An explainable multi-sparsity multi-kernel nonconvex optimization least-squares classifier method via ADMM

Convex optimization techniques are extensively applied to various models, algorithms, and applications of machine learning and data mining. For optimization-based classification methods, the sparsity principle can greatly help to select simple classifier models, while the single- and multi-kernel me...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 34; no. 18; pp. 16103 - 16128
Main Authors Zhang, Zhiwang, He, Jing, Cao, Jie, Li, Shuqing, Li, Xingsen, Zhang, Kai, Wang, Pingjiang, Shi, Yong
Format Journal Article
LanguageEnglish
Published London Springer London 01.09.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0941-0643
1433-3058
DOI10.1007/s00521-022-07282-6

Cover

Abstract Convex optimization techniques are extensively applied to various models, algorithms, and applications of machine learning and data mining. For optimization-based classification methods, the sparsity principle can greatly help to select simple classifier models, while the single- and multi-kernel methods can effectively address nonlinearly separable problems. However, the limited sparsity and kernel methods hinder the improvement of the predictive accuracy, efficiency, iterative update, and interpretable classification model. In this paper, we propose a new Explainable Multi-sparsity Multi-kernel Nonconvex Optimization Least-squares Classifier (EM 2 NOLC) model, which is an optimization problem with a least-squares objective function and multi-sparsity multi-kernel nonconvex constraints, aiming to address the aforementioned issues. Based on reconstructed multiple kernel learning (MKL), the proposed model can extract important instances and features by finding the sparse coefficient and kernel weight vectors, which are used to compute importance or contribution to classification and obtain the explainable prediction. The corresponding EM 2 NOLC algorithm is implemented with the Alternating Direction Method of Multipliers (ADMM) method. On the real classification datasets, compared with the three ADMM classifiers of Linear Support Vector Machine Classifier, SVMC, Least Absolute Shrinkage and Selection Operator Classifier, the two MKL classifiers of SimpleMKL and EasyMKL, and the gradient descent classifier of Feature Selection for SVMC, our proposed EM 2 NOLC generally obtains the best predictive performance and explainable results with the least number of important instances and features having different contribution percentages.
AbstractList Convex optimization techniques are extensively applied to various models, algorithms, and applications of machine learning and data mining. For optimization-based classification methods, the sparsity principle can greatly help to select simple classifier models, while the single- and multi-kernel methods can effectively address nonlinearly separable problems. However, the limited sparsity and kernel methods hinder the improvement of the predictive accuracy, efficiency, iterative update, and interpretable classification model. In this paper, we propose a new Explainable Multi-sparsity Multi-kernel Nonconvex Optimization Least-squares Classifier (EM 2 NOLC) model, which is an optimization problem with a least-squares objective function and multi-sparsity multi-kernel nonconvex constraints, aiming to address the aforementioned issues. Based on reconstructed multiple kernel learning (MKL), the proposed model can extract important instances and features by finding the sparse coefficient and kernel weight vectors, which are used to compute importance or contribution to classification and obtain the explainable prediction. The corresponding EM 2 NOLC algorithm is implemented with the Alternating Direction Method of Multipliers (ADMM) method. On the real classification datasets, compared with the three ADMM classifiers of Linear Support Vector Machine Classifier, SVMC, Least Absolute Shrinkage and Selection Operator Classifier, the two MKL classifiers of SimpleMKL and EasyMKL, and the gradient descent classifier of Feature Selection for SVMC, our proposed EM 2 NOLC generally obtains the best predictive performance and explainable results with the least number of important instances and features having different contribution percentages.
Convex optimization techniques are extensively applied to various models, algorithms, and applications of machine learning and data mining. For optimization-based classification methods, the sparsity principle can greatly help to select simple classifier models, while the single- and multi-kernel methods can effectively address nonlinearly separable problems. However, the limited sparsity and kernel methods hinder the improvement of the predictive accuracy, efficiency, iterative update, and interpretable classification model. In this paper, we propose a new Explainable Multi-sparsity Multi-kernel Nonconvex Optimization Least-squares Classifier (EM2NOLC) model, which is an optimization problem with a least-squares objective function and multi-sparsity multi-kernel nonconvex constraints, aiming to address the aforementioned issues. Based on reconstructed multiple kernel learning (MKL), the proposed model can extract important instances and features by finding the sparse coefficient and kernel weight vectors, which are used to compute importance or contribution to classification and obtain the explainable prediction. The corresponding EM2NOLC algorithm is implemented with the Alternating Direction Method of Multipliers (ADMM) method. On the real classification datasets, compared with the three ADMM classifiers of Linear Support Vector Machine Classifier, SVMC, Least Absolute Shrinkage and Selection Operator Classifier, the two MKL classifiers of SimpleMKL and EasyMKL, and the gradient descent classifier of Feature Selection for SVMC, our proposed EM2NOLC generally obtains the best predictive performance and explainable results with the least number of important instances and features having different contribution percentages.
Author Li, Shuqing
Cao, Jie
Wang, Pingjiang
Zhang, Zhiwang
He, Jing
Li, Xingsen
Shi, Yong
Zhang, Kai
Author_xml – sequence: 1
  givenname: Zhiwang
  orcidid: 0000-0002-1060-5797
  surname: Zhang
  fullname: Zhang, Zhiwang
  email: 9120211050@nufe.edu.cn
  organization: College of Information Engineering, Nanjing University of Finance and Economics
– sequence: 2
  givenname: Jing
  surname: He
  fullname: He, Jing
  organization: Department of Neuroscience, University of Oxford
– sequence: 3
  givenname: Jie
  surname: Cao
  fullname: Cao, Jie
  organization: College of Information Engineering, Nanjing University of Finance and Economics
– sequence: 4
  givenname: Shuqing
  surname: Li
  fullname: Li, Shuqing
  organization: College of Information Engineering, Nanjing University of Finance and Economics
– sequence: 5
  givenname: Xingsen
  surname: Li
  fullname: Li, Xingsen
  organization: Research Institute of Extenics and Innovation Methods, Guangdong University of Technology
– sequence: 6
  givenname: Kai
  surname: Zhang
  fullname: Zhang, Kai
  organization: Quanzhou HUST Research Institute of Intelligent Manufacturing
– sequence: 7
  givenname: Pingjiang
  surname: Wang
  fullname: Wang, Pingjiang
  organization: Quanzhou HUST Research Institute of Intelligent Manufacturing, School of Mechanical Science and Engineering, Huazhong University of Science and Technology
– sequence: 8
  givenname: Yong
  surname: Shi
  fullname: Shi, Yong
  organization: Research Center on Fictitious Economy and Data Science, Chinese Academy of Sciences
BookMark eNp9kM1OAyEURompiW31BVyRuEYZmDKwbOpv0saNrglD7yh1ykyBNq1P77Q1MXHRFQG-c7-bM0A933hA6DqjtxmlxV2kdMQyQhkjtGCSEXGG-lnOOeF0JHuoT1XefYucX6BBjAtKaS7kqI8WY49h29bGeVPWgJfrOjkSWxOiS7vf6xcEDzXuOm3jN7DFTZvc0n2b5BqPazAxkbhamwAR29rE6CoHAS8hfTZzvHEGj-9ns0t0Xpk6wtXvOUTvjw9vk2cyfX16mYynxPJMJQKlkqpkBQgh1TyvVEGVFBJUWciytFZlWc6MraS0c6GqOSstEyC53D90cT5EN8e5bWhWa4hJL5p18F2lZgUdKSoU512KHVM2NDEGqHQb3NKEnc6o3jvVR6e6c6oPTrXoIPkPsi4dLKRgXH0a5Uc0dj3-A8LfVieoH-Ufj4Q
CitedBy_id crossref_primary_10_1016_j_procs_2022_11_337
crossref_primary_10_1016_j_eswa_2023_120635
crossref_primary_10_1007_s00521_023_09321_2
crossref_primary_10_1007_s44196_024_00455_2
crossref_primary_10_1007_s10614_023_10535_8
Cites_doi 10.1017/CBO9780511801389
10.1016/j.knosys.2013.04.006
10.1017/CBO9780511809682
10.1561/2200000015
10.18637/jss.v084.i10
10.1201/b18401
10.1007/s10489-020-01687-3
10.1016/j.patcog.2014.12.001
10.1201/b17758
10.1561/2200000016
10.1109/TII.2020.3030709
10.1198/016214506000001383
10.1109/TGRS.2015.2514161
10.1007/s10994-009-5119-5
10.1016/S0893-6080(00)00077-0
10.1111/j.2517-6161.1996.tb02080.x
10.1201/b14297
10.1016/j.patrec.2010.06.017
10.1145/1273496.1273646
10.1561/2200000058
10.1561/2000000102
10.1016/j.neucom.2014.11.078
10.1162/NECO_a_00537
10.1137/16M1080173
10.1017/CBO9781107298019
10.1561/2200000018
10.1073/pnas.1900654116
10.1017/9781108583664
10.1016/j.patcog.2020.107194
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-022-07282-6
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 16128
ExternalDocumentID 10_1007_s00521_022_07282_6
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61877061; 71271191; 71871109; 91646204; 71701089
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Jiangsu Provincial Policy Guidance Program
  grantid: BZ2020008
– fundername: High-End Foreign Experts Projects
  grantid: G2021194011L
– fundername: Key Program of National Natural Science Foundation of China
  grantid: 92046026
– fundername: Jiangsu Provincial Key Research and Development Program
  grantid: BE2020001-3
  funderid: http://dx.doi.org/10.13039/501100013058
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-eb989b27e6689d4f9709868e9b78bbcc91142acf88cd69fd2bc26e83888cd4f93
IEDL.DBID U2A
ISSN 0941-0643
IngestDate Mon Jul 14 10:43:13 EDT 2025
Wed Oct 01 02:26:13 EDT 2025
Thu Apr 24 23:03:59 EDT 2025
Fri Feb 21 02:44:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords Multiple kernel learning
Nonconvex optimization
Sparse learning
Explainable
Least squares
Classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-eb989b27e6689d4f9709868e9b78bbcc91142acf88cd69fd2bc26e83888cd4f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1060-5797
PQID 2705906933
PQPubID 2043988
PageCount 26
ParticipantIDs proquest_journals_2705906933
crossref_primary_10_1007_s00521_022_07282_6
crossref_citationtrail_10_1007_s00521_022_07282_6
springer_journals_10_1007_s00521_022_07282_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2022
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References JainPKarPNon-convex optimization for machine learningFound Trends Mach Learn2017103–41423361388.68251
SjöstrandKClemmensenLHLarsenREinarssonGErsbøllBKSpasm: a matlab toolbox for sparse statistical modelingJ Stat Softw20188410137
GallierJQuaintanceJFundamentals of optimization theory with applications to machine learning2019PhiladelphiaUniversity of Pennsylvania1446.90107
BottouLCurtisEFNocedalJOptimization methods for large-scale machine learningSIAM Rev201860222331137977191397.65085
WestonJElisseeffASchölkopfBTippingMUse of the zero-norm with linear models and kernel methodsJ Mach Learn Res200331439146119830131102.68605
Shalev-ShwartzSOnline learning and online convex optimizationFound Trends Mach Learn2011421071941253.68190
HandDJMeasuring classifier performance: a coherent alternative to the area under the ROC curveMach Learn2009771031231470.62085
AiolliFDoniniMEasyMKL: a scalable multiple kernel learning algorithmNeurocomputing2015169215224
Weston J, Mukherjee S, Chapelle O, Pontil M, Poggio T, Vapnik V (2000) Feature selection for SVMs
CharniakEIntroduction to deep learning2019CambridgeThe MIT Press
Shawe-TaylorJCristianiniNKernel methods for pattern analysis2004CambridgeCambridge University Press0994.68074
ZhangZGaoGYaoTHeJTianYAn interpretable regression approach based on bi-sparse optimizationAppl Intell2020501141174142
RishIGrabarnikGYSparse modeling: theory, algorithms, and applications2014Boca RatonChapman & Hall/CRC Press1351.94011
Dua D, Graff C (2019) UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science
Chapelle O, Keerthi SS (2008) Multi-class feature selection with support vector machines. In Proceedings of the American statistical association
MairalJBachFPonceJSparse modeling for image and vision processingFound Trends Comput Graph Vis201282–3852831333.68263
MurdochWJSinghCKumbierKAbbasi-AslRYuBInterpretable machine learning: definitions, methods, and applicationsPNAS20191164422071220801431.62266
https://web.stanford.edu/~boyd/index.html
YangXIntroduction to algorithms for data mining and machine learning2019CambridgeAcademic Press1411.68005
WangLShenXOn L1-Norm Multiclass Support Vector MachinesJ Am Stat Assoc20071024785835941172.62317
NazarpourAAdibiPTwo-stage multiple kernel learning for supervised dimensionality reductionPattern Recogn201548518541862
Shalev-ShwartzSBen-DavidSUnderstanding machine learning: from theory to algorithms2014CambridgeCambridge University Press1305.68005
SraSNowozinSWrightSJOptimization for machine learning2012CambridgeMit Press1304.65075
SonnenburgSRätschGSchäferCSchölkopfBLarge scale multiple kernel learningJ Mach Learn Res200671531156522744161222.90072
TibshiraniRRegression shrinkage and selection via the lassoJ R Stat Soc Ser B (Methodological)19965826728813792420850.62538
SuykensJAVandewalleJMoorBDOptimal control by least squares support vector machinesNeural Netw20011412335
CaoJWangYHeJLiangWTaoHZhuGPredicting grain losses and waste rate along the entire chain: a multitask multigated recurrent unit autoencoder based methodIEEE Trans Industr Inform202117643904400
KantardzicMData mining concepts, models, methods, and algorithms20203HobokenWiley-IEEE Press1232.68001
HastieTTibshiraniRWainwrightMStatistical learning with sparsity: the lasso and generalizations2015Boca RatonCRC Press1319.68003
HuangKZhengDSunJHottaYFujimotoKNaoiSSparse learning for support vector classificationPattern Recogn Lett2010311319441951
Zhu J, Rosset S, Tibshirani R, Hastie TJ (2004) 1-norm support vector machines. In Advances in neural information processing systems, pages 49–56
Hall, P. & Gill, N. (2019). An Introduction to Machine Learning Interpretability, An Applied Perspective on Fairness, Accountability, Transparency, and Explainable AI, 2nd Edition. O'Reilly Media, Inc.
HazanEIntroduction to online convex optimizationFound Trends Optim201523–4157325
GoodfellowIBengioYCourvilleADeep learning2016CambridgeThe MIT Press1373.68009
BoydSParikhNChuEPeleatoBEcksteinJDistributed optimization and statistical learning via the alternating direction method of multipliersFound Trends Mach Learn20103111221229.90122
Beck A (2017) First-order methods in optimization. Mathematical optimization society and the society for industrial and applied mathematics, Philadelphia, PA 19104–2688 USA
Molnar C (2021). Interpretable machine learning, a guide for making black box models explainable. Leanpub.com
CristianiniNShawe-TaylorJAn introduction to support vector machines and other kernel-based learning methods2000CambridgeCambridge University Press0994.68074
SimeoneOA brief introduction to machine learning for engineersFound Trends Signal Process2018123–420043138528791403.68214
ShigeoASupport vector machines for pattern classification20102BerlinSpringer1191.68549
Gregorova M (2019) Sparse learning for variable selection with structures and nonlinearities. Doctoral dissertation, Geneve
BoydSVandenbergheLIntroduction to applied linear algebra vectors, matrices, and least squares2018CambridgeCambridge University Press1406.15001
GönenMAlpaydinEMultiple kernel learning algorithmsJ Mach Learn Res2011122211226828254251280.68167
LauriolaIGallicchioCAiolliFEnhancing deep neural networks via multiple kernel learningPattern Recogn2020101107194
TheodoridisSMachine learning a Bayesian and optimization perspective20202ElsevierAcademic Press
YamadaMJitkrittumWSigalLXingEPSugiyamaMHigh-dimensional feature selection by feature-wise kernelized lassoNeural Comput201426118520731555841410.68328
Zien, A., & Ong, C. S. (2007). Multiclass multiple kernel learning. In Proceedings of the 24th international conference on Machine learning, pages 1191–1198, ACM.
WangTZhaoDFengYTwo-stage multiple kernel learning with multiclass kernel polarizationKnowl-Based Syst2013481016
Matlab, http://www.mathworks.com
BachFJenattonRMairalJObozinskiGOptimization with sparsity-inducing penaltiesFound Trends Mach Learn201141110606064248
ParikhNBoydSProximal algorithmsFound Trends Optim201313123231
DengNTianYZhangCSupport vector machines: optimization-based theory, algorithms, and extensions2012Boca RatonCRC Press1278.68011
RakotomamonjyABachFRCanuSGrandvaletYSimpleMKLJ Mach Learn Res200892491252124608911225.68208
GuYLiuTJiaXBenediktssonJAChanussotJNonlinear multiple Kernel learning with multiple-structure-element extended morphological Profiles for hyperspectral image classificationIEEE Trans Geosci Remote Sens201654632353247
XanthopoulosPPardalosPMTrafalisTBRobust data mining2012BerlinSpringer Science & Business Media1260.90003
7282_CR54
7282_CR55
7282_CR12
T Hastie (7282_CR48) 2015
DJ Hand (7282_CR53) 2009; 77
J Mairal (7282_CR28) 2012; 8
7282_CR52
M Yamada (7282_CR30) 2014; 26
A Rakotomamonjy (7282_CR9) 2008; 9
M Gönen (7282_CR10) 2011; 12
P Xanthopoulos (7282_CR50) 2012
Y Gu (7282_CR11) 2016; 54
P Jain (7282_CR22) 2017; 10
7282_CR45
7282_CR47
A Nazarpour (7282_CR14) 2015; 48
K Sjöstrand (7282_CR31) 2018; 84
Z Zhang (7282_CR18) 2020; 50
J Weston (7282_CR23) 2003; 3
X Yang (7282_CR2) 2019
K Huang (7282_CR24) 2010; 31
(7282_CR1) 2012
E Charniak (7282_CR43) 2019
A Shigeo (7282_CR5) 2010
I Goodfellow (7282_CR42) 2016
R Tibshirani (7282_CR29) 1996; 58
7282_CR32
F Aiolli (7282_CR16) 2015; 169
7282_CR35
J Gallier (7282_CR36) 2019
S Shalev-Shwartz (7282_CR38) 2014
S Shalev-Shwartz (7282_CR40) 2011; 4
WJ Murdoch (7282_CR46) 2019; 116
O Simeone (7282_CR7) 2018; 12
S Theodoridis (7282_CR37) 2020
J Shawe-Taylor (7282_CR8) 2004
J Cao (7282_CR44) 2021; 17
JA Suykens (7282_CR49) 2001; 14
E Hazan (7282_CR41) 2015; 2
N Cristianini (7282_CR4) 2000
I Rish (7282_CR20) 2014
7282_CR21
S Boyd (7282_CR51) 2018
7282_CR25
7282_CR27
N Deng (7282_CR6) 2012
S Sonnenburg (7282_CR15) 2006; 7
T Wang (7282_CR13) 2013; 48
L Wang (7282_CR26) 2007; 102
N Parikh (7282_CR33) 2013; 1
S Boyd (7282_CR34) 2010; 3
F Bach (7282_CR19) 2011; 4
L Bottou (7282_CR39) 2018; 60
I Lauriola (7282_CR17) 2020; 101
M Kantardzic (7282_CR3) 2020
References_xml – reference: GallierJQuaintanceJFundamentals of optimization theory with applications to machine learning2019PhiladelphiaUniversity of Pennsylvania1446.90107
– reference: TheodoridisSMachine learning a Bayesian and optimization perspective20202ElsevierAcademic Press
– reference: SimeoneOA brief introduction to machine learning for engineersFound Trends Signal Process2018123–420043138528791403.68214
– reference: SraSNowozinSWrightSJOptimization for machine learning2012CambridgeMit Press1304.65075
– reference: Chapelle O, Keerthi SS (2008) Multi-class feature selection with support vector machines. In Proceedings of the American statistical association
– reference: ParikhNBoydSProximal algorithmsFound Trends Optim201313123231
– reference: HandDJMeasuring classifier performance: a coherent alternative to the area under the ROC curveMach Learn2009771031231470.62085
– reference: ShigeoASupport vector machines for pattern classification20102BerlinSpringer1191.68549
– reference: WangLShenXOn L1-Norm Multiclass Support Vector MachinesJ Am Stat Assoc20071024785835941172.62317
– reference: GuYLiuTJiaXBenediktssonJAChanussotJNonlinear multiple Kernel learning with multiple-structure-element extended morphological Profiles for hyperspectral image classificationIEEE Trans Geosci Remote Sens201654632353247
– reference: RakotomamonjyABachFRCanuSGrandvaletYSimpleMKLJ Mach Learn Res200892491252124608911225.68208
– reference: Gregorova M (2019) Sparse learning for variable selection with structures and nonlinearities. Doctoral dissertation, Geneve
– reference: YangXIntroduction to algorithms for data mining and machine learning2019CambridgeAcademic Press1411.68005
– reference: XanthopoulosPPardalosPMTrafalisTBRobust data mining2012BerlinSpringer Science & Business Media1260.90003
– reference: BoydSVandenbergheLIntroduction to applied linear algebra vectors, matrices, and least squares2018CambridgeCambridge University Press1406.15001
– reference: Shawe-TaylorJCristianiniNKernel methods for pattern analysis2004CambridgeCambridge University Press0994.68074
– reference: Hall, P. & Gill, N. (2019). An Introduction to Machine Learning Interpretability, An Applied Perspective on Fairness, Accountability, Transparency, and Explainable AI, 2nd Edition. O'Reilly Media, Inc.
– reference: Beck A (2017) First-order methods in optimization. Mathematical optimization society and the society for industrial and applied mathematics, Philadelphia, PA 19104–2688 USA
– reference: Molnar C (2021). Interpretable machine learning, a guide for making black box models explainable. Leanpub.com
– reference: Matlab, http://www.mathworks.com
– reference: SuykensJAVandewalleJMoorBDOptimal control by least squares support vector machinesNeural Netw20011412335
– reference: Shalev-ShwartzSBen-DavidSUnderstanding machine learning: from theory to algorithms2014CambridgeCambridge University Press1305.68005
– reference: Weston J, Mukherjee S, Chapelle O, Pontil M, Poggio T, Vapnik V (2000) Feature selection for SVMs
– reference: JainPKarPNon-convex optimization for machine learningFound Trends Mach Learn2017103–41423361388.68251
– reference: HuangKZhengDSunJHottaYFujimotoKNaoiSSparse learning for support vector classificationPattern Recogn Lett2010311319441951
– reference: https://web.stanford.edu/~boyd/index.html
– reference: CristianiniNShawe-TaylorJAn introduction to support vector machines and other kernel-based learning methods2000CambridgeCambridge University Press0994.68074
– reference: WestonJElisseeffASchölkopfBTippingMUse of the zero-norm with linear models and kernel methodsJ Mach Learn Res200331439146119830131102.68605
– reference: GoodfellowIBengioYCourvilleADeep learning2016CambridgeThe MIT Press1373.68009
– reference: DengNTianYZhangCSupport vector machines: optimization-based theory, algorithms, and extensions2012Boca RatonCRC Press1278.68011
– reference: KantardzicMData mining concepts, models, methods, and algorithms20203HobokenWiley-IEEE Press1232.68001
– reference: Shalev-ShwartzSOnline learning and online convex optimizationFound Trends Mach Learn2011421071941253.68190
– reference: CharniakEIntroduction to deep learning2019CambridgeThe MIT Press
– reference: Dua D, Graff C (2019) UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science
– reference: CaoJWangYHeJLiangWTaoHZhuGPredicting grain losses and waste rate along the entire chain: a multitask multigated recurrent unit autoencoder based methodIEEE Trans Industr Inform202117643904400
– reference: BottouLCurtisEFNocedalJOptimization methods for large-scale machine learningSIAM Rev201860222331137977191397.65085
– reference: BoydSParikhNChuEPeleatoBEcksteinJDistributed optimization and statistical learning via the alternating direction method of multipliersFound Trends Mach Learn20103111221229.90122
– reference: TibshiraniRRegression shrinkage and selection via the lassoJ R Stat Soc Ser B (Methodological)19965826728813792420850.62538
– reference: HastieTTibshiraniRWainwrightMStatistical learning with sparsity: the lasso and generalizations2015Boca RatonCRC Press1319.68003
– reference: ZhangZGaoGYaoTHeJTianYAn interpretable regression approach based on bi-sparse optimizationAppl Intell2020501141174142
– reference: MairalJBachFPonceJSparse modeling for image and vision processingFound Trends Comput Graph Vis201282–3852831333.68263
– reference: WangTZhaoDFengYTwo-stage multiple kernel learning with multiclass kernel polarizationKnowl-Based Syst2013481016
– reference: NazarpourAAdibiPTwo-stage multiple kernel learning for supervised dimensionality reductionPattern Recogn201548518541862
– reference: BachFJenattonRMairalJObozinskiGOptimization with sparsity-inducing penaltiesFound Trends Mach Learn201141110606064248
– reference: MurdochWJSinghCKumbierKAbbasi-AslRYuBInterpretable machine learning: definitions, methods, and applicationsPNAS20191164422071220801431.62266
– reference: AiolliFDoniniMEasyMKL: a scalable multiple kernel learning algorithmNeurocomputing2015169215224
– reference: RishIGrabarnikGYSparse modeling: theory, algorithms, and applications2014Boca RatonChapman & Hall/CRC Press1351.94011
– reference: SjöstrandKClemmensenLHLarsenREinarssonGErsbøllBKSpasm: a matlab toolbox for sparse statistical modelingJ Stat Softw20188410137
– reference: Zien, A., & Ong, C. S. (2007). Multiclass multiple kernel learning. In Proceedings of the 24th international conference on Machine learning, pages 1191–1198, ACM.
– reference: LauriolaIGallicchioCAiolliFEnhancing deep neural networks via multiple kernel learningPattern Recogn2020101107194
– reference: GönenMAlpaydinEMultiple kernel learning algorithmsJ Mach Learn Res2011122211226828254251280.68167
– reference: Zhu J, Rosset S, Tibshirani R, Hastie TJ (2004) 1-norm support vector machines. In Advances in neural information processing systems, pages 49–56
– reference: YamadaMJitkrittumWSigalLXingEPSugiyamaMHigh-dimensional feature selection by feature-wise kernelized lassoNeural Comput201426118520731555841410.68328
– reference: HazanEIntroduction to online convex optimizationFound Trends Optim201523–4157325
– reference: SonnenburgSRätschGSchäferCSchölkopfBLarge scale multiple kernel learningJ Mach Learn Res200671531156522744161222.90072
– volume-title: An introduction to support vector machines and other kernel-based learning methods
  year: 2000
  ident: 7282_CR4
  doi: 10.1017/CBO9780511801389
– volume-title: Machine learning a Bayesian and optimization perspective
  year: 2020
  ident: 7282_CR37
– volume: 48
  start-page: 10
  year: 2013
  ident: 7282_CR13
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2013.04.006
– volume: 12
  start-page: 2211
  year: 2011
  ident: 7282_CR10
  publication-title: J Mach Learn Res
– ident: 7282_CR32
– volume-title: Support vector machines for pattern classification
  year: 2010
  ident: 7282_CR5
– volume-title: Kernel methods for pattern analysis
  year: 2004
  ident: 7282_CR8
  doi: 10.1017/CBO9780511809682
– volume: 4
  start-page: 1
  issue: 1
  year: 2011
  ident: 7282_CR19
  publication-title: Found Trends Mach Learn
  doi: 10.1561/2200000015
– ident: 7282_CR55
– volume-title: Data mining concepts, models, methods, and algorithms
  year: 2020
  ident: 7282_CR3
– volume: 84
  start-page: 1
  issue: 10
  year: 2018
  ident: 7282_CR31
  publication-title: J Stat Softw
  doi: 10.18637/jss.v084.i10
– volume-title: Deep learning
  year: 2016
  ident: 7282_CR42
– volume-title: Statistical learning with sparsity: the lasso and generalizations
  year: 2015
  ident: 7282_CR48
  doi: 10.1201/b18401
– ident: 7282_CR47
– volume: 50
  start-page: 4117
  issue: 11
  year: 2020
  ident: 7282_CR18
  publication-title: Appl Intell
  doi: 10.1007/s10489-020-01687-3
– volume: 48
  start-page: 1854
  issue: 5
  year: 2015
  ident: 7282_CR14
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2014.12.001
– volume-title: Robust data mining
  year: 2012
  ident: 7282_CR50
– volume-title: Fundamentals of optimization theory with applications to machine learning
  year: 2019
  ident: 7282_CR36
– volume-title: Introduction to deep learning
  year: 2019
  ident: 7282_CR43
– volume-title: Sparse modeling: theory, algorithms, and applications
  year: 2014
  ident: 7282_CR20
  doi: 10.1201/b17758
– volume: 3
  start-page: 1
  issue: 1
  year: 2010
  ident: 7282_CR34
  publication-title: Found Trends Mach Learn
  doi: 10.1561/2200000016
– volume: 17
  start-page: 4390
  issue: 6
  year: 2021
  ident: 7282_CR44
  publication-title: IEEE Trans Industr Inform
  doi: 10.1109/TII.2020.3030709
– volume-title: Optimization for machine learning
  year: 2012
  ident: 7282_CR1
– ident: 7282_CR27
– ident: 7282_CR54
– volume: 102
  start-page: 583
  issue: 478
  year: 2007
  ident: 7282_CR26
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214506000001383
– volume: 8
  start-page: 85
  issue: 2–3
  year: 2012
  ident: 7282_CR28
  publication-title: Found Trends Comput Graph Vis
– volume: 54
  start-page: 3235
  issue: 6
  year: 2016
  ident: 7282_CR11
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2015.2514161
– ident: 7282_CR21
– volume: 9
  start-page: 2491
  year: 2008
  ident: 7282_CR9
  publication-title: J Mach Learn Res
– volume: 77
  start-page: 103
  year: 2009
  ident: 7282_CR53
  publication-title: Mach Learn
  doi: 10.1007/s10994-009-5119-5
– volume: 14
  start-page: 23
  issue: 1
  year: 2001
  ident: 7282_CR49
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(00)00077-0
– volume: 58
  start-page: 267
  year: 1996
  ident: 7282_CR29
  publication-title: J R Stat Soc Ser B (Methodological)
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume-title: Support vector machines: optimization-based theory, algorithms, and extensions
  year: 2012
  ident: 7282_CR6
  doi: 10.1201/b14297
– volume: 31
  start-page: 1944
  issue: 13
  year: 2010
  ident: 7282_CR24
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2010.06.017
– volume: 2
  start-page: 157
  issue: 3–4
  year: 2015
  ident: 7282_CR41
  publication-title: Found Trends Optim
– volume: 7
  start-page: 1531
  year: 2006
  ident: 7282_CR15
  publication-title: J Mach Learn Res
– volume-title: Introduction to algorithms for data mining and machine learning
  year: 2019
  ident: 7282_CR2
– ident: 7282_CR12
  doi: 10.1145/1273496.1273646
– volume: 10
  start-page: 142
  issue: 3–4
  year: 2017
  ident: 7282_CR22
  publication-title: Found Trends Mach Learn
  doi: 10.1561/2200000058
– volume: 12
  start-page: 200
  issue: 3–4
  year: 2018
  ident: 7282_CR7
  publication-title: Found Trends Signal Process
  doi: 10.1561/2000000102
– volume: 169
  start-page: 215
  year: 2015
  ident: 7282_CR16
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.11.078
– volume: 26
  start-page: 185
  issue: 1
  year: 2014
  ident: 7282_CR30
  publication-title: Neural Comput
  doi: 10.1162/NECO_a_00537
– volume: 60
  start-page: 223
  issue: 2
  year: 2018
  ident: 7282_CR39
  publication-title: SIAM Rev
  doi: 10.1137/16M1080173
– volume-title: Understanding machine learning: from theory to algorithms
  year: 2014
  ident: 7282_CR38
  doi: 10.1017/CBO9781107298019
– ident: 7282_CR45
– volume: 4
  start-page: 107
  issue: 2
  year: 2011
  ident: 7282_CR40
  publication-title: Found Trends Mach Learn
  doi: 10.1561/2200000018
– volume: 116
  start-page: 22071
  issue: 44
  year: 2019
  ident: 7282_CR46
  publication-title: PNAS
  doi: 10.1073/pnas.1900654116
– volume: 3
  start-page: 1439
  year: 2003
  ident: 7282_CR23
  publication-title: J Mach Learn Res
– ident: 7282_CR35
– ident: 7282_CR52
– volume-title: Introduction to applied linear algebra vectors, matrices, and least squares
  year: 2018
  ident: 7282_CR51
  doi: 10.1017/9781108583664
– volume: 101
  start-page: 107194
  year: 2020
  ident: 7282_CR17
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2020.107194
– ident: 7282_CR25
– volume: 1
  start-page: 123
  issue: 3
  year: 2013
  ident: 7282_CR33
  publication-title: Found Trends Optim
SSID ssj0004685
Score 2.3309393
Snippet Convex optimization techniques are extensively applied to various models, algorithms, and applications of machine learning and data mining. For...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 16103
SubjectTerms Algorithms
Artificial Intelligence
Classification
Classifiers
Computational Biology/Bioinformatics
Computational geometry
Computational Science and Engineering
Computer Science
Convexity
Data mining
Data Mining and Knowledge Discovery
Feature extraction
Image Processing and Computer Vision
Iterative methods
Kernel functions
Least squares
Machine learning
Optimization
Optimization techniques
Original Article
Performance prediction
Probability and Statistics in Computer Science
Sparsity
Support vector machines
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60Xrz4FqtVcvCmQZvdZpODSH0hQouIgrelyU5ArduqVfrzzaRZq4IeN5sNy2Qyk0nmmw9gVxboqCgLF6k1PBUoeA8Tx72nSpsoLDpN4OROV17epVf3rfsZ6FZYGEqrrGxiMNTFwNIZ-YHICCYpffx9PHzhxBpFt6sVhUYvUisUR6HE2CzMCaqMVYO5k_Pu9c03pGQg6fQxDeX7pEmE0QQwHZ2Q-lZB2Zg-EOHyp6ua7j9_XZkGT3SxBAtxC8nakzlfhhksV2CxomdgcbWuwmO7ZDge9iM-ioXcQe4tSMjDiI9P-Fpin5WDMuSfj9nA25DnCM5kfWL24W8v74RSYpZ22g_OO1I2IZ5mHw891j7rdNbg7uL89vSSR2oFbv2aG3E0WmkjMpRS6SJ1OjvUSirUJlPGWKsJYtuzTilbSO0KYayQqBJFDb57sg41_2e4AUy2mplsGh82OUxRtBTd1LnEB17WFF5F6tCspJjbWHec6C_6-VfF5CD53Es-D5LPZR32vr4ZTqpu_Nu7UU1OHlfgWz7VlzrsVxM2ff33aJv_j7YF8yLoCKWZNaA2en3Hbb8vGZmdqGyfa5ffuA
  priority: 102
  providerName: ProQuest
Title An explainable multi-sparsity multi-kernel nonconvex optimization least-squares classifier method via ADMM
URI https://link.springer.com/article/10.1007/s00521-022-07282-6
https://www.proquest.com/docview/2705906933
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1433-3058
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ABDBF
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241103
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ADMLS
  dateStart: 19930301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-3058
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: 8FG
  dateStart: 20180401
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED5B-8ILDDZEB1R-2NtmaXVSx34MrAUxFU2ISuwpqp2zVOi6rj9Q_3zOrlNgAiSeoiSOFZ3Pvjv7--4AvsgSnU_KwkVqDU8FCj7AxHGyVGkLhUWnPTm5dynP--nFTfsmksJmFdq9OpIMK_Wa7OZ3MCn0FR4tSYECl5tQb_t0XqTFfZE_YUOGQpwUt3hMT5pEqszLfTw3R48-5n_HosHadD_AdnQTWb4a113YwPEe7FQlGFickR_hNh8zXE5GkQPFAj6Q0yoRsBbx9g6nYxwxCvQDxnzJ_tI68ScSMNnIV-_hs38Lz0Ri1nvTQ0fGkq2KS7P74YDlP3q9T9Dvdq5Pz3ksn8Atzas5R6OVNiJDKZUuU6ez71pJhdpkyhhrtafRDqxTypZSu1IYKySqRPkH1DzZhxr9GR4Ak-1WJluGQiOHKYq28qdxLqHgypqS1KABrUqKhY25xX2Ji1GxzoocJF-Q5Isg-UI24Ov6m8kqs8abrY-qwSniLJsVIvPUWamTpAHfqgF7fP16b5_f1_wQtkTQGQ8tO4LafLrAY_JF5qYJm6p71oR6fvb7Z4euJ53LX1fNoJAP7VzaHA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9gAX3oiUAj7ACSyI1_HahwqlL6W0iRBqpd6W2DsrFdJN2qQP_hy_jRnH2wASvfW4u15rNZ6dhz3ffABvTIkVN2WRSgcvtUIlh5hVkjyVbqMKWDkGJ_cHpneoPx91jpbgV4OF4bLKxiZGQ12OA--Rf1A5wyQN5d-fJqeSWaP4dLWh0BgmaoVyPbYYS8COPfx5SSncdH13i9b7rVI72webPZlYBmQg9ZtJ9M46r3I0xrpSVy7_6Kyx6HxuvQ_BMdp0GCprQ2lcVSoflEGbWb5BwzOa9w6s6Ew7Sv5WNrYHX77-gcyMpKCUQ3F9kc4SbCeC93hHlu4qrv6kxEeav13jIt7954g2er6dh3A_hayiO9exR7CE9WN40NBBiGQdnsD3bi3wajJKeCwRaxUlWaxY95Euf-BZjSNRj-tY734lxmSzThIYVIyYSUhOT88ZFSUCR_bHFTluMSe6FhfHQ9Hd6vefwuGtCPkZLNOX4XMQptPOTdtTmlahRtWxfDJYkfQ7wZekki1oN1IsQupzznQbo-K6Q3OUfEGSL6LkC9OCd9fvTOZdPm4cvdYsTpH--Gmx0M8WvG8WbPH4_7Ot3jzba7jbO-jvF_u7g70XcE9FfeEStzVYnp2d40uKiWb-VVI8Ad9uW9d_Aw2HHX0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gSIgLb8RgQA7cIIKlXZocJ8bEaxMHJnGrltSRgDHGHmg_HydLt4EAiWNbN6ocJ7ab77MJORYZWFeUhfHYaBZz4KwNkWXoqeIycANWOXJyoymuWvHNY-VxjsXv0e75keSE0-CqNHWHZ73Mnk2Jb-5vJqbB3CEnMWlgYpEsxa5QAlp0i1fnmJG-KSfmMA7fE0eBNvPzGF9d0yze_HZE6j1PfZ2shpCRVidzvEEWoLtJ1vJ2DDSszi3yXO1SGPc6gQ9FPVaQ4Y7hcRfh8gX6XehQTPo93nxM33DPeA1kTNpxnXzY4H3kWEnUuMj6yaLjpJNG0_TjqU2rtUZjm7Tqlw8XVyy0UmAG19iQgVZSaZ6AEFJlsVXJuZJCgtKJ1NoY5Si1bWOlNJlQNuPacAEyku4Gikc7pIBfBruEiko5EWWNaZKFGHhFupM5G2GiZXSGJlEk5VyLqQl1xl27i046rZDsNZ-i5lOv-VQUycn0nd6kysaf0qV8ctKw4gYpTxyNVqgoKpLTfMJmj38fbe9_4kdk-b5WT--um7f7ZIV783GIsxIpDPsjOMAQZagPvRV-Ai9N3TA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+explainable+multi-sparsity+multi-kernel+nonconvex+optimization+least-squares+classifier+method+via+ADMM&rft.jtitle=Neural+computing+%26+applications&rft.au=Zhang%2C+Zhiwang&rft.au=He%2C+Jing&rft.au=Cao%2C+Jie&rft.au=Li%2C+Shuqing&rft.date=2022-09-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=34&rft.issue=18&rft.spage=16103&rft.epage=16128&rft_id=info:doi/10.1007%2Fs00521-022-07282-6&rft.externalDocID=10_1007_s00521_022_07282_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon