Nanometer Resolution Structure‐Emission Correlation of Individual Quantum Emitters via Enhanced Cathodoluminescence in Twisted Hexagonal Boron Nitride
Understanding the atomic structure of quantum emitters, often originating from point defects or impuritie, is essential for designing and optimizing materials for quantum technologies such as quantum computing, communication, and sensing. Despite the availability of atomic‐resolution scanning transm...
Saved in:
Published in | Advanced materials (Weinheim) p. e01611 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
24.07.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0935-9648 1521-4095 1521-4095 |
DOI | 10.1002/adma.202501611 |
Cover
Abstract | Understanding the atomic structure of quantum emitters, often originating from point defects or impuritie, is essential for designing and optimizing materials for quantum technologies such as quantum computing, communication, and sensing. Despite the availability of atomic‐resolution scanning transmission electron microscopy and nanoscale cathodoluminescence microscopy, experimentally determining the atomic structure of individual emitters is challenging due to the conflicting needs for thick samples to generate strong cathodoluminescence signals and thin samples for structural analysis. To overcome this challenge, significantly enhanced cathodoluminescence at twisted interfaces is leveraged to achieve sub‐nanometer localization precision for the first time in mapping individual quantum emitters in carbon‐implanted hexagonal boron nitride. This unprecedent spatial sensitivity, together with correlative electron energy loss spectroscopy quantitative scanning transmission electron microscopy imaging, and first principles density functional theory calculations, enables the identification of the atomic structure of the 440 nm blue emitter in hexagonal boron nitride as a substituted vertical carbon dimer. Building on the atomic structure insights, nanoscale spatially precise creation of blue emitters is demonstrated by electron beam irradiation of carbon‐coated hexagonal boron nitride. This advancement in correlating atomic structures with optical properties lays the foundation for a deeper understanding and precise engineering of quantum emitters, significantly advancing the development of cutting‐edge quantum information technologies. |
---|---|
AbstractList | Understanding the atomic structure of quantum emitters, often originating from point defects or impuritie, is essential for designing and optimizing materials for quantum technologies such as quantum computing, communication, and sensing. Despite the availability of atomic-resolution scanning transmission electron microscopy and nanoscale cathodoluminescence microscopy, experimentally determining the atomic structure of individual emitters is challenging due to the conflicting needs for thick samples to generate strong cathodoluminescence signals and thin samples for structural analysis. To overcome this challenge, significantly enhanced cathodoluminescence at twisted interfaces is leveraged to achieve sub-nanometer localization precision for the first time in mapping individual quantum emitters in carbon-implanted hexagonal boron nitride. This unprecedent spatial sensitivity, together with correlative electron energy loss spectroscopy quantitative scanning transmission electron microscopy imaging, and first principles density functional theory calculations, enables the identification of the atomic structure of the 440 nm blue emitter in hexagonal boron nitride as a substituted vertical carbon dimer. Building on