Compression of multi-temporal hyperspectral images based on RLS filter

The large-scale acquisition of multi-temporal hyperspectral images has increased the demand for a more efficient compression strategy to reduce the large size of such images. In this work, we propose a lossless prediction-based compression technique for multi-temporal images. It removes temporal cor...

Full description

Saved in:
Bibliographic Details
Published inThe Visual computer Vol. 38; no. 1; pp. 65 - 75
Main Authors Dua, Yaman, Singh, Ravi Shankar, Kumar, Vinod
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0178-2789
1432-2315
DOI10.1007/s00371-020-02000-6

Cover

Abstract The large-scale acquisition of multi-temporal hyperspectral images has increased the demand for a more efficient compression strategy to reduce the large size of such images. In this work, we propose a lossless prediction-based compression technique for multi-temporal images. It removes temporal correlations along with spatial and spectral correlation, reducing the size of time-lapse hyperspectral image significantly. It predicts the pixel value of the target image by a linear combination of pixels from already predicted spectral and temporal bands. The weight matrix used in the prediction is updated using the RLS filter. Experimental results demonstrate the optimal number of bands to be selected for prediction, the comparative strength of individual correlations, and effectiveness of the technique in terms of bit-rate. Our results show that including temporal correlations reduces the bit-rate by 24.07% and our model provides optimization of 18.15% in terms of bits per pixel compared to the state-of-the-art method.
AbstractList The large-scale acquisition of multi-temporal hyperspectral images has increased the demand for a more efficient compression strategy to reduce the large size of such images. In this work, we propose a lossless prediction-based compression technique for multi-temporal images. It removes temporal correlations along with spatial and spectral correlation, reducing the size of time-lapse hyperspectral image significantly. It predicts the pixel value of the target image by a linear combination of pixels from already predicted spectral and temporal bands. The weight matrix used in the prediction is updated using the RLS filter. Experimental results demonstrate the optimal number of bands to be selected for prediction, the comparative strength of individual correlations, and effectiveness of the technique in terms of bit-rate. Our results show that including temporal correlations reduces the bit-rate by 24.07% and our model provides optimization of 18.15% in terms of bits per pixel compared to the state-of-the-art method.
Author Kumar, Vinod
Dua, Yaman
Singh, Ravi Shankar
Author_xml – sequence: 1
  givenname: Yaman
  orcidid: 0000-0003-4927-6588
  surname: Dua
  fullname: Dua, Yaman
  email: yamandua.rs.cse18@iitbhu.ac.in
  organization: Department of Computer Science and Engineering, IIT(BHU)
– sequence: 2
  givenname: Ravi Shankar
  surname: Singh
  fullname: Singh, Ravi Shankar
  organization: Department of Computer Science and Engineering, IIT(BHU)
– sequence: 3
  givenname: Vinod
  surname: Kumar
  fullname: Kumar, Vinod
  organization: Department of Computer Science and Engineering, IIT(BHU)
BookMark eNp9kE1LAzEQhoMo2Fb_gKcFz9FJsh_JUYpVoSD4cQ5pnNQt282apIf-e1NXEDz0MAwD7zMz7zslp73vkZArBjcMoLmNAKJhFDgcCoDWJ2TCSsEpF6w6JRNgjaS8keqcTGPcQJ6bUk3IYu63Q8AYW98X3hXbXZdamnA7-GC64nM_YIgD2nSY2q1ZYyxWJuJHkfUvy9fCtV3CcEHOnOkiXv72GXlf3L_NH-ny-eFpfrekVjCVKNrKKLMqUVQWJVMNg9IItK6uZK0449bIqgR0TjEOyjLhQDEhTckyaVDMyPW4dwj-a4cx6Y3fhT6f1Fxli0qWosoqOaps8DEGdNq2yaRsMdtoO81AH1LTY2o6J6Z_UtN1Rvk_dAjZdtgfh8QIxSzu1xj-vjpCfQO2bYCw
CitedBy_id crossref_primary_10_1007_s00371_023_03166_5
crossref_primary_10_1007_s00371_023_03036_0
crossref_primary_10_1007_s00371_023_02775_4
crossref_primary_10_1007_s11760_023_02979_0
crossref_primary_10_3390_app12147172
Cites_doi 10.1117/1.OE.59.9.090902
10.1016/j.visres.2015.03.012
10.1109/30.920468
10.1007/s00371-019-01753-z
10.1080/20964471.2019.1657720
10.1109/TGRS.2009.2015291
10.1049/el.2013.1315
10.1109/TBME.2011.2156795
10.1007/s00371-015-1130-y
10.3390/jimaging4120142
10.1109/LGRS.2010.2081661
10.1109/TGRS.2003.820885
10.1007/s00371-017-1361-1
10.1007/s00371-019-01775-7
10.1142/S021969131941008X
10.1109/TGRS.2013.2245509
10.1109/LGRS.2003.822312
10.1109/LGRS.2012.2191531
10.1002/cpe.5251
10.1109/PCS.2018.8456278
10.1109/ICASSP.2018.8462243
10.1109/ICWAPR.2011.6014498
10.1117/12.690659
10.1117/12.860545
10.1109/ICIP.2009.5414286
10.1016/B978-0-444-63977-6.00004-3
10.1109/ICMEW.2018.8551532
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2020
Springer-Verlag GmbH Germany, part of Springer Nature 2020.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00371-020-02000-6
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1432-2315
EndPage 75
ExternalDocumentID 10_1007_s00371_020_02000_6
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
YOT
Z45
Z5O
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-ec5a9ab4e35ce8197104a3ecf65869212ca8540eff91209c13f09138a41c5aae3
IEDL.DBID U2A
ISSN 0178-2789
IngestDate Sun Jul 13 03:50:48 EDT 2025
Wed Oct 01 01:50:27 EDT 2025
Thu Apr 24 23:08:23 EDT 2025
Fri Feb 21 02:47:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Lossless compression
Multi-temporal images
Hyperspectral image
Predictive compression
RLS filter
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-ec5a9ab4e35ce8197104a3ecf65869212ca8540eff91209c13f09138a41c5aae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4927-6588
PQID 2917898435
PQPubID 2043737
PageCount 11
ParticipantIDs proquest_journals_2917898435
crossref_citationtrail_10_1007_s00371_020_02000_6
crossref_primary_10_1007_s00371_020_02000_6
springer_journals_10_1007_s00371_020_02000_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220100
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 1
  year: 2022
  text: 20220100
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle International Journal of Computer Graphics
PublicationTitle The Visual computer
PublicationTitleAbbrev Vis Comput
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Song, Gao, Zhu, Ma (CR28) 2019; 3
Christopoulos, Skodras, Ebrahimi (CR3) 2000; 46
CR16
CR15
Zikiou, Lahdir, Helbert (CR32) 2019; 36
CR14
CR13
Magli, Olmo, Quacchio (CR17) 2004; 1
Kiely, Klimesh (CR11) 2009; 47
CR12
CR10
Dua, Kumar, Singh (CR5) 2020; 59
Mielikainen, Huang (CR19) 2012; 9
Cheggoju, Satpute (CR2) 2018; 34
Gupta, Agarwal, Singh (CR9) 2019; 31
Shen, Jiang, Pan (CR25) 2018; 4
Ballester-Ripoll, Pajarola (CR1) 2016; 32
Mamaghanian, Khaled, Atienza, Vandergheynst (CR18) 2011; 58
CR4
CR6
CR8
Song, Zhang, Chen (CR29) 2013; 49
CR27
Zhu, Du, Fowler (CR31) 2010; 8
CR24
Foster, Amano, Nascimento (CR7) 2016; 120
CR23
CR21
Xi, Guan, Shu, Borgeat, Goubran (CR30) 2019; 36
Nagendran, Vasuki (CR22) 2020; 18
Mielikainen, Toivanen (CR20) 2003; 41
Shen, Li, Zhang, Tao, Zeng (CR26) 2013; 52
R Ballester-Ripoll (2000_CR1) 2016; 32
N Cheggoju (2000_CR2) 2018; 34
E Magli (2000_CR17) 2004; 1
H Shen (2000_CR26) 2013; 52
2000_CR21
W Zhu (2000_CR31) 2010; 8
2000_CR27
2000_CR23
2000_CR24
J Mielikainen (2000_CR20) 2003; 41
N Zikiou (2000_CR32) 2019; 36
AB Kiely (2000_CR11) 2009; 47
H Mamaghanian (2000_CR18) 2011; 58
DH Foster (2000_CR7) 2016; 120
2000_CR10
C Christopoulos (2000_CR3) 2000; 46
S Gupta (2000_CR9) 2019; 31
2000_CR15
2000_CR16
J Song (2000_CR29) 2013; 49
J Mielikainen (2000_CR19) 2012; 9
2000_CR12
2000_CR13
2000_CR8
2000_CR14
R Nagendran (2000_CR22) 2020; 18
2000_CR6
2000_CR4
J Song (2000_CR28) 2019; 3
P Xi (2000_CR30) 2019; 36
H Shen (2000_CR25) 2018; 4
Y Dua (2000_CR5) 2020; 59
References_xml – volume: 59
  start-page: 090902
  issue: 9
  year: 2020
  ident: CR5
  article-title: Comprehensive review of hyperspectral image compression algorithms
  publication-title: Opt. Eng.
  doi: 10.1117/1.OE.59.9.090902
– volume: 120
  start-page: 45
  year: 2016
  end-page: 60
  ident: CR7
  article-title: Time-lapse ratios of cone excitations in natural scenes
  publication-title: Vision Res.
  doi: 10.1016/j.visres.2015.03.012
– ident: CR4
– ident: CR14
– ident: CR16
– ident: CR12
– volume: 46
  start-page: 1103
  issue: 4
  year: 2000
  end-page: 1127
  ident: CR3
  article-title: The jpeg2000 still image coding system: an overview
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/30.920468
– ident: CR10
– ident: CR6
– ident: CR8
– volume: 36
  start-page: 1473
  year: 2019
  end-page: 1490
  ident: CR32
  article-title: Support vector regression-based 3d-wavelet texture learning for hyperspectral image compression
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-019-01753-z
– volume: 3
  start-page: 232
  issue: 3
  year: 2019
  end-page: 254
  ident: CR28
  article-title: A survey of remote sensing image classification based on CNNS
  publication-title: Big Earth Data
  doi: 10.1080/20964471.2019.1657720
– ident: CR27
– volume: 47
  start-page: 2672
  issue: 8
  year: 2009
  end-page: 2678
  ident: CR11
  article-title: Exploiting calibration-induced artifacts in lossless compression of hyperspectral imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2009.2015291
– ident: CR23
– volume: 49
  start-page: 992
  issue: 16
  year: 2013
  end-page: 994
  ident: CR29
  article-title: Lossless compression of hyperspectral imagery via RLS filter
  publication-title: Electron. Lett.
  doi: 10.1049/el.2013.1315
– volume: 58
  start-page: 2456
  issue: 9
  year: 2011
  end-page: 2466
  ident: CR18
  article-title: Compressed sensing for real-time energy-efficient ecg compression on wireless body sensor nodes
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2156795
– ident: CR21
– volume: 32
  start-page: 1433
  issue: 11
  year: 2016
  end-page: 1446
  ident: CR1
  article-title: Lossy volume compression using tucker truncation and thresholding
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-015-1130-y
– volume: 4
  start-page: 142
  issue: 12
  year: 2018
  ident: CR25
  article-title: Efficient lossless compression of multitemporal hyperspectral image data
  publication-title: J. Imaging
  doi: 10.3390/jimaging4120142
– volume: 8
  start-page: 416
  issue: 3
  year: 2010
  end-page: 420
  ident: CR31
  article-title: Multitemporal hyperspectral image compression
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2010.2081661
– ident: CR15
– volume: 41
  start-page: 2943
  issue: 12
  year: 2003
  end-page: 2946
  ident: CR20
  article-title: Clustered DPCM for the lossless compression of hyperspectral images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2003.820885
– ident: CR13
– volume: 34
  start-page: 563
  issue: 4
  year: 2018
  end-page: 573
  ident: CR2
  article-title: Inpac: independent pass coding algorithm for robust image data transmission through low SNR channels
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-017-1361-1
– volume: 36
  start-page: 1869
  year: 2019
  end-page: 1882
  ident: CR30
  article-title: An integrated approach for medical abnormality detection using deep patch convolutional neural networks
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-019-01775-7
– volume: 18
  start-page: 1941008
  issue: 01
  year: 2020
  ident: CR22
  article-title: Hyperspectral image compression using hybrid transform with different wavelet-based transform coding
  publication-title: Int. J. Wavelets Multiresolut. Inf. Process.
  doi: 10.1142/S021969131941008X
– volume: 52
  start-page: 894
  issue: 2
  year: 2013
  end-page: 906
  ident: CR26
  article-title: Compressed sensing-based inpainting of aqua moderate resolution imaging spectroradiometer band 6 using adaptive spectrum-weighted sparse bayesian dictionary learning
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2245509
– volume: 1
  start-page: 21
  issue: 1
  year: 2004
  end-page: 25
  ident: CR17
  article-title: Optimized onboard lossless and near-lossless compression of hyperspectral data using calic
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2003.822312
– ident: CR24
– volume: 9
  start-page: 1118
  issue: 6
  year: 2012
  end-page: 1121
  ident: CR19
  article-title: Lossless compression of hyperspectral images using clustered linear prediction with adaptive prediction length
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2012.2191531
– volume: 31
  start-page: e5251
  issue: 17
  year: 2019
  ident: CR9
  article-title: Workflow scheduling using jaya algorithm in cloud
  publication-title: Concurr. Comput. Pract. Exp.
  doi: 10.1002/cpe.5251
– volume: 1
  start-page: 21
  issue: 1
  year: 2004
  ident: 2000_CR17
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2003.822312
– volume: 36
  start-page: 1869
  year: 2019
  ident: 2000_CR30
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-019-01775-7
– volume: 120
  start-page: 45
  year: 2016
  ident: 2000_CR7
  publication-title: Vision Res.
  doi: 10.1016/j.visres.2015.03.012
– ident: 2000_CR13
  doi: 10.1109/PCS.2018.8456278
– volume: 41
  start-page: 2943
  issue: 12
  year: 2003
  ident: 2000_CR20
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2003.820885
– ident: 2000_CR27
– ident: 2000_CR12
  doi: 10.1109/ICASSP.2018.8462243
– ident: 2000_CR23
– volume: 8
  start-page: 416
  issue: 3
  year: 2010
  ident: 2000_CR31
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2010.2081661
– ident: 2000_CR8
  doi: 10.1109/ICWAPR.2011.6014498
– ident: 2000_CR10
  doi: 10.1117/12.690659
– volume: 49
  start-page: 992
  issue: 16
  year: 2013
  ident: 2000_CR29
  publication-title: Electron. Lett.
  doi: 10.1049/el.2013.1315
– ident: 2000_CR4
– volume: 46
  start-page: 1103
  issue: 4
  year: 2000
  ident: 2000_CR3
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/30.920468
– volume: 3
  start-page: 232
  issue: 3
  year: 2019
  ident: 2000_CR28
  publication-title: Big Earth Data
  doi: 10.1080/20964471.2019.1657720
– volume: 58
  start-page: 2456
  issue: 9
  year: 2011
  ident: 2000_CR18
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2156795
– volume: 31
  start-page: e5251
  issue: 17
  year: 2019
  ident: 2000_CR9
  publication-title: Concurr. Comput. Pract. Exp.
  doi: 10.1002/cpe.5251
– volume: 18
  start-page: 1941008
  issue: 01
  year: 2020
  ident: 2000_CR22
  publication-title: Int. J. Wavelets Multiresolut. Inf. Process.
  doi: 10.1142/S021969131941008X
– volume: 47
  start-page: 2672
  issue: 8
  year: 2009
  ident: 2000_CR11
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2009.2015291
– ident: 2000_CR21
  doi: 10.1117/12.860545
– ident: 2000_CR6
– volume: 52
  start-page: 894
  issue: 2
  year: 2013
  ident: 2000_CR26
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2245509
– volume: 36
  start-page: 1473
  year: 2019
  ident: 2000_CR32
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-019-01753-z
– volume: 32
  start-page: 1433
  issue: 11
  year: 2016
  ident: 2000_CR1
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-015-1130-y
– volume: 4
  start-page: 142
  issue: 12
  year: 2018
  ident: 2000_CR25
  publication-title: J. Imaging
  doi: 10.3390/jimaging4120142
– ident: 2000_CR24
  doi: 10.1109/ICIP.2009.5414286
– volume: 59
  start-page: 090902
  issue: 9
  year: 2020
  ident: 2000_CR5
  publication-title: Opt. Eng.
  doi: 10.1117/1.OE.59.9.090902
– volume: 9
  start-page: 1118
  issue: 6
  year: 2012
  ident: 2000_CR19
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2012.2191531
– ident: 2000_CR16
  doi: 10.1016/B978-0-444-63977-6.00004-3
– ident: 2000_CR14
  doi: 10.1109/ICMEW.2018.8551532
– ident: 2000_CR15
– volume: 34
  start-page: 563
  issue: 4
  year: 2018
  ident: 2000_CR2
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-017-1361-1
SSID ssj0017749
Score 2.3693423
Snippet The large-scale acquisition of multi-temporal hyperspectral images has increased the demand for a more efficient compression strategy to reduce the large size...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 65
SubjectTerms Algorithms
Artificial Intelligence
Computer Graphics
Computer Science
Data compression
Dictionaries
Hyperspectral imaging
Image acquisition
Image compression
Image filters
Image Processing and Computer Vision
Original Article
Pixels
Predictions
Remote sensing
Sensors
Spectral correlation
Surveillance
Unmanned aerial vehicles
Video compression
Wavelet transforms
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFH7M7aIH8SdOp-TgTYO2Tbv2IKLiGKJDpoPdSpqkOJjddPP_97003VRwx9Ikh5e8vC95-b4HcJooX4u29HhofMmFDAyPjUC_wnCkMwxY2jK8n3pRdyAehuGwBr2KC0PPKqs90W7UeqLojvzCx3NFnMQY3a-nH5yqRlF2tSqhIV1pBX1lJcbWoOGTMlYdGrf3vef-Iq-AYMcCYhyLEwfU0Wgsmc6q13E6Tl1avnX0O1Qt8eeflKmNRJ0t2HQQkt2Uc74NNVPswMYPYcFd6JCbly9cCzbJmX02yJ0M1Zi94eGz5FjS1-gd95QZo3imGbbvP76wfERZ9D0YdO5f77rcVUzgCl1pzo0KZSIzYYJQGYz1CB_I_CpHnBElaBIlY4RoJs8T4swqL8hJFzSWwsOe0gT7UC8mhTkApoMgizyFnRFyCYU4JhYiaMdZ2DaJzsImeJVxUuXkxKmqxThdCCFbg6ZozNQaNI2acLboMy3FNFa2blU2T51jzdLlMmjCeTUPy9__j3a4erQjWPeJ2GAvV1pQn39-mWOEG_PsxK2hb3wWzoU
  priority: 102
  providerName: ProQuest
Title Compression of multi-temporal hyperspectral images based on RLS filter
URI https://link.springer.com/article/10.1007/s00371-020-02000-6
https://www.proquest.com/docview/2917898435
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1432-2315
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017749
  issn: 0178-2789
  databaseCode: AFBBN
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1432-2315
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0017749
  issn: 0178-2789
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1432-2315
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017749
  issn: 0178-2789
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1432-2315
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017749
  issn: 0178-2789
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT8IwEL8IvOiDH6gRRdIH37SJW7uxPYJhED-IQUnwaem6LpIgGMH_32vXDTVq4tOy7No0117vd7v-rgBnoXRT3hYO9ZQrKBdM0UBxtCt0R2mCDis1DO-7oT8Y8-uJN7GksGVx2r1ISZqduiS7mepyVIc7l4YP7Veg5ulyXriKx26nzB0goDGg18H4SPM8LVXm5z6-uqM1xvyWFjXeJtqFbQsTSSef1z3YUPM67BRXMBBrkXXY-lRPcB8iLZAfbJ2TRUbMaUFqq0_NyDPGnDm1Ur9NX3ArWRLtxlKC8qPbB5JNdfL8AMZR7_FqQO1FCVSiBa2okp4IRcIV86RCF4-oQWtdZggvfFSQK0WAyExlWaipstJhmS4HGgjuYEuh2CFU54u5OgKSMpb4jsTGiLS4RPgScM7aQeK1VZgmXgOcQl-xtFXE9WUWs7isf2x0HKN-Y6Pj2G_AednmNa-h8ad0s5iG2NrTMnYxqgxwKAwHcFFMzfrz770d_0_8BDZdzW8w_1iaUF29vatTRB2rpAWVIOq3oNaJut2hfvafbnr47PaG96OWWYIfjSXQeQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZgOwAHxFMMBuQAJ4igbdq1B4R4bBrsITSGxK2kSSomjW2wIcSf47fhZOkGSHDjWDWJIsfxZyf5bIC9SLiSlbhDfeVyyrinaKgY7iuEI5kgYEnD8G40g-odu77372fgI-PC6GeVmU00hlr2hT4jP3IxrgijENH9dPBMddUofbualdDgtrSCPDEpxiyxo6be3zCEG55cXeJ677tupdy-qFJbZYAKVL8RVcLnEU-Y8nyhEB8RcvWURYrYHERo2QUP0a1RaRppnqlwvFTn0gw5c7AnVx6OOwt55rEIg7_8ebl505rcY6BzZRxwnDvVnFNL2zHkPZMtj-rw7djwu4Pv0Dj1d39c0RrkqyzBonVZydlYx5ZhRvVWYOFLIsNVqGizMn5R2yP9lJhnitSmveqSRwx2x5xO_dV5Qhs2JBo_JcH2rfotSTv61n4N7v5FduuQ6_V7agOI9LwkcAR2RhePCfSbQsa8Upj4JRXJxC-AkwknFjZ9ua6i0Y0niZeNQGMUZmwEGgcFOJj0GYyTd_zZupjJPLYbeRhP1a4Ah9k6TH__Ptrm36Ptwly13ajH9atmbQvmXU2qMAc7RciNXl7VNro6o2TH6hOBh_9W4U_MTwtC
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7oBNEHL1NxOjUPvmmYbdKufRzq8DKHqIO9hTRNcTC74er_9yS9bIoKPpaehJCT0_OdJt8XgNNQuTFvS4d62pWUS6ZpoDnGFaajOMKEFVuG90Pfvxnwu6E3XGDx29Pu5ZZkzmkwKk1p1prGSasivlmlOWpKnwvLjfaXYYUboQRc0QO3U-0jILixANjBWslwPgvazM99fE1Nc7z5bYvUZp7uFmwUkJF0ch9vw5JO67BZXsdAiuisw_qCtuAOdI1Bfsg1JZOE2JODtFCiGpNXrD9zmqV5Gr3hZ2VGTEqLCdo_9Z5JMjIb6bsw6F6_XN7Q4tIEqjCaMqqVJ0MZcc08pTHdI4IwHlAJQg0_xESlZIAoTSdJaGizymGJkQYNJHewpdRsD2rpJNX7QGLGIt9R2BhRF1cIZQLOWTuIvLYO48hrgFPOl1CFori52GIsKi1kO8cC51fYORZ-A86qNtNcT-NP62bpBlHE1ky4WGEGOBSGAzgvXTN__XtvB_8zP4HVx6uu6N327w9hzTW0B_vrpQm17P1DHyEYyaJju94-AWEf0hE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compression+of+multi-temporal+hyperspectral+images+based+on+RLS+filter&rft.jtitle=The+Visual+computer&rft.au=Dua%2C+Yaman&rft.au=Singh%2C+Ravi+Shankar&rft.au=Kumar%2C+Vinod&rft.date=2022-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0178-2789&rft.eissn=1432-2315&rft.volume=38&rft.issue=1&rft.spage=65&rft.epage=75&rft_id=info:doi/10.1007%2Fs00371-020-02000-6&rft.externalDocID=10_1007_s00371_020_02000_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2789&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2789&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2789&client=summon