Mutation-driven and population grouping PRO algorithm for scheduling budget-constrained workflows in the cloud

Benefiting from cloud computing’s elasticity, scalability, and pay-per-use model, more and more scientific applications are deployed in or migrated to the cloud. Workflow scheduling still faces many challenges due to the growing scales of workflows and the diversified user QoS requirements. In this...

Full description

Saved in:
Bibliographic Details
Published inCluster computing Vol. 27; no. 1; pp. 1137 - 1158
Main Authors Li, Huifang, Chen, Bing, Huang, Jingwei, Cañizares Abreu, Julio Ruben, Chai, Senchun, Xia, Yuanqing
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1386-7857
1573-7543
DOI10.1007/s10586-023-04006-w

Cover

Abstract Benefiting from cloud computing’s elasticity, scalability, and pay-per-use model, more and more scientific applications are deployed in or migrated to the cloud. Workflow scheduling still faces many challenges due to the growing scales of workflows and the diversified user QoS requirements. In this work, we propose a Mutation-driven and population Grouping Poor and Rich Optimization algorithm (MG-PRO) for scheduling workflows in the cloud to minimize makespan while satisfying the budget constraints. Specifically, we first adopt the middle-class sub-population into the original Poor and Rich Optimization algorithm (PRO), and develop the update strategies for rich and middle-class sub-populations to increase the randomness and search diversity. Secondly, the update mechanism for rich individuals is enriched, and the middle-class sub-population is guided by elite rich individuals, which enhances the information exchange and sharing among sub-populations. Finally, an evolution-aware mutation strategy is designed, where the mutation probability is adjusted adaptively as the dynamic monitoring of the population update process, and the two-point and triangular crossover-based mutations are used alternately to intervene the evolution trajectory according to the degree of objective optimization, resulting in a better balance between exploration and exploration. Extensive experiments are conducted on well-known scientific workflows with different types and scales through WorkflowSim. The experimental results show that, in most cases, MG-PRO outperforms existing algorithms in terms of constraint satisfiability, solution quality and stability. It can generate near-optimal solutions with the different budget constraints satisfied in a relatively short time, for example, the makespan resulting from MG-PRO is at most 59.95% shorter than other meta-heuristic algorithms, and at least 7.33% shorter than all its peers.
AbstractList Benefiting from cloud computing’s elasticity, scalability, and pay-per-use model, more and more scientific applications are deployed in or migrated to the cloud. Workflow scheduling still faces many challenges due to the growing scales of workflows and the diversified user QoS requirements. In this work, we propose a Mutation-driven and population Grouping Poor and Rich Optimization algorithm (MG-PRO) for scheduling workflows in the cloud to minimize makespan while satisfying the budget constraints. Specifically, we first adopt the middle-class sub-population into the original Poor and Rich Optimization algorithm (PRO), and develop the update strategies for rich and middle-class sub-populations to increase the randomness and search diversity. Secondly, the update mechanism for rich individuals is enriched, and the middle-class sub-population is guided by elite rich individuals, which enhances the information exchange and sharing among sub-populations. Finally, an evolution-aware mutation strategy is designed, where the mutation probability is adjusted adaptively as the dynamic monitoring of the population update process, and the two-point and triangular crossover-based mutations are used alternately to intervene the evolution trajectory according to the degree of objective optimization, resulting in a better balance between exploration and exploration. Extensive experiments are conducted on well-known scientific workflows with different types and scales through WorkflowSim. The experimental results show that, in most cases, MG-PRO outperforms existing algorithms in terms of constraint satisfiability, solution quality and stability. It can generate near-optimal solutions with the different budget constraints satisfied in a relatively short time, for example, the makespan resulting from MG-PRO is at most 59.95% shorter than other meta-heuristic algorithms, and at least 7.33% shorter than all its peers.
Author Cañizares Abreu, Julio Ruben
Chai, Senchun
Xia, Yuanqing
Li, Huifang
Chen, Bing
Huang, Jingwei
Author_xml – sequence: 1
  givenname: Huifang
  surname: Li
  fullname: Li, Huifang
  email: huifang@bit.edu.cn
  organization: State Key Laboratory of Intelligent Control and Decision of Complex Systems, Beijing Institute of Technology
– sequence: 2
  givenname: Bing
  surname: Chen
  fullname: Chen, Bing
  organization: State Key Laboratory of Intelligent Control and Decision of Complex Systems, Beijing Institute of Technology
– sequence: 3
  givenname: Jingwei
  surname: Huang
  fullname: Huang, Jingwei
  organization: State Key Laboratory of Intelligent Control and Decision of Complex Systems, Beijing Institute of Technology
– sequence: 4
  givenname: Julio Ruben
  surname: Cañizares Abreu
  fullname: Cañizares Abreu, Julio Ruben
  organization: Development Department, Integral Automation Company (CEDAI)
– sequence: 5
  givenname: Senchun
  surname: Chai
  fullname: Chai, Senchun
  organization: State Key Laboratory of Intelligent Control and Decision of Complex Systems, Beijing Institute of Technology
– sequence: 6
  givenname: Yuanqing
  surname: Xia
  fullname: Xia, Yuanqing
  organization: State Key Laboratory of Intelligent Control and Decision of Complex Systems, Beijing Institute of Technology
BookMark eNp9kF1LwzAUhoNMcJv-Aa8CXkdPmqZNL2X4BZOJ6HVIm7Tr7JKatA7_vd0qCF7sKoec98k5eWZoYp01CF1SuKYA6U2gwEVCIGIEYoCE7E7QlPKUkZTHbDLUbGingqdnaBbCBgCyNMqmyD73nepqZ4n29ZexWFmNW9f2zeEWV971bW0r_PK6wqqpnK-79RaXzuNQrI3um30z73VlOlI4Gzqvams03jn_UTZuF3Btcbc2uGhcr8_RaamaYC5-zzl6v797WzyS5erhaXG7JAWjWUdMHvOcR4YawxKlYhiqjAuuaZqIzBQcaB6DUAXwGCKRlLHQirE8L5nQVHM2R1fju613n70Jndy43tthpIwyRqnIMgpDSoypwrsQvCllUY829r9oJAW5tytHu3KwKw925W5Ao39o6-ut8t_HITZCYQjbyvi_rY5QPwbWka4
CitedBy_id crossref_primary_10_1007_s11042_023_17088_w
crossref_primary_10_1007_s11227_023_05873_1
Cites_doi 10.1007/s12652-020-01678-9
10.1109/TASE.2020.3046673
10.1109/71.207593
10.1007/s12065-020-00479-5
10.1109/TPDS.2021.3122428
10.1109/ACCESS.2018.2869827
10.1007/s10586-021-03454-6
10.1109/JIOT.2020.3024223
10.1007/s00500-022-06782-w
10.1016/j.engappai.2019.08.025
10.1007/s11227-021-03755-y
10.1016/j.ins.2009.03.004
10.1109/JAS.2021.1003982
10.1109/TASE.2021.3054501
10.3844/jcssp.2007.94.103
10.1109/TCC.2019.2956498
10.1109/TASE.2019.2918691
10.1109/TCYB.2018.2832640
10.1109/TCC.2014.2314655
10.1007/s10586-020-03095-1
10.1016/j.future.2015.07.021
10.1109/JAS.2021.1004129
10.1007/s00521-020-04878-8
10.1109/MVT.2020.3002487
10.1109/TCC.2015.2451649
10.1109/TSC.2016.2589243
10.1109/TPDS.2018.2849396
10.1109/JAS.2020.1003462
10.1109/TCC.2014.2350490
10.1016/j.ins.2019.10.035
10.1109/TII.2019.2943906
10.1016/j.simpat.2021.102328
10.1109/71.503776
10.1109/JAS.2022.105695
10.1080/0305215X.2016.1157688
10.1109/MNET.121.2000435
10.1109/TPDS.2019.2961098
10.1016/j.cor.2011.03.003
10.1109/eScience.2012.6404430
10.1007/978-3-030-36987-3_12
10.1109/CANET.2007.4401694
10.1109/BIFE.2013.14
10.1145/2739482.2764632
10.1109/ISTEL.2018.8661088
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s10586-023-04006-w
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Proquest Central
ProQuest Technology Collection (LUT)
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7543
EndPage 1158
ExternalDocumentID 10_1007_s10586_023_04006_w
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61836001
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2018YFB1003700
  funderid: http://dx.doi.org/10.13039/501100012166
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29B
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P9O
PF0
PT4
PT5
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABRTQ
ADHKG
ADKFA
AFDZB
AFOHR
AGQPQ
AHPBZ
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-eb45b52e1ee36aa40e1e9585d17689ec501b408ac0540286f48da33bbf38d1d53
IEDL.DBID BENPR
ISSN 1386-7857
IngestDate Fri Jul 25 22:22:02 EDT 2025
Wed Oct 01 04:12:08 EDT 2025
Thu Apr 24 22:59:55 EDT 2025
Fri Feb 21 02:40:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Cloud computing
Poor and Rich Optimization algorithm
Workflow scheduling
Meta-heuristics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-eb45b52e1ee36aa40e1e9585d17689ec501b408ac0540286f48da33bbf38d1d53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2931189910
PQPubID 2043865
PageCount 22
ParticipantIDs proquest_journals_2931189910
crossref_citationtrail_10_1007_s10586_023_04006_w
crossref_primary_10_1007_s10586_023_04006_w
springer_journals_10_1007_s10586_023_04006_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240200
2024-02-00
20240201
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 2
  year: 2024
  text: 20240200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle The Journal of Networks, Software Tools and Applications
PublicationTitle Cluster computing
PublicationTitleAbbrev Cluster Comput
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Kwok, Ahmad (CR12) 1996; 7
Qiu, Chen, Tian, Guizani, Du (CR36) 2021; 35
CR15
Tang, Liu, Pan (CR20) 2021; 8
CR35
Li, Wang, Cañizares Abreu, Zhao, Bonilla Pineda (CR3) 2021; 77
Sih, Lee (CR11) 1993; 4
Rashedi, Nezamabadi-pour, Saryazdi (CR22) 2009; 179
Kaur, Singh, Batth, Lim (CR39) 2020; 52
Bi, Yuan, Zhai, Zhou, Poor (CR26) 2022; 9
CR32
Qiu, Du, Zhang, Su, Tian (CR38) 2020; 15
Rodriguez, Buyya (CR6) 2014; 2
Sahni, Vidyarthi (CR46) 2015; 6
Li, Wang, Yuan, Zhou, Fan, Xia (CR34) 2022; 19
Mohammadzadeh, Masdari, Gharehchopogh, Jafarian (CR7) 2021; 14
Thennarasu, Selvam, Srihari (CR28) 2021; 12
Arabnejad, Bubendorfer, Ng (CR14) 2018; 30
Ilavarasan, Thambidurai (CR9) 2007; 3
Faragardi, Sedghpour, Fazliahmadi, Fahringer, Rasouli (CR13) 2019; 31
Wang, Zuo (CR29) 2021; 8
Elsayed, Sarker, Essam (CR44) 2011; 38
Moosavi, Bardsiri (CR5) 2019; 86
Li, Wang, Xu, Yuan, Xia (CR30) 2022; 26
Marozzo, Talia, Trunfio (CR1) 2016; 11
CR8
Wu, Zhou, Zhu, Xia, Wen (CR33) 2020; 17
Qiu, Du, Chen, Tian, Du, Guizani (CR37) 2020; 16
Li, Wang, Zhou, Fan, Xia (CR21) 2022; 33
Bokhari, Makki, Tamandani (CR2) 2018
CR27
Wang, Gao, Zhou, Yu (CR24) 2021; 8
CR48
Li, Xia, Zhou, Sun, Zhu (CR18) 2018; 6
Rizvi, Dharavath, Edla (CR43) 2021; 110
Zhang, Cao, Hwang, Li, Khan (CR4) 2015; 3
Chen, Zhan, Lin, Gong, Gu, Zhao, Yuan, Chen, Li, Zhang (CR23) 2018; 49
CR45
Hu, Cao, Zhou (CR16) 2022; 10
Wu, Zhou, Wen (CR10) 2022; 19
Arabnejad, Barbosa, Prodan (CR42) 2016; 55
Nzanywayingoma, Yang (CR47) 2017; 8
Aziza, Krichen (CR31) 2020; 32
Li, Huang, Wang, Fan (CR41) 2022; 25
Bi, Yuan, Duanmu, Zhou, Abusorrah (CR25) 2021; 8
Rocha, Costa, Fernandes (CR19) 2016; 48
Kalyan Chakravarthi, Shyamala, Vaidehi (CR17) 2020; 23
Tong, Chen, Deng, Li, Li (CR40) 2020; 512
MU Bokhari (4006_CR2) 2018
H Li (4006_CR41) 2022; 25
J Bi (4006_CR26) 2022; 9
MA Rodriguez (4006_CR6) 2014; 2
GC Sih (4006_CR11) 1993; 4
4006_CR45
Y Wang (4006_CR24) 2021; 8
Q Wu (4006_CR33) 2020; 17
F Zhang (4006_CR4) 2015; 3
AMA Rocha (4006_CR19) 2016; 48
H Aziza (4006_CR31) 2020; 32
H Li (4006_CR21) 2022; 33
ZG Chen (4006_CR23) 2018; 49
E Rashedi (4006_CR22) 2009; 179
W Li (4006_CR18) 2018; 6
J Bi (4006_CR25) 2021; 8
J Qiu (4006_CR37) 2020; 16
A Mohammadzadeh (4006_CR7) 2021; 14
HR Faragardi (4006_CR13) 2019; 31
SR Thennarasu (4006_CR28) 2021; 12
H Li (4006_CR34) 2022; 19
H Li (4006_CR30) 2022; 26
4006_CR8
4006_CR48
4006_CR27
E Ilavarasan (4006_CR9) 2007; 3
4006_CR32
F Nzanywayingoma (4006_CR47) 2017; 8
Y Wang (4006_CR29) 2021; 8
4006_CR35
SM Elsayed (4006_CR44) 2011; 38
F Marozzo (4006_CR1) 2016; 11
H Li (4006_CR3) 2021; 77
J Qiu (4006_CR36) 2021; 35
J Qiu (4006_CR38) 2020; 15
Z Tong (4006_CR40) 2020; 512
B Hu (4006_CR16) 2022; 10
N Rizvi (4006_CR43) 2021; 110
V Arabnejad (4006_CR14) 2018; 30
YK Kwok (4006_CR12) 1996; 7
H Arabnejad (4006_CR42) 2016; 55
J Sahni (4006_CR46) 2015; 6
K Kalyan Chakravarthi (4006_CR17) 2020; 23
A Kaur (4006_CR39) 2020; 52
4006_CR15
SHS Moosavi (4006_CR5) 2019; 86
J Tang (4006_CR20) 2021; 8
Q Wu (4006_CR10) 2022; 19
References_xml – start-page: 149
  year: 2018
  end-page: 164
  ident: CR2
  publication-title: A survey on cloud computing Big Data Analytics
– ident: CR45
– volume: 12
  start-page: 3807
  issue: 3
  year: 2021
  end-page: 3814
  ident: CR28
  article-title: A new whale optimizer for workflow scheduling in cloud computing environment
  publication-title: J. Amb. Intell. Humaniz. Comput.
  doi: 10.1007/s12652-020-01678-9
– volume: 19
  start-page: 1137
  issue: 2
  year: 2022
  end-page: 1150
  ident: CR10
  article-title: Endpoint communication contention-aware cloud workflow scheduling
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2020.3046673
– volume: 4
  start-page: 175
  issue: 2
  year: 1993
  end-page: 187
  ident: CR11
  article-title: A compile-time scheduling heuristic for interconnection-constrained heterogeneous processor architectures
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/71.207593
– volume: 52
  start-page: 689
  year: 2020
  end-page: 709
  ident: CR39
  article-title: Deep-q learning-based heterogeneous earliest finish time scheduling algorithm for scientific workflows in cloud
  publication-title: Softw.: Prac. Exp.
– volume: 14
  start-page: 1997
  issue: 4
  year: 2021
  end-page: 2025
  ident: CR7
  article-title: Improved chaotic binary grey wolf optimization algorithm for workflow scheduling in green cloud computing
  publication-title: Evol. Intell.
  doi: 10.1007/s12065-020-00479-5
– volume: 33
  start-page: 2183
  issue: 9
  year: 2022
  end-page: 2197
  ident: CR21
  article-title: Multi-swarm co-evolution based hybrid intelligent optimization for bi-objective multi-workflow scheduling in the cloud
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2021.3122428
– volume: 8
  start-page: 19
  issue: 1
  year: 2017
  end-page: 25
  ident: CR47
  article-title: Analysis of particle swarm optimization and genetic algorithm based on task scheduling in cloud computing environment
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 6
  start-page: 61488
  year: 2018
  end-page: 61502
  ident: CR18
  article-title: Fluctuation-aware and predictive workflow scheduling in cost-effective infrastructure-as-a-service clouds
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2869827
– volume: 25
  start-page: 751
  issue: 2
  year: 2022
  end-page: 768
  ident: CR41
  article-title: Weighted double deep Q-network based reinforcement learning for bi-objective multi-workflow scheduling in the cloud
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-021-03454-6
– volume: 8
  start-page: 3774
  issue: 5
  year: 2021
  end-page: 3785
  ident: CR25
  article-title: Energy-optimized partial computation offloading in mobile-edge computing with genetic simulated-annealing-based particle swarm optimization
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.3024223
– volume: 26
  start-page: 3809
  issue: 8
  year: 2022
  end-page: 3824
  ident: CR30
  article-title: Improved swarm search algorithm for scheduling budget-constrained workflows in the cloud
  publication-title: Soft Comput.
  doi: 10.1007/s00500-022-06782-w
– volume: 86
  start-page: 165
  year: 2019
  end-page: 181
  ident: CR5
  article-title: Poor and rich optimization algorithm: A new human-based and multi populations algorithm
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.08.025
– volume: 77
  start-page: 13139
  issue: 11
  year: 2021
  end-page: 13165
  ident: CR3
  article-title: PSO+LOA:hybrid constrained optimization for scheduling scientific workflows in the cloud
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-021-03755-y
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  end-page: 2248
  ident: CR22
  article-title: Gsa: A gravitational search algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2009.03.004
– volume: 8
  start-page: 1079
  issue: 5
  year: 2021
  end-page: 1094
  ident: CR29
  article-title: An effective cloud workflow scheduling approach combining PSO and idle time slot-aware rules
  publication-title: IEEE/CAA J. Autom. Sinica
  doi: 10.1109/JAS.2021.1003982
– ident: CR35
– ident: CR8
– volume: 19
  start-page: 982
  issue: 2
  year: 2022
  end-page: 993
  ident: CR34
  article-title: Scoring and dynamic hierarchy-based NSGA-II for multiobjective workflow scheduling in the cloud
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2021.3054501
– ident: CR27
– volume: 3
  start-page: 94
  issue: 2
  year: 2007
  end-page: 103
  ident: CR9
  article-title: Low complexity performance effective task scheduling algorithm for heterogeneous computing environments
  publication-title: J. Comput. Sci.
  doi: 10.3844/jcssp.2007.94.103
– volume: 10
  start-page: 662
  issue: 1
  year: 2022
  end-page: 674
  ident: CR16
  article-title: Scheduling real-time parallel applications in cloud to minimize energy consumption
  publication-title: IEEE Trans. Cloud Comput.
