Nanometer Resolution Structure‐Emission Correlation of Individual Quantum Emitters via Enhanced Cathodoluminescence in Twisted Hexagonal Boron Nitride

Understanding the atomic structure of quantum emitters, often originating from point defects or impuritie, is essential for designing and optimizing materials for quantum technologies such as quantum computing, communication, and sensing. Despite the availability of atomic‐resolution scanning transm...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) p. e01611
Main Authors Hou, Hanyu, Hua, Muchuan, Kolluru, Venkata Surya Chaitanya, Chen, Wei‐Ying, Yin, Kaijun, Tripathi, Pinak, Chan, Maria K.Y., Diroll, Benjamin T., Gage, Thomas E., Zuo, Jian‐Min, Wen, Jianguo
Format Journal Article
LanguageEnglish
Published Germany 24.07.2025
Subjects
Online AccessGet full text
ISSN0935-9648
1521-4095
1521-4095
DOI10.1002/adma.202501611

Cover

Abstract Understanding the atomic structure of quantum emitters, often originating from point defects or impuritie, is essential for designing and optimizing materials for quantum technologies such as quantum computing, communication, and sensing. Despite the availability of atomic‐resolution scanning transmission electron microscopy and nanoscale cathodoluminescence microscopy, experimentally determining the atomic structure of individual emitters is challenging due to the conflicting needs for thick samples to generate strong cathodoluminescence signals and thin samples for structural analysis. To overcome this challenge, significantly enhanced cathodoluminescence at twisted interfaces is leveraged to achieve sub‐nanometer localization precision for the first time in mapping individual quantum emitters in carbon‐implanted hexagonal boron nitride. This unprecedent spatial sensitivity, together with correlative electron energy loss spectroscopy quantitative scanning transmission electron microscopy imaging, and first principles density functional theory calculations, enables the identification of the atomic structure of the 440 nm blue emitter in hexagonal boron nitride as a substituted vertical carbon dimer. Building on the atomic structure insights, nanoscale spatially precise creation of blue emitters is demonstrated by electron beam irradiation of carbon‐coated hexagonal boron nitride. This advancement in correlating atomic structures with optical properties lays the foundation for a deeper understanding and precise engineering of quantum emitters, significantly advancing the development of cutting‐edge quantum information technologies.
AbstractList Understanding the atomic structure of quantum emitters, often originating from point defects or impuritie, is essential for designing and optimizing materials for quantum technologies such as quantum computing, communication, and sensing. Despite the availability of atomic-resolution scanning transmission electron microscopy and nanoscale cathodoluminescence microscopy, experimentally determining the atomic structure of individual emitters is challenging due to the conflicting needs for thick samples to generate strong cathodoluminescence signals and thin samples for structural analysis. To overcome this challenge, significantly enhanced cathodoluminescence at twisted interfaces is leveraged to achieve sub-nanometer localization precision for the first time in mapping individual quantum emitters in carbon-implanted hexagonal boron nitride. This unprecedent spatial sensitivity, together with correlative electron energy loss spectroscopy quantitative scanning transmission electron microscopy imaging, and first principles density functional theory calculations, enables the identification of the atomic structure of the 440 nm blue emitter in hexagonal boron nitride as a substituted vertical carbon dimer. Building on the atomic structure insights, nanoscale spatially precise creation of blue emitters is demonstrated by electron beam irradiation of carbon-coated hexagonal boron nitride. This advancement in correlating atomic structures with optical properties lays the foundation for a deeper understanding and precise engineering of quantum emitters, significantly advancing the development of cutting-edge quantum information technologies.
Understanding the atomic structure of quantum emitters, often originating from point defects or impuritie, is essential for designing and optimizing materials for quantum technologies such as quantum computing, communication, and sensing. Despite the availability of atomic-resolution scanning transmission electron microscopy and nanoscale cathodoluminescence microscopy, experimentally determining the atomic structure of individual emitters is challenging due to the conflicting needs for thick samples to generate strong cathodoluminescence signals and thin samples for structural analysis. To overcome this challenge, significantly enhanced cathodoluminescence at twisted interfaces is leveraged to achieve sub-nanometer localization precision for the first time in mapping individual quantum emitters in carbon-implanted hexagonal boron nitride. This unprecedent spatial sensitivity, together with correlative electron energy loss spectroscopy quantitative scanning transmission electron microscopy imaging, and first principles density functional theory calculations, enables the identification of the atomic structure of the 440 nm blue emitter in hexagonal boron nitride as a substituted vertical carbon dimer. Building on the atomic structure insights, nanoscale spatially precise creation of blue emitters is demonstrated by electron beam irradiation of carbon-coated hexagonal boron nitride. This advancement in correlating atomic structures with optical properties lays the foundation for a deeper understanding and precise engineering of quantum emitters, significantly advancing the development of cutting-edge quantum information technologies.Understanding the atomic structure of quantum emitters, often originating from point defects or impuritie, is essential for designing and optimizing materials for quantum technologies such as quantum computing, communication, and sensing. Despite the availability of atomic-resolution scanning transmission electron microscopy and nanoscale cathodoluminescence microscopy, experimentally determining the atomic structure of individual emitters is challenging due to the conflicting needs for thick samples to generate strong cathodoluminescence signals and thin samples for structural analysis. To overcome this challenge, significantly enhanced cathodoluminescence at twisted interfaces is leveraged to achieve sub-nanometer localization precision for the first time in mapping individual quantum emitters in carbon-implanted hexagonal boron nitride. This unprecedent spatial sensitivity, together with correlative electron energy loss spectroscopy quantitative scanning transmission electron microscopy imaging, and first principles density functional theory calculations, enables the identification of the atomic structure of the 440 nm blue emitter in hexagonal boron nitride as a substituted vertical carbon dimer. Building on the atomic structure insights, nanoscale spatially precise creation of blue emitters is demonstrated by electron beam irradiation of carbon-coated hexagonal boron nitride. This advancement in correlating atomic structures with optical properties lays the foundation for a deeper understanding and precise engineering of quantum emitters, significantly advancing the development of cutting-edge quantum information technologies.
Understanding the atomic structure of quantum emitters, often originating from point defects or impuritie, is essential for designing and optimizing materials for quantum technologies such as quantum computing, communication, and sensing. Despite the availability of atomic-resolution scanning transmission electron microscopy and nanoscale cathodoluminescence microscopy, experimentally determining the atomic structure of individual emitters is challenging due to the conflicting needs for thick samples to generate strong cathodoluminescence signals and thin samples for structural analysis. To overcome this challenge, significantly enhanced cathodoluminescence at twisted interfaces is leveraged to achieve sub-nanometer localization precision for the first time in mapping individual quantum emitters in carbon-implanted hexagonal boron nitride. This unprecedent spatial sensitivity, together with correlative electron energy loss spectroscopy quantitative scanning transmission electron microscopy imaging, and first principles density functional theory calculations, enables the identification of the atomic structure of the 440 nm blue emitter in hexagonal boron nitride as a substituted vertical carbon dimer. Building on the atomic structure insights, nanoscale spatially precise creation of blue emitters is demonstrated by electron beam irradiation of carbon-coated hexagonal boron nitride. This advancement in correlating atomic structures with optical properties lays the foundation for a deeper understanding and precise engineering of quantum emitters, significantly advancing the development of cutting-edge quantum information technologies.
Author Hou, Hanyu
Chen, Wei‐Ying
Chan, Maria K.Y.
Zuo, Jian‐Min
Tripathi, Pinak
Wen, Jianguo
Gage, Thomas E.
Diroll, Benjamin T.
Yin, Kaijun
Kolluru, Venkata Surya Chaitanya
Hua, Muchuan
Author_xml – sequence: 1
  givenname: Hanyu
  surname: Hou
  fullname: Hou, Hanyu
  organization: Center for Nanoscale Materials Argonne National Laboratory 9700 S. Cass Avenue Lemont IL 60439 USA, Department of Materials Science and Engineering Materials Research Laboratory University of Illinois Urbana Champaign 1304 W. Green St. MC 246 Urbana IL 61801 USA
– sequence: 2
  givenname: Muchuan
  surname: Hua
  fullname: Hua, Muchuan
  organization: Center for Nanoscale Materials Argonne National Laboratory 9700 S. Cass Avenue Lemont IL 60439 USA
– sequence: 3
  givenname: Venkata Surya Chaitanya
  surname: Kolluru
  fullname: Kolluru, Venkata Surya Chaitanya
  organization: Center for Nanoscale Materials Argonne National Laboratory 9700 S. Cass Avenue Lemont IL 60439 USA
– sequence: 4
  givenname: Wei‐Ying
  surname: Chen
  fullname: Chen, Wei‐Ying
  organization: Nuclear Science and Engineering Argonne National Laboratory 9700 S. Cass Avenue Lemont IL 60439 USA
– sequence: 5
  givenname: Kaijun
  surname: Yin
  fullname: Yin, Kaijun
  organization: Department of Materials Science and Engineering Materials Research Laboratory University of Illinois Urbana Champaign 1304 W. Green St. MC 246 Urbana IL 61801 USA
– sequence: 6
  givenname: Pinak
  surname: Tripathi
  fullname: Tripathi, Pinak
  organization: Department of Materials Science and Engineering Materials Research Laboratory University of Illinois Urbana Champaign 1304 W. Green St. MC 246 Urbana IL 61801 USA
– sequence: 7
  givenname: Maria K.Y.
  surname: Chan
  fullname: Chan, Maria K.Y.
  organization: Center for Nanoscale Materials Argonne National Laboratory 9700 S. Cass Avenue Lemont IL 60439 USA
– sequence: 8
  givenname: Benjamin T.
  surname: Diroll
  fullname: Diroll, Benjamin T.
  organization: Center for Nanoscale Materials Argonne National Laboratory 9700 S. Cass Avenue Lemont IL 60439 USA
– sequence: 9
  givenname: Thomas E.
  surname: Gage
  fullname: Gage, Thomas E.
  organization: Center for Nanoscale Materials Argonne National Laboratory 9700 S. Cass Avenue Lemont IL 60439 USA
– sequence: 10
  givenname: Jian‐Min
  surname: Zuo
  fullname: Zuo, Jian‐Min
  organization: Department of Materials Science and Engineering Materials Research Laboratory University of Illinois Urbana Champaign 1304 W. Green St. MC 246 Urbana IL 61801 USA
– sequence: 11
  givenname: Jianguo
  orcidid: 0000-0002-3755-0044
  surname: Wen
  fullname: Wen, Jianguo
  organization: Center for Nanoscale Materials Argonne National Laboratory 9700 S. Cass Avenue Lemont IL 60439 USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40708318$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/2587364$$D View this record in Osti.gov
BookMark eNqFkbtuFDEUhi0URDaBlhJZVDSz8WU8My5htZBIURAQastrn2GNZuzFl4R0PAIlz8eT4GVDWirbx9_5jvX7BB354AGh55QsKSHsTNtZLxlhgtCO0kdoQQWjTUukOEILIrloZNcOx-gkpa-EENmR7gk6bklPBk6HBfp1pX2YIUPEHyGFqWQXPP6UYzG5RPj94-d6dinti6sQI0z6LxBGfOGtu3G26Al_KNrnMuOK5mpK-MZpvPZb7Q1YvNJ5G2xVz85DMlCL2Hl8fetSrtfn8F1_Cb5q3oRY1VcuR2fhKXo86inBs_v1FH1-u75enTeX799drF5fNoZTmRuwzEi6sWYzUiJgqEc2yI5KWfej0HroW8ko5aI1hNgKAdGtNGIwrDWa8VN0dvAWv9N3t3qa1C66Wcc7RYnaZ6z2GauHjGvHy0NHSNmpZFwGszXBezBZMTH0vGsr9OoA7WL4ViBlVWM0ME3aQyhJccY5Ez3jfUVf3KNlM4N9GP_vkyqwPAAmhpQijP974R98eqdJ
Cites_doi 10.1103/PhysRevB.97.205425
10.1063/1.4905908
10.1021/acs.nanolett.4c01477
10.1016/0927-0256(96)00008-0
10.1016/j.commatsci.2011.02.023
10.1016/j.patter.2022.100450
10.1103/PhysRevLett.92.246401
10.1021/acs.nanolett.2c03743
10.1038/s41524-020-00451-y
10.1016/B978-0-323-89856-0.00014-6
10.1007/978-1-4419-6533-2
10.1126/science.abd3230
10.12688/openreseurope.13015.1
10.1038/s41563-022-01303-4
10.1103/PhysRevB.100.155419
10.1103/PhysRevLett.77.3865
10.1038/s41467-020-20667-2
10.1007/978-0-387-76501-3
10.1021/acsphotonics.2c00631
10.1038/s41598-019-40529-2
10.1103/PhysRevApplied.19.044011
10.1007/978-1-4939-6607-3
10.1002/adma.202109621
10.1038/s41524-020-0296-7
10.1063/1.5124153
10.1103/PhysRevB.50.17953
10.1038/s41563-020-0616-9
10.1126/sciadv.abe8691
10.1038/nphoton.2016.186
10.1086/142271
10.1063/1.4812323
10.1038/s41467-021-24019-6
10.1016/j.ultramic.2017.03.014
10.1021/acs.nanolett.6b01368
10.1088/1361-6633/ab6310
10.1021/acs.jpcc.8b09087
10.1063/1.4985767
10.1088/2053-1583/ac6f09
10.1038/s41467-024-53880-4
10.1103/PhysRevB.59.1758
ContentType Journal Article
Copyright 2025 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.
Copyright_xml – notice: 2025 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.
CorporateAuthor Argonne National Laboratory (ANL)
CorporateAuthor_xml – name: Argonne National Laboratory (ANL)
DBID AAYXX
CITATION
NPM
7X8
OIOZB
OTOTI
ADTOC
UNPAY
DOI 10.1002/adma.202501611
DatabaseName CrossRef
PubMed
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
ExternalDocumentID 10.1002/adma.202501611
2587364
40708318
10_1002_adma_202501611
Genre Journal Article
GrantInformation_xml – fundername: Basic energy science Early Career award
  grantid: DE-AC02-06CH11357
– fundername: U.S. Department of Energy
  grantid: DE-AC02-06CH11357
– fundername: Argonne National Laboratory, Laboratory Directed Research and Development
  grantid: DE-AC02-06CH11357
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
NPM
7X8
OIOZB
OTOTI
.Y3
31~
53G
6TJ
8WZ
A6W
AANHP
AASGY
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
ADTOC
AETEA
AFFNX
AGQPQ
ASPBG
AVWKF
AZFZN
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
UNPAY
WTY
ZY4
ID FETCH-LOGICAL-c319t-ed2c91bdcbf105e8d2c2896199e8df5aa8749211354c00df10e0a49c58c24ca23
IEDL.DBID UNPAY
ISSN 0935-9648
1521-4095
IngestDate Sun Sep 07 11:22:32 EDT 2025
Mon Sep 08 02:21:58 EDT 2025
Fri Jul 25 18:51:58 EDT 2025
Sat Jul 26 01:47:12 EDT 2025
Wed Oct 01 05:44:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords atomic structure
cathodoluminescence
single photon emitter
quantum emitter
hexagonal boron nitride
twisted interface
2D material
quantum information science
Language English
License 2025 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-ed2c91bdcbf105e8d2c2896199e8df5aa8749211354c00df10e0a49c58c24ca23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
AC02-06CH11357
US Department of Energy
Argonne National Laboratory - Laboratory Directed Research and Development (LDRD)
USDOE Office of Science - Office of Basic Energy Sciences - Early Career Research Program
USDOE Office of Science - Office of Basic Energy Sciences - Scientific User Facilities Division
ORCID 0000-0002-3755-0044
0000000309221363
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1002/adma.202501611
PMID 40708318
PQID 3233257237
PQPubID 23479
ParticipantIDs unpaywall_primary_10_1002_adma_202501611
osti_scitechconnect_2587364
proquest_miscellaneous_3233257237
pubmed_primary_40708318
crossref_primary_10_1002_adma_202501611
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-07-24
PublicationDateYYYYMMDD 2025-07-24
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-24
  day: 24
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: United States
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2025
References Aharonovich I. (e_1_2_9_4_1) 2022; 22
Singla S. (e_1_2_9_26_1) 2024; 24
Mannodi‐Kanakkithodi A. (e_1_2_9_31_1) 2022; 3
Madsen J. (e_1_2_9_41_1); 1
Fournier C. (e_1_2_9_21_1) 2021; 12
Feng Z. (e_1_2_9_27_1) 2019; 9
Freysoldt C. (e_1_2_9_39_1) 2013; 97
Wickramaratne D. (e_1_2_9_29_1) 2018; 122
Blöchl P. E. (e_1_2_9_33_1) 1994; 50
Hamdi H. (e_1_2_9_16_1) 2020; 6
Woods C. R. (e_1_2_9_19_1) 2021; 12
Aharonovich I. (e_1_2_9_2_1) 2016; 10
Ciampalini G. (e_1_2_9_8_1) 2022; 9
Williams D. B. (e_1_2_9_25_1) 2009
Dion M. (e_1_2_9_36_1) 2004; 92
Du X. Z. (e_1_2_9_17_1) 2015; 106
Zuo J. M. (e_1_2_9_24_1) 2017
Jain A. (e_1_2_9_38_1) 2011; 50
Bourrellier R. (e_1_2_9_14_1) 2016; 16
Gale A. (e_1_2_9_13_1) 2022; 9
Zhigulin I. (e_1_2_9_22_1) 2023; 19
Shevitski B. (e_1_2_9_12_1) 2019; 100
Sajid A. (e_1_2_9_3_1) 2020; 83
Sun H. (e_1_2_9_10_1) 2024; 15
Sparrow C. M. (e_1_2_9_23_1) 1916; 44
Yasuda K. (e_1_2_9_20_1) 2021; 372
Hayee F. (e_1_2_9_9_1) 2020; 19
Mitrić J. (e_1_2_9_5_1) 2022
Hua M. (e_1_2_9_28_1) 2024
Yao K. (e_1_2_9_18_1) 2021; 7
Kresse G. (e_1_2_9_32_1) 1996; 6
Alfieri A. (e_1_2_9_1_1) 2023; 35
Kresse G. (e_1_2_9_34_1) 1999; 59
Perdew J. P. (e_1_2_9_35_1) 1996; 77
Su C. (e_1_2_9_11_1) 2022; 21
Jain A. (e_1_2_9_37_1) 2013; 1
Kirkland E. J. (e_1_2_9_40_1) 2010
Mannodi‐Kanakkithodi A. (e_1_2_9_30_1) 2020; 6
Mackoit‐Sinkevičienė M. (e_1_2_9_15_1) 2019; 115
Kociak M. (e_1_2_9_7_1) 2017; 176
Coenen T. (e_1_2_9_6_1) 2017; 4
References_xml – volume: 97
  year: 2013
  ident: e_1_2_9_39_1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.97.205425
– volume: 106
  year: 2015
  ident: e_1_2_9_17_1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4905908
– volume: 24
  start-page: 9212
  year: 2024
  ident: e_1_2_9_26_1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.4c01477
– volume: 6
  start-page: 15
  year: 1996
  ident: e_1_2_9_32_1
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 50
  start-page: 2295
  year: 2011
  ident: e_1_2_9_38_1
  publication-title: Comput. Mat. Sci.
  doi: 10.1016/j.commatsci.2011.02.023
– volume: 3
  year: 2022
  ident: e_1_2_9_31_1
  publication-title: Patterns
  doi: 10.1016/j.patter.2022.100450
– volume: 92
  year: 2004
  ident: e_1_2_9_36_1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.246401
– volume: 22
  start-page: 9227
  year: 2022
  ident: e_1_2_9_4_1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.2c03743
– volume: 6
  start-page: 178
  year: 2020
  ident: e_1_2_9_16_1
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-020-00451-y
– start-page: 43
  volume-title: Rare‐Earth‐Activated Phosphors
  year: 2022
  ident: e_1_2_9_5_1
  doi: 10.1016/B978-0-323-89856-0.00014-6
– volume-title: Advanced Computing in Electron Microscopy
  year: 2010
  ident: e_1_2_9_40_1
  doi: 10.1007/978-1-4419-6533-2
– volume: 372
  start-page: 1458
  year: 2021
  ident: e_1_2_9_20_1
  publication-title: Science
  doi: 10.1126/science.abd3230
– volume: 1
  start-page: 24
  ident: e_1_2_9_41_1
  publication-title: Open Research Europe
  doi: 10.12688/openreseurope.13015.1
– volume: 21
  start-page: 896
  year: 2022
  ident: e_1_2_9_11_1
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-022-01303-4
– volume: 100
  year: 2019
  ident: e_1_2_9_12_1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.100.155419
– volume: 77
  start-page: 3865
  year: 1996
  ident: e_1_2_9_35_1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 12
  start-page: 347
  year: 2021
  ident: e_1_2_9_19_1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20667-2
– volume-title: Transmission Electron Microscopy
  year: 2009
  ident: e_1_2_9_25_1
  doi: 10.1007/978-0-387-76501-3
– volume: 9
  start-page: 2170
  year: 2022
  ident: e_1_2_9_13_1
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.2c00631
– volume: 9
  start-page: 3784
  year: 2019
  ident: e_1_2_9_27_1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-40529-2
– volume: 19
  year: 2023
  ident: e_1_2_9_22_1
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.19.044011
– volume-title: Advanced Transmission Electron Microscopy
  year: 2017
  ident: e_1_2_9_24_1
  doi: 10.1007/978-1-4939-6607-3
– volume: 35
  year: 2023
  ident: e_1_2_9_1_1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202109621
– volume: 6
  start-page: 39
  year: 2020
  ident: e_1_2_9_30_1
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-020-0296-7
– volume: 115
  year: 2019
  ident: e_1_2_9_15_1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5124153
– volume: 50
  year: 1994
  ident: e_1_2_9_33_1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 19
  start-page: 534
  year: 2020
  ident: e_1_2_9_9_1
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-0616-9
– volume: 7
  year: 2021
  ident: e_1_2_9_18_1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abe8691
– volume: 10
  start-page: 631
  year: 2016
  ident: e_1_2_9_2_1
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2016.186
– volume: 44
  start-page: 76
  year: 1916
  ident: e_1_2_9_23_1
  publication-title: Astrophys. J.
  doi: 10.1086/142271
– year: 2024
  ident: e_1_2_9_28_1
  publication-title: arXiv
– volume: 1
  year: 2013
  ident: e_1_2_9_37_1
  publication-title: APL Mater.
  doi: 10.1063/1.4812323
– volume: 12
  start-page: 3779
  year: 2021
  ident: e_1_2_9_21_1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24019-6
– volume: 176
  start-page: 112
  year: 2017
  ident: e_1_2_9_7_1
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2017.03.014
– volume: 16
  start-page: 4317
  year: 2016
  ident: e_1_2_9_14_1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b01368
– volume: 83
  year: 2020
  ident: e_1_2_9_3_1
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/1361-6633/ab6310
– volume: 122
  year: 2018
  ident: e_1_2_9_29_1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b09087
– volume: 4
  year: 2017
  ident: e_1_2_9_6_1
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.4985767
– volume: 9
  year: 2022
  ident: e_1_2_9_8_1
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/ac6f09
– volume: 15
  start-page: 9476
  year: 2024
  ident: e_1_2_9_10_1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-53880-4
– volume: 59
  start-page: 1758
  year: 1999
  ident: e_1_2_9_34_1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
SSID ssj0009606
Score 2.4881356
SecondaryResourceType online_first
Snippet Understanding the atomic structure of quantum emitters, often originating from point defects or impuritie, is essential for designing and optimizing materials...
SourceID unpaywall
osti
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage e01611
Title Nanometer Resolution Structure‐Emission Correlation of Individual Quantum Emitters via Enhanced Cathodoluminescence in Twisted Hexagonal Boron Nitride
URI https://www.ncbi.nlm.nih.gov/pubmed/40708318
https://www.proquest.com/docview/3233257237
https://www.osti.gov/servlets/purl/2587364
https://doi.org/10.1002/adma.202501611
UnpaywallVersion publishedVersion
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0935-9648
  databaseCode: DR2
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6h7QF64P0IhcpISHBJyfqRdY6l2rIgseLRlcopcsYOrGiTqiQUOPETOPL7-CXMJLurFpDKzZGsxPGMx9_YM98APERnUu0xjZHAQ6xHsogL1GksbRiWZUY65jlR-OU0ncz0i32zvwiQ5VyYs_f38onzHTsQbdQETcjLWUv5ImkAa7Ppq-13HZGeMnGWdmWyeC8ihygzS3bGv15wZvcZ1LSK_oUs1-FiWx25ryfu4ODUbrN7BZ4tx9kHmXzcaptiC7_9QeF4_o9chcsLwCm2ew25BhdCdR3WT9EQ3oCfZGLrQ46LEXya3-uieNsxy7bH4df3H2PSBj5WEztczKMPnxN1KZ6v0rnE65Zk1B4K6toxdorPcyfG1YcuwkBwoiE5wGQJOcwe2ZyIeSX2TljLvJiEL-49-wTiKTMqiOm8OZ77cBNmu-O9nUm8qNgQIy3lJg5eYjYsPBYl4bZg6ZEcOvLRMmqXxjk70hm5nMpoTBJPnULidIbGotTopLoFg6quwh0QZeIJTHitmVLQJi6zxiu0Cn2qknLoIni0lGR-1BNz5D0Fs8x5rvPVXEewwYLOCVIwLy5yABE2uTR2pFIdwYOl_HOaS74ucVWo20-5kkqRQZNqFMHtXjFWXyI3mEu02QgerzTlnGHc_f-uG3CJ23yELPU9GJC8w33CPk2xSaj_jdxcqP9vvEEA7Q
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwEB6h7QF6KP80FNAgIcElJeufrHMs1ZYFiRWIrlROkWM7sKJNqpJQ4MQjcOT5eBJmkt1VC0jl5khW4njG42_smW8AHjmrU-VdGjsCD7EaiSIunEpjYcKwLDPSMc-Jwq-m6WSmXh7og0WALOfCnL-_F0-t79iBaKMmaEJezlrKF0kDWJtNX--864j0pI6ztCuTxXsROUSZXrIz_vWCc7vPoKZV9C9kuQ6X2-rYfj21h4dndpu9q_B8Oc4-yOTjdtsU2-7bHxSOF__INdhYAE7c6TXkOlwK1Q1YP0NDeBN-komtjzguBvk0v9dFfNsxy7Yn4df3H2PSBj5Ww10u5tGHz2Fd4otVOhe-aUlG7RFS146xEz_PLY6rD12EAXKiITnAZAk5zN6xOcF5hfunrGUeJ-GLfc8-AT5jRgWczpuTuQ-3YLY33t-dxIuKDbGjpdzEwQuXDQvvipJwWzD0SA4d-WgZtUttrRmpjFxOqZVLEk-dQmJV5rRxQjkr5G0YVHUVNgHLxBOY8EoxpaBJbGa0l85I51OZlEMbweOlJPPjnpgj7ymYRc5zna_mOoItFnROkIJ5cR0HELkmF9qMZKoieLiUf05zydcltgp1-ymXQkoyaEKOIrjTK8bqS-QGc4k2E8GTlaZcMIy7_991C65wm4-QhboHA5J3uE_YpykeLBT_N7yfAAQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanometer+Resolution+Structure-Emission+Correlation+of+Individual+Quantum+Emitters+via+Enhanced+Cathodoluminescence+in+Twisted+Hexagonal+Boron+Nitride&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Hou%2C+Hanyu&rft.au=Hua%2C+Muchuan&rft.au=Kolluru%2C+Venkata+Surya+Chaitanya&rft.au=Chen%2C+Wei-Ying&rft.date=2025-07-24&rft.eissn=1521-4095&rft.spage=e01611&rft_id=info:doi/10.1002%2Fadma.202501611&rft_id=info%3Apmid%2F40708318&rft.externalDocID=40708318
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon