An improved density-based adaptive p-spectral clustering algorithm
As a generalization algorithm of spectral clustering, p -spectral clustering has gradually attracted extensive attention of researchers. Gaussian kernel function is generally used in traditional p -spectral clustering to construct the similarity matrix of data. However, the Gaussian kernel function...
        Saved in:
      
    
          | Published in | International journal of machine learning and cybernetics Vol. 12; no. 6; pp. 1571 - 1582 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Berlin/Heidelberg
          Springer Berlin Heidelberg
    
        01.06.2021
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1868-8071 1868-808X  | 
| DOI | 10.1007/s13042-020-01236-x | 
Cover
| Abstract | As a generalization algorithm of spectral clustering,
p
-spectral clustering has gradually attracted extensive attention of researchers. Gaussian kernel function is generally used in traditional
p
-spectral clustering to construct the similarity matrix of data. However, the Gaussian kernel function based on Euclidean distance is not effective when the data-set is complex with multiple density peaks or the density distribution is uniform. In order to solve this problem, an improved Density-based adaptive
p
-spectral clustering algorithm (DAPSC) is proposed, the prior information is considering to adjust the similarity between sample points and strengthen the local correlation between data points. In addition, by combining the density canopy method to update the initial clustering center and the number of clusters, the algorithm sensitivity of the original
p
-spectral clustering caused by the two is weakened. By experiments on four artificial data-sets and 8F UCI data-sets, we show that the proposed DAPSC has strong adaptability and more accurate compared with the four baseline methods. | 
    
|---|---|
| AbstractList | As a generalization algorithm of spectral clustering,
p
-spectral clustering has gradually attracted extensive attention of researchers. Gaussian kernel function is generally used in traditional
p
-spectral clustering to construct the similarity matrix of data. However, the Gaussian kernel function based on Euclidean distance is not effective when the data-set is complex with multiple density peaks or the density distribution is uniform. In order to solve this problem, an improved Density-based adaptive
p
-spectral clustering algorithm (DAPSC) is proposed, the prior information is considering to adjust the similarity between sample points and strengthen the local correlation between data points. In addition, by combining the density canopy method to update the initial clustering center and the number of clusters, the algorithm sensitivity of the original
p
-spectral clustering caused by the two is weakened. By experiments on four artificial data-sets and 8F UCI data-sets, we show that the proposed DAPSC has strong adaptability and more accurate compared with the four baseline methods. As a generalization algorithm of spectral clustering, p-spectral clustering has gradually attracted extensive attention of researchers. Gaussian kernel function is generally used in traditional p-spectral clustering to construct the similarity matrix of data. However, the Gaussian kernel function based on Euclidean distance is not effective when the data-set is complex with multiple density peaks or the density distribution is uniform. In order to solve this problem, an improved Density-based adaptive p-spectral clustering algorithm (DAPSC) is proposed, the prior information is considering to adjust the similarity between sample points and strengthen the local correlation between data points. In addition, by combining the density canopy method to update the initial clustering center and the number of clusters, the algorithm sensitivity of the original p-spectral clustering caused by the two is weakened. By experiments on four artificial data-sets and 8F UCI data-sets, we show that the proposed DAPSC has strong adaptability and more accurate compared with the four baseline methods.  | 
    
| Author | Ding, Ling Ding, Shifei Wang, Yanru Wang, Lijuan  | 
    
| Author_xml | – sequence: 1 givenname: Yanru surname: Wang fullname: Wang, Yanru organization: School of Computer Science and Technology, China University of Mining and Technology – sequence: 2 givenname: Shifei orcidid: 0000-0002-1391-2717 surname: Ding fullname: Ding, Shifei email: dingsf@cumt.edu.cn organization: School of Computer Science and Technology, China University of Mining and Technology, Mine Digitization Engineering Research Center of Ministry of Education of the People’s Republic of China – sequence: 3 givenname: Lijuan surname: Wang fullname: Wang, Lijuan organization: School of Computer Science and Technology, China University of Mining and Technology – sequence: 4 givenname: Ling surname: Ding fullname: Ding, Ling organization: School of Computer Science and Technology, China University of Mining and Technology  | 
    
| BookMark | eNp9kE1LAzEQhoNUsNb-AU8LnqMzyX5kj7X4BYIXBW8hm83WlO3umqSl_femVhQ8dC6ZF-ZJJs85GXV9Zwi5RLhGgOLGI4eUUWBAARnP6faEjFHkggoQ76PfvsAzMvV-CbFy4BzYmNzOusSuBtdvTJ3UpvM27GilfEyqVkOwG5MM1A9GB6faRLdrH4yz3SJR7aJ3NnysLshpo1pvpj_nhLzd373OH-nzy8PTfPZMNccyUFNr4MgMF2VToeapyHMUZV00wqiM1xyMaQrRNBozVFxzqIqMYZGnglUs5gm5Otwbt_1cGx_ksl-7Lj4pWYllWnJMszglDlPa9d4700htgwq27-IHbCsR5F6aPEiTUZr8lia3EWX_0MHZlXK74xA_QH7YazHub6sj1BdrJ4FF | 
    
| CitedBy_id | crossref_primary_10_1007_s13042_022_01711_7 crossref_primary_10_1007_s11227_022_04456_w crossref_primary_10_1061_AJRUA6_0001218  | 
    
| Cites_doi | 10.1007/s11222-007-9033-z 10.1016/j.parco.2015.03.004 10.1007/s00530-019-00626-8 10.1007/s11227-020-03211-3 10.1016/j.asoc.2017.12.004 10.1109/ACCESS.2019.2929948 10.1007/s00521-012-1207-8 10.1007/s00500-019-04069-1 10.1016/j.patrec.2020.03.035 10.1016/j.knosys.2018.01.031 10.1007/s00521-018-3485-2 10.1109/TIT.2019.2934157 10.1016/j.knosys.2019.01.026 10.1109/TFUZZ.2018.2856081 10.1109/TCYB.2018.2836804 10.1007/s10878-010-9351-5 10.1109/TKDE.2019.2892096 10.1145/1553374.1553385 10.1145/347090.347123 10.1007/978-3-319-48390-0_6 10.1109/BigComp.2018.00043  | 
    
| ContentType | Journal Article | 
    
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2020 Springer-Verlag GmbH Germany, part of Springer Nature 2020.  | 
    
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020 – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020.  | 
    
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS  | 
    
| DOI | 10.1007/s13042-020-01236-x | 
    
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection  | 
    
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Computer Science Database  | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Sciences (General)  | 
    
| EISSN | 1868-808X | 
    
| EndPage | 1582 | 
    
| ExternalDocumentID | 10_1007_s13042_020_01236_x | 
    
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: No.61672522; No.61976216 funderid: http://dx.doi.org/10.13039/501100001809  | 
    
| GroupedDBID | -EM 06D 0R~ 0VY 1N0 203 29~ 2JY 2VQ 30V 4.4 406 408 409 40D 96X AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ARAPS AUKKA AXYYD AYJHY BENPR BGLVJ BGNMA CCPQU CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 H13 HCIFZ HMJXF HQYDN HRMNR HZ~ I0C IKXTQ IWAJR IXD IZIGR J-C J0Z JBSCW JCJTX JZLTJ K7- KOV LLZTM M4Y M7S NPVJJ NQJWS NU0 O9- O93 O9J P2P P9P PT4 PTHSS QOS R89 R9I RLLFE ROL RSV S27 S3B SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z7X Z83 Z88 ZMTXR ~A9 AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS  | 
    
| ID | FETCH-LOGICAL-c319t-edc0312e389fb1c34866189d7f8ea53d30eef78ffc151a3c30b752176482b23c3 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 1868-8071 | 
    
| IngestDate | Fri Jul 25 10:56:26 EDT 2025 Wed Oct 01 04:29:31 EDT 2025 Thu Apr 24 22:58:44 EDT 2025 Fri Feb 21 02:48:13 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 6 | 
    
| Keywords | Spectral clustering Similarity matrix laplacian matrix Density canopy  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c319t-edc0312e389fb1c34866189d7f8ea53d30eef78ffc151a3c30b752176482b23c3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-1391-2717 | 
    
| PQID | 2919493145 | 
    
| PQPubID | 2043904 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | proquest_journals_2919493145 crossref_citationtrail_10_1007_s13042_020_01236_x crossref_primary_10_1007_s13042_020_01236_x springer_journals_10_1007_s13042_020_01236_x  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20210600 2021-06-00 20210601  | 
    
| PublicationDateYYYYMMDD | 2021-06-01 | 
    
| PublicationDate_xml | – month: 6 year: 2021 text: 20210600  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Berlin/Heidelberg | 
    
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg  | 
    
| PublicationTitle | International journal of machine learning and cybernetics | 
    
| PublicationTitleAbbrev | Int. J. Mach. Learn. & Cyber | 
    
| PublicationYear | 2021 | 
    
| Publisher | Springer Berlin Heidelberg Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V  | 
    
| References | CR19 Chen, Sun, Wang (CR8) 2018; 49 Wu, Song, Cheng (CR2) 2019; 31 Zhang, Zhang, Zhang (CR18) 2018; 145 CR13 CR33 CR30 Amghibech (CR24) 2003; 67 Li, Xu, Pan (CR12) 2017; 44 Xie, Ding (CR15) 2019; 47 Tong, Gan, Wen (CR4) 2020; 135 Luxburg (CR22) 2007; 17 Yang, Yu, Wang (CR11) 2018; 6 Wang, Ding, Jia (CR29) 2019; 7 Tao, Wang, Chang (CR9) 2019; 170 CR28 Lierde, Chow, Chen (CR3) 2019; 32 CR27 CR26 Bian, Ishibuchi, Wang (CR10) 2018; 27 CR25 CR23 CR21 CR20 Chen, Wu, Lin (CR16) 2018; 8 Wang, Ding, Jia (CR7) 2020; 24 Fan, Pardalos (CR31) 2012; 23 Deng, Xu, Chen (CR17) 2020; 76 Su, Wang, Zhang (CR6) 2019; 66 Wang, Duan, Liu (CR14) 2018; 64 Xia, Gu, Zhang (CR1) 2020; 26 Ding, Jia, Zhang (CR5) 2014; 24 Lyzinski, Sussman, Fishkind (CR32) 2015; 47 H Lierde (1236_CR3) 2019; 32 N Fan (1236_CR31) 2012; 23 1236_CR19 L Su (1236_CR6) 2019; 66 T Tong (1236_CR4) 2020; 135 U Luxburg (1236_CR22) 2007; 17 S Ding (1236_CR5) 2014; 24 1236_CR30 X Tao (1236_CR9) 2019; 170 G Zhang (1236_CR18) 2018; 145 Y Wang (1236_CR14) 2018; 64 1236_CR33 1236_CR13 X Yang (1236_CR11) 2018; 6 1236_CR28 J Chen (1236_CR16) 2018; 8 S Amghibech (1236_CR24) 2003; 67 V Lyzinski (1236_CR32) 2015; 47 K Xia (1236_CR1) 2020; 26 S Wu (1236_CR2) 2019; 31 X Chen (1236_CR8) 2018; 49 X Deng (1236_CR17) 2020; 76 Z Bian (1236_CR10) 2018; 27 J Xie (1236_CR15) 2019; 47 1236_CR21 1236_CR20 L Wang (1236_CR29) 2019; 7 1236_CR23 J Li (1236_CR12) 2017; 44 1236_CR25 X Wang (1236_CR7) 2020; 24 1236_CR27 1236_CR26  | 
    
| References_xml | – volume: 17 start-page: 395 issue: 4 year: 2007 end-page: 416 ident: CR22 article-title: A tutorial on spectral clustering publication-title: Stat Comput doi: 10.1007/s11222-007-9033-z – volume: 47 start-page: 70 year: 2015 end-page: 87 ident: CR32 article-title: Spectral clustering for divide-and-conquer graph matching publication-title: Parallel Comput doi: 10.1016/j.parco.2015.03.004 – ident: CR30 – volume: 26 start-page: 27 issue: 1 year: 2020 end-page: 36 ident: CR1 article-title: Oriented grouping-constrained spectral clustering for medical imaging segmentation publication-title: Multimedia Syst doi: 10.1007/s00530-019-00626-8 – volume: 47 start-page: 1000 issue: 5 year: 2019 end-page: 1008 ident: CR15 article-title: The true self-adaptive spectral clustering algorithms publication-title: Acta Electronica Sinica – volume: 76 start-page: 9716 year: 2020 end-page: 9738 ident: CR17 article-title: Dynamic clustering method for imbalanced learning based on AdaBoost publication-title: J Supercomput doi: 10.1007/s11227-020-03211-3 – volume: 64 start-page: 59 year: 2018 end-page: 74 ident: CR14 article-title: A spectral clustering method with semantic interpretation based on axiomatic fuzzy set theory publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.12.004 – ident: CR33 – volume: 6 start-page: 241 issue: 2 year: 2018 end-page: 256 ident: CR11 article-title: Fast spectral clustering learning with hierarchical bipartite graph for large-scale data publication-title: Pattern Recogn Lett – volume: 7 start-page: 101054 year: 2019 end-page: 101062 ident: CR29 article-title: An improvement of spectral clustering via message passing and density sensitive similarity publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2929948 – volume: 24 start-page: 211 issue: 1 year: 2014 end-page: 219 ident: CR5 article-title: Research of semi-supervised spectral clustering algorithm based on pairwise constraints publication-title: Neural Comput Appl doi: 10.1007/s00521-012-1207-8 – volume: 24 start-page: 2381 issue: 3 year: 2020 end-page: 2390 ident: CR7 article-title: Active constraint spectral clustering based on Hessian matrix publication-title: Soft Comput doi: 10.1007/s00500-019-04069-1 – volume: 135 start-page: 8 year: 2020 end-page: 14 ident: CR4 article-title: One-step spectral clustering based on self-paced learning publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2020.03.035 – ident: CR25 – ident: CR27 – ident: CR23 – volume: 145 start-page: 289 year: 2018 end-page: 297 ident: CR18 article-title: Improved K-means algorithm based on density Canopy publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2018.01.031 – volume: 31 start-page: 4513 issue: 9 year: 2019 end-page: 4525 ident: CR2 article-title: Civil engineering supervision video retrieval method optimization based on spectral clustering and R-tree publication-title: Neural Comput Appl doi: 10.1007/s00521-018-3485-2 – ident: CR21 – ident: CR19 – volume: 66 start-page: 324 issue: 1 year: 2019 end-page: 338 ident: CR6 article-title: Strong consistency of spectral clustering for stochastic block models publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.2019.2934157 – volume: 8 start-page: 1729 year: 2018 end-page: 1736 ident: CR16 article-title: Automatic cluster center determination for spectral clustering publication-title: J Chin Comput Syst – volume: 67 start-page: 283 year: 2003 end-page: 302 ident: CR24 article-title: Eigenvalues of the discrete -Laplacian for graphs publication-title: Ars Combinatoria – volume: 170 start-page: 26 year: 2019 end-page: 42 ident: CR9 article-title: Spectral clustering algorithm using density-sensitive distance measure with global and local consistencies publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2019.01.026 – volume: 44 start-page: 424 issue: Z6 year: 2017 end-page: 427 ident: CR12 article-title: Improved adaptive spectral clustering NJW algorithm publication-title: Comput Sci – ident: CR13 – volume: 27 start-page: 31 issue: 1 year: 2018 end-page: 44 ident: CR10 article-title: Joint learning of spectral clustering structure and fuzzy similarity matrix of data publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2018.2856081 – volume: 49 start-page: 3230 issue: 9 year: 2018 end-page: 3241 ident: CR8 article-title: Spectral clustering of customer transaction data with a two-level subspace weighting method publication-title: IEEE Trans Cybernet doi: 10.1109/TCYB.2018.2836804 – volume: 23 start-page: 224 issue: 2 year: 2012 end-page: 251 ident: CR31 article-title: Multi-way clustering and biclustering by the Ratio cut and Normalized cut in graphs publication-title: J Combin Optimiz doi: 10.1007/s10878-010-9351-5 – ident: CR28 – volume: 32 start-page: 754 issue: 4 year: 2019 end-page: 767 ident: CR3 article-title: Scalable spectral clustering for overlapping community detection in large-scale networks publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2019.2892096 – ident: CR26 – ident: CR20 – volume: 66 start-page: 324 issue: 1 year: 2019 ident: 1236_CR6 publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.2019.2934157 – volume: 31 start-page: 4513 issue: 9 year: 2019 ident: 1236_CR2 publication-title: Neural Comput Appl doi: 10.1007/s00521-018-3485-2 – volume: 24 start-page: 211 issue: 1 year: 2014 ident: 1236_CR5 publication-title: Neural Comput Appl doi: 10.1007/s00521-012-1207-8 – ident: 1236_CR30 – volume: 135 start-page: 8 year: 2020 ident: 1236_CR4 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2020.03.035 – volume: 27 start-page: 31 issue: 1 year: 2018 ident: 1236_CR10 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2018.2856081 – ident: 1236_CR23 – volume: 145 start-page: 289 year: 2018 ident: 1236_CR18 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2018.01.031 – volume: 26 start-page: 27 issue: 1 year: 2020 ident: 1236_CR1 publication-title: Multimedia Syst doi: 10.1007/s00530-019-00626-8 – volume: 24 start-page: 2381 issue: 3 year: 2020 ident: 1236_CR7 publication-title: Soft Comput doi: 10.1007/s00500-019-04069-1 – volume: 7 start-page: 101054 year: 2019 ident: 1236_CR29 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2929948 – ident: 1236_CR21 – ident: 1236_CR27 – ident: 1236_CR25 doi: 10.1145/1553374.1553385 – volume: 8 start-page: 1729 year: 2018 ident: 1236_CR16 publication-title: J Chin Comput Syst – ident: 1236_CR19 doi: 10.1145/347090.347123 – volume: 47 start-page: 70 year: 2015 ident: 1236_CR32 publication-title: Parallel Comput doi: 10.1016/j.parco.2015.03.004 – volume: 49 start-page: 3230 issue: 9 year: 2018 ident: 1236_CR8 publication-title: IEEE Trans Cybernet doi: 10.1109/TCYB.2018.2836804 – volume: 6 start-page: 241 issue: 2 year: 2018 ident: 1236_CR11 publication-title: Pattern Recogn Lett – volume: 47 start-page: 1000 issue: 5 year: 2019 ident: 1236_CR15 publication-title: Acta Electronica Sinica – volume: 44 start-page: 424 issue: Z6 year: 2017 ident: 1236_CR12 publication-title: Comput Sci – volume: 17 start-page: 395 issue: 4 year: 2007 ident: 1236_CR22 publication-title: Stat Comput doi: 10.1007/s11222-007-9033-z – ident: 1236_CR33 – volume: 170 start-page: 26 year: 2019 ident: 1236_CR9 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2019.01.026 – volume: 67 start-page: 283 year: 2003 ident: 1236_CR24 publication-title: Ars Combinatoria – ident: 1236_CR26 doi: 10.1007/978-3-319-48390-0_6 – volume: 32 start-page: 754 issue: 4 year: 2019 ident: 1236_CR3 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2019.2892096 – ident: 1236_CR13 doi: 10.1109/BigComp.2018.00043 – volume: 76 start-page: 9716 year: 2020 ident: 1236_CR17 publication-title: J Supercomput doi: 10.1007/s11227-020-03211-3 – ident: 1236_CR20 – volume: 64 start-page: 59 year: 2018 ident: 1236_CR14 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.12.004 – volume: 23 start-page: 224 issue: 2 year: 2012 ident: 1236_CR31 publication-title: J Combin Optimiz doi: 10.1007/s10878-010-9351-5 – ident: 1236_CR28  | 
    
| SSID | ssj0000603302 ssib031263576 ssib033405570  | 
    
| Score | 2.246404 | 
    
| Snippet | As a generalization algorithm of spectral clustering,
p
-spectral clustering has gradually attracted extensive attention of researchers. Gaussian kernel... As a generalization algorithm of spectral clustering, p-spectral clustering has gradually attracted extensive attention of researchers. Gaussian kernel...  | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1571 | 
    
| SubjectTerms | Adaptive algorithms Algorithms Artificial Intelligence Cluster analysis Clustering Complex Systems Computational Intelligence Control Data points Datasets Density distribution Engineering Euclidean geometry Fuzzy sets Kernel functions Mechatronics Methods Neighborhoods Original Article Pattern Recognition Robotics Similarity Similarity measures Systems Biology  | 
    
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BS8MwFA4yL3oQNxWnU3LwoGhgbdImOU5RhqAnB7uVJE11MLexdaD_3pcsXVVU8Ng2SeEl770vL-99QehMAeSwVnPirj4ijDFLhIwE0dzxlWmqE59N-PCY9gfsfpgMQ1HYosp2r44kvaWui93czpu47Y7nHSOAHDcTR-cFq3gQ96pVRCPHr1I7WUqZ55laR166KbxbJSOKVDg23ihU0_z8m68eq4ah305OvUO620U7AUni3mrqm2jDTlpo-xO_YAs1g-Yu8Hmgl77YQ9e9CR75UILNce7y18t34pxZjlWuZs784RnxFZjQAZvx0nEpwHhYjZ-n81H58rqPBne3Tzd9Em5SIAZUrCQ2N04uFtBJoSNDmQC3LGTOC2FVQnPatbbgoigMAABFDe1qDn6dp0zEOobnA9SYTCf2EOHUAACIVcGptAz2QyoBC5BIIQyXhdK0jaJKWpkJNOPutotxVhMkOwlnIOHMSzh7a6PLdZ_ZimTjz9adahKyoHCLLJaRZJJGLGmjq2pi6s-_j3b0v-bHaCt2WS0-DtNBjXK-tCcAS0p96lfhB8YH0n8 priority: 102 providerName: Springer Nature  | 
    
| Title | An improved density-based adaptive p-spectral clustering algorithm | 
    
| URI | https://link.springer.com/article/10.1007/s13042-020-01236-x https://www.proquest.com/docview/2919493145  | 
    
| Volume | 12 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1868-808X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000603302 issn: 1868-8071 databaseCode: AFBBN dateStart: 20101201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1868-808X dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0000603302 issn: 1868-8071 databaseCode: BENPR dateStart: 20101201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1868-808X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000603302 issn: 1868-8071 databaseCode: AGYKE dateStart: 20100101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1868-808X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000603302 issn: 1868-8071 databaseCode: U2A dateStart: 20101201 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_a5KUvZd1Wmq4NetjDyiYaW7ItP5SRjKRlo2GMBdonoy9vhSzNVhe6_353ilyzwfpkbFkynE_3pbvfAbzWaHJ4bwpOrY-4lNJzVSaKm4LwyowwWcgmvJznFwv58Sq72oJ5WwtDaZWtTAyC2t1aipGfpiW626VIZPZ-_ZNT1yg6XW1baOjYWsGdBYixbeinhIzVg_5kOv_8peUwkRD2SqeAhZABg-oxKjPK8dkmUVHlipB6k1hps6m3I-efk8cVoM_4w9_arDNR_zlVDcpq9gx2o5XJxhu22IMtv3oOe3Ef37E3EWz65AVMxit2EwIL3jFH2ezNb06qzTHt9JqEIVvzUI-JE5hd3hOyAn6U6eU3pE_z_cdLWMymXz9c8NhXgVvccA33zhIlPNoqtUmskAqVtCpdUSuvM-HEyPu6UHVt0RzQwoqRKVDLF7lUqUnxfh96q9uVPwCWWzQHUl0XovQSvSOdoTzISqVsUdbaiAEkLX0qG0HHqffFsurgkommFdK0CjStHgbw9nHOegO58eTbRy3Zq7j97qqOWQbwrv0V3fD_Vzt8erVXsJNSTkuIwhxBr_l174_RKGnMELbV7HwI_fFsMpnT9fz603QY-Q9HF-n4Dycy3BU | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK7wOMjFCEpYRe2DJhjpsDPdM9NzIAYUsrw2hkDCbejXoMm6rO4Q4c_526zq7dmNJHLjOI-uSapr6tVVXwG80-hyeG8KTqOPuJTSc1UmipuC8MqMMFmoJjzp571zeXiRXczBn7YXhsoqW50YFLW7tpQj30pLDLdLkcjs0-gnp6lRdLrajtDQcbSC2w4QY7Gx48jf_cYQbrx98AX3-32a7u-dfe7xOGWAWxS_hntnUbBTj5a7NokVUqHJUqUrauV1Jpzoel8Xqq4tGkctrOiaAm1ekUuVmhSvke48LEohSwz-Fnf3-l9PW4lGuoT3NjX4QsiAeTXNAnVzvDcpjFS5ImTgJHb2TPr7KNnAKcILUGv89l_rOXOJ753iBuO4_wyeRq-W7UzEcBnm_HAFlqPeGLONCG794Tns7gzZ95DI8I45qp5v7jiZUse00yNSvmzEQ_8nLmB2cENIDvhRpgdXuB_Ntx8v4PxROLwKC8ProV8Dllt0P1JdF6L0EqMxnaH-yUqlbFHW2ogOJC1_KhtBzmnWxqCawTMTTyvkaRV4Wt124ON0zWgC8fHg2-st26v4u4-rmXB2YLPditnj_1N7-TC1t_Ckd3ZyXB0f9I9ewVJK9TQhA7QOC82vG_8aHaLGvIlSx-DysQX9L4BCE6k | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA8yQfRB3FScTs2DD4qGrU3apo_zY_g5fHCwt5KkqQ5mN2YF_e-9pK2dooKPbZMULne53yV3vyB0IAByaC0DYq4-IowxTXjocCIDw1cmqfRsNuFd378csOuhN5yr4rfZ7uWRZF7TYFia0qw9jZN2VfhmonBiQh_LQUYARS4yQ5QAGj1wu6VGUcdwrVQOl1JmOac-d2E6PrzLExO5zw0zr1NU1vz8m6_eq4Kk305RrXPqraHVAlXibq4GdbSg0wZameMabKB6YcUv-LCgmj5aR6fdFI_stoKOcWxy2bN3YhxbjEUspmYpxFNiqzGhA1bjV8OrAONhMX6czEbZ0_MGGvQuHs4uSXGrAlFgbhnRsTJy0YBUEukoyji4aB7GQcK18GhMO1onAU8SBWBAUEU7MgAfH_iMu9KF501USyep3kLYVwAGXJEENNQMYiPhwWrghZyrIEyEpE3klNKKVEE5bm6-GEcVWbKRcAQSjqyEo7cmOv7sM80JN_5s3SonISqM7yVyQydkIXWY10Qn5cRUn38fbft_zffR0v15L7q96t_soGXXJLvY7ZkWqmWzV70LaCWTe1YhPwCZA9mn | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+density-based+adaptive+p-spectral+clustering+algorithm&rft.jtitle=International+journal+of+machine+learning+and+cybernetics&rft.au=Wang%2C+Yanru&rft.au=Ding%2C+Shifei&rft.au=Wang%2C+Lijuan&rft.au=Ding%2C+Ling&rft.date=2021-06-01&rft.issn=1868-8071&rft.eissn=1868-808X&rft.volume=12&rft.issue=6&rft.spage=1571&rft.epage=1582&rft_id=info:doi/10.1007%2Fs13042-020-01236-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13042_020_01236_x | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-8071&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-8071&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-8071&client=summon |