  doi: 10.1109/TCC.2019.2956498
– volume: 17
  start-page: 166
  issue: 1
  year: 2020
  end-page: 176
  ident: CR33
  article-title: Moels: Multiobjective evolutionary list scheduling for cloud workflows
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2019.2918691
– volume: 49
  start-page: 2912
  issue: 8
  year: 2018
  end-page: 2926
  ident: CR23
  article-title: Multiobjective cloud workflow scheduling: A multiple populations ant colony system approach
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2832640
– ident: CR48
– volume: 2
  start-page: 222
  issue: 2
  year: 2014
  end-page: 235
  ident: CR6
  article-title: Deadline based resource provisioningand scheduling algorithm for scientific workflows on clouds
  publication-title: IEEE Trans. Cloud Comput.
  doi: 10.1109/TCC.2014.2314655
– volume: 23
  start-page: 3405
  issue: 4
  year: 2020
  end-page: 3419
  ident: CR17
  article-title: Budget aware scheduling algorithm for workflow applications in IaaS clouds
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-020-03095-1
– volume: 55
  start-page: 29
  year: 2016
  end-page: 40
  ident: CR42
  article-title: Low-time complexity budget-deadline constrained workflow scheduling on heterogeneous resources
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2015.07.021
– volume: 8
  start-page: 1627
  issue: 10
  year: 2021
  end-page: 1643
  ident: CR20
  article-title: A review on representative swarm intelligence algorithms for solving optimization problems: Applications and trends
  publication-title: IEEE/CAA J. Autom. Sinica
  doi: 10.1109/JAS.2021.1004129
– ident: CR15
– volume: 32
  start-page: 15263
  issue: 18
  year: 2020
  end-page: 15278
  ident: CR31
  article-title: A hybrid genetic algorithm for scientific workflow scheduling in cloud environment
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-04878-8
– volume: 15
  start-page: 95
  issue: 3
  year: 2020
  end-page: 100
  ident: CR38
  article-title: Artificial intelligence security in 5g networks: Adversarial examples for estimating a travel time task
  publication-title: IEEE Veh. Technol. Mag.
  doi: 10.1109/MVT.2020.3002487
– volume: 6
  start-page: 2
  issue: 1
  year: 2015
  end-page: 18
  ident: CR46
  article-title: A cost-effective deadline-constrained dynamic scheduling algorithm for scientific workflows in a cloud environment
  publication-title: IEEE Trans. Cloud Comput.
  doi: 10.1109/TCC.2015.2451649
– volume: 11
  start-page: 480
  issue: 3
  year: 2016
  end-page: 492
  ident: CR1
  article-title: A workflow management system for scalable data mining on clouds
  publication-title: IEEE Trans. Serv. Comput.
  doi: 10.1109/TSC.2016.2589243
– volume: 30
  start-page: 29
  issue: 1
  year: 2018
  end-page: 44
  ident: CR14
  article-title: Budget and deadline aware e-science workflow scheduling in clouds
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2018.2849396
– volume: 8
  start-page: 94
  issue: 1
  year: 2021
  end-page: 109
  ident: CR24
  article-title: A multi-layered gravitational search algorithm for function optimization and real-world problems
  publication-title: IEEE/CAA J. Autom. Sinica
  doi: 10.1109/JAS.2020.1003462
– volume: 3
  start-page: 156
  issue: 2
  year: 2015
  end-page: 168
  ident: CR4
  article-title: Adaptive workflow scheduling on cloud computing platforms with iterativeordinal optimization
  publication-title: IEEE Trans. Cloud Comput.
  doi: 10.1109/TCC.2014.2350490
– ident: CR32
– volume: 512
  start-page: 1170
  year: 2020
  end-page: 1191
  ident: CR40
  article-title: A scheduling scheme in the cloud computing environment using deep Q-learning
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.10.035
– volume: 16
  start-page: 2659
  issue: 4
  year: 2020
  end-page: 2666
  ident: CR37
  article-title: Nei-tte: Intelligent traffic time estimation based on fine-grained time derivation of road segments for smart city
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2019.2943906
– volume: 110
  year: 2021
  ident: CR43
  article-title: Cost and makespan aware workflow scheduling in iaas clouds using hybrid spider monkey optimization
  publication-title: Simul. Model. Prac. Theory
  doi: 10.1016/j.simpat.2021.102328
– volume: 7
  start-page: 506
  issue: 5
  year: 1996
  end-page: 521
  ident: CR12
  article-title: Dynamic critical-path scheduling: An effective technique for allocating task graphs to multiprocessors
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/71.503776
– volume: 9
  start-page: 1284
  issue: 7
  year: 2022
  end-page: 1294
  ident: CR26
  article-title: Self-adaptive bat algorithm with genetic operations
  publication-title: IEEE/CAA J. Autom. Sinica
  doi: 10.1109/JAS.2022.105695
– volume: 48
  start-page: 2114
  issue: 12
  year: 2016
  end-page: 2140
  ident: CR19
  article-title: A shifted hyperbolic augmented lagrangian-based artificial fish two-swarm algorithm with guaranteed convergence for constrained global optimization
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2016.1157688
– volume: 35
  start-page: 279
  issue: 5
  year: 2021
  end-page: 283
  ident: CR36
  article-title: The security of internet of vehicles network: Adversarial examples for trajectory mode detection
  publication-title: IEEE Network
  doi: 10.1109/MNET.121.2000435
– volume: 31
  start-page: 1239
  issue: 6
  year: 2019
  end-page: 1254
  ident: CR13
  article-title: GRP-HEFT: A budget-constrained resource provisioning scheme for workflow scheduling in iaas clouds
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2019.2961098
– volume: 38
  start-page: 1877
  issue: 12
  year: 2011
  end-page: 1896
  ident: CR44
  article-title: Multi-operator based evolutionary algorithms for solving constrained optimization problems
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2011.03.003
– volume: 32
  start-page: 15263
  issue: 18
  year: 2020
  ident: 4006_CR31
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-04878-8
– volume: 4
  start-page: 175
  issue: 2
  year: 1993
  ident: 4006_CR11
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/71.207593
– volume: 2
  start-page: 222
  issue: 2
  year: 2014
  ident: 4006_CR6
  publication-title: IEEE Trans. Cloud Comput.
  doi: 10.1109/TCC.2014.2314655
– ident: 4006_CR45
  doi: 10.1109/eScience.2012.6404430
– volume: 77
  start-page: 13139
  issue: 11
  year: 2021
  ident: 4006_CR3
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-021-03755-y
– volume: 31
  start-page: 1239
  issue: 6
  year: 2019
  ident: 4006_CR13
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2019.2961098
– ident: 4006_CR15
  doi: 10.1007/978-3-030-36987-3_12
– volume: 48
  start-page: 2114
  issue: 12
  year: 2016
  ident: 4006_CR19
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2016.1157688
– volume: 33
  start-page: 2183
  issue: 9
  year: 2022
  ident: 4006_CR21
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2021.3122428
– volume: 8
  start-page: 19
  issue: 1
  year: 2017
  ident: 4006_CR47
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 52
  start-page: 689
  year: 2020
  ident: 4006_CR39
  publication-title: Softw.: Prac. Exp.
– volume: 11
  start-page: 480
  issue: 3
  year: 2016
  ident: 4006_CR1
  publication-title: IEEE Trans. Serv. Comput.
  doi: 10.1109/TSC.2016.2589243
– volume: 19
  start-page: 1137
  issue: 2
  year: 2022
  ident: 4006_CR10
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2020.3046673
– volume: 23
  start-page: 3405
  issue: 4
  year: 2020
  ident: 4006_CR17
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-020-03095-1
– start-page: 149
  volume-title: A survey on cloud computing Big Data Analytics
  year: 2018
  ident: 4006_CR2
– volume: 26
  start-page: 3809
  issue: 8
  year: 2022
  ident: 4006_CR30
  publication-title: Soft Comput.
  doi: 10.1007/s00500-022-06782-w
– ident: 4006_CR8
  doi: 10.1109/CANET.2007.4401694
– volume: 19
  start-page: 982
  issue: 2
  year: 2022
  ident: 4006_CR34
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2021.3054501
– volume: 7
  start-page: 506
  issue: 5
  year: 1996
  ident: 4006_CR12
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/71.503776
– volume: 55
  start-page: 29
  year: 2016
  ident: 4006_CR42
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2015.07.021
– volume: 8
  start-page: 3774
  issue: 5
  year: 2021
  ident: 4006_CR25
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.3024223
– ident: 4006_CR48
  doi: 10.1109/BIFE.2013.14
– volume: 6
  start-page: 2
  issue: 1
  year: 2015
  ident: 4006_CR46
  publication-title: IEEE Trans. Cloud Comput.
  doi: 10.1109/TCC.2015.2451649
– volume: 17
  start-page: 166
  issue: 1
  year: 2020
  ident: 4006_CR33
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2019.2918691
– volume: 8
  start-page: 1627
  issue: 10
  year: 2021
  ident: 4006_CR20
  publication-title: IEEE/CAA J. Autom. Sinica
  doi: 10.1109/JAS.2021.1004129
– volume: 3
  start-page: 156
  issue: 2
  year: 2015
  ident: 4006_CR4
  publication-title: IEEE Trans. Cloud Comput.
  doi: 10.1109/TCC.2014.2350490
– volume: 110
  year: 2021
  ident: 4006_CR43
  publication-title: Simul. Model. Prac. Theory
  doi: 10.1016/j.simpat.2021.102328
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  ident: 4006_CR22
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2009.03.004
– volume: 49
  start-page: 2912
  issue: 8
  year: 2018
  ident: 4006_CR23
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2832640
– volume: 3
  start-page: 94
  issue: 2
  year: 2007
  ident: 4006_CR9
  publication-title: J. Comput. Sci.
  doi: 10.3844/jcssp.2007.94.103
– volume: 6
  start-page: 61488
  year: 2018
  ident: 4006_CR18
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2869827
– volume: 14
  start-page: 1997
  issue: 4
  year: 2021
  ident: 4006_CR7
  publication-title: Evol. Intell.
  doi: 10.1007/s12065-020-00479-5
– volume: 12
  start-page: 3807
  issue: 3
  year: 2021
  ident: 4006_CR28
  publication-title: J. Amb. Intell. Humaniz. Comput.
  doi: 10.1007/s12652-020-01678-9
– ident: 4006_CR35
  doi: 10.1145/2739482.2764632
– ident: 4006_CR27
  doi: 10.1109/ISTEL.2018.8661088
– volume: 10
  start-page: 662
  issue: 1
  year: 2022
  ident: 4006_CR16
  publication-title: IEEE Trans. Cloud Comput.
  doi: 10.1109/TCC.2019.2956498
– volume: 9
  start-page: 1284
  issue: 7
  year: 2022
  ident: 4006_CR26
  publication-title: IEEE/CAA J. Autom. Sinica
  doi: 10.1109/JAS.2022.105695
– volume: 512
  start-page: 1170
  year: 2020
  ident: 4006_CR40
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.10.035
– volume: 38
  start-page: 1877
  issue: 12
  year: 2011
  ident: 4006_CR44
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2011.03.003
– volume: 86
  start-page: 165
  year: 2019
  ident: 4006_CR5
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.08.025
– volume: 15
  start-page: 95
  issue: 3
  year: 2020
  ident: 4006_CR38
  publication-title: IEEE Veh. Technol. Mag.
  doi: 10.1109/MVT.2020.3002487
– volume: 8
  start-page: 1079
  issue: 5
  year: 2021
  ident: 4006_CR29
  publication-title: IEEE/CAA J. Autom. Sinica
  doi: 10.1109/JAS.2021.1003982
– volume: 8
  start-page: 94
  issue: 1
  year: 2021
  ident: 4006_CR24
  publication-title: IEEE/CAA J. Autom. Sinica
  doi: 10.1109/JAS.2020.1003462
– volume: 16
  start-page: 2659
  issue: 4
  year: 2020
  ident: 4006_CR37
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2019.2943906
– volume: 35
  start-page: 279
  issue: 5
  year: 2021
  ident: 4006_CR36
  publication-title: IEEE Network
  doi: 10.1109/MNET.121.2000435
– volume: 30
  start-page: 29
  issue: 1
  year: 2018
  ident: 4006_CR14
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2018.2849396
– ident: 4006_CR32
– volume: 25
  start-page: 751
  issue: 2
  year: 2022
  ident: 4006_CR41
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-021-03454-6
SSID ssj0009729
Score 2.3358097
Snippet Benefiting from cloud computing’s elasticity, scalability, and pay-per-use model, more and more scientific applications are deployed in or migrated to the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1137
SubjectTerms Algorithms
Budgets
Cloud computing
Computer Communication Networks
Computer Science
Constraints
Cooperation
Critical path
Evolution
Genetic algorithms
Heuristic
Heuristic methods
Middle class
Mutation
Operating Systems
Optimization
Optimization algorithms
Populations
Processor Architectures
Scheduling
Workflow
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86X3zxW5xOyYNvGuhH0qaPQxxDmIo42Ftpc8kc1G5sLfv3vXTtpqKCb4Ver-Uul_tdcx-EXIMAx4ASzEmMx7g0CYuUjjBUQbTghtL1jf01MHgM-kP-MBKjuihs0WS7N0eS1U79qdhNSJsw6zO78AK23CY7wrbzwlU89LqbVrthNZvM9ZE6lCKsS2V-5vHVHW0w5rdj0crb9A7IXg0TaXel10OypfMjst-MYKC1RR6TfFCuztIZzO2-RZMc6Gw9lItWRRv4Bvr88kSTbDydT4q3d4pIlWJYi27GVqPTtISxLpiyWNGOjNBAbb6WyabLBZ3kFEEiVdm0hBMy7N2_3vVZPUKBKbStgumUi1R42tXaD5KEO3gVYYQALoYZkVbCcVPuyERZ5ObJwHAJie-nqfEluCD8U9LKp7k-IzRyUgi4MTwykgMYZAsC1aoAJSk0bxO3kWSs6v7i9puzeNMZ2Uo_RunHlfTjZZvcrJ-Zrbpr_EndaRQU15a2iBGuYIyEKNdpk9tGaZvbv3M7_x_5Bdn1EM-sErY7pFXMS32JeKRIr6rl9wFzNtkW
  priority: 102
  providerName: Springer Nature
Title Mutation-driven and population grouping PRO algorithm for scheduling budget-constrained workflows in the cloud
URI https://link.springer.com/article/10.1007/s10586-023-04006-w
https://www.proquest.com/docview/2931189910
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-7543
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0009729
  issn: 1386-7857
  databaseCode: BENPR
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7543
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009729
  issn: 1386-7857
  databaseCode: AGYKE
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7543
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009729
  issn: 1386-7857
  databaseCode: U2A
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED9B-7KXwb60Dlb5YW-btXzYqfOAUJlaEBMdQqvEniLHZ7NJXVogVf99zqlDtEnwFuXDSe5s3-_su_sBfEKJkUMjeaRdwoVymufG5uSqEFqIRypOnV8auJhlZ3Nxfi2vd2DW5sL4sMp2Tmwmalwav0b-lcwSYWFCM9Hx6pZ71ii_u9pSaOhArYBHTYmxXegnvjJWD_onk9nlVVeGd9TwlsWpyvhIyVFIownJdFL5gNyU-46d8c2_pqrDn_9tmTaWaLoPLwOEZOOtzl_Bjq1ew15Lz8DCaH0D1cV6u8_O8c7PaUxXyFaPhF2sSeigN7DLqx9ML27ob-vffxmhWEYuL5kgn6nOyjXe2JobjyM9nYRF5mO53GK5uWd_KkYAkpnFco1vYT6d_Px2xgO9Ajc07mpuSyFLmdjY2jTTWkR0lJP3gDG5ILk1MopLESltPKpLVOaEQp2mZelShTHK9B30qmVl3wPLoxIz4ZzInRKIjppFSSo3SJKUVgwgbiVZmFB73H_zouiqJnvpFyT9opF-sRnA58dnVtvKG8_efdgqqAij8L7o-swAvrRK6y4_3dqH51s7gBcJYZtt8PYh9Oq7tf1I2KQuh7CrpqdD6I9Pf32fDEP3o7PzZPwAmOflnQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V7aFcgPIQC6X4UE5gkYeddQ4V4tFq-9ilqlqpt-B47C3Skl26Wa34c_w2xlmnEUjtrbdISZxoPJ75xp6ZD2AXJUYOjeSRdgkXymmeG5tTqEJoIe6rOHV-a2A4ygYX4uhSXq7Bn7YWxqdVtjaxMdQ4NX6P_AO5JcLChGaij7Nf3LNG-dPVlkJDB2oF3GtajIXCjmP7e0kh3Hzv8CvN99skOdg__zLggWWAG1K_mttSyFImNrY2zbQWEV3lBKIxJiSeWyOjuBSR0saDm0RlTijUaVqWLlUYo2eNIBewIVKRU_C38Xl_dHrWtf3tNzxpcaoy3leyH8p2QvGeVD4BOOV-IWV8-a9r7PDuf0e0jec7eAwPA2Rln1Y6tgVrtnoCj1o6CBasw1OohovVuT7Ha29Dma6QzW4IwlhTQEJfYKdn35iejEm69dVPRqiZUYhNLs9XxrNygWNbc-Nxq6evsMh87pibTJdz9qNiBFiZmUwX-Awu7kXQz2G9mlb2BbA8KjETzoncKYHoaFiUpGIGSZLSih7ErSQLE3qd-3-eFF2XZi_9gqRfNNIvlj14d_PObNXp486nt9sJKsKqnxedjvbgfTtp3e3bR3t592hvYHNwPjwpTg5Hx6_gQUK4apU4vg3r9fXCviZcVJc7QfkYfL9vff8LSCEe8w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gSIgLb8R45sANIvpIuvQ4AdN4T4hJu1VtnAyk0U2j0_4-Th8bIEDiVqluWtlJ_TnxZxNyAgIcA0owJzYe49LELFQ6xFAF0YLbkK5v7NbA_UPQ7vKbnuh9YvHn2e7VkWTBabBVmtLsfATm_BPxTUibPOszOwkDNl0kS9wWSsAZ3fWa87K7jbxPmeujdEOKRkmb-XmMr65pjje_HZHmnqe1TlZLyEibhY03yIJON8la1Y6Blqtzi6T3k-JcncHY_sNonAIdzRp00ZzAgW-gnadHGg_6w_Fr9vJGEbVSDHHR5VhmOk0m0NcZUxY32vYRGqjN3TKD4fSdvqYUASNVg-EEtkm3dfV80WZlOwWmcJ1lTCdcJMLTrtZ-EMfcwasQowVwMeQItRKOm3BHxsqiOE8GhkuIfT9JjC_BBeHvkFo6TPUuoaGTQMCN4aGRHMDgsCDQxApQk0LzOnErTUaqrDVuv3kQzaskW-1HqP0o1340rZPT2TOjotLGn9IHlYGictW9RwhdMF5CxOvUyVlltPnt30fb-5_4MVnuXLaiu-uH232y4iHMKfK4D0gtG0_0IcKULDnKZ-IHdzzgPg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mutation-driven+and+population+grouping+PRO+algorithm+for+scheduling+budget-constrained+workflows+in+the+cloud&rft.jtitle=Cluster+computing&rft.au=Li%2C+Huifang&rft.au=Chen%2C+Bing&rft.au=Huang%2C+Jingwei&rft.au=Ca%C3%B1izares+Abreu%2C+Julio+Ruben&rft.date=2024-02-01&rft.pub=Springer+Nature+B.V&rft.issn=1386-7857&rft.eissn=1573-7543&rft.volume=27&rft.issue=1&rft.spage=1137&rft.epage=1158&rft_id=info:doi/10.1007%2Fs10586-023-04006-w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-7857&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-7857&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-7857&client=summon