An improved density-based adaptive p-spectral clustering algorithm

As a generalization algorithm of spectral clustering, p -spectral clustering has gradually attracted extensive attention of researchers. Gaussian kernel function is generally used in traditional p -spectral clustering to construct the similarity matrix of data. However, the Gaussian kernel function...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of machine learning and cybernetics Vol. 12; no. 6; pp. 1571 - 1582
Main Authors Wang, Yanru, Ding, Shifei, Wang, Lijuan, Ding, Ling
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1868-8071
1868-808X
DOI10.1007/s13042-020-01236-x

Cover

Abstract As a generalization algorithm of spectral clustering, p -spectral clustering has gradually attracted extensive attention of researchers. Gaussian kernel function is generally used in traditional p -spectral clustering to construct the similarity matrix of data. However, the Gaussian kernel function based on Euclidean distance is not effective when the data-set is complex with multiple density peaks or the density distribution is uniform. In order to solve this problem, an improved Density-based adaptive p -spectral clustering algorithm (DAPSC) is proposed, the prior information is considering to adjust the similarity between sample points and strengthen the local correlation between data points. In addition, by combining the density canopy method to update the initial clustering center and the number of clusters, the algorithm sensitivity of the original p -spectral clustering caused by the two is weakened. By experiments on four artificial data-sets and 8F UCI data-sets, we show that the proposed DAPSC has strong adaptability and more accurate compared with the four baseline methods.
AbstractList As a generalization algorithm of spectral clustering, p -spectral clustering has gradually attracted extensive attention of researchers. Gaussian kernel function is generally used in traditional p -spectral clustering to construct the similarity matrix of data. However, the Gaussian kernel function based on Euclidean distance is not effective when the data-set is complex with multiple density peaks or the density distribution is uniform. In order to solve this problem, an improved Density-based adaptive p -spectral clustering algorithm (DAPSC) is proposed, the prior information is considering to adjust the similarity between sample points and strengthen the local correlation between data points. In addition, by combining the density canopy method to update the initial clustering center and the number of clusters, the algorithm sensitivity of the original p -spectral clustering caused by the two is weakened. By experiments on four artificial data-sets and 8F UCI data-sets, we show that the proposed DAPSC has strong adaptability and more accurate compared with the four baseline methods.
As a generalization algorithm of spectral clustering, p-spectral clustering has gradually attracted extensive attention of researchers. Gaussian kernel function is generally used in traditional p-spectral clustering to construct the similarity matrix of data. However, the Gaussian kernel function based on Euclidean distance is not effective when the data-set is complex with multiple density peaks or the density distribution is uniform. In order to solve this problem, an improved Density-based adaptive p-spectral clustering algorithm (DAPSC) is proposed, the prior information is considering to adjust the similarity between sample points and strengthen the local correlation between data points. In addition, by combining the density canopy method to update the initial clustering center and the number of clusters, the algorithm sensitivity of the original p-spectral clustering caused by the two is weakened. By experiments on four artificial data-sets and 8F UCI data-sets, we show that the proposed DAPSC has strong adaptability and more accurate compared with the four baseline methods.
Author Ding, Ling
Ding, Shifei
Wang, Yanru
Wang, Lijuan
Author_xml – sequence: 1
  givenname: Yanru
  surname: Wang
  fullname: Wang, Yanru
  organization: School of Computer Science and Technology, China University of Mining and Technology
– sequence: 2
  givenname: Shifei
  orcidid: 0000-0002-1391-2717
  surname: Ding
  fullname: Ding, Shifei
  email: dingsf@cumt.edu.cn
  organization: School of Computer Science and Technology, China University of Mining and Technology, Mine Digitization Engineering Research Center of Ministry of Education of the People’s Republic of China
– sequence: 3
  givenname: Lijuan
  surname: Wang
  fullname: Wang, Lijuan
  organization: School of Computer Science and Technology, China University of Mining and Technology
– sequence: 4
  givenname: Ling
  surname: Ding
  fullname: Ding, Ling
  organization: School of Computer Science and Technology, China University of Mining and Technology
BookMark eNp9kE1LAzEQhoNUsNb-AU8LnqMzyX5kj7X4BYIXBW8hm83WlO3umqSl_femVhQ8dC6ZF-ZJJs85GXV9Zwi5RLhGgOLGI4eUUWBAARnP6faEjFHkggoQ76PfvsAzMvV-CbFy4BzYmNzOusSuBtdvTJ3UpvM27GilfEyqVkOwG5MM1A9GB6faRLdrH4yz3SJR7aJ3NnysLshpo1pvpj_nhLzd373OH-nzy8PTfPZMNccyUFNr4MgMF2VToeapyHMUZV00wqiM1xyMaQrRNBozVFxzqIqMYZGnglUs5gm5Otwbt_1cGx_ksl-7Lj4pWYllWnJMszglDlPa9d4700htgwq27-IHbCsR5F6aPEiTUZr8lia3EWX_0MHZlXK74xA_QH7YazHub6sj1BdrJ4FF
CitedBy_id crossref_primary_10_1007_s13042_022_01711_7
crossref_primary_10_1007_s11227_022_04456_w
crossref_primary_10_1061_AJRUA6_0001218
Cites_doi 10.1007/s11222-007-9033-z
10.1016/j.parco.2015.03.004
10.1007/s00530-019-00626-8
10.1007/s11227-020-03211-3
10.1016/j.asoc.2017.12.004
10.1109/ACCESS.2019.2929948
10.1007/s00521-012-1207-8
10.1007/s00500-019-04069-1
10.1016/j.patrec.2020.03.035
10.1016/j.knosys.2018.01.031
10.1007/s00521-018-3485-2
10.1109/TIT.2019.2934157
10.1016/j.knosys.2019.01.026
10.1109/TFUZZ.2018.2856081
10.1109/TCYB.2018.2836804
10.1007/s10878-010-9351-5
10.1109/TKDE.2019.2892096
10.1145/1553374.1553385
10.1145/347090.347123
10.1007/978-3-319-48390-0_6
10.1109/BigComp.2018.00043
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2020
Springer-Verlag GmbH Germany, part of Springer Nature 2020.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s13042-020-01236-x
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 1868-808X
EndPage 1582
ExternalDocumentID 10_1007_s13042_020_01236_x
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: No.61672522; No.61976216
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -EM
06D
0R~
0VY
1N0
203
29~
2JY
2VQ
30V
4.4
406
408
409
40D
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ARAPS
AUKKA
AXYYD
AYJHY
BENPR
BGLVJ
BGNMA
CCPQU
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
H13
HCIFZ
HMJXF
HQYDN
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KOV
LLZTM
M4Y
M7S
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9P
PT4
PTHSS
QOS
R89
R9I
RLLFE
ROL
RSV
S27
S3B
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z7X
Z83
Z88
ZMTXR
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-edc0312e389fb1c34866189d7f8ea53d30eef78ffc151a3c30b752176482b23c3
IEDL.DBID BENPR
ISSN 1868-8071
IngestDate Fri Jul 25 10:56:26 EDT 2025
Wed Oct 01 04:29:31 EDT 2025
Thu Apr 24 22:58:44 EDT 2025
Fri Feb 21 02:48:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Spectral clustering
Similarity matrix
laplacian matrix
Density canopy
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-edc0312e389fb1c34866189d7f8ea53d30eef78ffc151a3c30b752176482b23c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1391-2717
PQID 2919493145
PQPubID 2043904
PageCount 12
ParticipantIDs proquest_journals_2919493145
crossref_citationtrail_10_1007_s13042_020_01236_x
crossref_primary_10_1007_s13042_020_01236_x
springer_journals_10_1007_s13042_020_01236_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210600
2021-06-00
20210601
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 6
  year: 2021
  text: 20210600
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle International journal of machine learning and cybernetics
PublicationTitleAbbrev Int. J. Mach. Learn. & Cyber
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References CR19
Chen, Sun, Wang (CR8) 2018; 49
Wu, Song, Cheng (CR2) 2019; 31
Zhang, Zhang, Zhang (CR18) 2018; 145
CR13
CR33
CR30
Amghibech (CR24) 2003; 67
Li, Xu, Pan (CR12) 2017; 44
Xie, Ding (CR15) 2019; 47
Tong, Gan, Wen (CR4) 2020; 135
Luxburg (CR22) 2007; 17
Yang, Yu, Wang (CR11) 2018; 6
Wang, Ding, Jia (CR29) 2019; 7
Tao, Wang, Chang (CR9) 2019; 170
CR28
Lierde, Chow, Chen (CR3) 2019; 32
CR27
CR26
Bian, Ishibuchi, Wang (CR10) 2018; 27
CR25
CR23
CR21
CR20
Chen, Wu, Lin (CR16) 2018; 8
Wang, Ding, Jia (CR7) 2020; 24
Fan, Pardalos (CR31) 2012; 23
Deng, Xu, Chen (CR17) 2020; 76
Su, Wang, Zhang (CR6) 2019; 66
Wang, Duan, Liu (CR14) 2018; 64
Xia, Gu, Zhang (CR1) 2020; 26
Ding, Jia, Zhang (CR5) 2014; 24
Lyzinski, Sussman, Fishkind (CR32) 2015; 47
H Lierde (1236_CR3) 2019; 32
N Fan (1236_CR31) 2012; 23
1236_CR19
L Su (1236_CR6) 2019; 66
T Tong (1236_CR4) 2020; 135
U Luxburg (1236_CR22) 2007; 17
S Ding (1236_CR5) 2014; 24
1236_CR30
X Tao (1236_CR9) 2019; 170
G Zhang (1236_CR18) 2018; 145
Y Wang (1236_CR14) 2018; 64
1236_CR33
1236_CR13
X Yang (1236_CR11) 2018; 6
1236_CR28
J Chen (1236_CR16) 2018; 8
S Amghibech (1236_CR24) 2003; 67
V Lyzinski (1236_CR32) 2015; 47
K Xia (1236_CR1) 2020; 26
S Wu (1236_CR2) 2019; 31
X Chen (1236_CR8) 2018; 49
X Deng (1236_CR17) 2020; 76
Z Bian (1236_CR10) 2018; 27
J Xie (1236_CR15) 2019; 47
1236_CR21
1236_CR20
L Wang (1236_CR29) 2019; 7
1236_CR23
J Li (1236_CR12) 2017; 44
1236_CR25
X Wang (1236_CR7) 2020; 24
1236_CR27
1236_CR26
References_xml – volume: 17
  start-page: 395
  issue: 4
  year: 2007
  end-page: 416
  ident: CR22
  article-title: A tutorial on spectral clustering
  publication-title: Stat Comput
  doi: 10.1007/s11222-007-9033-z
– volume: 47
  start-page: 70
  year: 2015
  end-page: 87
  ident: CR32
  article-title: Spectral clustering for divide-and-conquer graph matching
  publication-title: Parallel Comput
  doi: 10.1016/j.parco.2015.03.004
– ident: CR30
– volume: 26
  start-page: 27
  issue: 1
  year: 2020
  end-page: 36
  ident: CR1
  article-title: Oriented grouping-constrained spectral clustering for medical imaging segmentation
  publication-title: Multimedia Syst
  doi: 10.1007/s00530-019-00626-8
– volume: 47
  start-page: 1000
  issue: 5
  year: 2019
  end-page: 1008
  ident: CR15
  article-title: The true self-adaptive spectral clustering algorithms
  publication-title: Acta Electronica Sinica
– volume: 76
  start-page: 9716
  year: 2020
  end-page: 9738
  ident: CR17
  article-title: Dynamic clustering method for imbalanced learning based on AdaBoost
  publication-title: J Supercomput
  doi: 10.1007/s11227-020-03211-3
– volume: 64
  start-page: 59
  year: 2018
  end-page: 74
  ident: CR14
  article-title: A spectral clustering method with semantic interpretation based on axiomatic fuzzy set theory
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.12.004
– ident: CR33
– volume: 6
  start-page: 241
  issue: 2
  year: 2018
  end-page: 256
  ident: CR11
  article-title: Fast spectral clustering learning with hierarchical bipartite graph for large-scale data
  publication-title: Pattern Recogn Lett
– volume: 7
  start-page: 101054
  year: 2019
  end-page: 101062
  ident: CR29
  article-title: An improvement of spectral clustering via message passing and density sensitive similarity
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2929948
– volume: 24
  start-page: 211
  issue: 1
  year: 2014
  end-page: 219
  ident: CR5
  article-title: Research of semi-supervised spectral clustering algorithm based on pairwise constraints
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-012-1207-8
– volume: 24
  start-page: 2381
  issue: 3
  year: 2020
  end-page: 2390
  ident: CR7
  article-title: Active constraint spectral clustering based on Hessian matrix
  publication-title: Soft Comput
  doi: 10.1007/s00500-019-04069-1
– volume: 135
  start-page: 8
  year: 2020
  end-page: 14
  ident: CR4
  article-title: One-step spectral clustering based on self-paced learning
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2020.03.035
– ident: CR25
– ident: CR27
– ident: CR23
– volume: 145
  start-page: 289
  year: 2018
  end-page: 297
  ident: CR18
  article-title: Improved K-means algorithm based on density Canopy
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2018.01.031
– volume: 31
  start-page: 4513
  issue: 9
  year: 2019
  end-page: 4525
  ident: CR2
  article-title: Civil engineering supervision video retrieval method optimization based on spectral clustering and R-tree
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-018-3485-2
– ident: CR21
– ident: CR19
– volume: 66
  start-page: 324
  issue: 1
  year: 2019
  end-page: 338
  ident: CR6
  article-title: Strong consistency of spectral clustering for stochastic block models
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.2019.2934157
– volume: 8
  start-page: 1729
  year: 2018
  end-page: 1736
  ident: CR16
  article-title: Automatic cluster center determination for spectral clustering
  publication-title: J Chin Comput Syst
– volume: 67
  start-page: 283
  year: 2003
  end-page: 302
  ident: CR24
  article-title: Eigenvalues of the discrete -Laplacian for graphs
  publication-title: Ars Combinatoria
– volume: 170
  start-page: 26
  year: 2019
  end-page: 42
  ident: CR9
  article-title: Spectral clustering algorithm using density-sensitive distance measure with global and local consistencies
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2019.01.026
– volume: 44
  start-page: 424
  issue: Z6
  year: 2017
  end-page: 427
  ident: CR12
  article-title: Improved adaptive spectral clustering NJW algorithm
  publication-title: Comput Sci
– ident: CR13
– volume: 27
  start-page: 31
  issue: 1
  year: 2018
  end-page: 44
  ident: CR10
  article-title: Joint learning of spectral clustering structure and fuzzy similarity matrix of data
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2018.2856081
– volume: 49
  start-page: 3230
  issue: 9
  year: 2018
  end-page: 3241
  ident: CR8
  article-title: Spectral clustering of customer transaction data with a two-level subspace weighting method
  publication-title: IEEE Trans Cybernet
  doi: 10.1109/TCYB.2018.2836804
– volume: 23
  start-page: 224
  issue: 2
  year: 2012
  end-page: 251
  ident: CR31
  article-title: Multi-way clustering and biclustering by the Ratio cut and Normalized cut in graphs
  publication-title: J Combin Optimiz
  doi: 10.1007/s10878-010-9351-5
– ident: CR28
– volume: 32
  start-page: 754
  issue: 4
  year: 2019
  end-page: 767
  ident: CR3
  article-title: Scalable spectral clustering for overlapping community detection in large-scale networks
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2019.2892096
– ident: CR26
– ident: CR20
– volume: 66
  start-page: 324
  issue: 1
  year: 2019
  ident: 1236_CR6
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.2019.2934157
– volume: 31
  start-page: 4513
  issue: 9
  year: 2019
  ident: 1236_CR2
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-018-3485-2
– volume: 24
  start-page: 211
  issue: 1
  year: 2014
  ident: 1236_CR5
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-012-1207-8
– ident: 1236_CR30
– volume: 135
  start-page: 8
  year: 2020
  ident: 1236_CR4
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2020.03.035
– volume: 27
  start-page: 31
  issue: 1
  year: 2018
  ident: 1236_CR10
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2018.2856081
– ident: 1236_CR23
– volume: 145
  start-page: 289
  year: 2018
  ident: 1236_CR18
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2018.01.031
– volume: 26
  start-page: 27
  issue: 1
  year: 2020
  ident: 1236_CR1
  publication-title: Multimedia Syst
  doi: 10.1007/s00530-019-00626-8
– volume: 24
  start-page: 2381
  issue: 3
  year: 2020
  ident: 1236_CR7
  publication-title: Soft Comput
  doi: 10.1007/s00500-019-04069-1
– volume: 7
  start-page: 101054
  year: 2019
  ident: 1236_CR29
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2929948
– ident: 1236_CR21
– ident: 1236_CR27
– ident: 1236_CR25
  doi: 10.1145/1553374.1553385
– volume: 8
  start-page: 1729
  year: 2018
  ident: 1236_CR16
  publication-title: J Chin Comput Syst
– ident: 1236_CR19
  doi: 10.1145/347090.347123
– volume: 47
  start-page: 70
  year: 2015
  ident: 1236_CR32
  publication-title: Parallel Comput
  doi: 10.1016/j.parco.2015.03.004
– volume: 49
  start-page: 3230
  issue: 9
  year: 2018
  ident: 1236_CR8
  publication-title: IEEE Trans Cybernet
  doi: 10.1109/TCYB.2018.2836804
– volume: 6
  start-page: 241
  issue: 2
  year: 2018
  ident: 1236_CR11
  publication-title: Pattern Recogn Lett
– volume: 47
  start-page: 1000
  issue: 5
  year: 2019
  ident: 1236_CR15
  publication-title: Acta Electronica Sinica
– volume: 44
  start-page: 424
  issue: Z6
  year: 2017
  ident: 1236_CR12
  publication-title: Comput Sci
– volume: 17
  start-page: 395
  issue: 4
  year: 2007
  ident: 1236_CR22
  publication-title: Stat Comput
  doi: 10.1007/s11222-007-9033-z
– ident: 1236_CR33
– volume: 170
  start-page: 26
  year: 2019
  ident: 1236_CR9
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2019.01.026
– volume: 67
  start-page: 283
  year: 2003
  ident: 1236_CR24
  publication-title: Ars Combinatoria
– ident: 1236_CR26
  doi: 10.1007/978-3-319-48390-0_6
– volume: 32
  start-page: 754
  issue: 4
  year: 2019
  ident: 1236_CR3
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2019.2892096
– ident: 1236_CR13
  doi: 10.1109/BigComp.2018.00043
– volume: 76
  start-page: 9716
  year: 2020
  ident: 1236_CR17
  publication-title: J Supercomput
  doi: 10.1007/s11227-020-03211-3
– ident: 1236_CR20
– volume: 64
  start-page: 59
  year: 2018
  ident: 1236_CR14
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.12.004
– volume: 23
  start-page: 224
  issue: 2
  year: 2012
  ident: 1236_CR31
  publication-title: J Combin Optimiz
  doi: 10.1007/s10878-010-9351-5
– ident: 1236_CR28
SSID ssj0000603302
ssib031263576
ssib033405570
Score 2.246404
Snippet As a generalization algorithm of spectral clustering, p -spectral clustering has gradually attracted extensive attention of researchers. Gaussian kernel...
As a generalization algorithm of spectral clustering, p-spectral clustering has gradually attracted extensive attention of researchers. Gaussian kernel...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1571
SubjectTerms Adaptive algorithms
Algorithms
Artificial Intelligence
Cluster analysis
Clustering
Complex Systems
Computational Intelligence
Control
Data points
Datasets
Density distribution
Engineering
Euclidean geometry
Fuzzy sets
Kernel functions
Mechatronics
Methods
Neighborhoods
Original Article
Pattern Recognition
Robotics
Similarity
Similarity measures
Systems Biology
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BS8MwFA4yL3oQNxWnU3LwoGhgbdImOU5RhqAnB7uVJE11MLexdaD_3pcsXVVU8Ng2SeEl770vL-99QehMAeSwVnPirj4ijDFLhIwE0dzxlWmqE59N-PCY9gfsfpgMQ1HYosp2r44kvaWui93czpu47Y7nHSOAHDcTR-cFq3gQ96pVRCPHr1I7WUqZ55laR166KbxbJSOKVDg23ihU0_z8m68eq4ah305OvUO620U7AUni3mrqm2jDTlpo-xO_YAs1g-Yu8Hmgl77YQ9e9CR75UILNce7y18t34pxZjlWuZs784RnxFZjQAZvx0nEpwHhYjZ-n81H58rqPBne3Tzd9Em5SIAZUrCQ2N04uFtBJoSNDmQC3LGTOC2FVQnPatbbgoigMAABFDe1qDn6dp0zEOobnA9SYTCf2EOHUAACIVcGptAz2QyoBC5BIIQyXhdK0jaJKWpkJNOPutotxVhMkOwlnIOHMSzh7a6PLdZ_ZimTjz9adahKyoHCLLJaRZJJGLGmjq2pi6s-_j3b0v-bHaCt2WS0-DtNBjXK-tCcAS0p96lfhB8YH0n8
  priority: 102
  providerName: Springer Nature
Title An improved density-based adaptive p-spectral clustering algorithm
URI https://link.springer.com/article/10.1007/s13042-020-01236-x
https://www.proquest.com/docview/2919493145
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1868-808X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000603302
  issn: 1868-8071
  databaseCode: AFBBN
  dateStart: 20101201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1868-808X
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0000603302
  issn: 1868-8071
  databaseCode: BENPR
  dateStart: 20101201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1868-808X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000603302
  issn: 1868-8071
  databaseCode: AGYKE
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1868-808X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000603302
  issn: 1868-8071
  databaseCode: U2A
  dateStart: 20101201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_a5KUvZd1Wmq4NetjDyiYaW7ItP5SRjKRlo2GMBdonoy9vhSzNVhe6_353ilyzwfpkbFkynE_3pbvfAbzWaHJ4bwpOrY-4lNJzVSaKm4LwyowwWcgmvJznFwv58Sq72oJ5WwtDaZWtTAyC2t1aipGfpiW626VIZPZ-_ZNT1yg6XW1baOjYWsGdBYixbeinhIzVg_5kOv_8peUwkRD2SqeAhZABg-oxKjPK8dkmUVHlipB6k1hps6m3I-efk8cVoM_4w9_arDNR_zlVDcpq9gx2o5XJxhu22IMtv3oOe3Ef37E3EWz65AVMxit2EwIL3jFH2ezNb06qzTHt9JqEIVvzUI-JE5hd3hOyAn6U6eU3pE_z_cdLWMymXz9c8NhXgVvccA33zhIlPNoqtUmskAqVtCpdUSuvM-HEyPu6UHVt0RzQwoqRKVDLF7lUqUnxfh96q9uVPwCWWzQHUl0XovQSvSOdoTzISqVsUdbaiAEkLX0qG0HHqffFsurgkommFdK0CjStHgbw9nHOegO58eTbRy3Zq7j97qqOWQbwrv0V3fD_Vzt8erVXsJNSTkuIwhxBr_l174_RKGnMELbV7HwI_fFsMpnT9fz603QY-Q9HF-n4Dycy3BU
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK7wOMjFCEpYRe2DJhjpsDPdM9NzIAYUsrw2hkDCbejXoMm6rO4Q4c_526zq7dmNJHLjOI-uSapr6tVVXwG80-hyeG8KTqOPuJTSc1UmipuC8MqMMFmoJjzp571zeXiRXczBn7YXhsoqW50YFLW7tpQj30pLDLdLkcjs0-gnp6lRdLrajtDQcbSC2w4QY7Gx48jf_cYQbrx98AX3-32a7u-dfe7xOGWAWxS_hntnUbBTj5a7NokVUqHJUqUrauV1Jpzoel8Xqq4tGkctrOiaAm1ekUuVmhSvke48LEohSwz-Fnf3-l9PW4lGuoT3NjX4QsiAeTXNAnVzvDcpjFS5ImTgJHb2TPr7KNnAKcILUGv89l_rOXOJ753iBuO4_wyeRq-W7UzEcBnm_HAFlqPeGLONCG794Tns7gzZ95DI8I45qp5v7jiZUse00yNSvmzEQ_8nLmB2cENIDvhRpgdXuB_Ntx8v4PxROLwKC8ProV8Dllt0P1JdF6L0EqMxnaH-yUqlbFHW2ogOJC1_KhtBzmnWxqCawTMTTyvkaRV4Wt124ON0zWgC8fHg2-st26v4u4-rmXB2YLPditnj_1N7-TC1t_Ckd3ZyXB0f9I9ewVJK9TQhA7QOC82vG_8aHaLGvIlSx-DysQX9L4BCE6k
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA8yQfRB3FScTs2DD4qGrU3apo_zY_g5fHCwt5KkqQ5mN2YF_e-9pK2dooKPbZMULne53yV3vyB0IAByaC0DYq4-IowxTXjocCIDw1cmqfRsNuFd378csOuhN5yr4rfZ7uWRZF7TYFia0qw9jZN2VfhmonBiQh_LQUYARS4yQ5QAGj1wu6VGUcdwrVQOl1JmOac-d2E6PrzLExO5zw0zr1NU1vz8m6_eq4Kk305RrXPqraHVAlXibq4GdbSg0wZameMabKB6YcUv-LCgmj5aR6fdFI_stoKOcWxy2bN3YhxbjEUspmYpxFNiqzGhA1bjV8OrAONhMX6czEbZ0_MGGvQuHs4uSXGrAlFgbhnRsTJy0YBUEukoyji4aB7GQcK18GhMO1onAU8SBWBAUEU7MgAfH_iMu9KF501USyep3kLYVwAGXJEENNQMYiPhwWrghZyrIEyEpE3klNKKVEE5bm6-GEcVWbKRcAQSjqyEo7cmOv7sM80JN_5s3SonISqM7yVyQydkIXWY10Qn5cRUn38fbft_zffR0v15L7q96t_soGXXJLvY7ZkWqmWzV70LaCWTe1YhPwCZA9mn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+density-based+adaptive+p-spectral+clustering+algorithm&rft.jtitle=International+journal+of+machine+learning+and+cybernetics&rft.au=Wang%2C+Yanru&rft.au=Ding%2C+Shifei&rft.au=Wang%2C+Lijuan&rft.au=Ding%2C+Ling&rft.date=2021-06-01&rft.issn=1868-8071&rft.eissn=1868-808X&rft.volume=12&rft.issue=6&rft.spage=1571&rft.epage=1582&rft_id=info:doi/10.1007%2Fs13042-020-01236-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13042_020_01236_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-8071&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-8071&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-8071&client=summon