation fusion for brain tumor detection
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2016.10.003
– volume: 19
  start-page: 1131
  year: 2007
  ident: ref_5
  article-title: On three types of covering-based rough sets
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2007.1044
– volume: 29
  start-page: 131
  year: 1997
  ident: ref_15
  article-title: Bayesian network classifiers
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007465528199
– ident: ref_13
– ident: ref_36
– volume: Volume 69
  start-page: 23
  year: 2017
  ident: ref_25
  article-title: Fully Automatic Multispectral MR Image Segmentation of Prostate Gland Based on the Fuzzy C-Means Clustering Algorithm
  publication-title: Multidisciplinary Approaches to Neural Computing. Smart Innovation, Systems and Technologies
– volume: 45
  start-page: 555
  year: 2003
  ident: ref_9
  article-title: Softset theory
  publication-title: Comput. Math. Appl.
  doi: 10.1016/S0898-1221(03)00016-6
– volume: 27
  start-page: 1445
  year: 2016
  ident: ref_22
  article-title: Histogram-based automatic segmentation of images
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2287-7
– volume: 3
  start-page: 15
  year: 2013
  ident: ref_38
  article-title: Hybrid Tolerance Rough Set: PSO Based Supervised Feature Selection for Digital Mammogram Images
  publication-title: Int. J. Fuzzy Syst. Appl.
– ident: ref_33
  doi: 10.1109/ICIP.2011.6115881
– volume: 177
  start-page: 1499
  year: 2007
  ident: ref_6
  article-title: Topological approaches to covering rough sets
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2006.06.009
SSID ssj0000913830
Score 2.4364915
Snippet Segmenting an image of a nucleus is one of the most essential tasks in a leukemia diagnostic system. Accurate and rapid segmentation methods help the...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 188
SubjectTerms Accuracy
Algorithms
Approximation
Blood
Cancer
Cluster analysis
Clustering
Cytoplasm
Diagnostic systems
Feature extraction
Histograms
Image classification
Image processing
Image segmentation
Intelligence
Internet of Things
Leukemia
Machine learning
Medical imaging
Medical research
Neural networks
Optimization
Performance evaluation
Physicians
Set theory
Support vector machines
Vector quantization
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4oHtSD8RlRNHvwpg1t6WP3ZJCI-MCDYMKt2W6naCgFBWL4986U8khMiOd9HGZ3Z76ZnfmGsStEtBrQcTCkktJwQGh8cyG6KhpcgYt8P-MpaL56jXfnqeN28oDbKE-rnOvETFFHA00x8jI6MsJxHbTHt8Mvg7pG0e9q3kJjk21ZNt4kqhSvPyxiLMR5KSrmrFamgt59edlbZkR5CVbWcGXFHi1B5vYkHarpj0qSFXtT32d7OVDk1dnJHrANSA_Z7gp94BHrvcCkB_1PxR_7qBZ4C7r9vJQo5VkuAFe8MaWaLJ7RgVAmlnGHdiviLVS_vEb5mzTtjXr18GejCWi5eC2ZEH0CDVSTLgph_NE_Zu36fbvWMPLmCYbGVzU2KB1ERgj3YgsAXEsLk6itLBs8-mmJKsr1lGeHHiCgi4SSETi-Eqarw1ggDDlhhXSQwinjSmoEHXEllk7oWEIq20ef0Ndghp4fSVlk1lyCgc6Jxam_RRKgg0FSD_5KvciuF2uGM1qNtbNL84MJ8ic2CpYXoshuFof1j93O1u92znZs8qmzMEuJFcbfE7hA4DEOL7Pb9Qs4xtt6
  priority: 102
  providerName: ProQuest
Title Leukemia Image Segmentation Using a Hybrid Histogram-Based Soft Covering Rough K-Means Clustering Algorithm
URI https://www.proquest.com/docview/2548454125
https://www.mdpi.com/2079-9292/9/1/188/pdf?version=1579422372
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: ADMLS
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: 8FG
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF7R5AAcCi2tCJRoD71RN1nHj90TSqOE8EhU9SGVk7Vej0sUx40au6gc-O3MOJs2AgmVHi3vWrJmdub7dme_YWwfEa0BJA6O0ko5HkiDay5GqmLAlzgpDCudgtE4GJ57ny_8C1ubs7BllUjFJ1WQdtuhcjB_uy3VEi2BXG2epB9u7EaS8NGXMLuFGIHrAZ0v1Vj9fHzc_UYN5VZTlxdlOkjtW_eNZRZUlCCqbitryegeYT4t87m-_aGzbC3ZDF4sO6ouKo1CqjGZHpZFfGh-_qHg-Oj_eMk2LQzl3aXfbLEnkG-z52vihK_Y9CuUU5hNNP80w6DDT-FyZi8q5byqNOCaD2_pxhevxEaozss5wqyY8FMM7rxH1aE07IQ6AfEvzggwL_JeVpI4A73oZpdX15Pi-2yHnQ36Z72hY1szOAbXbOFQsYlKEEymAgB8YWSbhLOECwGd4yQd7Qc6cOMAEC4mUqsEvFDLtm_iVCLI2WW1_CqH14xrZRDSpJ1UebEnpNJuiIwzNNCOgzBRqsHEykSRsbLl1D0ji5C-kFmjv83aYO_v5syXoh3_HL23snxkF_AiQt4sPd9D-NdgB3fe8ICvvfm_4W_ZM5cYfLWps8dqxXUJ7xDmFHGTbcjBxyarH_XHxyf4NPrVb1oH_w0ygP-1
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5ReqAcEKVUTRvoHtpTsfDbuweEQmiakIRDSSVu1no9oQjHpE0ilB_Ff2TGsZNIlVAvnPdxmJ2dx-7M9wF8oYjWICUOltJKWT5KQ3cuoVTFYCBpURQVOAX9y7D9y7-4Dq434LHqheGyysomFoY6vTf8Rn5MiYz0A5_88en4j8WsUfy7WlFoLNSii_MHStkmJ51zOt-vrtv6Pmi2rZJVwDKkblOL6yRUSnHQ0EHEwDHSZswnx8WQvyBSTwehDt0kRIp0UqlVin6kpR2YZCjJP9O2r-C173keQ_XL1o_lkw5DbErPXrTmeJ6yj1dUNhMug3AKfpc197eKabdm-VjPH3SWrbm31i7slHGpaCwU6S1sYL4H22tohe_groezOxzdatEZkRUSV3gzKjuXclGUHggt2nNuARMF-ggXflln5CZTcUXWXjS5XJSn_WRqING1-kiOUjSzGaM18EAjuyGZT3-P9mHwElJ9D5v5fY4fQGhlKMYZekPlJ74jlXYjSkEjg3YSRqlSNXAqCcamxDFnOo0spnyGpR7_K_UafFuuGS9QPJ6dXa8OJi5v9CRe6V8NjpaH9R-7fXx-t8-w1R70e3Gvc9n9BG9cTueLF546bE7_zvCAYp5pclhomoD4hTX7CRXaF_U
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxNBDLZKKvE4IF4VgQJzgBOssu-dOVSoTRslpI2qtki9rWZnvQV1sw0kUZWfyL_C3swmkZAqLj3P42B7xvaM_X0AHymiNUiJg6O0Uk6I0tCZyyhVMRhJWpQkNU7BySjufw-_XUaXW_Cn6YXhssrmTqwv6vzG8Bt5hxIZGUYh-eNOYcsiTg97Xye_HGaQ4p_Whk5DW5qFfK-GG7NNHkNc3FI6N90bHJLuP_l-7-ii23cs44BjyBRnDtdQqJxipMJDxMgz0mU8KM_HmL8n8kBHsY79LEaKgnKpVY5hoqUbmayQ5Ltp2wewnXC7aAu2D45Gp2erBx8G4JSBu2zcCQLldtZEN1MukvBq9pcN57iOeB_Nq4le3Oqy3HB-vWfw1EatYn9pZs9hC6sX8GQDy_AlXB_j_BrHP7UYjOmOEud4NbZ9TZWoCxOEFv0FN4iJGpuEy8KcA3KiuTgnXyC6XEzK086YOEgMnRMkNyq65ZyxHHhgv7wiLcx-jF_BxX3IdQda1U2Fr0FoZUirRVCoMAs9qbSfUIKaGHSzOMmVaoPXSDA1FuWcyTbKlLIdlnr6r9Tb8Hm1ZrLE-Lhz9m6jmNSe92m6ts42fFkp6z92e3P3bh_gIVl5ejwYDd_CY59z_fr5Zxdas99zfEcB0Sx7b01NQHrPxv0XeDgizw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF2h9AA9QIGiBkK1h97ASdbx155QiBoFaCJEEqmcrPV6HKI4TpTYoPbXd8bZfIhKqPTsXUvW7M68t377hrELRLQakDhYUklpORBo3HMRUhUNboCTfL_0KegPvN7Y-XrtXhttztrIKpGKT8skbTd9aWH9thuyIRoCudoyTj79NgdJwsW1hNXNxwx85NH_pQo7Gg--t39SQ7nt1M1FmRZS-8a-scyaRAmi7LZyUIz2CPNpkS3VzR-VpgfFpvti01F1XXoUksZkVi_yqK5v_3JwfPR3nLDnBoby9mbdvGRPIHvFjg_MCV-z2RUUM5hPFf8yx6TDhzCZm4tKGS-VBlzx3g3d-OKl2QjpvKzPWBVjPsTkzjukDqVhP6gTEP9m9QHrIu-kBZkz0IN2Olmspvmv-SkbdS9HnZ5lWjNYGvdsbpHYRMYIJhMBAK7QQZOMs4QNHv3HiVvK9ZRnRx4gXIwDJWNwfBU0XR0lAYKcN6ySLTI4Y1xJjZAmaSXSiRwRSGX7yDh9Dc3I82Mpq0xsQxRqY1tO3TPSEOkLhTW8H9Yq-7Cbs9yYdvxzdG0b-dBs4HWIvDlwXAfhX5V93K2GB7zt7f8Nf8ee2cTgy0OdGqvkqwLeI8zJo3OzmO8AZKH8BA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leukemia+Image+Segmentation+Using+a+Hybrid+Histogram-Based+Soft+Covering+Rough+K-Means+Clustering+Algorithm&rft.jtitle=Electronics+%28Basel%29&rft.au=Hannah%2C+Inbarani+H&rft.au=Ahmad+Taher+Azar&rft.au=Jothi%2C+G&rft.date=2020-01-01&rft.pub=MDPI+AG&rft.eissn=2079-9292&rft.volume=9&rft.issue=1&rft.spage=188&rft_id=info:doi/10.3390%2Felectronics9010188&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon