Compression of multi-temporal hyperspectral images based on RLS filter
The large-scale acquisition of multi-temporal hyperspectral images has increased the demand for a more efficient compression strategy to reduce the large size of such images. In this work, we propose a lossless prediction-based compression technique for multi-temporal images. It removes temporal cor...
        Saved in:
      
    
          | Published in | The Visual computer Vol. 38; no. 1; pp. 65 - 75 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Berlin/Heidelberg
          Springer Berlin Heidelberg
    
        01.01.2022
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0178-2789 1432-2315  | 
| DOI | 10.1007/s00371-020-02000-6 | 
Cover
| Abstract | The large-scale acquisition of multi-temporal hyperspectral images has increased the demand for a more efficient compression strategy to reduce the large size of such images. In this work, we propose a lossless prediction-based compression technique for multi-temporal images. It removes temporal correlations along with spatial and spectral correlation, reducing the size of time-lapse hyperspectral image significantly. It predicts the pixel value of the target image by a linear combination of pixels from already predicted spectral and temporal bands. The weight matrix used in the prediction is updated using the RLS filter. Experimental results demonstrate the optimal number of bands to be selected for prediction, the comparative strength of individual correlations, and effectiveness of the technique in terms of bit-rate. Our results show that including temporal correlations reduces the bit-rate by 24.07% and our model provides optimization of 18.15% in terms of bits per pixel compared to the state-of-the-art method. | 
    
|---|---|
| AbstractList | The large-scale acquisition of multi-temporal hyperspectral images has increased the demand for a more efficient compression strategy to reduce the large size of such images. In this work, we propose a lossless prediction-based compression technique for multi-temporal images. It removes temporal correlations along with spatial and spectral correlation, reducing the size of time-lapse hyperspectral image significantly. It predicts the pixel value of the target image by a linear combination of pixels from already predicted spectral and temporal bands. The weight matrix used in the prediction is updated using the RLS filter. Experimental results demonstrate the optimal number of bands to be selected for prediction, the comparative strength of individual correlations, and effectiveness of the technique in terms of bit-rate. Our results show that including temporal correlations reduces the bit-rate by 24.07% and our model provides optimization of 18.15% in terms of bits per pixel compared to the state-of-the-art method. | 
    
| Author | Kumar, Vinod Dua, Yaman Singh, Ravi Shankar  | 
    
| Author_xml | – sequence: 1 givenname: Yaman orcidid: 0000-0003-4927-6588 surname: Dua fullname: Dua, Yaman email: yamandua.rs.cse18@iitbhu.ac.in organization: Department of Computer Science and Engineering, IIT(BHU) – sequence: 2 givenname: Ravi Shankar surname: Singh fullname: Singh, Ravi Shankar organization: Department of Computer Science and Engineering, IIT(BHU) – sequence: 3 givenname: Vinod surname: Kumar fullname: Kumar, Vinod organization: Department of Computer Science and Engineering, IIT(BHU)  | 
    
| BookMark | eNp9kE1LAzEQhoMo2Fb_gKcFz9FJsh_JUYpVoSD4cQ5pnNQt282apIf-e1NXEDz0MAwD7zMz7zslp73vkZArBjcMoLmNAKJhFDgcCoDWJ2TCSsEpF6w6JRNgjaS8keqcTGPcQJ6bUk3IYu63Q8AYW98X3hXbXZdamnA7-GC64nM_YIgD2nSY2q1ZYyxWJuJHkfUvy9fCtV3CcEHOnOkiXv72GXlf3L_NH-ny-eFpfrekVjCVKNrKKLMqUVQWJVMNg9IItK6uZK0449bIqgR0TjEOyjLhQDEhTckyaVDMyPW4dwj-a4cx6Y3fhT6f1Fxli0qWosoqOaps8DEGdNq2yaRsMdtoO81AH1LTY2o6J6Z_UtN1Rvk_dAjZdtgfh8QIxSzu1xj-vjpCfQO2bYCw | 
    
| CitedBy_id | crossref_primary_10_1007_s00371_023_03166_5 crossref_primary_10_1007_s00371_023_03036_0 crossref_primary_10_1007_s00371_023_02775_4 crossref_primary_10_1007_s11760_023_02979_0 crossref_primary_10_3390_app12147172  | 
    
| Cites_doi | 10.1117/1.OE.59.9.090902 10.1016/j.visres.2015.03.012 10.1109/30.920468 10.1007/s00371-019-01753-z 10.1080/20964471.2019.1657720 10.1109/TGRS.2009.2015291 10.1049/el.2013.1315 10.1109/TBME.2011.2156795 10.1007/s00371-015-1130-y 10.3390/jimaging4120142 10.1109/LGRS.2010.2081661 10.1109/TGRS.2003.820885 10.1007/s00371-017-1361-1 10.1007/s00371-019-01775-7 10.1142/S021969131941008X 10.1109/TGRS.2013.2245509 10.1109/LGRS.2003.822312 10.1109/LGRS.2012.2191531 10.1002/cpe.5251 10.1109/PCS.2018.8456278 10.1109/ICASSP.2018.8462243 10.1109/ICWAPR.2011.6014498 10.1117/12.690659 10.1117/12.860545 10.1109/ICIP.2009.5414286 10.1016/B978-0-444-63977-6.00004-3 10.1109/ICMEW.2018.8551532  | 
    
| ContentType | Journal Article | 
    
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2020 Springer-Verlag GmbH Germany, part of Springer Nature 2020.  | 
    
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020 – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020.  | 
    
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI  | 
    
| DOI | 10.1007/s00371-020-02000-6 | 
    
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition  | 
    
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Advanced Technologies & Aerospace Collection  | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science  | 
    
| EISSN | 1432-2315 | 
    
| EndPage | 75 | 
    
| ExternalDocumentID | 10_1007_s00371_020_02000_6 | 
    
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR YOT Z45 Z5O Z7R Z7S Z7X Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI  | 
    
| ID | FETCH-LOGICAL-c319t-ec5a9ab4e35ce8197104a3ecf65869212ca8540eff91209c13f09138a41c5aae3 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 0178-2789 | 
    
| IngestDate | Sun Jul 13 03:50:48 EDT 2025 Wed Oct 01 01:50:27 EDT 2025 Thu Apr 24 23:08:23 EDT 2025 Fri Feb 21 02:47:40 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Lossless compression Multi-temporal images Hyperspectral image Predictive compression RLS filter  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c319t-ec5a9ab4e35ce8197104a3ecf65869212ca8540eff91209c13f09138a41c5aae3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0003-4927-6588 | 
    
| PQID | 2917898435 | 
    
| PQPubID | 2043737 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | proquest_journals_2917898435 crossref_citationtrail_10_1007_s00371_020_02000_6 crossref_primary_10_1007_s00371_020_02000_6 springer_journals_10_1007_s00371_020_02000_6  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20220100 2022-01-00 20220101  | 
    
| PublicationDateYYYYMMDD | 2022-01-01 | 
    
| PublicationDate_xml | – month: 1 year: 2022 text: 20220100  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Berlin/Heidelberg | 
    
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg  | 
    
| PublicationSubtitle | International Journal of Computer Graphics | 
    
| PublicationTitle | The Visual computer | 
    
| PublicationTitleAbbrev | Vis Comput | 
    
| PublicationYear | 2022 | 
    
| Publisher | Springer Berlin Heidelberg Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V  | 
    
| References | Song, Gao, Zhu, Ma (CR28) 2019; 3 Christopoulos, Skodras, Ebrahimi (CR3) 2000; 46 CR16 CR15 Zikiou, Lahdir, Helbert (CR32) 2019; 36 CR14 CR13 Magli, Olmo, Quacchio (CR17) 2004; 1 Kiely, Klimesh (CR11) 2009; 47 CR12 CR10 Dua, Kumar, Singh (CR5) 2020; 59 Mielikainen, Huang (CR19) 2012; 9 Cheggoju, Satpute (CR2) 2018; 34 Gupta, Agarwal, Singh (CR9) 2019; 31 Shen, Jiang, Pan (CR25) 2018; 4 Ballester-Ripoll, Pajarola (CR1) 2016; 32 Mamaghanian, Khaled, Atienza, Vandergheynst (CR18) 2011; 58 CR4 CR6 CR8 Song, Zhang, Chen (CR29) 2013; 49 CR27 Zhu, Du, Fowler (CR31) 2010; 8 CR24 Foster, Amano, Nascimento (CR7) 2016; 120 CR23 CR21 Xi, Guan, Shu, Borgeat, Goubran (CR30) 2019; 36 Nagendran, Vasuki (CR22) 2020; 18 Mielikainen, Toivanen (CR20) 2003; 41 Shen, Li, Zhang, Tao, Zeng (CR26) 2013; 52 R Ballester-Ripoll (2000_CR1) 2016; 32 N Cheggoju (2000_CR2) 2018; 34 E Magli (2000_CR17) 2004; 1 H Shen (2000_CR26) 2013; 52 2000_CR21 W Zhu (2000_CR31) 2010; 8 2000_CR27 2000_CR23 2000_CR24 J Mielikainen (2000_CR20) 2003; 41 N Zikiou (2000_CR32) 2019; 36 AB Kiely (2000_CR11) 2009; 47 H Mamaghanian (2000_CR18) 2011; 58 DH Foster (2000_CR7) 2016; 120 2000_CR10 C Christopoulos (2000_CR3) 2000; 46 S Gupta (2000_CR9) 2019; 31 2000_CR15 2000_CR16 J Song (2000_CR29) 2013; 49 J Mielikainen (2000_CR19) 2012; 9 2000_CR12 2000_CR13 2000_CR8 2000_CR14 R Nagendran (2000_CR22) 2020; 18 2000_CR6 2000_CR4 J Song (2000_CR28) 2019; 3 P Xi (2000_CR30) 2019; 36 H Shen (2000_CR25) 2018; 4 Y Dua (2000_CR5) 2020; 59  | 
    
| References_xml | – volume: 59 start-page: 090902 issue: 9 year: 2020 ident: CR5 article-title: Comprehensive review of hyperspectral image compression algorithms publication-title: Opt. Eng. doi: 10.1117/1.OE.59.9.090902 – volume: 120 start-page: 45 year: 2016 end-page: 60 ident: CR7 article-title: Time-lapse ratios of cone excitations in natural scenes publication-title: Vision Res. doi: 10.1016/j.visres.2015.03.012 – ident: CR4 – ident: CR14 – ident: CR16 – ident: CR12 – volume: 46 start-page: 1103 issue: 4 year: 2000 end-page: 1127 ident: CR3 article-title: The jpeg2000 still image coding system: an overview publication-title: IEEE Trans. Consum. Electron. doi: 10.1109/30.920468 – ident: CR10 – ident: CR6 – ident: CR8 – volume: 36 start-page: 1473 year: 2019 end-page: 1490 ident: CR32 article-title: Support vector regression-based 3d-wavelet texture learning for hyperspectral image compression publication-title: Vis. Comput. doi: 10.1007/s00371-019-01753-z – volume: 3 start-page: 232 issue: 3 year: 2019 end-page: 254 ident: CR28 article-title: A survey of remote sensing image classification based on CNNS publication-title: Big Earth Data doi: 10.1080/20964471.2019.1657720 – ident: CR27 – volume: 47 start-page: 2672 issue: 8 year: 2009 end-page: 2678 ident: CR11 article-title: Exploiting calibration-induced artifacts in lossless compression of hyperspectral imagery publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2009.2015291 – ident: CR23 – volume: 49 start-page: 992 issue: 16 year: 2013 end-page: 994 ident: CR29 article-title: Lossless compression of hyperspectral imagery via RLS filter publication-title: Electron. Lett. doi: 10.1049/el.2013.1315 – volume: 58 start-page: 2456 issue: 9 year: 2011 end-page: 2466 ident: CR18 article-title: Compressed sensing for real-time energy-efficient ecg compression on wireless body sensor nodes publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2011.2156795 – ident: CR21 – volume: 32 start-page: 1433 issue: 11 year: 2016 end-page: 1446 ident: CR1 article-title: Lossy volume compression using tucker truncation and thresholding publication-title: Vis. Comput. doi: 10.1007/s00371-015-1130-y – volume: 4 start-page: 142 issue: 12 year: 2018 ident: CR25 article-title: Efficient lossless compression of multitemporal hyperspectral image data publication-title: J. Imaging doi: 10.3390/jimaging4120142 – volume: 8 start-page: 416 issue: 3 year: 2010 end-page: 420 ident: CR31 article-title: Multitemporal hyperspectral image compression publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2010.2081661 – ident: CR15 – volume: 41 start-page: 2943 issue: 12 year: 2003 end-page: 2946 ident: CR20 article-title: Clustered DPCM for the lossless compression of hyperspectral images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2003.820885 – ident: CR13 – volume: 34 start-page: 563 issue: 4 year: 2018 end-page: 573 ident: CR2 article-title: Inpac: independent pass coding algorithm for robust image data transmission through low SNR channels publication-title: Vis. Comput. doi: 10.1007/s00371-017-1361-1 – volume: 36 start-page: 1869 year: 2019 end-page: 1882 ident: CR30 article-title: An integrated approach for medical abnormality detection using deep patch convolutional neural networks publication-title: Vis. Comput. doi: 10.1007/s00371-019-01775-7 – volume: 18 start-page: 1941008 issue: 01 year: 2020 ident: CR22 article-title: Hyperspectral image compression using hybrid transform with different wavelet-based transform coding publication-title: Int. J. Wavelets Multiresolut. Inf. Process. doi: 10.1142/S021969131941008X – volume: 52 start-page: 894 issue: 2 year: 2013 end-page: 906 ident: CR26 article-title: Compressed sensing-based inpainting of aqua moderate resolution imaging spectroradiometer band 6 using adaptive spectrum-weighted sparse bayesian dictionary learning publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2013.2245509 – volume: 1 start-page: 21 issue: 1 year: 2004 end-page: 25 ident: CR17 article-title: Optimized onboard lossless and near-lossless compression of hyperspectral data using calic publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2003.822312 – ident: CR24 – volume: 9 start-page: 1118 issue: 6 year: 2012 end-page: 1121 ident: CR19 article-title: Lossless compression of hyperspectral images using clustered linear prediction with adaptive prediction length publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2012.2191531 – volume: 31 start-page: e5251 issue: 17 year: 2019 ident: CR9 article-title: Workflow scheduling using jaya algorithm in cloud publication-title: Concurr. Comput. Pract. Exp. doi: 10.1002/cpe.5251 – volume: 1 start-page: 21 issue: 1 year: 2004 ident: 2000_CR17 publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2003.822312 – volume: 36 start-page: 1869 year: 2019 ident: 2000_CR30 publication-title: Vis. Comput. doi: 10.1007/s00371-019-01775-7 – volume: 120 start-page: 45 year: 2016 ident: 2000_CR7 publication-title: Vision Res. doi: 10.1016/j.visres.2015.03.012 – ident: 2000_CR13 doi: 10.1109/PCS.2018.8456278 – volume: 41 start-page: 2943 issue: 12 year: 2003 ident: 2000_CR20 publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2003.820885 – ident: 2000_CR27 – ident: 2000_CR12 doi: 10.1109/ICASSP.2018.8462243 – ident: 2000_CR23 – volume: 8 start-page: 416 issue: 3 year: 2010 ident: 2000_CR31 publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2010.2081661 – ident: 2000_CR8 doi: 10.1109/ICWAPR.2011.6014498 – ident: 2000_CR10 doi: 10.1117/12.690659 – volume: 49 start-page: 992 issue: 16 year: 2013 ident: 2000_CR29 publication-title: Electron. Lett. doi: 10.1049/el.2013.1315 – ident: 2000_CR4 – volume: 46 start-page: 1103 issue: 4 year: 2000 ident: 2000_CR3 publication-title: IEEE Trans. Consum. Electron. doi: 10.1109/30.920468 – volume: 3 start-page: 232 issue: 3 year: 2019 ident: 2000_CR28 publication-title: Big Earth Data doi: 10.1080/20964471.2019.1657720 – volume: 58 start-page: 2456 issue: 9 year: 2011 ident: 2000_CR18 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2011.2156795 – volume: 31 start-page: e5251 issue: 17 year: 2019 ident: 2000_CR9 publication-title: Concurr. Comput. Pract. Exp. doi: 10.1002/cpe.5251 – volume: 18 start-page: 1941008 issue: 01 year: 2020 ident: 2000_CR22 publication-title: Int. J. Wavelets Multiresolut. Inf. Process. doi: 10.1142/S021969131941008X – volume: 47 start-page: 2672 issue: 8 year: 2009 ident: 2000_CR11 publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2009.2015291 – ident: 2000_CR21 doi: 10.1117/12.860545 – ident: 2000_CR6 – volume: 52 start-page: 894 issue: 2 year: 2013 ident: 2000_CR26 publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2013.2245509 – volume: 36 start-page: 1473 year: 2019 ident: 2000_CR32 publication-title: Vis. Comput. doi: 10.1007/s00371-019-01753-z – volume: 32 start-page: 1433 issue: 11 year: 2016 ident: 2000_CR1 publication-title: Vis. Comput. doi: 10.1007/s00371-015-1130-y – volume: 4 start-page: 142 issue: 12 year: 2018 ident: 2000_CR25 publication-title: J. Imaging doi: 10.3390/jimaging4120142 – ident: 2000_CR24 doi: 10.1109/ICIP.2009.5414286 – volume: 59 start-page: 090902 issue: 9 year: 2020 ident: 2000_CR5 publication-title: Opt. Eng. doi: 10.1117/1.OE.59.9.090902 – volume: 9 start-page: 1118 issue: 6 year: 2012 ident: 2000_CR19 publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2012.2191531 – ident: 2000_CR16 doi: 10.1016/B978-0-444-63977-6.00004-3 – ident: 2000_CR14 doi: 10.1109/ICMEW.2018.8551532 – ident: 2000_CR15 – volume: 34 start-page: 563 issue: 4 year: 2018 ident: 2000_CR2 publication-title: Vis. Comput. doi: 10.1007/s00371-017-1361-1  | 
    
| SSID | ssj0017749 | 
    
| Score | 2.3693423 | 
    
| Snippet | The large-scale acquisition of multi-temporal hyperspectral images has increased the demand for a more efficient compression strategy to reduce the large size... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 65 | 
    
| SubjectTerms | Algorithms Artificial Intelligence Computer Graphics Computer Science Data compression Dictionaries Hyperspectral imaging Image acquisition Image compression Image filters Image Processing and Computer Vision Original Article Pixels Predictions Remote sensing Sensors Spectral correlation Surveillance Unmanned aerial vehicles Video compression Wavelet transforms  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFH7M7aIH8SdOp-TgTYO2Tbv2IKLiGKJDpoPdSpqkOJjddPP_97003VRwx9Ikh5e8vC95-b4HcJooX4u29HhofMmFDAyPjUC_wnCkMwxY2jK8n3pRdyAehuGwBr2KC0PPKqs90W7UeqLojvzCx3NFnMQY3a-nH5yqRlF2tSqhIV1pBX1lJcbWoOGTMlYdGrf3vef-Iq-AYMcCYhyLEwfU0Wgsmc6q13E6Tl1avnX0O1Qt8eeflKmNRJ0t2HQQkt2Uc74NNVPswMYPYcFd6JCbly9cCzbJmX02yJ0M1Zi94eGz5FjS1-gd95QZo3imGbbvP76wfERZ9D0YdO5f77rcVUzgCl1pzo0KZSIzYYJQGYz1CB_I_CpHnBElaBIlY4RoJs8T4swqL8hJFzSWwsOe0gT7UC8mhTkApoMgizyFnRFyCYU4JhYiaMdZ2DaJzsImeJVxUuXkxKmqxThdCCFbg6ZozNQaNI2acLboMy3FNFa2blU2T51jzdLlMmjCeTUPy9__j3a4erQjWPeJ2GAvV1pQn39-mWOEG_PsxK2hb3wWzoU priority: 102 providerName: ProQuest  | 
    
| Title | Compression of multi-temporal hyperspectral images based on RLS filter | 
    
| URI | https://link.springer.com/article/10.1007/s00371-020-02000-6 https://www.proquest.com/docview/2917898435  | 
    
| Volume | 38 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1432-2315 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017749 issn: 0178-2789 databaseCode: AFBBN dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1432-2315 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0017749 issn: 0178-2789 databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1432-2315 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017749 issn: 0178-2789 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1432-2315 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017749 issn: 0178-2789 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT8IwEL8IvOiDH6gRRdIH37SJW7uxPYJhED-IQUnwaem6LpIgGMH_32vXDTVq4tOy7No0117vd7v-rgBnoXRT3hYO9ZQrKBdM0UBxtCt0R2mCDis1DO-7oT8Y8-uJN7GksGVx2r1ISZqduiS7mepyVIc7l4YP7Veg5ulyXriKx26nzB0goDGg18H4SPM8LVXm5z6-uqM1xvyWFjXeJtqFbQsTSSef1z3YUPM67BRXMBBrkXXY-lRPcB8iLZAfbJ2TRUbMaUFqq0_NyDPGnDm1Ur9NX3ArWRLtxlKC8qPbB5JNdfL8AMZR7_FqQO1FCVSiBa2okp4IRcIV86RCF4-oQWtdZggvfFSQK0WAyExlWaipstJhmS4HGgjuYEuh2CFU54u5OgKSMpb4jsTGiLS4RPgScM7aQeK1VZgmXgOcQl-xtFXE9WUWs7isf2x0HKN-Y6Pj2G_AednmNa-h8ad0s5iG2NrTMnYxqgxwKAwHcFFMzfrz770d_0_8BDZdzW8w_1iaUF29vatTRB2rpAWVIOq3oNaJut2hfvafbnr47PaG96OWWYIfjSXQeQ | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZgOwAHxFMMBuQAJ4igbdq1B4R4bBrsITSGxK2kSSomjW2wIcSf47fhZOkGSHDjWDWJIsfxZyf5bIC9SLiSlbhDfeVyyrinaKgY7iuEI5kgYEnD8G40g-odu77372fgI-PC6GeVmU00hlr2hT4jP3IxrgijENH9dPBMddUofbualdDgtrSCPDEpxiyxo6be3zCEG55cXeJ677tupdy-qFJbZYAKVL8RVcLnEU-Y8nyhEB8RcvWURYrYHERo2QUP0a1RaRppnqlwvFTn0gw5c7AnVx6OOwt55rEIg7_8ebl505rcY6BzZRxwnDvVnFNL2zHkPZMtj-rw7djwu4Pv0Dj1d39c0RrkqyzBonVZydlYx5ZhRvVWYOFLIsNVqGizMn5R2yP9lJhnitSmveqSRwx2x5xO_dV5Qhs2JBo_JcH2rfotSTv61n4N7v5FduuQ6_V7agOI9LwkcAR2RhePCfSbQsa8Upj4JRXJxC-AkwknFjZ9ua6i0Y0niZeNQGMUZmwEGgcFOJj0GYyTd_zZupjJPLYbeRhP1a4Ah9k6TH__Ptrm36Ptwly13ajH9atmbQvmXU2qMAc7RciNXl7VNro6o2TH6hOBh_9W4U_MTwtC | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7oBNEHL1NxOjUPvmmYbdKufRzq8DKHqIO9hTRNcTC74er_9yS9bIoKPpaehJCT0_OdJt8XgNNQuTFvS4d62pWUS6ZpoDnGFaajOMKEFVuG90Pfvxnwu6E3XGDx29Pu5ZZkzmkwKk1p1prGSasivlmlOWpKnwvLjfaXYYUboQRc0QO3U-0jILixANjBWslwPgvazM99fE1Nc7z5bYvUZp7uFmwUkJF0ch9vw5JO67BZXsdAiuisw_qCtuAOdI1Bfsg1JZOE2JODtFCiGpNXrD9zmqV5Gr3hZ2VGTEqLCdo_9Z5JMjIb6bsw6F6_XN7Q4tIEqjCaMqqVJ0MZcc08pTHdI4IwHlAJQg0_xESlZIAoTSdJaGizymGJkQYNJHewpdRsD2rpJNX7QGLGIt9R2BhRF1cIZQLOWTuIvLYO48hrgFPOl1CFori52GIsKi1kO8cC51fYORZ-A86qNtNcT-NP62bpBlHE1ky4WGEGOBSGAzgvXTN__XtvB_8zP4HVx6uu6N327w9hzTW0B_vrpQm17P1DHyEYyaJju94-AWEf0hE | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compression+of+multi-temporal+hyperspectral+images+based+on+RLS+filter&rft.jtitle=The+Visual+computer&rft.au=Dua%2C+Yaman&rft.au=Singh%2C+Ravi+Shankar&rft.au=Kumar%2C+Vinod&rft.date=2022-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0178-2789&rft.eissn=1432-2315&rft.volume=38&rft.issue=1&rft.spage=65&rft.epage=75&rft_id=info:doi/10.1007%2Fs00371-020-02000-6&rft.externalDocID=10_1007_s00371_020_02000_6 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2789&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2789&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2789&client=summon |