the atomic structure insights, nanoscale spatially precise creation of blue emitters is demonstrated by electron beam irradiation of carbon-coated hexagonal boron nitride. This advancement in correlating atomic structures with optical properties lays the foundation for a deeper understanding and precise engineering of quantum emitters, significantly advancing the development of cutting-edge quantum information technologies. Understanding the atomic structure of quantum emitters, often originating from point defects or impuritie, is essential for designing and optimizing materials for quantum technologies such as quantum computing, communication, and sensing. Despite the availability of atomic-resolution scanning transmission electron microscopy and nanoscale cathodoluminescence microscopy, experimentally determining the atomic structure of individual emitters is challenging due to the conflicting needs for thick samples to generate strong cathodoluminescence signals and thin samples for structural analysis. To overcome this challenge, significantly enhanced cathodoluminescence at twisted interfaces is leveraged to achieve sub-nanometer localization precision for the first time in mapping individual quantum emitters in carbon-implanted hexagonal boron nitride. This unprecedent spatial sensitivity, together with correlative electron energy loss spectroscopy quantitative scanning transmission electron microscopy imaging, and first principles density functional theory calculations, enables the identification of the atomic structure of the 440 nm blue emitter in hexagonal boron nitride as a substituted vertical carbon dimer. Building on the atomic structure insights, nanoscale spatially precise creation of blue emitters is demonstrated by electron beam irradiation of carbon-coated hexagonal boron nitride. This advancement in correlating atomic structures with optical properties lays the foundation for a deeper understanding and precise engineering of quantum emitters, significantly advancing the development of cutting-edge quantum information technologies.Understanding the atomic structure of quantum emitters, often originating from point defects or impuritie, is essential for designing and optimizing materials for quantum technologies such as quantum computing, communication, and sensing. Despite the availability of atomic-resolution scanning transmission electron microscopy and nanoscale cathodoluminescence microscopy, experimentally determining the atomic structure of individual emitters is challenging due to the conflicting needs for thick samples to generate strong cathodoluminescence signals and thin samples for structural analysis. To overcome this challenge, significantly enhanced cathodoluminescence at twisted interfaces is leveraged to achieve sub-nanometer localization precision for the first time in mapping individual quantum emitters in carbon-implanted hexagonal boron nitride. This unprecedent spatial sensitivity, together with correlative electron energy loss spectroscopy quantitative scanning transmission electron microscopy imaging, and first principles density functional theory calculations, enables the identification of the atomic structure of the 440 nm blue emitter in hexagonal boron nitride as a substituted vertical carbon dimer. Building on the atomic structure insights, nanoscale spatially precise creation of blue emitters is demonstrated by electron beam irradiation of carbon-coated hexagonal boron nitride. This advancement in correlating atomic structures with optical properties lays the foundation for a deeper understanding and precise engineering of quantum emitters, significantly advancing the development of cutting-edge quantum information technologies. Understanding the atomic structure of quantum emitters, often originating from point defects or impuritie, is essential for designing and optimizing materials for quantum technologies such as quantum computing, communication, and sensing. Despite the availability of atomic-resolution scanning transmission electron microscopy and nanoscale cathodoluminescence microscopy, experimentally determining the atomic structure of individual emitters is challenging due to the conflicting needs for thick samples to generate strong cathodoluminescence signals and thin samples for structural analysis. To overcome this challenge, significantly enhanced cathodoluminescence at twisted interfaces is leveraged to achieve sub-nanometer localization precision for the first time in mapping individual quantum emitters in carbon-implanted hexagonal boron nitride. This unprecedent spatial sensitivity, together with correlative electron energy loss spectroscopy quantitative scanning transmission electron microscopy imaging, and first principles density functional theory calculations, enables the identification of the atomic structure of the 440 nm blue emitter in hexagonal boron nitride as a substituted vertical carbon dimer. Building on the atomic structure insights, nanoscale spatially precise creation of blue emitters is demonstrated by electron beam irradiation of carbon-coated hexagonal boron nitride. This advancement in correlating atomic structures with optical properties lays the foundation for a deeper understanding and precise engineering of quantum emitters, significantly advancing the development of cutting-edge quantum information technologies. |
Author | Hou, Hanyu Chen, Wei‐Ying Chan, Maria K.Y. Zuo, Jian‐Min Tripathi, Pinak Wen, Jianguo Gage, Thomas E. Diroll, Benjamin T. Yin, Kaijun Kolluru, Venkata Surya Chaitanya Hua, Muchuan |
Author_xml | – sequence: 1 givenname: Hanyu surname: Hou fullname: Hou, Hanyu organization: Center for Nanoscale Materials Argonne National Laboratory 9700 S. Cass Avenue Lemont IL 60439 USA, Department of Materials Science and Engineering Materials Research Laboratory University of Illinois Urbana Champaign 1304 W. Green St. MC 246 Urbana IL 61801 USA – sequence: 2 givenname: Muchuan surname: Hua fullname: Hua, Muchuan organization: Center for Nanoscale Materials Argonne National Laboratory 9700 S. Cass Avenue Lemont IL 60439 USA – sequence: 3 givenname: Venkata Surya Chaitanya surname: Kolluru fullname: Kolluru, Venkata Surya Chaitanya organization: Center for Nanoscale Materials Argonne National Laboratory 9700 S. Cass Avenue Lemont IL 60439 USA – sequence: 4 givenname: Wei‐Ying surname: Chen fullname: Chen, Wei‐Ying organization: Nuclear Science and Engineering Argonne National Laboratory 9700 S. Cass Avenue Lemont IL 60439 USA – sequence: 5 givenname: Kaijun surname: Yin fullname: Yin, Kaijun organization: Department of Materials Science and Engineering Materials Research Laboratory University of Illinois Urbana Champaign 1304 W. Green St. MC 246 Urbana IL 61801 USA – sequence: 6 givenname: Pinak surname: Tripathi fullname: Tripathi, Pinak organization: Department of Materials Science and Engineering Materials Research Laboratory University of Illinois Urbana Champaign 1304 W. Green St. MC 246 Urbana IL 61801 USA – sequence: 7 givenname: Maria K.Y. surname: Chan fullname: Chan, Maria K.Y. organization: Center for Nanoscale Materials Argonne National Laboratory 9700 S. Cass Avenue Lemont IL 60439 USA – sequence: 8 givenname: Benjamin T. surname: Diroll fullname: Diroll, Benjamin T. organization: Center for Nanoscale Materials Argonne National Laboratory 9700 S. Cass Avenue Lemont IL 60439 USA – sequence: 9 givenname: Thomas E. surname: Gage fullname: Gage, Thomas E. organization: Center for Nanoscale Materials Argonne National Laboratory 9700 S. Cass Avenue Lemont IL 60439 USA – sequence: 10 givenname: Jian‐Min surname: Zuo fullname: Zuo, Jian‐Min organization: Department of Materials Science and Engineering Materials Research Laboratory University of Illinois Urbana Champaign 1304 W. Green St. MC 246 Urbana IL 61801 USA – sequence: 11 givenname: Jianguo orcidid: 0000-0002-3755-0044 surname: Wen fullname: Wen, Jianguo organization: Center for Nanoscale Materials Argonne National Laboratory 9700 S. Cass Avenue Lemont IL 60439 USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40708318$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/2587364$$D View this record in Osti.gov |
BookMark | eNqFkbtuFDEUhi0URDaBlhJZVDSz8WU8My5htZBIURAQastrn2GNZuzFl4R0PAIlz8eT4GVDWirbx9_5jvX7BB354AGh55QsKSHsTNtZLxlhgtCO0kdoQQWjTUukOEILIrloZNcOx-gkpa-EENmR7gk6bklPBk6HBfp1pX2YIUPEHyGFqWQXPP6UYzG5RPj94-d6dinti6sQI0z6LxBGfOGtu3G26Al_KNrnMuOK5mpK-MZpvPZb7Q1YvNJ5G2xVz85DMlCL2Hl8fetSrtfn8F1_Cb5q3oRY1VcuR2fhKXo86inBs_v1FH1-u75enTeX799drF5fNoZTmRuwzEi6sWYzUiJgqEc2yI5KWfej0HroW8ko5aI1hNgKAdGtNGIwrDWa8VN0dvAWv9N3t3qa1C66Wcc7RYnaZ6z2GauHjGvHy0NHSNmpZFwGszXBezBZMTH0vGsr9OoA7WL4ViBlVWM0ME3aQyhJccY5Ez3jfUVf3KNlM4N9GP_vkyqwPAAmhpQijP974R98eqdJ |
Cites_doi | 10.1103/PhysRevB.97.205425 10.1063/1.4905908 10.1021/acs.nanolett.4c01477 10.1016/0927-0256(96)00008-0 10.1016/j.commatsci.2011.02.023 10.1016/j.patter.2022.100450 10.1103/PhysRevLett.92.246401 10.1021/acs.nanolett.2c03743 10.1038/s41524-020-00451-y 10.1016/B978-0-323-89856-0.00014-6 10.1007/978-1-4419-6533-2 10.1126/science.abd3230 10.12688/openreseurope.13015.1 10.1038/s41563-022-01303-4 10.1103/PhysRevB.100.155419 10.1103/PhysRevLett.77.3865 10.1038/s41467-020-20667-2 10.1007/978-0-387-76501-3 10.1021/acsphotonics.2c00631 10.1038/s41598-019-40529-2 10.1103/PhysRevApplied.19.044011 10.1007/978-1-4939-6607-3 10.1002/adma.202109621 10.1038/s41524-020-0296-7 10.1063/1.5124153 10.1103/PhysRevB.50.17953 10.1038/s41563-020-0616-9 10.1126/sciadv.abe8691 10.1038/nphoton.2016.186 10.1086/142271 10.1063/1.4812323 10.1038/s41467-021-24019-6 10.1016/j.ultramic.2017.03.014 10.1021/acs.nanolett.6b01368 10.1088/1361-6633/ab6310 10.1021/acs.jpcc.8b09087 10.1063/1.4985767 10.1088/2053-1583/ac6f09 10.1038/s41467-024-53880-4 10.1103/PhysRevB.59.1758 |
ContentType | Journal Article |
Copyright | 2025 The Author(s). Advanced Materials published by Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2025 The Author(s). Advanced Materials published by Wiley‐VCH GmbH. |
CorporateAuthor | Argonne National Laboratory (ANL) |
CorporateAuthor_xml | – name: Argonne National Laboratory (ANL) |
DBID | AAYXX CITATION NPM 7X8 OIOZB OTOTI ADTOC UNPAY |
DOI | 10.1002/adma.202501611 |
DatabaseName | CrossRef PubMed MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
ExternalDocumentID | 10.1002/adma.202501611 2587364 40708318 10_1002_adma_202501611 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Basic energy science Early Career award grantid: DE-AC02-06CH11357 – fundername: U.S. Department of Energy grantid: DE-AC02-06CH11357 – fundername: Argonne National Laboratory, Laboratory Directed Research and Development grantid: DE-AC02-06CH11357 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CITATION CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT NPM 7X8 OIOZB OTOTI .Y3 31~ 53G 6TJ 8WZ A6W AANHP AASGY ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO ADTOC AETEA AFFNX AGQPQ ASPBG AVWKF AZFZN EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI UNPAY WTY ZY4 |
ID | FETCH-LOGICAL-c319t-ed2c91bdcbf105e8d2c2896199e8df5aa8749211354c00df10e0a49c58c24ca23 |
IEDL.DBID | UNPAY |
ISSN | 0935-9648 1521-4095 |
IngestDate | Sun Sep 07 11:22:32 EDT 2025 Mon Sep 08 02:21:58 EDT 2025 Fri Jul 25 18:51:58 EDT 2025 Sat Jul 26 01:47:12 EDT 2025 Wed Oct 01 05:44:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | atomic structure cathodoluminescence single photon emitter quantum emitter hexagonal boron nitride twisted interface 2D material quantum information science |
Language | English |
License | 2025 The Author(s). Advanced Materials published by Wiley‐VCH GmbH. cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-ed2c91bdcbf105e8d2c2896199e8df5aa8749211354c00df10e0a49c58c24ca23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 AC02-06CH11357 US Department of Energy Argonne National Laboratory - Laboratory Directed Research and Development (LDRD) USDOE Office of Science - Office of Basic Energy Sciences - Early Career Research Program USDOE Office of Science - Office of Basic Energy Sciences - Scientific User Facilities Division |
ORCID | 0000-0002-3755-0044 0000000309221363 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1002/adma.202501611 |
PMID | 40708318 |
PQID | 3233257237 |
PQPubID | 23479 |
ParticipantIDs | unpaywall_primary_10_1002_adma_202501611 osti_scitechconnect_2587364 proquest_miscellaneous_3233257237 pubmed_primary_40708318 crossref_primary_10_1002_adma_202501611 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-07-24 |
PublicationDateYYYYMMDD | 2025-07-24 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: United States |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2025 |
References | Aharonovich I. (e_1_2_9_4_1) 2022; 22 Singla S. (e_1_2_9_26_1) 2024; 24 Mannodi‐Kanakkithodi A. (e_1_2_9_31_1) 2022; 3 Madsen J. (e_1_2_9_41_1); 1 Fournier C. (e_1_2_9_21_1) 2021; 12 Feng Z. (e_1_2_9_27_1) 2019; 9 Freysoldt C. (e_1_2_9_39_1) 2013; 97 Wickramaratne D. (e_1_2_9_29_1) 2018; 122 Blöchl P. E. (e_1_2_9_33_1) 1994; 50 Hamdi H. (e_1_2_9_16_1) 2020; 6 Woods C. R. (e_1_2_9_19_1) 2021; 12 Aharonovich I. (e_1_2_9_2_1) 2016; 10 Ciampalini G. (e_1_2_9_8_1) 2022; 9 Williams D. B. (e_1_2_9_25_1) 2009 Dion M. (e_1_2_9_36_1) 2004; 92 Du X. Z. (e_1_2_9_17_1) 2015; 106 Zuo J. M. (e_1_2_9_24_1) 2017 Jain A. (e_1_2_9_38_1) 2011; 50 Bourrellier R. (e_1_2_9_14_1) 2016; 16 Gale A. (e_1_2_9_13_1) 2022; 9 Zhigulin I. (e_1_2_9_22_1) 2023; 19 Shevitski B. (e_1_2_9_12_1) 2019; 100 Sajid A. (e_1_2_9_3_1) 2020; 83 Sun H. (e_1_2_9_10_1) 2024; 15 Sparrow C. M. (e_1_2_9_23_1) 1916; 44 Yasuda K. (e_1_2_9_20_1) 2021; 372 Hayee F. (e_1_2_9_9_1) 2020; 19 Mitrić J. (e_1_2_9_5_1) 2022 Hua M. (e_1_2_9_28_1) 2024 Yao K. (e_1_2_9_18_1) 2021; 7 Kresse G. (e_1_2_9_32_1) 1996; 6 Alfieri A. (e_1_2_9_1_1) 2023; 35 Kresse G. (e_1_2_9_34_1) 1999; 59 Perdew J. P. (e_1_2_9_35_1) 1996; 77 Su C. (e_1_2_9_11_1) 2022; 21 Jain A. (e_1_2_9_37_1) 2013; 1 Kirkland E. J. (e_1_2_9_40_1) 2010 Mannodi‐Kanakkithodi A. (e_1_2_9_30_1) 2020; 6 Mackoit‐Sinkevičienė M. (e_1_2_9_15_1) 2019; 115 Kociak M. (e_1_2_9_7_1) 2017; 176 Coenen T. (e_1_2_9_6_1) 2017; 4 |
References_xml | – volume: 97 year: 2013 ident: e_1_2_9_39_1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.205425 – volume: 106 year: 2015 ident: e_1_2_9_17_1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4905908 – volume: 24 start-page: 9212 year: 2024 ident: e_1_2_9_26_1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.4c01477 – volume: 6 start-page: 15 year: 1996 ident: e_1_2_9_32_1 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 50 start-page: 2295 year: 2011 ident: e_1_2_9_38_1 publication-title: Comput. Mat. Sci. doi: 10.1016/j.commatsci.2011.02.023 – volume: 3 year: 2022 ident: e_1_2_9_31_1 publication-title: Patterns doi: 10.1016/j.patter.2022.100450 – volume: 92 year: 2004 ident: e_1_2_9_36_1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.246401 – volume: 22 start-page: 9227 year: 2022 ident: e_1_2_9_4_1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.2c03743 – volume: 6 start-page: 178 year: 2020 ident: e_1_2_9_16_1 publication-title: npj Comput. Mater. doi: 10.1038/s41524-020-00451-y – start-page: 43 volume-title: Rare‐Earth‐Activated Phosphors year: 2022 ident: e_1_2_9_5_1 doi: 10.1016/B978-0-323-89856-0.00014-6 – volume-title: Advanced Computing in Electron Microscopy year: 2010 ident: e_1_2_9_40_1 doi: 10.1007/978-1-4419-6533-2 – volume: 372 start-page: 1458 year: 2021 ident: e_1_2_9_20_1 publication-title: Science doi: 10.1126/science.abd3230 – volume: 1 start-page: 24 ident: e_1_2_9_41_1 publication-title: Open Research Europe doi: 10.12688/openreseurope.13015.1 – volume: 21 start-page: 896 year: 2022 ident: e_1_2_9_11_1 publication-title: Nat. Mater. doi: 10.1038/s41563-022-01303-4 – volume: 100 year: 2019 ident: e_1_2_9_12_1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.100.155419 – volume: 77 start-page: 3865 year: 1996 ident: e_1_2_9_35_1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 12 start-page: 347 year: 2021 ident: e_1_2_9_19_1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-20667-2 – volume-title: Transmission Electron Microscopy year: 2009 ident: e_1_2_9_25_1 doi: 10.1007/978-0-387-76501-3 – volume: 9 start-page: 2170 year: 2022 ident: e_1_2_9_13_1 publication-title: ACS Photonics doi: 10.1021/acsphotonics.2c00631 – volume: 9 start-page: 3784 year: 2019 ident: e_1_2_9_27_1 publication-title: Sci. Rep. doi: 10.1038/s41598-019-40529-2 – volume: 19 year: 2023 ident: e_1_2_9_22_1 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.19.044011 – volume-title: Advanced Transmission Electron Microscopy year: 2017 ident: e_1_2_9_24_1 doi: 10.1007/978-1-4939-6607-3 – volume: 35 year: 2023 ident: e_1_2_9_1_1 publication-title: Adv. Mater. doi: 10.1002/adma.202109621 – volume: 6 start-page: 39 year: 2020 ident: e_1_2_9_30_1 publication-title: npj Comput. Mater. doi: 10.1038/s41524-020-0296-7 – volume: 115 year: 2019 ident: e_1_2_9_15_1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5124153 – volume: 50 year: 1994 ident: e_1_2_9_33_1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 19 start-page: 534 year: 2020 ident: e_1_2_9_9_1 publication-title: Nat. Mater. doi: 10.1038/s41563-020-0616-9 – volume: 7 year: 2021 ident: e_1_2_9_18_1 publication-title: Sci. Adv. doi: 10.1126/sciadv.abe8691 – volume: 10 start-page: 631 year: 2016 ident: e_1_2_9_2_1 publication-title: Nat. Photon. doi: 10.1038/nphoton.2016.186 – volume: 44 start-page: 76 year: 1916 ident: e_1_2_9_23_1 publication-title: Astrophys. J. doi: 10.1086/142271 – year: 2024 ident: e_1_2_9_28_1 publication-title: arXiv – volume: 1 year: 2013 ident: e_1_2_9_37_1 publication-title: APL Mater. doi: 10.1063/1.4812323 – volume: 12 start-page: 3779 year: 2021 ident: e_1_2_9_21_1 publication-title: Nat. Commun. doi: 10.1038/s41467-021-24019-6 – volume: 176 start-page: 112 year: 2017 ident: e_1_2_9_7_1 publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2017.03.014 – volume: 16 start-page: 4317 year: 2016 ident: e_1_2_9_14_1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b01368 – volume: 83 year: 2020 ident: e_1_2_9_3_1 publication-title: Rep. Prog. Phys. doi: 10.1088/1361-6633/ab6310 – volume: 122 year: 2018 ident: e_1_2_9_29_1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b09087 – volume: 4 year: 2017 ident: e_1_2_9_6_1 publication-title: Appl. Phys. Rev. doi: 10.1063/1.4985767 – volume: 9 year: 2022 ident: e_1_2_9_8_1 publication-title: 2D Mater. doi: 10.1088/2053-1583/ac6f09 – volume: 15 start-page: 9476 year: 2024 ident: e_1_2_9_10_1 publication-title: Nat. Commun. doi: 10.1038/s41467-024-53880-4 – volume: 59 start-page: 1758 year: 1999 ident: e_1_2_9_34_1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 |
SSID | ssj0009606 |
Score | 2.4881356 |
SecondaryResourceType | online_first |
Snippet | Understanding the atomic structure of quantum emitters, often originating from point defects or impuritie, is essential for designing and optimizing materials... |
SourceID | unpaywall osti proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | e01611 |
Title | Nanometer Resolution Structure‐Emission Correlation of Individual Quantum Emitters via Enhanced Cathodoluminescence in Twisted Hexagonal Boron Nitride |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40708318 https://www.proquest.com/docview/3233257237 https://www.osti.gov/servlets/purl/2587364 https://doi.org/10.1002/adma.202501611 |
UnpaywallVersion | publishedVersion |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0935-9648 databaseCode: DR2 dateStart: 19980101 customDbUrl: isFulltext: true eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6h7QF64P0IhcpISHBJyfqRdY6l2rIgseLRlcopcsYOrGiTqiQUOPETOPL7-CXMJLurFpDKzZGsxPGMx9_YM98APERnUu0xjZHAQ6xHsogL1GksbRiWZUY65jlR-OU0ncz0i32zvwiQ5VyYs_f38onzHTsQbdQETcjLWUv5ImkAa7Ppq-13HZGeMnGWdmWyeC8ihygzS3bGv15wZvcZ1LSK_oUs1-FiWx25ryfu4ODUbrN7BZ4tx9kHmXzcaptiC7_9QeF4_o9chcsLwCm2ew25BhdCdR3WT9EQ3oCfZGLrQ46LEXya3-uieNsxy7bH4df3H2PSBj5WEztczKMPnxN1KZ6v0rnE65Zk1B4K6toxdorPcyfG1YcuwkBwoiE5wGQJOcwe2ZyIeSX2TljLvJiEL-49-wTiKTMqiOm8OZ77cBNmu-O9nUm8qNgQIy3lJg5eYjYsPBYl4bZg6ZEcOvLRMmqXxjk70hm5nMpoTBJPnULidIbGotTopLoFg6quwh0QZeIJTHitmVLQJi6zxiu0Cn2qknLoIni0lGR-1BNz5D0Fs8x5rvPVXEewwYLOCVIwLy5yABE2uTR2pFIdwYOl_HOaS74ucVWo20-5kkqRQZNqFMHtXjFWXyI3mEu02QgerzTlnGHc_f-uG3CJ23yELPU9GJC8w33CPk2xSaj_jdxcqP9vvEEA7Q |
linkProvider | Unpaywall |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwEB6h7QF6KP80FNAgIcElJeufrHMs1ZYFiRWIrlROkWM7sKJNqpJQ4MQjcOT5eBJmkt1VC0jl5khW4njG42_smW8AHjmrU-VdGjsCD7EaiSIunEpjYcKwLDPSMc-Jwq-m6WSmXh7og0WALOfCnL-_F0-t79iBaKMmaEJezlrKF0kDWJtNX--864j0pI6ztCuTxXsROUSZXrIz_vWCc7vPoKZV9C9kuQ6X2-rYfj21h4dndpu9q_B8Oc4-yOTjdtsU2-7bHxSOF__INdhYAE7c6TXkOlwK1Q1YP0NDeBN-komtjzguBvk0v9dFfNsxy7Yn4df3H2PSBj5Ww10u5tGHz2Fd4otVOhe-aUlG7RFS146xEz_PLY6rD12EAXKiITnAZAk5zN6xOcF5hfunrGUeJ-GLfc8-AT5jRgWczpuTuQ-3YLY33t-dxIuKDbGjpdzEwQuXDQvvipJwWzD0SA4d-WgZtUttrRmpjFxOqZVLEk-dQmJV5rRxQjkr5G0YVHUVNgHLxBOY8EoxpaBJbGa0l85I51OZlEMbweOlJPPjnpgj7ymYRc5zna_mOoItFnROkIJ5cR0HELkmF9qMZKoieLiUf05zydcltgp1-ymXQkoyaEKOIrjTK8bqS-QGc4k2E8GTlaZcMIy7_991C65wm4-QhboHA5J3uE_YpykeLBT_N7yfAAQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanometer+Resolution+Structure-Emission+Correlation+of+Individual+Quantum+Emitters+via+Enhanced+Cathodoluminescence+in+Twisted+Hexagonal+Boron+Nitride&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Hou%2C+Hanyu&rft.au=Hua%2C+Muchuan&rft.au=Kolluru%2C+Venkata+Surya+Chaitanya&rft.au=Chen%2C+Wei-Ying&rft.date=2025-07-24&rft.eissn=1521-4095&rft.spage=e01611&rft_id=info:doi/10.1002%2Fadma.202501611&rft_id=info%3Apmid%2F40708318&rft.externalDocID=40708318 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |