Mutation-driven and population grouping PRO algorithm for scheduling budget-constrained workflows in the cloud
Benefiting from cloud computing’s elasticity, scalability, and pay-per-use model, more and more scientific applications are deployed in or migrated to the cloud. Workflow scheduling still faces many challenges due to the growing scales of workflows and the diversified user QoS requirements. In this...
Saved in:
| Published in | Cluster computing Vol. 27; no. 1; pp. 1137 - 1158 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.02.2024
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1386-7857 1573-7543 |
| DOI | 10.1007/s10586-023-04006-w |
Cover
| Abstract | Benefiting from cloud computing’s elasticity, scalability, and pay-per-use model, more and more scientific applications are deployed in or migrated to the cloud. Workflow scheduling still faces many challenges due to the growing scales of workflows and the diversified user QoS requirements. In this work, we propose a Mutation-driven and population Grouping Poor and Rich Optimization algorithm (MG-PRO) for scheduling workflows in the cloud to minimize makespan while satisfying the budget constraints. Specifically, we first adopt the middle-class sub-population into the original Poor and Rich Optimization algorithm (PRO), and develop the update strategies for rich and middle-class sub-populations to increase the randomness and search diversity. Secondly, the update mechanism for rich individuals is enriched, and the middle-class sub-population is guided by elite rich individuals, which enhances the information exchange and sharing among sub-populations. Finally, an evolution-aware mutation strategy is designed, where the mutation probability is adjusted adaptively as the dynamic monitoring of the population update process, and the two-point and triangular crossover-based mutations are used alternately to intervene the evolution trajectory according to the degree of objective optimization, resulting in a better balance between exploration and exploration. Extensive experiments are conducted on well-known scientific workflows with different types and scales through WorkflowSim. The experimental results show that, in most cases, MG-PRO outperforms existing algorithms in terms of constraint satisfiability, solution quality and stability. It can generate near-optimal solutions with the different budget constraints satisfied in a relatively short time, for example, the makespan resulting from MG-PRO is at most 59.95% shorter than other meta-heuristic algorithms, and at least 7.33% shorter than all its peers. |
|---|---|
| AbstractList | Benefiting from cloud computing’s elasticity, scalability, and pay-per-use model, more and more scientific applications are deployed in or migrated to the cloud. Workflow scheduling still faces many challenges due to the growing scales of workflows and the diversified user QoS requirements. In this work, we propose a Mutation-driven and population Grouping Poor and Rich Optimization algorithm (MG-PRO) for scheduling workflows in the cloud to minimize makespan while satisfying the budget constraints. Specifically, we first adopt the middle-class sub-population into the original Poor and Rich Optimization algorithm (PRO), and develop the update strategies for rich and middle-class sub-populations to increase the randomness and search diversity. Secondly, the update mechanism for rich individuals is enriched, and the middle-class sub-population is guided by elite rich individuals, which enhances the information exchange and sharing among sub-populations. Finally, an evolution-aware mutation strategy is designed, where the mutation probability is adjusted adaptively as the dynamic monitoring of the population update process, and the two-point and triangular crossover-based mutations are used alternately to intervene the evolution trajectory according to the degree of objective optimization, resulting in a better balance between exploration and exploration. Extensive experiments are conducted on well-known scientific workflows with different types and scales through WorkflowSim. The experimental results show that, in most cases, MG-PRO outperforms existing algorithms in terms of constraint satisfiability, solution quality and stability. It can generate near-optimal solutions with the different budget constraints satisfied in a relatively short time, for example, the makespan resulting from MG-PRO is at most 59.95% shorter than other meta-heuristic algorithms, and at least 7.33% shorter than all its peers. |
| Author | Cañizares Abreu, Julio Ruben Chai, Senchun Xia, Yuanqing Li, Huifang Chen, Bing Huang, Jingwei |
| Author_xml | – sequence: 1 givenname: Huifang surname: Li fullname: Li, Huifang email: huifang@bit.edu.cn organization: State Key Laboratory of Intelligent Control and Decision of Complex Systems, Beijing Institute of Technology – sequence: 2 givenname: Bing surname: Chen fullname: Chen, Bing organization: State Key Laboratory of Intelligent Control and Decision of Complex Systems, Beijing Institute of Technology – sequence: 3 givenname: Jingwei surname: Huang fullname: Huang, Jingwei organization: State Key Laboratory of Intelligent Control and Decision of Complex Systems, Beijing Institute of Technology – sequence: 4 givenname: Julio Ruben surname: Cañizares Abreu fullname: Cañizares Abreu, Julio Ruben organization: Development Department, Integral Automation Company (CEDAI) – sequence: 5 givenname: Senchun surname: Chai fullname: Chai, Senchun organization: State Key Laboratory of Intelligent Control and Decision of Complex Systems, Beijing Institute of Technology – sequence: 6 givenname: Yuanqing surname: Xia fullname: Xia, Yuanqing organization: State Key Laboratory of Intelligent Control and Decision of Complex Systems, Beijing Institute of Technology |
| BookMark | eNp9kF1LwzAUhoNMcJv-Aa8CXkdPmqZNL2X4BZOJ6HVIm7Tr7JKatA7_vd0qCF7sKoec98k5eWZoYp01CF1SuKYA6U2gwEVCIGIEYoCE7E7QlPKUkZTHbDLUbGingqdnaBbCBgCyNMqmyD73nepqZ4n29ZexWFmNW9f2zeEWV971bW0r_PK6wqqpnK-79RaXzuNQrI3um30z73VlOlI4Gzqvams03jn_UTZuF3Btcbc2uGhcr8_RaamaYC5-zzl6v797WzyS5erhaXG7JAWjWUdMHvOcR4YawxKlYhiqjAuuaZqIzBQcaB6DUAXwGCKRlLHQirE8L5nQVHM2R1fju613n70Jndy43tthpIwyRqnIMgpDSoypwrsQvCllUY829r9oJAW5tytHu3KwKw925W5Ao39o6-ut8t_HITZCYQjbyvi_rY5QPwbWka4 |
| CitedBy_id | crossref_primary_10_1007_s11042_023_17088_w crossref_primary_10_1007_s11227_023_05873_1 |
| Cites_doi | 10.1007/s12652-020-01678-9 10.1109/TASE.2020.3046673 10.1109/71.207593 10.1007/s12065-020-00479-5 10.1109/TPDS.2021.3122428 10.1109/ACCESS.2018.2869827 10.1007/s10586-021-03454-6 10.1109/JIOT.2020.3024223 10.1007/s00500-022-06782-w 10.1016/j.engappai.2019.08.025 10.1007/s11227-021-03755-y 10.1016/j.ins.2009.03.004 10.1109/JAS.2021.1003982 10.1109/TASE.2021.3054501 10.3844/jcssp.2007.94.103 10.1109/TCC.2019.2956498 10.1109/TASE.2019.2918691 10.1109/TCYB.2018.2832640 10.1109/TCC.2014.2314655 10.1007/s10586-020-03095-1 10.1016/j.future.2015.07.021 10.1109/JAS.2021.1004129 10.1007/s00521-020-04878-8 10.1109/MVT.2020.3002487 10.1109/TCC.2015.2451649 10.1109/TSC.2016.2589243 10.1109/TPDS.2018.2849396 10.1109/JAS.2020.1003462 10.1109/TCC.2014.2350490 10.1016/j.ins.2019.10.035 10.1109/TII.2019.2943906 10.1016/j.simpat.2021.102328 10.1109/71.503776 10.1109/JAS.2022.105695 10.1080/0305215X.2016.1157688 10.1109/MNET.121.2000435 10.1109/TPDS.2019.2961098 10.1016/j.cor.2011.03.003 10.1109/eScience.2012.6404430 10.1007/978-3-030-36987-3_12 10.1109/CANET.2007.4401694 10.1109/BIFE.2013.14 10.1145/2739482.2764632 10.1109/ISTEL.2018.8661088 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s10586-023-04006-w |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Proquest Central ProQuest Technology Collection (LUT) ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7543 |
| EndPage | 1158 |
| ExternalDocumentID | 10_1007_s10586_023_04006_w |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61836001 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2018YFB1003700 funderid: http://dx.doi.org/10.13039/501100012166 |
| GroupedDBID | -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29B 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAK LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P9O PF0 PT4 PT5 QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABRTQ ADHKG ADKFA AFDZB AFOHR AGQPQ AHPBZ ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c319t-eb45b52e1ee36aa40e1e9585d17689ec501b408ac0540286f48da33bbf38d1d53 |
| IEDL.DBID | BENPR |
| ISSN | 1386-7857 |
| IngestDate | Fri Jul 25 22:22:02 EDT 2025 Wed Oct 01 04:12:08 EDT 2025 Thu Apr 24 22:59:55 EDT 2025 Fri Feb 21 02:40:29 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Cloud computing Poor and Rich Optimization algorithm Workflow scheduling Meta-heuristics |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-eb45b52e1ee36aa40e1e9585d17689ec501b408ac0540286f48da33bbf38d1d53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2931189910 |
| PQPubID | 2043865 |
| PageCount | 22 |
| ParticipantIDs | proquest_journals_2931189910 crossref_citationtrail_10_1007_s10586_023_04006_w crossref_primary_10_1007_s10586_023_04006_w springer_journals_10_1007_s10586_023_04006_w |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20240200 2024-02-00 20240201 |
| PublicationDateYYYYMMDD | 2024-02-01 |
| PublicationDate_xml | – month: 2 year: 2024 text: 20240200 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | The Journal of Networks, Software Tools and Applications |
| PublicationTitle | Cluster computing |
| PublicationTitleAbbrev | Cluster Comput |
| PublicationYear | 2024 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Kwok, Ahmad (CR12) 1996; 7 Qiu, Chen, Tian, Guizani, Du (CR36) 2021; 35 CR15 Tang, Liu, Pan (CR20) 2021; 8 CR35 Li, Wang, Cañizares Abreu, Zhao, Bonilla Pineda (CR3) 2021; 77 Sih, Lee (CR11) 1993; 4 Rashedi, Nezamabadi-pour, Saryazdi (CR22) 2009; 179 Kaur, Singh, Batth, Lim (CR39) 2020; 52 Bi, Yuan, Zhai, Zhou, Poor (CR26) 2022; 9 CR32 Qiu, Du, Zhang, Su, Tian (CR38) 2020; 15 Rodriguez, Buyya (CR6) 2014; 2 Sahni, Vidyarthi (CR46) 2015; 6 Li, Wang, Yuan, Zhou, Fan, Xia (CR34) 2022; 19 Mohammadzadeh, Masdari, Gharehchopogh, Jafarian (CR7) 2021; 14 Thennarasu, Selvam, Srihari (CR28) 2021; 12 Arabnejad, Bubendorfer, Ng (CR14) 2018; 30 Ilavarasan, Thambidurai (CR9) 2007; 3 Faragardi, Sedghpour, Fazliahmadi, Fahringer, Rasouli (CR13) 2019; 31 Wang, Zuo (CR29) 2021; 8 Elsayed, Sarker, Essam (CR44) 2011; 38 Moosavi, Bardsiri (CR5) 2019; 86 Li, Wang, Xu, Yuan, Xia (CR30) 2022; 26 Marozzo, Talia, Trunfio (CR1) 2016; 11 CR8 Wu, Zhou, Zhu, Xia, Wen (CR33) 2020; 17 Qiu, Du, Chen, Tian, Du, Guizani (CR37) 2020; 16 Li, Wang, Zhou, Fan, Xia (CR21) 2022; 33 Bokhari, Makki, Tamandani (CR2) 2018 CR27 Wang, Gao, Zhou, Yu (CR24) 2021; 8 CR48 Li, Xia, Zhou, Sun, Zhu (CR18) 2018; 6 Rizvi, Dharavath, Edla (CR43) 2021; 110 Zhang, Cao, Hwang, Li, Khan (CR4) 2015; 3 Chen, Zhan, Lin, Gong, Gu, Zhao, Yuan, Chen, Li, Zhang (CR23) 2018; 49 CR45 Hu, Cao, Zhou (CR16) 2022; 10 Wu, Zhou, Wen (CR10) 2022; 19 Arabnejad, Barbosa, Prodan (CR42) 2016; 55 Nzanywayingoma, Yang (CR47) 2017; 8 Aziza, Krichen (CR31) 2020; 32 Li, Huang, Wang, Fan (CR41) 2022; 25 Bi, Yuan, Duanmu, Zhou, Abusorrah (CR25) 2021; 8 Rocha, Costa, Fernandes (CR19) 2016; 48 Kalyan Chakravarthi, Shyamala, Vaidehi (CR17) 2020; 23 Tong, Chen, Deng, Li, Li (CR40) 2020; 512 MU Bokhari (4006_CR2) 2018 H Li (4006_CR41) 2022; 25 J Bi (4006_CR26) 2022; 9 MA Rodriguez (4006_CR6) 2014; 2 GC Sih (4006_CR11) 1993; 4 4006_CR45 Y Wang (4006_CR24) 2021; 8 Q Wu (4006_CR33) 2020; 17 F Zhang (4006_CR4) 2015; 3 AMA Rocha (4006_CR19) 2016; 48 H Aziza (4006_CR31) 2020; 32 H Li (4006_CR21) 2022; 33 ZG Chen (4006_CR23) 2018; 49 E Rashedi (4006_CR22) 2009; 179 W Li (4006_CR18) 2018; 6 J Bi (4006_CR25) 2021; 8 J Qiu (4006_CR37) 2020; 16 A Mohammadzadeh (4006_CR7) 2021; 14 HR Faragardi (4006_CR13) 2019; 31 SR Thennarasu (4006_CR28) 2021; 12 H Li (4006_CR34) 2022; 19 H Li (4006_CR30) 2022; 26 4006_CR8 4006_CR48 4006_CR27 E Ilavarasan (4006_CR9) 2007; 3 4006_CR32 F Nzanywayingoma (4006_CR47) 2017; 8 Y Wang (4006_CR29) 2021; 8 4006_CR35 SM Elsayed (4006_CR44) 2011; 38 F Marozzo (4006_CR1) 2016; 11 H Li (4006_CR3) 2021; 77 J Qiu (4006_CR36) 2021; 35 J Qiu (4006_CR38) 2020; 15 Z Tong (4006_CR40) 2020; 512 B Hu (4006_CR16) 2022; 10 N Rizvi (4006_CR43) 2021; 110 V Arabnejad (4006_CR14) 2018; 30 YK Kwok (4006_CR12) 1996; 7 H Arabnejad (4006_CR42) 2016; 55 J Sahni (4006_CR46) 2015; 6 K Kalyan Chakravarthi (4006_CR17) 2020; 23 A Kaur (4006_CR39) 2020; 52 4006_CR15 SHS Moosavi (4006_CR5) 2019; 86 J Tang (4006_CR20) 2021; 8 Q Wu (4006_CR10) 2022; 19 |
| References_xml | – start-page: 149 year: 2018 end-page: 164 ident: CR2 publication-title: A survey on cloud computing Big Data Analytics – ident: CR45 – volume: 12 start-page: 3807 issue: 3 year: 2021 end-page: 3814 ident: CR28 article-title: A new whale optimizer for workflow scheduling in cloud computing environment publication-title: J. Amb. Intell. Humaniz. Comput. doi: 10.1007/s12652-020-01678-9 – volume: 19 start-page: 1137 issue: 2 year: 2022 end-page: 1150 ident: CR10 article-title: Endpoint communication contention-aware cloud workflow scheduling publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2020.3046673 – volume: 4 start-page: 175 issue: 2 year: 1993 end-page: 187 ident: CR11 article-title: A compile-time scheduling heuristic for interconnection-constrained heterogeneous processor architectures publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/71.207593 – volume: 52 start-page: 689 year: 2020 end-page: 709 ident: CR39 article-title: Deep-q learning-based heterogeneous earliest finish time scheduling algorithm for scientific workflows in cloud publication-title: Softw.: Prac. Exp. – volume: 14 start-page: 1997 issue: 4 year: 2021 end-page: 2025 ident: CR7 article-title: Improved chaotic binary grey wolf optimization algorithm for workflow scheduling in green cloud computing publication-title: Evol. Intell. doi: 10.1007/s12065-020-00479-5 – volume: 33 start-page: 2183 issue: 9 year: 2022 end-page: 2197 ident: CR21 article-title: Multi-swarm co-evolution based hybrid intelligent optimization for bi-objective multi-workflow scheduling in the cloud publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2021.3122428 – volume: 8 start-page: 19 issue: 1 year: 2017 end-page: 25 ident: CR47 article-title: Analysis of particle swarm optimization and genetic algorithm based on task scheduling in cloud computing environment publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 6 start-page: 61488 year: 2018 end-page: 61502 ident: CR18 article-title: Fluctuation-aware and predictive workflow scheduling in cost-effective infrastructure-as-a-service clouds publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2869827 – volume: 25 start-page: 751 issue: 2 year: 2022 end-page: 768 ident: CR41 article-title: Weighted double deep Q-network based reinforcement learning for bi-objective multi-workflow scheduling in the cloud publication-title: Clust. Comput. doi: 10.1007/s10586-021-03454-6 – volume: 8 start-page: 3774 issue: 5 year: 2021 end-page: 3785 ident: CR25 article-title: Energy-optimized partial computation offloading in mobile-edge computing with genetic simulated-annealing-based particle swarm optimization publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.3024223 – volume: 26 start-page: 3809 issue: 8 year: 2022 end-page: 3824 ident: CR30 article-title: Improved swarm search algorithm for scheduling budget-constrained workflows in the cloud publication-title: Soft Comput. doi: 10.1007/s00500-022-06782-w – volume: 86 start-page: 165 year: 2019 end-page: 181 ident: CR5 article-title: Poor and rich optimization algorithm: A new human-based and multi populations algorithm publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.08.025 – volume: 77 start-page: 13139 issue: 11 year: 2021 end-page: 13165 ident: CR3 article-title: PSO+LOA:hybrid constrained optimization for scheduling scientific workflows in the cloud publication-title: J. Supercomput. doi: 10.1007/s11227-021-03755-y – volume: 179 start-page: 2232 issue: 13 year: 2009 end-page: 2248 ident: CR22 article-title: Gsa: A gravitational search algorithm publication-title: Inf. Sci. doi: 10.1016/j.ins.2009.03.004 – volume: 8 start-page: 1079 issue: 5 year: 2021 end-page: 1094 ident: CR29 article-title: An effective cloud workflow scheduling approach combining PSO and idle time slot-aware rules publication-title: IEEE/CAA J. Autom. Sinica doi: 10.1109/JAS.2021.1003982 – ident: CR35 – ident: CR8 – volume: 19 start-page: 982 issue: 2 year: 2022 end-page: 993 ident: CR34 article-title: Scoring and dynamic hierarchy-based NSGA-II for multiobjective workflow scheduling in the cloud publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2021.3054501 – ident: CR27 – volume: 3 start-page: 94 issue: 2 year: 2007 end-page: 103 ident: CR9 article-title: Low complexity performance effective task scheduling algorithm for heterogeneous computing environments publication-title: J. Comput. Sci. doi: 10.3844/jcssp.2007.94.103 – volume: 10 start-page: 662 issue: 1 year: 2022 end-page: 674 ident: CR16 article-title: Scheduling real-time parallel applications in cloud to minimize energy consumption publication-title: IEEE Trans. Cloud Comput. doi: 10.1109/TCC.2019.2956498 – volume: 17 start-page: 166 issue: 1 year: 2020 end-page: 176 ident: CR33 article-title: Moels: Multiobjective evolutionary list scheduling for cloud workflows publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2019.2918691 – volume: 49 start-page: 2912 issue: 8 year: 2018 end-page: 2926 ident: CR23 article-title: Multiobjective cloud workflow scheduling: A multiple populations ant colony system approach publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2832640 – ident: CR48 – volume: 2 start-page: 222 issue: 2 year: 2014 end-page: 235 ident: CR6 article-title: Deadline based resource provisioningand scheduling algorithm for scientific workflows on clouds publication-title: IEEE Trans. Cloud Comput. doi: 10.1109/TCC.2014.2314655 – volume: 23 start-page: 3405 issue: 4 year: 2020 end-page: 3419 ident: CR17 article-title: Budget aware scheduling algorithm for workflow applications in IaaS clouds publication-title: Clust. Comput. doi: 10.1007/s10586-020-03095-1 – volume: 55 start-page: 29 year: 2016 end-page: 40 ident: CR42 article-title: Low-time complexity budget-deadline constrained workflow scheduling on heterogeneous resources publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2015.07.021 – volume: 8 start-page: 1627 issue: 10 year: 2021 end-page: 1643 ident: CR20 article-title: A review on representative swarm intelligence algorithms for solving optimization problems: Applications and trends publication-title: IEEE/CAA J. Autom. Sinica doi: 10.1109/JAS.2021.1004129 – ident: CR15 – volume: 32 start-page: 15263 issue: 18 year: 2020 end-page: 15278 ident: CR31 article-title: A hybrid genetic algorithm for scientific workflow scheduling in cloud environment publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-04878-8 – volume: 15 start-page: 95 issue: 3 year: 2020 end-page: 100 ident: CR38 article-title: Artificial intelligence security in 5g networks: Adversarial examples for estimating a travel time task publication-title: IEEE Veh. Technol. Mag. doi: 10.1109/MVT.2020.3002487 – volume: 6 start-page: 2 issue: 1 year: 2015 end-page: 18 ident: CR46 article-title: A cost-effective deadline-constrained dynamic scheduling algorithm for scientific workflows in a cloud environment publication-title: IEEE Trans. Cloud Comput. doi: 10.1109/TCC.2015.2451649 – volume: 11 start-page: 480 issue: 3 year: 2016 end-page: 492 ident: CR1 article-title: A workflow management system for scalable data mining on clouds publication-title: IEEE Trans. Serv. Comput. doi: 10.1109/TSC.2016.2589243 – volume: 30 start-page: 29 issue: 1 year: 2018 end-page: 44 ident: CR14 article-title: Budget and deadline aware e-science workflow scheduling in clouds publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2018.2849396 – volume: 8 start-page: 94 issue: 1 year: 2021 end-page: 109 ident: CR24 article-title: A multi-layered gravitational search algorithm for function optimization and real-world problems publication-title: IEEE/CAA J. Autom. Sinica doi: 10.1109/JAS.2020.1003462 – volume: 3 start-page: 156 issue: 2 year: 2015 end-page: 168 ident: CR4 article-title: Adaptive workflow scheduling on cloud computing platforms with iterativeordinal optimization publication-title: IEEE Trans. Cloud Comput. doi: 10.1109/TCC.2014.2350490 – ident: CR32 – volume: 512 start-page: 1170 year: 2020 end-page: 1191 ident: CR40 article-title: A scheduling scheme in the cloud computing environment using deep Q-learning publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.10.035 – volume: 16 start-page: 2659 issue: 4 year: 2020 end-page: 2666 ident: CR37 article-title: Nei-tte: Intelligent traffic time estimation based on fine-grained time derivation of road segments for smart city publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2019.2943906 – volume: 110 year: 2021 ident: CR43 article-title: Cost and makespan aware workflow scheduling in iaas clouds using hybrid spider monkey optimization publication-title: Simul. Model. Prac. Theory doi: 10.1016/j.simpat.2021.102328 – volume: 7 start-page: 506 issue: 5 year: 1996 end-page: 521 ident: CR12 article-title: Dynamic critical-path scheduling: An effective technique for allocating task graphs to multiprocessors publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/71.503776 – volume: 9 start-page: 1284 issue: 7 year: 2022 end-page: 1294 ident: CR26 article-title: Self-adaptive bat algorithm with genetic operations publication-title: IEEE/CAA J. Autom. Sinica doi: 10.1109/JAS.2022.105695 – volume: 48 start-page: 2114 issue: 12 year: 2016 end-page: 2140 ident: CR19 article-title: A shifted hyperbolic augmented lagrangian-based artificial fish two-swarm algorithm with guaranteed convergence for constrained global optimization publication-title: Eng. Optim. doi: 10.1080/0305215X.2016.1157688 – volume: 35 start-page: 279 issue: 5 year: 2021 end-page: 283 ident: CR36 article-title: The security of internet of vehicles network: Adversarial examples for trajectory mode detection publication-title: IEEE Network doi: 10.1109/MNET.121.2000435 – volume: 31 start-page: 1239 issue: 6 year: 2019 end-page: 1254 ident: CR13 article-title: GRP-HEFT: A budget-constrained resource provisioning scheme for workflow scheduling in iaas clouds publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2019.2961098 – volume: 38 start-page: 1877 issue: 12 year: 2011 end-page: 1896 ident: CR44 article-title: Multi-operator based evolutionary algorithms for solving constrained optimization problems publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2011.03.003 – volume: 32 start-page: 15263 issue: 18 year: 2020 ident: 4006_CR31 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-04878-8 – volume: 4 start-page: 175 issue: 2 year: 1993 ident: 4006_CR11 publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/71.207593 – volume: 2 start-page: 222 issue: 2 year: 2014 ident: 4006_CR6 publication-title: IEEE Trans. Cloud Comput. doi: 10.1109/TCC.2014.2314655 – ident: 4006_CR45 doi: 10.1109/eScience.2012.6404430 – volume: 77 start-page: 13139 issue: 11 year: 2021 ident: 4006_CR3 publication-title: J. Supercomput. doi: 10.1007/s11227-021-03755-y – volume: 31 start-page: 1239 issue: 6 year: 2019 ident: 4006_CR13 publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2019.2961098 – ident: 4006_CR15 doi: 10.1007/978-3-030-36987-3_12 – volume: 48 start-page: 2114 issue: 12 year: 2016 ident: 4006_CR19 publication-title: Eng. Optim. doi: 10.1080/0305215X.2016.1157688 – volume: 33 start-page: 2183 issue: 9 year: 2022 ident: 4006_CR21 publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2021.3122428 – volume: 8 start-page: 19 issue: 1 year: 2017 ident: 4006_CR47 publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 52 start-page: 689 year: 2020 ident: 4006_CR39 publication-title: Softw.: Prac. Exp. – volume: 11 start-page: 480 issue: 3 year: 2016 ident: 4006_CR1 publication-title: IEEE Trans. Serv. Comput. doi: 10.1109/TSC.2016.2589243 – volume: 19 start-page: 1137 issue: 2 year: 2022 ident: 4006_CR10 publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2020.3046673 – volume: 23 start-page: 3405 issue: 4 year: 2020 ident: 4006_CR17 publication-title: Clust. Comput. doi: 10.1007/s10586-020-03095-1 – start-page: 149 volume-title: A survey on cloud computing Big Data Analytics year: 2018 ident: 4006_CR2 – volume: 26 start-page: 3809 issue: 8 year: 2022 ident: 4006_CR30 publication-title: Soft Comput. doi: 10.1007/s00500-022-06782-w – ident: 4006_CR8 doi: 10.1109/CANET.2007.4401694 – volume: 19 start-page: 982 issue: 2 year: 2022 ident: 4006_CR34 publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2021.3054501 – volume: 7 start-page: 506 issue: 5 year: 1996 ident: 4006_CR12 publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/71.503776 – volume: 55 start-page: 29 year: 2016 ident: 4006_CR42 publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2015.07.021 – volume: 8 start-page: 3774 issue: 5 year: 2021 ident: 4006_CR25 publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.3024223 – ident: 4006_CR48 doi: 10.1109/BIFE.2013.14 – volume: 6 start-page: 2 issue: 1 year: 2015 ident: 4006_CR46 publication-title: IEEE Trans. Cloud Comput. doi: 10.1109/TCC.2015.2451649 – volume: 17 start-page: 166 issue: 1 year: 2020 ident: 4006_CR33 publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2019.2918691 – volume: 8 start-page: 1627 issue: 10 year: 2021 ident: 4006_CR20 publication-title: IEEE/CAA J. Autom. Sinica doi: 10.1109/JAS.2021.1004129 – volume: 3 start-page: 156 issue: 2 year: 2015 ident: 4006_CR4 publication-title: IEEE Trans. Cloud Comput. doi: 10.1109/TCC.2014.2350490 – volume: 110 year: 2021 ident: 4006_CR43 publication-title: Simul. Model. Prac. Theory doi: 10.1016/j.simpat.2021.102328 – volume: 179 start-page: 2232 issue: 13 year: 2009 ident: 4006_CR22 publication-title: Inf. Sci. doi: 10.1016/j.ins.2009.03.004 – volume: 49 start-page: 2912 issue: 8 year: 2018 ident: 4006_CR23 publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2832640 – volume: 3 start-page: 94 issue: 2 year: 2007 ident: 4006_CR9 publication-title: J. Comput. Sci. doi: 10.3844/jcssp.2007.94.103 – volume: 6 start-page: 61488 year: 2018 ident: 4006_CR18 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2869827 – volume: 14 start-page: 1997 issue: 4 year: 2021 ident: 4006_CR7 publication-title: Evol. Intell. doi: 10.1007/s12065-020-00479-5 – volume: 12 start-page: 3807 issue: 3 year: 2021 ident: 4006_CR28 publication-title: J. Amb. Intell. Humaniz. Comput. doi: 10.1007/s12652-020-01678-9 – ident: 4006_CR35 doi: 10.1145/2739482.2764632 – ident: 4006_CR27 doi: 10.1109/ISTEL.2018.8661088 – volume: 10 start-page: 662 issue: 1 year: 2022 ident: 4006_CR16 publication-title: IEEE Trans. Cloud Comput. doi: 10.1109/TCC.2019.2956498 – volume: 9 start-page: 1284 issue: 7 year: 2022 ident: 4006_CR26 publication-title: IEEE/CAA J. Autom. Sinica doi: 10.1109/JAS.2022.105695 – volume: 512 start-page: 1170 year: 2020 ident: 4006_CR40 publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.10.035 – volume: 38 start-page: 1877 issue: 12 year: 2011 ident: 4006_CR44 publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2011.03.003 – volume: 86 start-page: 165 year: 2019 ident: 4006_CR5 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.08.025 – volume: 15 start-page: 95 issue: 3 year: 2020 ident: 4006_CR38 publication-title: IEEE Veh. Technol. Mag. doi: 10.1109/MVT.2020.3002487 – volume: 8 start-page: 1079 issue: 5 year: 2021 ident: 4006_CR29 publication-title: IEEE/CAA J. Autom. Sinica doi: 10.1109/JAS.2021.1003982 – volume: 8 start-page: 94 issue: 1 year: 2021 ident: 4006_CR24 publication-title: IEEE/CAA J. Autom. Sinica doi: 10.1109/JAS.2020.1003462 – volume: 16 start-page: 2659 issue: 4 year: 2020 ident: 4006_CR37 publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2019.2943906 – volume: 35 start-page: 279 issue: 5 year: 2021 ident: 4006_CR36 publication-title: IEEE Network doi: 10.1109/MNET.121.2000435 – volume: 30 start-page: 29 issue: 1 year: 2018 ident: 4006_CR14 publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2018.2849396 – ident: 4006_CR32 – volume: 25 start-page: 751 issue: 2 year: 2022 ident: 4006_CR41 publication-title: Clust. Comput. doi: 10.1007/s10586-021-03454-6 |
| SSID | ssj0009729 |
| Score | 2.3358097 |
| Snippet | Benefiting from cloud computing’s elasticity, scalability, and pay-per-use model, more and more scientific applications are deployed in or migrated to the... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1137 |
| SubjectTerms | Algorithms Budgets Cloud computing Computer Communication Networks Computer Science Constraints Cooperation Critical path Evolution Genetic algorithms Heuristic Heuristic methods Middle class Mutation Operating Systems Optimization Optimization algorithms Populations Processor Architectures Scheduling Workflow |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86X3zxW5xOyYNvGuhH0qaPQxxDmIo42Ftpc8kc1G5sLfv3vXTtpqKCb4Ver-Uul_tdcx-EXIMAx4ASzEmMx7g0CYuUjjBUQbTghtL1jf01MHgM-kP-MBKjuihs0WS7N0eS1U79qdhNSJsw6zO78AK23CY7wrbzwlU89LqbVrthNZvM9ZE6lCKsS2V-5vHVHW0w5rdj0crb9A7IXg0TaXel10OypfMjst-MYKC1RR6TfFCuztIZzO2-RZMc6Gw9lItWRRv4Bvr88kSTbDydT4q3d4pIlWJYi27GVqPTtISxLpiyWNGOjNBAbb6WyabLBZ3kFEEiVdm0hBMy7N2_3vVZPUKBKbStgumUi1R42tXaD5KEO3gVYYQALoYZkVbCcVPuyERZ5ObJwHAJie-nqfEluCD8U9LKp7k-IzRyUgi4MTwykgMYZAsC1aoAJSk0bxO3kWSs6v7i9puzeNMZ2Uo_RunHlfTjZZvcrJ-Zrbpr_EndaRQU15a2iBGuYIyEKNdpk9tGaZvbv3M7_x_5Bdn1EM-sErY7pFXMS32JeKRIr6rl9wFzNtkW priority: 102 providerName: Springer Nature |
| Title | Mutation-driven and population grouping PRO algorithm for scheduling budget-constrained workflows in the cloud |
| URI | https://link.springer.com/article/10.1007/s10586-023-04006-w https://www.proquest.com/docview/2931189910 |
| Volume | 27 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-7543 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0009729 issn: 1386-7857 databaseCode: BENPR dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7543 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009729 issn: 1386-7857 databaseCode: AGYKE dateStart: 19980101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7543 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009729 issn: 1386-7857 databaseCode: U2A dateStart: 19980101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED9B-7KXwb60Dlb5YW-btXzYqfOAUJlaEBMdQqvEniLHZ7NJXVogVf99zqlDtEnwFuXDSe5s3-_su_sBfEKJkUMjeaRdwoVymufG5uSqEFqIRypOnV8auJhlZ3Nxfi2vd2DW5sL4sMp2Tmwmalwav0b-lcwSYWFCM9Hx6pZ71ii_u9pSaOhArYBHTYmxXegnvjJWD_onk9nlVVeGd9TwlsWpyvhIyVFIownJdFL5gNyU-46d8c2_pqrDn_9tmTaWaLoPLwOEZOOtzl_Bjq1ew15Lz8DCaH0D1cV6u8_O8c7PaUxXyFaPhF2sSeigN7DLqx9ML27ob-vffxmhWEYuL5kgn6nOyjXe2JobjyM9nYRF5mO53GK5uWd_KkYAkpnFco1vYT6d_Px2xgO9Ajc07mpuSyFLmdjY2jTTWkR0lJP3gDG5ILk1MopLESltPKpLVOaEQp2mZelShTHK9B30qmVl3wPLoxIz4ZzInRKIjppFSSo3SJKUVgwgbiVZmFB73H_zouiqJnvpFyT9opF-sRnA58dnVtvKG8_efdgqqAij8L7o-swAvrRK6y4_3dqH51s7gBcJYZtt8PYh9Oq7tf1I2KQuh7CrpqdD6I9Pf32fDEP3o7PzZPwAmOflnQ |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V7aFcgPIQC6X4UE5gkYeddQ4V4tFq-9ilqlqpt-B47C3Skl26Wa34c_w2xlmnEUjtrbdISZxoPJ75xp6ZD2AXJUYOjeSRdgkXymmeG5tTqEJoIe6rOHV-a2A4ygYX4uhSXq7Bn7YWxqdVtjaxMdQ4NX6P_AO5JcLChGaij7Nf3LNG-dPVlkJDB2oF3GtajIXCjmP7e0kh3Hzv8CvN99skOdg__zLggWWAG1K_mttSyFImNrY2zbQWEV3lBKIxJiSeWyOjuBSR0saDm0RlTijUaVqWLlUYo2eNIBewIVKRU_C38Xl_dHrWtf3tNzxpcaoy3leyH8p2QvGeVD4BOOV-IWV8-a9r7PDuf0e0jec7eAwPA2Rln1Y6tgVrtnoCj1o6CBasw1OohovVuT7Ha29Dma6QzW4IwlhTQEJfYKdn35iejEm69dVPRqiZUYhNLs9XxrNygWNbc-Nxq6evsMh87pibTJdz9qNiBFiZmUwX-Awu7kXQz2G9mlb2BbA8KjETzoncKYHoaFiUpGIGSZLSih7ErSQLE3qd-3-eFF2XZi_9gqRfNNIvlj14d_PObNXp486nt9sJKsKqnxedjvbgfTtp3e3bR3t592hvYHNwPjwpTg5Hx6_gQUK4apU4vg3r9fXCviZcVJc7QfkYfL9vff8LSCEe8w |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gSIgLb8R45sANIvpIuvQ4AdN4T4hJu1VtnAyk0U2j0_4-Th8bIEDiVqluWtlJ_TnxZxNyAgIcA0owJzYe49LELFQ6xFAF0YLbkK5v7NbA_UPQ7vKbnuh9YvHn2e7VkWTBabBVmtLsfATm_BPxTUibPOszOwkDNl0kS9wWSsAZ3fWa87K7jbxPmeujdEOKRkmb-XmMr65pjje_HZHmnqe1TlZLyEibhY03yIJON8la1Y6Blqtzi6T3k-JcncHY_sNonAIdzRp00ZzAgW-gnadHGg_6w_Fr9vJGEbVSDHHR5VhmOk0m0NcZUxY32vYRGqjN3TKD4fSdvqYUASNVg-EEtkm3dfV80WZlOwWmcJ1lTCdcJMLTrtZ-EMfcwasQowVwMeQItRKOm3BHxsqiOE8GhkuIfT9JjC_BBeHvkFo6TPUuoaGTQMCN4aGRHMDgsCDQxApQk0LzOnErTUaqrDVuv3kQzaskW-1HqP0o1340rZPT2TOjotLGn9IHlYGictW9RwhdMF5CxOvUyVlltPnt30fb-5_4MVnuXLaiu-uH232y4iHMKfK4D0gtG0_0IcKULDnKZ-IHdzzgPg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mutation-driven+and+population+grouping+PRO+algorithm+for+scheduling+budget-constrained+workflows+in+the+cloud&rft.jtitle=Cluster+computing&rft.au=Li%2C+Huifang&rft.au=Chen%2C+Bing&rft.au=Huang%2C+Jingwei&rft.au=Ca%C3%B1izares+Abreu%2C+Julio+Ruben&rft.date=2024-02-01&rft.pub=Springer+Nature+B.V&rft.issn=1386-7857&rft.eissn=1573-7543&rft.volume=27&rft.issue=1&rft.spage=1137&rft.epage=1158&rft_id=info:doi/10.1007%2Fs10586-023-04006-w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-7857&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-7857&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-7857&client=summon |