MSSPP: modified sparrow search algorithm based mobile sink path planning for WSNs
Past studies reveal the benefits of using Mobile Sink in Wireless Sensor Networks to bring about increased data collection efficiency and overall network performance in numerous applications. While several MS data gathering methods have been proposed, most of them are less adaptive to changes in net...
        Saved in:
      
    
          | Published in | Neural computing & applications Vol. 35; no. 2; pp. 1363 - 1378 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London
          Springer London
    
        01.01.2023
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0941-0643 1433-3058  | 
| DOI | 10.1007/s00521-022-07794-1 | 
Cover
| Abstract | Past studies reveal the benefits of using Mobile Sink in Wireless Sensor Networks to bring about increased data collection efficiency and overall network performance in numerous applications. While several MS data gathering methods have been proposed, most of them are less adaptive to changes in network topology and fails to modify the MS path suitably in response to node failures. In this paper, we propose a Modified Sparrow Search Algorithm-based Mobile Sink Path Planning for WSNs (MSSPP) to create shorter travel route for MS and minimize data gathering latency. The proposed method helps in improving the performance of basic SSA by enhancing the quality of initial sparrow population, population diversity and search ability through modified strategies and is adaptive to node failure scenarios. In the first phase, we introduce a modified Sparrow Search-based algorithm to select a set of RPs that maximizes the coverage of nodes and minimizes the overlap in RP coverage. Then, an ACO-based path planning algorithm is utilized to determine the shortest tour through the RPs. The results reveal the effectiveness of MSSPP against other related approaches in terms of number of RPs, data gathering time, MS path, energy utilization and network lifetime. | 
    
|---|---|
| AbstractList | Past studies reveal the benefits of using Mobile Sink in Wireless Sensor Networks to bring about increased data collection efficiency and overall network performance in numerous applications. While several MS data gathering methods have been proposed, most of them are less adaptive to changes in network topology and fails to modify the MS path suitably in response to node failures. In this paper, we propose a Modified Sparrow Search Algorithm-based Mobile Sink Path Planning for WSNs (MSSPP) to create shorter travel route for MS and minimize data gathering latency. The proposed method helps in improving the performance of basic SSA by enhancing the quality of initial sparrow population, population diversity and search ability through modified strategies and is adaptive to node failure scenarios. In the first phase, we introduce a modified Sparrow Search-based algorithm to select a set of RPs that maximizes the coverage of nodes and minimizes the overlap in RP coverage. Then, an ACO-based path planning algorithm is utilized to determine the shortest tour through the RPs. The results reveal the effectiveness of MSSPP against other related approaches in terms of number of RPs, data gathering time, MS path, energy utilization and network lifetime. | 
    
| Author | Al Aghbari, Zaher Khedr, Ahmed M. Raj, Pravija P. V.  | 
    
| Author_xml | – sequence: 1 givenname: Ahmed M. surname: Khedr fullname: Khedr, Ahmed M. organization: Department of Computer Science, University of Sharjah – sequence: 2 givenname: Zaher orcidid: 0000-0003-2285-953X surname: Al Aghbari fullname: Al Aghbari, Zaher email: zaher@sharjah.ac.ae organization: Department of Computer Science, University of Sharjah – sequence: 3 givenname: Pravija P. V. surname: Raj fullname: Raj, Pravija P. V. organization: Department of Computer Science, University of Sharjah  | 
    
| BookMark | eNp9kMtOwzAQRS1UJNrCD7CyxDowfiRO2KGKl1SgqCCWlpPYrUtqBzsV4u8JBAmJBatZ3DnzOBM0ct5phI4JnBIAcRYBUkoSoDQBIQqekD00JpyxhEGaj9AYCt7HGWcHaBLjBgB4lqdj9Hi3XC4W53jra2usrnFsVQj-HUetQrXGqln5YLv1Fpcq9vHWl7bROFr3ilvVrXHbKOesW2HjA35Z3sdDtG9UE_XRT52i56vLp9lNMn-4vp1dzJOKkaJLdAlElEWeFUAqzbShJa-5KQgpwfCCUaazrM4NE4QIkZtUmTLVAmrDGReUsSk6Gea2wb_tdOzkxu-C61dKKjKasoz2705RPnRVwccYtJGV7VRnveuCso0kIL8EykGg7AXKb4GS9Cj9g7bBblX4-B9iAxT7ZrfS4feqf6hP7xmDyg | 
    
| CitedBy_id | crossref_primary_10_1007_s12239_024_00149_w crossref_primary_10_1109_ACCESS_2024_3379425 crossref_primary_10_1007_s13369_023_07636_9 crossref_primary_10_3390_s23125433 crossref_primary_10_1007_s10586_024_04620_2 crossref_primary_10_3390_act13010024 crossref_primary_10_3390_buildings14103273 crossref_primary_10_1016_j_aei_2024_102557 crossref_primary_10_1007_s11227_024_06092_y crossref_primary_10_3390_electronics13224553 crossref_primary_10_1016_j_vehcom_2024_100729 crossref_primary_10_1007_s00521_024_09520_5 crossref_primary_10_1007_s11227_024_05892_6 crossref_primary_10_1007_s10462_023_10549_6  | 
    
| Cites_doi | 10.1109/JSEN.2017.2773119 10.1016/j.cosrev.2021.100412 10.3390/a8040910 10.1007/s11276-020-02347-7 10.1007/s11277-019-06440-9 10.1109/JSYST.2016.2597166 10.1007/s11276-017-1517-y 10.1109/TMC.2014.2366776 10.1002/dac.3006 10.1109/TCNS.2016.2578460 10.1007/s11277-019-06993-9 10.1007/s10922-015-9342-z 10.1155/2020/8853662 10.1109/ACCESS.2020.3010313 10.4316/AECE.2017.02010 10.1109/4235.585892 10.1007/s11276-020-02254-x 10.1088/1742-6596/1682/1/012020 10.3390/s16091432 10.1007/s13042-019-00979-6 10.1080/21642583.2019.1708830 10.1016/j.aeue.2018.09.005 10.1109/ACCESS.2020.2989763 10.1007/s00607-021-00917-x 10.1145/3057109.3057118 10.1109/ICC.2015.7249357 10.1109/ACCESS.2019.2957834 10.1007/978-3-030-58015-5_3 10.1080/17445760.2012.729584 10.1016/j.protcy.2012.03.008 10.1016/j.ins.2017.02.026  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | 
    
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS  | 
    
| DOI | 10.1007/s00521-022-07794-1 | 
    
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Central Advanced Technologies & Aerospace Database (via ProQuest) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China  | 
    
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Advanced Technologies & Aerospace Collection  | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1433-3058 | 
    
| EndPage | 1378 | 
    
| ExternalDocumentID | 10_1007_s00521_022_07794_1 | 
    
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO DWQXO PKEHL PQEST PQQKQ PQUKI PRINS  | 
    
| ID | FETCH-LOGICAL-c319t-eb017b986901ce3ef2b4d4f911b0f49323e66d8f3711778f5afb5e70df4347233 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 0941-0643 | 
    
| IngestDate | Fri Jul 25 22:07:39 EDT 2025 Wed Oct 01 02:26:16 EDT 2025 Thu Apr 24 23:06:32 EDT 2025 Fri Feb 21 02:45:57 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Keywords | Sparrow search algorithm (SSA) Path planning Ant Colony optimization (ACO) Wireless sensor network (WSN) Mobile sink (MS) Data gathering  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c319t-eb017b986901ce3ef2b4d4f911b0f49323e66d8f3711778f5afb5e70df4347233 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0003-2285-953X | 
    
| PQID | 2762536264 | 
    
| PQPubID | 2043988 | 
    
| PageCount | 16 | 
    
| ParticipantIDs | proquest_journals_2762536264 crossref_citationtrail_10_1007_s00521_022_07794_1 crossref_primary_10_1007_s00521_022_07794_1 springer_journals_10_1007_s00521_022_07794_1  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20230100 2023-01-00 20230101  | 
    
| PublicationDateYYYYMMDD | 2023-01-01 | 
    
| PublicationDate_xml | – month: 1 year: 2023 text: 20230100  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | London | 
    
| PublicationPlace_xml | – name: London – name: Heidelberg  | 
    
| PublicationTitle | Neural computing & applications | 
    
| PublicationTitleAbbrev | Neural Comput & Applic | 
    
| PublicationYear | 2023 | 
    
| Publisher | Springer London Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer London – name: Springer Nature B.V  | 
    
| References | ParkJKimSYounJAhnSChoSIterative sensor clustering and mobile sink trajectory optimization for wireless sensor network with nonuniform densityWirel Commun Mobile Comput202020208860010.1155/2020/8853662 KhedrAMRajPPAl AliAAn energy-efficient data acquisition technique for hierarchical cluster-based wireless sensor networksJ Wirel Mob Netw Ubiquitous Comput Dependable Appl20201137086 AlsaafinAKhedrAMAl AghbariZDistributed trajectory design for data gathering using mobile sink in wireless sensor networksAEU-Int J Electron Commun20189611210.1016/j.aeue.2018.09.005 OsamyWEl-sawyAAKhedrAMSatc: a simulated annealing based tree construction and scheduling algorithm for minimizing aggregation time in wireless sensor networksWireless Pers Commun2019108292193810.1007/s11277-019-06440-9 GálvezJCuevasEBecerraHAvalosOA hybrid optimization approach based on clustering and chaotic sequencesInt J Mach Learn Cybern202011235940110.1007/s13042-019-00979-6 KhedrAMLearning k-nearest neighbors classifier from distributed dataComput Inf200827335537624315211324.68100 MacoveiCLupuA-ERăducanuMEnhanced cryptographic algorithm based on chaotic map and wavelet packetsUPB Sci Bull Ser C20208246669 MehtoATapaswiSPattanaikKOptimal rendezvous points selection to reliably acquire data from wireless sensor networks using mobile sinkComputing20211034707733424078010.1007/s00607-021-00917-x1473.68027 HeXFuXYangYEnergy-efficient trajectory planning algorithm based on multi-objective pso for the mobile sink in wireless sensor networksIEEE Access2019717620417621710.1109/ACCESS.2019.2957834 TanyildiziEDemirGGolden sine algorithm: a novel math-inspired algorithmAdv Electr Comput Eng2017172717810.4316/AECE.2017.02010 Al AghbariZKhedrAMKhalifaBRajPPAn adaptive coverage aware data gathering scheme using kd-tree and aco for wsns with mobile sinkJ Supercomput20223124 MajmaMRAlmassiSShokrzadehHSgdd: self-managed grid-based data dissemination protocol for mobile sink in wireless sensor networkInt J Commun Syst201629595997610.1002/dac.3006 YogarajanGRevathiTNature inspired discrete firefly algorithm for optimal mobile data gathering in wireless sensor networksWirel Netw20182482993300710.1007/s11276-017-1517-y KhedrAMEffective data acquisition protocol for multi-hop heterogeneous wireless sensor networks using compressive sensingAlgorithms20158491092810.3390/a8040910 ZhuCZhangSHanGJiangJRodriguesJJA greedy scanning data collection strategy for large-scale wireless sensor networks with a mobile sinkSensors2016169143210.3390/s16091432 Díaz-RamírezATafoyaLAAtempaJAMejía-AlvarezPWireless sensor networks and fusion information methods for forest fire detectionProcedia Technol20123697910.1016/j.protcy.2012.03.008 Prathima E, Laxmikant H, Naveen S, Venugopal K, Iyengar S, Patnaik L (2017) Dams: data aggregation using mobile sink in wireless sensor networks. In: Proceedings of the 5th international conference on communications and broadband networking, pp 6–11 TuncaCIsikSDonmezMYErsoyCRing routing: an energy-efficient routing protocol for wireless sensor networks with a mobile sinkIEEE Trans Mob Comput20151491947196010.1109/TMC.2014.2366776 WangZDingHLiBBaoLYangZAn energy efficient routing protocol based on improved artificial bee colony algorithm for wireless sensor networksIEEE Access2020813357713359610.1109/ACCESS.2020.3010313 KhedrAMAl AghbariZPravija RajPCoverage aware face topology structure for wireless sensor network applicationsWirel Netw20202664557457710.1007/s11276-020-02347-7 Tang J, Guo S, Yang Y (2015) Delivery latency minimization in wireless sensor networks with mobile sink. In: 2015 IEEE international conference on communications (ICC), pp 6481–6486. IEEE RajPPKhedrAMAl AghbariZData gathering via mobile sink in WSNs using game theory and enhanced ant colony optimizationWirel Netw20202642983299810.1007/s11276-020-02254-x DengRHeSChenJAn online algorithm for data collection by multiple sinks in wireless-sensor networksIEEE Trans Control Netw Syst20185193104377985210.1109/TCNS.2016.257846006989013 WenWZhaoSShangCChangC-YEapc: energy-aware path construction for data collection using mobile sink in wireless sensor networksIEEE Sens J201818289090110.1109/JSEN.2017.2773119 LiCZhangNLaiXZhouJXuYDesign of a fractional-order pid controller for a pumped storage unit using a gravitational search algorithm based on the cauchy and gaussian mutationInf Sci201739616218110.1016/j.ins.2017.02.026 AgarwalVTapaswiSChanakPA survey on path planning techniques for mobile sink in iot-enabled wireless sensor networksWirel Personal Commun20212128 WangYWangTDongSYaoCAn improved grey-wolf optimization algorithm based on circle mapJ Phys Conf Ser2020168201202010.1088/1742-6596/1682/1/012020 Al AghbariZKhedrAMOsamyWArifIAgrawalDPRouting in wireless sensor networks using optimization techniques: a surveyWireless Pers Commun202011142407243410.1007/s11277-019-06993-9 Al AghbariZKamelIElbaroniWEnergy-efficient distributed wireless sensor network scheme for cluster detectionInt J Parallel Emergent Distrib Syst201328112810.1080/17445760.2012.729584 Fahmy HMA (2021) Wsn applications. In: Concepts, applications, experimentation and analysis of wireless sensor networks, pp 67–232. Springer DorigoMGambardellaLMAnt colony system: a cooperative learning approach to the traveling salesman problemIEEE Trans Evol Comput199711536610.1109/4235.585892 MiaoYSunZWangNCaoYCruickshankHTime efficient data collection with mobile sink and vmimo technique in wireless sensor networksIEEE Syst J201712163964710.1109/JSYST.2016.2597166 KambleAAPatilBSystematic analysis and review of path optimization techniques in WSN with mobile sinkComput Sci Rev20214110041210.1016/j.cosrev.2021.100412 XueJShenBA novel swarm intelligence optimization approach: sparrow search algorithmSyst Sci Control Eng202081223410.1080/21642583.2019.1708830 KhedrAMBhatnagarRAgents for integrating distributed data for complex computationsComput Inf20072621491701145.68356 DashDKumarNRayPPKumarNReducing data gathering delay for energy efficient wireless data collection by jointly optimizing path and speed of mobile sinkIEEE Syst J2020894 KhedrAMAl AghbariZKhalifaBEFuzzy-based multi-layered clustering and aco-based multiple mobile sinks path planning for optimal coverage in wsnsIEEE Sens J202258089 Abu SafiaAAl AghbariZKamelIPhenomena detection in mobile wireless sensor networksJ Netw Syst Manag20162419211510.1007/s10922-015-9342-z WenWShangCChangC-YRoyDSDedc: joint density-aware and energy-limited path construction for data collection using mobile sink in WSNsIEEE Access20208789427895510.1109/ACCESS.2020.2989763 AM Khedr (7794_CR2) 2020; 11 C Tunca (7794_CR19) 2015; 14 A Alsaafin (7794_CR23) 2018; 96 MR Majma (7794_CR24) 2016; 29 C Zhu (7794_CR18) 2016; 16 A Díaz-Ramírez (7794_CR27) 2012; 3 Z Al Aghbari (7794_CR28) 2013; 28 AM Khedr (7794_CR3) 2007; 26 Z Al Aghbari (7794_CR9) 2022; 3 J Park (7794_CR26) 2020; 2020 Y Wang (7794_CR34) 2020; 1682 A Mehto (7794_CR11) 2021; 103 AM Khedr (7794_CR12) 2020; 26 J Gálvez (7794_CR38) 2020; 11 C Macovei (7794_CR37) 2020; 82 W Wen (7794_CR29) 2018; 18 X He (7794_CR30) 2019; 7 D Dash (7794_CR31) 2020; 8 PP Raj (7794_CR22) 2020; 26 7794_CR20 G Yogarajan (7794_CR16) 2018; 24 AM Khedr (7794_CR4) 2008; 27 Y Miao (7794_CR21) 2017; 12 W Osamy (7794_CR33) 2019; 108 C Li (7794_CR36) 2017; 396 W Wen (7794_CR32) 2020; 8 J Xue (7794_CR13) 2020; 8 Z Al Aghbari (7794_CR10) 2020; 111 Z Wang (7794_CR25) 2020; 8 V Agarwal (7794_CR5) 2021; 2 R Deng (7794_CR15) 2018; 5 M Dorigo (7794_CR39) 1997; 1 AA Kamble (7794_CR6) 2021; 41 E Tanyildizi (7794_CR35) 2017; 17 AM Khedr (7794_CR7) 2022; 5 7794_CR17 A Abu Safia (7794_CR14) 2016; 24 7794_CR1 AM Khedr (7794_CR8) 2015; 8  | 
    
| References_xml | – reference: GálvezJCuevasEBecerraHAvalosOA hybrid optimization approach based on clustering and chaotic sequencesInt J Mach Learn Cybern202011235940110.1007/s13042-019-00979-6 – reference: WenWShangCChangC-YRoyDSDedc: joint density-aware and energy-limited path construction for data collection using mobile sink in WSNsIEEE Access20208789427895510.1109/ACCESS.2020.2989763 – reference: AlsaafinAKhedrAMAl AghbariZDistributed trajectory design for data gathering using mobile sink in wireless sensor networksAEU-Int J Electron Commun20189611210.1016/j.aeue.2018.09.005 – reference: WangZDingHLiBBaoLYangZAn energy efficient routing protocol based on improved artificial bee colony algorithm for wireless sensor networksIEEE Access2020813357713359610.1109/ACCESS.2020.3010313 – reference: OsamyWEl-sawyAAKhedrAMSatc: a simulated annealing based tree construction and scheduling algorithm for minimizing aggregation time in wireless sensor networksWireless Pers Commun2019108292193810.1007/s11277-019-06440-9 – reference: KhedrAMEffective data acquisition protocol for multi-hop heterogeneous wireless sensor networks using compressive sensingAlgorithms20158491092810.3390/a8040910 – reference: Abu SafiaAAl AghbariZKamelIPhenomena detection in mobile wireless sensor networksJ Netw Syst Manag20162419211510.1007/s10922-015-9342-z – reference: HeXFuXYangYEnergy-efficient trajectory planning algorithm based on multi-objective pso for the mobile sink in wireless sensor networksIEEE Access2019717620417621710.1109/ACCESS.2019.2957834 – reference: YogarajanGRevathiTNature inspired discrete firefly algorithm for optimal mobile data gathering in wireless sensor networksWirel Netw20182482993300710.1007/s11276-017-1517-y – reference: LiCZhangNLaiXZhouJXuYDesign of a fractional-order pid controller for a pumped storage unit using a gravitational search algorithm based on the cauchy and gaussian mutationInf Sci201739616218110.1016/j.ins.2017.02.026 – reference: DashDKumarNRayPPKumarNReducing data gathering delay for energy efficient wireless data collection by jointly optimizing path and speed of mobile sinkIEEE Syst J2020894 – reference: Al AghbariZKhedrAMOsamyWArifIAgrawalDPRouting in wireless sensor networks using optimization techniques: a surveyWireless Pers Commun202011142407243410.1007/s11277-019-06993-9 – reference: KhedrAMAl AghbariZPravija RajPCoverage aware face topology structure for wireless sensor network applicationsWirel Netw20202664557457710.1007/s11276-020-02347-7 – reference: Díaz-RamírezATafoyaLAAtempaJAMejía-AlvarezPWireless sensor networks and fusion information methods for forest fire detectionProcedia Technol20123697910.1016/j.protcy.2012.03.008 – reference: XueJShenBA novel swarm intelligence optimization approach: sparrow search algorithmSyst Sci Control Eng202081223410.1080/21642583.2019.1708830 – reference: MacoveiCLupuA-ERăducanuMEnhanced cryptographic algorithm based on chaotic map and wavelet packetsUPB Sci Bull Ser C20208246669 – reference: DorigoMGambardellaLMAnt colony system: a cooperative learning approach to the traveling salesman problemIEEE Trans Evol Comput199711536610.1109/4235.585892 – reference: RajPPKhedrAMAl AghbariZData gathering via mobile sink in WSNs using game theory and enhanced ant colony optimizationWirel Netw20202642983299810.1007/s11276-020-02254-x – reference: KambleAAPatilBSystematic analysis and review of path optimization techniques in WSN with mobile sinkComput Sci Rev20214110041210.1016/j.cosrev.2021.100412 – reference: Fahmy HMA (2021) Wsn applications. In: Concepts, applications, experimentation and analysis of wireless sensor networks, pp 67–232. Springer – reference: Tang J, Guo S, Yang Y (2015) Delivery latency minimization in wireless sensor networks with mobile sink. In: 2015 IEEE international conference on communications (ICC), pp 6481–6486. IEEE – reference: WenWZhaoSShangCChangC-YEapc: energy-aware path construction for data collection using mobile sink in wireless sensor networksIEEE Sens J201818289090110.1109/JSEN.2017.2773119 – reference: MiaoYSunZWangNCaoYCruickshankHTime efficient data collection with mobile sink and vmimo technique in wireless sensor networksIEEE Syst J201712163964710.1109/JSYST.2016.2597166 – reference: KhedrAMBhatnagarRAgents for integrating distributed data for complex computationsComput Inf20072621491701145.68356 – reference: MehtoATapaswiSPattanaikKOptimal rendezvous points selection to reliably acquire data from wireless sensor networks using mobile sinkComputing20211034707733424078010.1007/s00607-021-00917-x1473.68027 – reference: WangYWangTDongSYaoCAn improved grey-wolf optimization algorithm based on circle mapJ Phys Conf Ser2020168201202010.1088/1742-6596/1682/1/012020 – reference: DengRHeSChenJAn online algorithm for data collection by multiple sinks in wireless-sensor networksIEEE Trans Control Netw Syst20185193104377985210.1109/TCNS.2016.257846006989013 – reference: TuncaCIsikSDonmezMYErsoyCRing routing: an energy-efficient routing protocol for wireless sensor networks with a mobile sinkIEEE Trans Mob Comput20151491947196010.1109/TMC.2014.2366776 – reference: TanyildiziEDemirGGolden sine algorithm: a novel math-inspired algorithmAdv Electr Comput Eng2017172717810.4316/AECE.2017.02010 – reference: ZhuCZhangSHanGJiangJRodriguesJJA greedy scanning data collection strategy for large-scale wireless sensor networks with a mobile sinkSensors2016169143210.3390/s16091432 – reference: AgarwalVTapaswiSChanakPA survey on path planning techniques for mobile sink in iot-enabled wireless sensor networksWirel Personal Commun20212128 – reference: KhedrAMRajPPAl AliAAn energy-efficient data acquisition technique for hierarchical cluster-based wireless sensor networksJ Wirel Mob Netw Ubiquitous Comput Dependable Appl20201137086 – reference: MajmaMRAlmassiSShokrzadehHSgdd: self-managed grid-based data dissemination protocol for mobile sink in wireless sensor networkInt J Commun Syst201629595997610.1002/dac.3006 – reference: ParkJKimSYounJAhnSChoSIterative sensor clustering and mobile sink trajectory optimization for wireless sensor network with nonuniform densityWirel Commun Mobile Comput202020208860010.1155/2020/8853662 – reference: KhedrAMLearning k-nearest neighbors classifier from distributed dataComput Inf200827335537624315211324.68100 – reference: Al AghbariZKhedrAMKhalifaBRajPPAn adaptive coverage aware data gathering scheme using kd-tree and aco for wsns with mobile sinkJ Supercomput20223124 – reference: Al AghbariZKamelIElbaroniWEnergy-efficient distributed wireless sensor network scheme for cluster detectionInt J Parallel Emergent Distrib Syst201328112810.1080/17445760.2012.729584 – reference: KhedrAMAl AghbariZKhalifaBEFuzzy-based multi-layered clustering and aco-based multiple mobile sinks path planning for optimal coverage in wsnsIEEE Sens J202258089 – reference: Prathima E, Laxmikant H, Naveen S, Venugopal K, Iyengar S, Patnaik L (2017) Dams: data aggregation using mobile sink in wireless sensor networks. In: Proceedings of the 5th international conference on communications and broadband networking, pp 6–11 – volume: 18 start-page: 890 issue: 2 year: 2018 ident: 7794_CR29 publication-title: IEEE Sens J doi: 10.1109/JSEN.2017.2773119 – volume: 41 start-page: 100412 year: 2021 ident: 7794_CR6 publication-title: Comput Sci Rev doi: 10.1016/j.cosrev.2021.100412 – volume: 8 start-page: 910 issue: 4 year: 2015 ident: 7794_CR8 publication-title: Algorithms doi: 10.3390/a8040910 – volume: 26 start-page: 4557 issue: 6 year: 2020 ident: 7794_CR12 publication-title: Wirel Netw doi: 10.1007/s11276-020-02347-7 – volume: 108 start-page: 921 issue: 2 year: 2019 ident: 7794_CR33 publication-title: Wireless Pers Commun doi: 10.1007/s11277-019-06440-9 – volume: 12 start-page: 639 issue: 1 year: 2017 ident: 7794_CR21 publication-title: IEEE Syst J doi: 10.1109/JSYST.2016.2597166 – volume: 24 start-page: 2993 issue: 8 year: 2018 ident: 7794_CR16 publication-title: Wirel Netw doi: 10.1007/s11276-017-1517-y – volume: 14 start-page: 1947 issue: 9 year: 2015 ident: 7794_CR19 publication-title: IEEE Trans Mob Comput doi: 10.1109/TMC.2014.2366776 – volume: 29 start-page: 959 issue: 5 year: 2016 ident: 7794_CR24 publication-title: Int J Commun Syst doi: 10.1002/dac.3006 – volume: 2 start-page: 1 year: 2021 ident: 7794_CR5 publication-title: Wirel Personal Commun – volume: 5 start-page: 93 issue: 1 year: 2018 ident: 7794_CR15 publication-title: IEEE Trans Control Netw Syst doi: 10.1109/TCNS.2016.2578460 – volume: 111 start-page: 2407 issue: 4 year: 2020 ident: 7794_CR10 publication-title: Wireless Pers Commun doi: 10.1007/s11277-019-06993-9 – volume: 8 start-page: 94 year: 2020 ident: 7794_CR31 publication-title: IEEE Syst J – volume: 24 start-page: 92 issue: 1 year: 2016 ident: 7794_CR14 publication-title: J Netw Syst Manag doi: 10.1007/s10922-015-9342-z – volume: 2020 start-page: 88600 year: 2020 ident: 7794_CR26 publication-title: Wirel Commun Mobile Comput doi: 10.1155/2020/8853662 – volume: 8 start-page: 133577 year: 2020 ident: 7794_CR25 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3010313 – volume: 17 start-page: 71 issue: 2 year: 2017 ident: 7794_CR35 publication-title: Adv Electr Comput Eng doi: 10.4316/AECE.2017.02010 – volume: 1 start-page: 53 issue: 1 year: 1997 ident: 7794_CR39 publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.585892 – volume: 82 start-page: 6669 issue: 4 year: 2020 ident: 7794_CR37 publication-title: UPB Sci Bull Ser C – volume: 3 start-page: 1 year: 2022 ident: 7794_CR9 publication-title: J Supercomput – volume: 26 start-page: 2983 issue: 4 year: 2020 ident: 7794_CR22 publication-title: Wirel Netw doi: 10.1007/s11276-020-02254-x – volume: 1682 start-page: 012020 year: 2020 ident: 7794_CR34 publication-title: J Phys Conf Ser doi: 10.1088/1742-6596/1682/1/012020 – volume: 16 start-page: 1432 issue: 9 year: 2016 ident: 7794_CR18 publication-title: Sensors doi: 10.3390/s16091432 – volume: 11 start-page: 359 issue: 2 year: 2020 ident: 7794_CR38 publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-019-00979-6 – volume: 8 start-page: 22 issue: 1 year: 2020 ident: 7794_CR13 publication-title: Syst Sci Control Eng doi: 10.1080/21642583.2019.1708830 – volume: 11 start-page: 70 issue: 3 year: 2020 ident: 7794_CR2 publication-title: J Wirel Mob Netw Ubiquitous Comput Dependable Appl – volume: 96 start-page: 1 year: 2018 ident: 7794_CR23 publication-title: AEU-Int J Electron Commun doi: 10.1016/j.aeue.2018.09.005 – volume: 8 start-page: 78942 year: 2020 ident: 7794_CR32 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2989763 – volume: 103 start-page: 707 issue: 4 year: 2021 ident: 7794_CR11 publication-title: Computing doi: 10.1007/s00607-021-00917-x – volume: 27 start-page: 355 issue: 3 year: 2008 ident: 7794_CR4 publication-title: Comput Inf – ident: 7794_CR17 doi: 10.1145/3057109.3057118 – ident: 7794_CR20 doi: 10.1109/ICC.2015.7249357 – volume: 7 start-page: 176204 year: 2019 ident: 7794_CR30 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2957834 – ident: 7794_CR1 doi: 10.1007/978-3-030-58015-5_3 – volume: 5 start-page: 8089 year: 2022 ident: 7794_CR7 publication-title: IEEE Sens J – volume: 26 start-page: 149 issue: 2 year: 2007 ident: 7794_CR3 publication-title: Comput Inf – volume: 28 start-page: 1 issue: 1 year: 2013 ident: 7794_CR28 publication-title: Int J Parallel Emergent Distrib Syst doi: 10.1080/17445760.2012.729584 – volume: 3 start-page: 69 year: 2012 ident: 7794_CR27 publication-title: Procedia Technol doi: 10.1016/j.protcy.2012.03.008 – volume: 396 start-page: 162 year: 2017 ident: 7794_CR36 publication-title: Inf Sci doi: 10.1016/j.ins.2017.02.026  | 
    
| SSID | ssj0004685 | 
    
| Score | 2.4089174 | 
    
| Snippet | Past studies reveal the benefits of using Mobile Sink in Wireless Sensor Networks to bring about increased data collection efficiency and overall network... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1363 | 
    
| SubjectTerms | Algorithms Artificial Intelligence Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data collection Data Mining and Knowledge Discovery Energy utilization Image Processing and Computer Vision Network latency Network topologies Original Article Path planning Probability and Statistics in Computer Science Search algorithms Wireless networks Wireless sensor networks  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwIxEJ4gXLz4NqJoevCmG2HbfWBijBoMMYGgSOS22b7UhJeC_9-ZpQtqItfdbpOdzuNrpzMfwKmNqkZYrTwV6KonjAk9GXLc81iMRRTCY00Z3VY7bPbEQz_oF6Cd18LQtcrcJ2aOWo8VnZFf-Gi1AfVOEdeTD49Yoyi7mlNopI5aQV9lLcbWoORTZ6wilG4b7c7Tj0rJjKQT9zR030dwV0aTFdPRCSk-9ek2JmqpV_sdqpb480_KNItE91uw4SAku5mv-TYUzGgHNnN6BuasdRceW91up3PJhmP9bhFpMnQe1HGRzbWbpYNX_MHZ25BRKNM4TqKLYFPcnTIiKmYTR2jEENiyl257uge9-8bzXdNzDAqeQtOaeUaiwcl6xjqlDDfWl0ILiw5OVq1A6MZNGOrY8ohyt7ENUisDE1W1FVxEPuf7UByNR-YAmO-nPA5VWksRgCgTx3URSOVbzqWIuJRlqOXCSpRrL04sF4Nk0Rg5E3CCAk4yASe1MpwtvpnMm2usHF3J1yBxhjZNlmpRhvN8XZav_5_tcPVsR7BOxPLzw5YKFGefX-YY4cdMnjid-gZJ4NO0 priority: 102 providerName: ProQuest  | 
    
| Title | MSSPP: modified sparrow search algorithm based mobile sink path planning for WSNs | 
    
| URI | https://link.springer.com/article/10.1007/s00521-022-07794-1 https://www.proquest.com/docview/2762536264  | 
    
| Volume | 35 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1433-3058 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ABDBF dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1433-3058 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ADMLS dateStart: 19930301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-3058 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1433-3058 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: 8FG dateStart: 20180401 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFH6CsrBwIwql8sAGkVLbOcpWUA-BWhVKRZmi2LEBqZdI-f88J04LCJCYMsSxlOd3-h0fwJkOXMV1Ih3pJa7DlfId4TOMeTTaImPCw8RkdLs9vzPkNyNvZJvC0qLavUhJZpp62exmbjAx9KWmWhK5yMGYZ8Mz47yQi4e08akbMgPixLjF1PRwZltlft7jqzla-Zjf0qKZtWntwJZ1E0kjP9ddWFPTPdguIBiIlch9uOsOBv3-JZnMkleN3iRBBWGmKpKcg0k8fp5h-P8yIcZcJbhOoBogKf4_MWDEZG5Biwg6r-Rx0EsPYNhqPlx3HIuS4EgUn4WjBAqVqGfIUlIxpangCdeoxISrObpnTPl-EmoWmPxsqL1YC08FbqI54wFl7BBK09lUHQGhNGahL-NajE6GVGFY556QVDMmeMCEKEOtIFYk7Qhxg2QxjpbDjzMCR0jgKCNwVCvD-fKbeT5A48_VleIMIitMaURRYXtmbA4vw0VxLqvXv-92_L_lJ7BpwOTzC5YKlBZv7-oUXY6FqMJ62GpXYaPRfrpt4vOq2evfVzO--wB53M4g | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5F7QEuLY9WDQS6BziBRbK7fgQpQlASpc1DgaRqb8b7ais1D0gQ4s_x25hx1glFam452l7vYXZ23jMfwCsXV610Rgc6NNVAWhsFKhLo8zjURaTCE0MZ3V4_ap_Ls8vwsgR_il4YKqssZGIuqM1UU4z8HcdbG9LsFPlh9j0g1CjKrhYQGpmHVjCNfMSYb-zo2N-_0IWbN04_43m_5rzVHJ20A48yEGhkv0VgFTKlqufITNoK67iSRjoUAqrqJJo3wkaRSZyIKb-ZuDBzKrRx1TgpZMwpIIoqYBcf6uj87X5q9gdf_-nMzEFB0Yei-iIpfNtO3rxHEVl8y6n6E29FULurGtf27n8p2lzztR7BnjdZ2ccljz2Gkp08gf0CDoJ56fAUvvSGw8HgPRtPzY1Dy5ahsKIJj2xJJpbdXiFBF9djRqrT4DqFIonN0RtmBIzMZh5AiaEhzS6G_fkBnG-FloewM5lO7BEwzjORRDqrZWjwaJskdRkqzZ0QSsZCqTLUCmKl2o8zJ1SN23Q1iDkncIoETnMCp7UyvFn9M1sO89i4ulKcQeov9jxds2EZ3hbnsv58_27PNu92DA_ao1437Z72O8_hIYHaLwM9FdhZ_PhpX6Dps1AvPX8x-LZtlv4L-eQP2w | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JTwIxFG4MJsaLuxFF7cGbThjazoI3ohJcIBgkcmumm5LAQGD8_77OAmjUxPN0enh9a1_f9yF0YQJXM6OkIz3lOkxr3xE-hZrHQCyyITxUtqPb7vitPnsYeIOVKf70tXvRksxmGixKU5xUp8pUF4Nv9jYTymBiX06CRjlQ_6wzC5QAGt0njZXJyJSUE2oY-76H0Xxs5uc9voamZb75rUWaRp7mDtrKU0bcyM54F63peA9tF3QMOLfOffTc7vW63Ws8nqihgcwSg7OwCIs402Ycjd4ms2HyPsY2dClYJ8Al4DnIAltiYjzNCYwwJLL4tdeZH6B-8-7lpuXkjAmOBFNKHC3AwEQ9ZZmSmmpDBFPMgEMTrmGQqlHt-yo0NLC92tB4kRGeDlxlGGUBofQQleJJrI8QJiSioS-jWgQJh9RhWGeekMRQKlhAhSijWiEsLnM4cctqMeILIORUwBwEzFMB81oZXS7-mWZgGn-urhRnwHPDmnMCztuzEDqsjK6Kc1l-_n234_8tP0cb3dsmf7rvPJ6gTcsxn927VFApmX3oU8hEEnGWKtsnyG3RNA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MSSPP%3A+modified+sparrow+search+algorithm+based+mobile+sink+path+planning+for+WSNs&rft.jtitle=Neural+computing+%26+applications&rft.au=Khedr%2C+Ahmed+M.&rft.au=Al+Aghbari%2C+Zaher&rft.au=Raj%2C+Pravija+P.+V.&rft.date=2023-01-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=35&rft.issue=2&rft.spage=1363&rft.epage=1378&rft_id=info:doi/10.1007%2Fs00521-022-07794-1&rft.externalDocID=10_1007_s00521_022_07794_1 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |