MMFGAN: A novel multimodal brain medical image fusion based on the improvement of generative adversarial network
In recent years, the multimodal medical imaging assisted diagnosis and treatment technology has developed rapidly. In brain disease diagnosis, CT-SPECT, MRI-PET and MRI-SPECT fusion images are more favored by brain doctors because they contain both soft tissue structure information and organ metabol...
Saved in:
| Published in | Multimedia tools and applications Vol. 81; no. 4; pp. 5889 - 5927 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.02.2022
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1380-7501 1573-7721 |
| DOI | 10.1007/s11042-021-11822-y |
Cover
| Abstract | In recent years, the multimodal medical imaging assisted diagnosis and treatment technology has developed rapidly. In brain disease diagnosis, CT-SPECT, MRI-PET and MRI-SPECT fusion images are more favored by brain doctors because they contain both soft tissue structure information and organ metabolism information. Most of the previous medical image fusion algorithms are the migration of other types of image fusion methods and such operations often lose the features of the medical image itself. This paper proposes a multimodal medical image fusion model based on the residual attention mechanism of the generative adversarial network. In the design of the generator, we construct the residual attention mechanism block and the concat detail texture block. After source images are concatenated to a matrix , the matrix is put into two blocks at the same time to extract information such as size, shape, spatial location and texture details. The obtained features are put into the merge block to reconstruct the image. The obtained reconstructed image and source images are respectively put into two discriminators for correction to obtain the final fused image. The model has been experimented on the images of three databases and achieved good fusion results. Qualitative and quantitative evaluations prove that the model is superior to other comparison algorithms in terms of image fusion quality and detail information retention. |
|---|---|
| AbstractList | In recent years, the multimodal medical imaging assisted diagnosis and treatment technology has developed rapidly. In brain disease diagnosis, CT-SPECT, MRI-PET and MRI-SPECT fusion images are more favored by brain doctors because they contain both soft tissue structure information and organ metabolism information. Most of the previous medical image fusion algorithms are the migration of other types of image fusion methods and such operations often lose the features of the medical image itself. This paper proposes a multimodal medical image fusion model based on the residual attention mechanism of the generative adversarial network. In the design of the generator, we construct the residual attention mechanism block and the concat detail texture block. After source images are concatenated to a matrix , the matrix is put into two blocks at the same time to extract information such as size, shape, spatial location and texture details. The obtained features are put into the merge block to reconstruct the image. The obtained reconstructed image and source images are respectively put into two discriminators for correction to obtain the final fused image. The model has been experimented on the images of three databases and achieved good fusion results. Qualitative and quantitative evaluations prove that the model is superior to other comparison algorithms in terms of image fusion quality and detail information retention. |
| Author | Guo, Kai Li, Xiongfei Hu, Xiaohan |
| Author_xml | – sequence: 1 givenname: Kai surname: Guo fullname: Guo, Kai organization: Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, College of Computer Science and Technology, Jilin University – sequence: 2 givenname: Xiaohan surname: Hu fullname: Hu, Xiaohan organization: Department of Radiology, the First Hospital of Jilin University – sequence: 3 givenname: Xiongfei orcidid: 0000-0003-4724-4726 surname: Li fullname: Li, Xiongfei email: xiongfei@jlu.edu.cn organization: Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, College of Computer Science and Technology, Jilin University |
| BookMark | eNp9kE1PwzAMhiMEEjD4A5wicS7ESbsWbhOCgcTHBc5Rlrijo01Gkg3t32MYEhIHTrZlP7bf95Dt-uCRsRMQZyBEfZ4ARCkLIaEAaKQsNjvsAKpaFXUtYZdy1YiirgTss8OUFkLAuJLlAVs-PNxMJ4-XfMJ9WGPPh1WfuyE40_NZNJ3nA7rOUtUNZo68XaUueD4zCR2nJL8idZaR2AF95qHlc_QYTe7WyI1bY0wmdsR7zB8hvh2xvdb0CY9_4oi93Fw_X90W90_Tu6vJfWEVXOQCjWpUg1YapdCYCs1MAUonFelrJZSzkvqurUuU2FhXNWCkK40b24vaWqtG7HS7l357X2HKehFW0dNJLccKyroUlaIpuZ2yMaQUsdXLSELjRoPQX87qrbOanNXfzuoNQc0fyHaZBAefybH-f1Rt0UR3_Bzj71f_UJ9j0pGq |
| CitedBy_id | crossref_primary_10_1016_j_bspc_2023_105370 crossref_primary_10_1016_j_bspc_2024_106571 crossref_primary_10_1080_13682199_2023_2190947 crossref_primary_10_1016_j_ntm_2024_100032 crossref_primary_10_1140_epjp_s13360_024_05220_0 crossref_primary_10_1007_s11045_022_00829_9 crossref_primary_10_1007_s11042_023_14769_4 crossref_primary_10_3389_fnins_2022_937861 crossref_primary_10_1016_j_bspc_2022_104343 crossref_primary_10_1007_s11042_023_15856_2 crossref_primary_10_1007_s11042_022_13560_1 crossref_primary_10_1109_ACCESS_2024_3370848 crossref_primary_10_1007_s40846_023_00801_3 crossref_primary_10_32604_cmc_2023_038398 crossref_primary_10_1007_s11042_022_13917_6 crossref_primary_10_1016_j_ins_2024_121772 crossref_primary_10_1016_j_cmpb_2025_108615 crossref_primary_10_1109_ACCESS_2024_3402965 crossref_primary_10_1007_s00521_023_09197_2 crossref_primary_10_1016_j_inffus_2022_10_017 |
| Cites_doi | 10.2174/1573405616666201118123220 10.1049/el:20000267 10.1109/TIP.2020.2977573 10.1080/16168658.2018.1517980 10.1109/TIM.2020.2975405 10.1007/s11760-018-1303-z 10.1016/j.inffus.2017.05.006 10.1016/j.inffus.2014.09.004 10.4018/IJSPPC.2020040102 10.23919/ICIF.2017.8009769 10.1109/ICPR.2018.8546006 10.1016/j.inffus.2011.08.002 10.1016/j.neuroimage.2019.03.041 10.1049/iet-ipr.2019.1319 10.3390/e22121423 10.1002/cpe.5632 10.1007/s00521-018-3441-1 10.1109/TIP.2013.2253483 10.1016/j.inffus.2018.09.004 10.1007/978-3-030-11726-9_32 10.1016/j.ijleo.2018.12.028 10.1109/ITAIC.2019.8785541 10.1109/ISSPIT47144.2019.9001891 10.1049/iet-ipr.2017.1298 10.1109/TENCON.2019.8929254 10.1155/2018/4940593 10.1109/ICAICT.2014.7036000 10.1016/j.sigpro.2020.107793 10.1007/s11517-018-1935-8 10.1007/978-981-15-5113-0_89 10.1109/TIP.2003.819861 10.1109/JBHI.2018.2869096 10.24963/ijcai.2019/549 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
| DOI | 10.1007/s11042-021-11822-y |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1573-7721 |
| EndPage | 5927 |
| ExternalDocumentID | 10_1007_s11042_021_11822_y |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c319t-ea3838ec2a33eaa5eab31e2d23118f214b4838df74e2e8cd581a2d4ad6c97ccc3 |
| IEDL.DBID | BENPR |
| ISSN | 1380-7501 |
| IngestDate | Sat Jul 26 00:06:14 EDT 2025 Thu Apr 24 22:58:54 EDT 2025 Wed Oct 01 04:51:16 EDT 2025 Fri Feb 21 02:47:10 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Medical image fusion Deep learning Dual discriminator Concat detail texture block Residual attention mechanism block |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-ea3838ec2a33eaa5eab31e2d23118f214b4838df74e2e8cd581a2d4ad6c97ccc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4724-4726 |
| PQID | 2631474053 |
| PQPubID | 54626 |
| PageCount | 39 |
| ParticipantIDs | proquest_journals_2631474053 crossref_primary_10_1007_s11042_021_11822_y crossref_citationtrail_10_1007_s11042_021_11822_y springer_journals_10_1007_s11042_021_11822_y |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20220200 2022-02-00 20220201 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 2 year: 2022 text: 20220200 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Multimedia tools and applications |
| PublicationTitleAbbrev | Multimed Tools Appl |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Liu Y, Liu S, Wang Z (2014) A general framework for image fusion based on multi-scale transform and sparse representation. Inf Fusion 24(C):147-164 Tang X, Zhao J, Fu W, Pan J, Zhou H (2019) A Novel Classification Algorithm for MI-EEG based on Deep Learning. In :2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). IEEE, pp 606–611 Li H, Wu XJ (2018) Infrared and visible image fusion using Latent Low-Rank Representation. arXiv: 1804.08992 HouRZhouDNieRLiuDRuanXBrain CT and MRI medical image fusion using convolutional neural networks and a dual-channel spiking cortical modelMed Biol Eng Comput201957488790010.1007/s11517-018-1935-8 Xu H, Liang P, Yu W, Jiang J, Ma J (2019) Learning a generative model for fusing infrared and visible images via conditional generative adversarial network with dual discriminators. In : Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI). AAAI, pp 3954-3960 MaJXuHJiangJMeiXZhangXPDDcGAN: A Dual-Discriminator Conditional Generative Adversarial Network for Multi-Resolution Image FusionIEEE Trans. Image Process.2020294980499510.1109/TIP.2020.2977573 Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: Proceedings of the 3rd International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7-9 May 2015 Bhardwaj J, Nayak A, Gambhir D (2021) Multimodal Medical Image Fusion Based on Discrete Wavelet Transform and Genetic Algorithm. In: Gupta D, Khanna A, Bhattacharyya S, Hassanien AE, Anand S, Jaiswal A (Eds.), International Conference on Innovative Computing and Communications, Springer Singapore, pp 1047–1057 HuoYXuZXiongYAboudKParvathaneniPBaoSBermudezCResnickSMCuttingLELandmanBA3D whole brain segmentation using spatially localized atlas network tilesNeuroimage201919410511910.1016/j.neuroimage.2019.03.041 OuerghiHMouraliOZagroubaENon-subsampled shearlet transform based MRI and PET brain image fusion using simplified pulse coupled neural network and weight local features in YIQ colour spaceIET Image Process.201812101873188010.1049/iet-ipr.2017.1298 Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: the 27th International Conference on Neural Information Processing Systems. NIPS, pp 2672–2680 CuiSMaoLJiangJLiuCXiongSAutomatic Semantic Segmentation of Brain Gliomas From MRI Images Using a Deep Cascaded Neural NetworkJ. Healthc. Eng.20182018494059310.1155/2018/4940593 Sandheep P, Vineeth S, Poulose M, Subha DP (2019) Performance analysis of deep learning CNN in classification of depression EEG signals. In :2019 IEEE Region 10 Conference (TENCON). IEEE, pp 1339-1344 XiaKJYinHSWangJQA novel improved deep convolutional neural network model for medical fusionCluster Comput201822315151527 PrakashOParkCMKhareAJeonMGwakJMultiscale fusion of multimodal medical images using lifting scheme based biorthogonal wavelet transformOptik2019182995101410.1016/j.ijleo.2018.12.028 GuoKLiXZangHFanTMulti-modal medical image fusion based on FusionNet in YIQ color spaceEntropy202022121423422297310.3390/e22121423 WangSShenYMulti-modal image fusion based on saliency guided in NSCT domainIET IMAGE PROCESS.2020143188320110.1049/iet-ipr.2019.1319 LiuFChenLLuLAhmadAJeonGYangXMedical image fusion method by using laplacian pyramid and convolutional sparse representationConcurrency and Computation: Practice and Experience20203217e563210.1002/cpe.5632 YangYWuJHuangSFangYLinPQueYMultimodal medical image fusion based on fuzzy discrimination with structural patch decompositionIEEE J Biomed Health Inform20192341647166010.1109/JBHI.2018.2869096 Kumar M, Kaur A, Amita (2018) Improved image fusion of colored and grayscale medical images based on intuitionistic fuzzy sets. Fuzzy Inf. Eng. 10(2):295–306 WangZBovikACSheikhHRSimoncelliEPImage quality assessment: From error measurement to structural similarityIEEE Trans Image Process200413460061210.1109/TIP.2003.819861 HermessiHMourailOZagroubaEConvolutional neural network-based multimodal image fusion via similarity learning in the shearlet domainNEURAL COMPUT APPL20183072029204510.1007/s00521-018-3441-1 GaoTWangGYBrain Signal Classification Based on Deep CNNInternational Journal of Security and Privacy in Pervasive Computing2020122172910.4018/IJSPPC.2020040102 Ullah H, Zhao Y, Wu L, Abdalla FYO, Mkindu H (2019) NSST based MRI-PET/SPE, color image fusion using local features fuzzy rules and NSML in YIQ space. In: IEEE International Symposium on Signal Processing and Information Technology (ISSPIT). IEEE, pp 1-6 VanithaKSatyanarayanaDPrasadMNGMulti-modal Medical Image Fusion Algorithm Based on Spatial Frequency Motivated PA-PCNN in the NSST DomainCURRENT MEDICAL IMAGING202117563464310.2174/1573405616666201118123220 ZhaoCWangTLeiBMedical image fusion method based on dense block and deep convolutional generative adversarial networkNEURAL COMPUT APPL.20205116 LiBPengHWangJA novel fusion method based on dynamic threshold neural p systems and nonsubsampled contourlet transform for multi-modality medical imagesSignal Process.202117810779310.1016/j.sigpro.2020.107793 Chen W, Liu B, Peng S, Sun J, Qiao X (2019) S3D-UNet: Separable 3D U-Net for Brain Tumor Segmentation. In: Crimi A, Bakas S, Kuijf H, Keyvan F, Reyes M, van Walsum T (Eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2018. Lecture Notes in Computer Science, vol 11384. Springer, Cham. https://doi.org/10.1007/978-3-030-11726-9_32 HanYCaiYCaoYXuXA new image fusion performance metric based on visual information delityInf Fusion201314212713510.1016/j.inffus.2011.08.002 Haghighat M, Razian MA (2014) Fast-FMI: non-reference image fusion metric. In : 2014 IEEE 8th International Conference on Application of Information and Communication Technologies (AICT). IEEE, pp 1-3 LiSKangXHuJImage fusion with guided filteringIEEE Trans Image Process20132272864287510.1109/TIP.2013.2253483 MaJYuWLiangPLiCJiangJFusionGAN: A generative adversarial network for infrared and visible image fusionInf Fusion201948112610.1016/j.inffus.2018.09.004 ZhangQLiuYBlumRSHanJTaoDSparse representation based multi-sensor image fusion for multi-focus and multi-modality images: a reviewInf Fusion201840577510.1016/j.inffus.2017.05.006 RamlalSDSachdevaJAhujaCKKhandelwalNMultimodal medical image fusion using non-subsampled shearlet transform and pulse coupled neural network incorporated with morphological gradientSignal, Image Video Process2018121479148710.1007/s11760-018-1303-z LiXGuoXHanPWangXLuoTLaplacian Re-Decomposition for Multimodal Medical Image FusionIEEE Trans Instrum Meas20206996880689010.1109/TIM.2020.2975405 Liu Y, Chen X, Cheng J, Peng H (2017) A medical image fusion method based on convolutional neural networks. In : 20th International Conference on Information Fusion (Fusion). IEEE, pp 1-7 XydeasCSPetrovi’cVObjective image fusion performance measureElectron Lett200036430830910.1049/el:20000267 H Hermessi (11822_CR9) 2018; 30 F Liu (11822_CR16) 2020; 32 C Zhao (11822_CR37) 2020; 5 K Guo (11822_CR6) 2020; 22 B Li (11822_CR15) 2021; 178 11822_CR7 11822_CR19 S Wang (11822_CR30) 2020; 14 11822_CR17 11822_CR18 Y Han (11822_CR8) 2013; 14 11822_CR33 11822_CR12 H Ouerghi (11822_CR22) 2018; 12 T Gao (11822_CR4) 2020; 12 R Hou (11822_CR10) 2019; 57 K Vanitha (11822_CR29) 2021; 17 Y Huo (11822_CR11) 2019; 194 S Cui (11822_CR3) 2018; 2018 O Prakash (11822_CR23) 2019; 182 KJ Xia (11822_CR32) 2018; 22 X Li (11822_CR14) 2020; 69 Z Wang (11822_CR31) 2004; 13 SD Ramlal (11822_CR24) 2018; 12 Q Zhang (11822_CR36) 2018; 40 11822_CR5 11822_CR2 J Ma (11822_CR20) 2019; 48 11822_CR28 CS Xydeas (11822_CR34) 2000; 36 S Li (11822_CR13) 2013; 22 11822_CR26 11822_CR1 11822_CR27 11822_CR25 Y Yang (11822_CR35) 2019; 23 J Ma (11822_CR21) 2020; 29 |
| References_xml | – reference: Kumar M, Kaur A, Amita (2018) Improved image fusion of colored and grayscale medical images based on intuitionistic fuzzy sets. Fuzzy Inf. Eng. 10(2):295–306 – reference: Tang X, Zhao J, Fu W, Pan J, Zhou H (2019) A Novel Classification Algorithm for MI-EEG based on Deep Learning. In :2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). IEEE, pp 606–611 – reference: HouRZhouDNieRLiuDRuanXBrain CT and MRI medical image fusion using convolutional neural networks and a dual-channel spiking cortical modelMed Biol Eng Comput201957488790010.1007/s11517-018-1935-8 – reference: VanithaKSatyanarayanaDPrasadMNGMulti-modal Medical Image Fusion Algorithm Based on Spatial Frequency Motivated PA-PCNN in the NSST DomainCURRENT MEDICAL IMAGING202117563464310.2174/1573405616666201118123220 – reference: ZhangQLiuYBlumRSHanJTaoDSparse representation based multi-sensor image fusion for multi-focus and multi-modality images: a reviewInf Fusion201840577510.1016/j.inffus.2017.05.006 – reference: Chen W, Liu B, Peng S, Sun J, Qiao X (2019) S3D-UNet: Separable 3D U-Net for Brain Tumor Segmentation. In: Crimi A, Bakas S, Kuijf H, Keyvan F, Reyes M, van Walsum T (Eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2018. Lecture Notes in Computer Science, vol 11384. Springer, Cham. https://doi.org/10.1007/978-3-030-11726-9_32 – reference: WangSShenYMulti-modal image fusion based on saliency guided in NSCT domainIET IMAGE PROCESS.2020143188320110.1049/iet-ipr.2019.1319 – reference: GaoTWangGYBrain Signal Classification Based on Deep CNNInternational Journal of Security and Privacy in Pervasive Computing2020122172910.4018/IJSPPC.2020040102 – reference: MaJYuWLiangPLiCJiangJFusionGAN: A generative adversarial network for infrared and visible image fusionInf Fusion201948112610.1016/j.inffus.2018.09.004 – reference: YangYWuJHuangSFangYLinPQueYMultimodal medical image fusion based on fuzzy discrimination with structural patch decompositionIEEE J Biomed Health Inform20192341647166010.1109/JBHI.2018.2869096 – reference: PrakashOParkCMKhareAJeonMGwakJMultiscale fusion of multimodal medical images using lifting scheme based biorthogonal wavelet transformOptik2019182995101410.1016/j.ijleo.2018.12.028 – reference: ZhaoCWangTLeiBMedical image fusion method based on dense block and deep convolutional generative adversarial networkNEURAL COMPUT APPL.20205116 – reference: CuiSMaoLJiangJLiuCXiongSAutomatic Semantic Segmentation of Brain Gliomas From MRI Images Using a Deep Cascaded Neural NetworkJ. Healthc. Eng.20182018494059310.1155/2018/4940593 – reference: LiuFChenLLuLAhmadAJeonGYangXMedical image fusion method by using laplacian pyramid and convolutional sparse representationConcurrency and Computation: Practice and Experience20203217e563210.1002/cpe.5632 – reference: Liu Y, Chen X, Cheng J, Peng H (2017) A medical image fusion method based on convolutional neural networks. In : 20th International Conference on Information Fusion (Fusion). IEEE, pp 1-7 – reference: Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: Proceedings of the 3rd International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7-9 May 2015 – reference: Xu H, Liang P, Yu W, Jiang J, Ma J (2019) Learning a generative model for fusing infrared and visible images via conditional generative adversarial network with dual discriminators. In : Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI). AAAI, pp 3954-3960 – reference: Liu Y, Liu S, Wang Z (2014) A general framework for image fusion based on multi-scale transform and sparse representation. Inf Fusion 24(C):147-164 – reference: RamlalSDSachdevaJAhujaCKKhandelwalNMultimodal medical image fusion using non-subsampled shearlet transform and pulse coupled neural network incorporated with morphological gradientSignal, Image Video Process2018121479148710.1007/s11760-018-1303-z – reference: LiBPengHWangJA novel fusion method based on dynamic threshold neural p systems and nonsubsampled contourlet transform for multi-modality medical imagesSignal Process.202117810779310.1016/j.sigpro.2020.107793 – reference: XiaKJYinHSWangJQA novel improved deep convolutional neural network model for medical fusionCluster Comput201822315151527 – reference: Sandheep P, Vineeth S, Poulose M, Subha DP (2019) Performance analysis of deep learning CNN in classification of depression EEG signals. In :2019 IEEE Region 10 Conference (TENCON). IEEE, pp 1339-1344 – reference: HuoYXuZXiongYAboudKParvathaneniPBaoSBermudezCResnickSMCuttingLELandmanBA3D whole brain segmentation using spatially localized atlas network tilesNeuroimage201919410511910.1016/j.neuroimage.2019.03.041 – reference: WangZBovikACSheikhHRSimoncelliEPImage quality assessment: From error measurement to structural similarityIEEE Trans Image Process200413460061210.1109/TIP.2003.819861 – reference: LiSKangXHuJImage fusion with guided filteringIEEE Trans Image Process20132272864287510.1109/TIP.2013.2253483 – reference: LiXGuoXHanPWangXLuoTLaplacian Re-Decomposition for Multimodal Medical Image FusionIEEE Trans Instrum Meas20206996880689010.1109/TIM.2020.2975405 – reference: GuoKLiXZangHFanTMulti-modal medical image fusion based on FusionNet in YIQ color spaceEntropy202022121423422297310.3390/e22121423 – reference: MaJXuHJiangJMeiXZhangXPDDcGAN: A Dual-Discriminator Conditional Generative Adversarial Network for Multi-Resolution Image FusionIEEE Trans. Image Process.2020294980499510.1109/TIP.2020.2977573 – reference: OuerghiHMouraliOZagroubaENon-subsampled shearlet transform based MRI and PET brain image fusion using simplified pulse coupled neural network and weight local features in YIQ colour spaceIET Image Process.201812101873188010.1049/iet-ipr.2017.1298 – reference: XydeasCSPetrovi’cVObjective image fusion performance measureElectron Lett200036430830910.1049/el:20000267 – reference: Haghighat M, Razian MA (2014) Fast-FMI: non-reference image fusion metric. In : 2014 IEEE 8th International Conference on Application of Information and Communication Technologies (AICT). IEEE, pp 1-3 – reference: Ullah H, Zhao Y, Wu L, Abdalla FYO, Mkindu H (2019) NSST based MRI-PET/SPE, color image fusion using local features fuzzy rules and NSML in YIQ space. In: IEEE International Symposium on Signal Processing and Information Technology (ISSPIT). IEEE, pp 1-6 – reference: HanYCaiYCaoYXuXA new image fusion performance metric based on visual information delityInf Fusion201314212713510.1016/j.inffus.2011.08.002 – reference: HermessiHMourailOZagroubaEConvolutional neural network-based multimodal image fusion via similarity learning in the shearlet domainNEURAL COMPUT APPL20183072029204510.1007/s00521-018-3441-1 – reference: Bhardwaj J, Nayak A, Gambhir D (2021) Multimodal Medical Image Fusion Based on Discrete Wavelet Transform and Genetic Algorithm. In: Gupta D, Khanna A, Bhattacharyya S, Hassanien AE, Anand S, Jaiswal A (Eds.), International Conference on Innovative Computing and Communications, Springer Singapore, pp 1047–1057 – reference: Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: the 27th International Conference on Neural Information Processing Systems. NIPS, pp 2672–2680 – reference: Li H, Wu XJ (2018) Infrared and visible image fusion using Latent Low-Rank Representation. arXiv: 1804.08992 – volume: 17 start-page: 634 issue: 5 year: 2021 ident: 11822_CR29 publication-title: CURRENT MEDICAL IMAGING doi: 10.2174/1573405616666201118123220 – volume: 22 start-page: 1515 issue: 3 year: 2018 ident: 11822_CR32 publication-title: Cluster Comput – volume: 36 start-page: 308 issue: 4 year: 2000 ident: 11822_CR34 publication-title: Electron Lett doi: 10.1049/el:20000267 – ident: 11822_CR5 – volume: 29 start-page: 4980 year: 2020 ident: 11822_CR21 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.2977573 – ident: 11822_CR12 doi: 10.1080/16168658.2018.1517980 – volume: 69 start-page: 6880 issue: 9 year: 2020 ident: 11822_CR14 publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2020.2975405 – volume: 12 start-page: 1479 year: 2018 ident: 11822_CR24 publication-title: Signal, Image Video Process doi: 10.1007/s11760-018-1303-z – volume: 40 start-page: 57 year: 2018 ident: 11822_CR36 publication-title: Inf Fusion doi: 10.1016/j.inffus.2017.05.006 – ident: 11822_CR18 doi: 10.1016/j.inffus.2014.09.004 – volume: 12 start-page: 17 issue: 2 year: 2020 ident: 11822_CR4 publication-title: International Journal of Security and Privacy in Pervasive Computing doi: 10.4018/IJSPPC.2020040102 – volume: 5 start-page: 1 year: 2020 ident: 11822_CR37 publication-title: NEURAL COMPUT APPL. – ident: 11822_CR17 doi: 10.23919/ICIF.2017.8009769 – ident: 11822_CR19 doi: 10.1109/ICPR.2018.8546006 – volume: 14 start-page: 127 issue: 2 year: 2013 ident: 11822_CR8 publication-title: Inf Fusion doi: 10.1016/j.inffus.2011.08.002 – volume: 194 start-page: 105 year: 2019 ident: 11822_CR11 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.03.041 – volume: 14 start-page: 3188 year: 2020 ident: 11822_CR30 publication-title: IET IMAGE PROCESS. doi: 10.1049/iet-ipr.2019.1319 – volume: 22 start-page: 1423 issue: 12 year: 2020 ident: 11822_CR6 publication-title: Entropy doi: 10.3390/e22121423 – volume: 32 start-page: e5632 issue: 17 year: 2020 ident: 11822_CR16 publication-title: Concurrency and Computation: Practice and Experience doi: 10.1002/cpe.5632 – volume: 30 start-page: 2029 issue: 7 year: 2018 ident: 11822_CR9 publication-title: NEURAL COMPUT APPL doi: 10.1007/s00521-018-3441-1 – volume: 22 start-page: 2864 issue: 7 year: 2013 ident: 11822_CR13 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2013.2253483 – volume: 48 start-page: 11 year: 2019 ident: 11822_CR20 publication-title: Inf Fusion doi: 10.1016/j.inffus.2018.09.004 – ident: 11822_CR2 doi: 10.1007/978-3-030-11726-9_32 – volume: 182 start-page: 995 year: 2019 ident: 11822_CR23 publication-title: Optik doi: 10.1016/j.ijleo.2018.12.028 – ident: 11822_CR27 doi: 10.1109/ITAIC.2019.8785541 – ident: 11822_CR28 doi: 10.1109/ISSPIT47144.2019.9001891 – volume: 12 start-page: 1873 issue: 10 year: 2018 ident: 11822_CR22 publication-title: IET Image Process. doi: 10.1049/iet-ipr.2017.1298 – ident: 11822_CR25 doi: 10.1109/TENCON.2019.8929254 – volume: 2018 start-page: 4940593 year: 2018 ident: 11822_CR3 publication-title: J. Healthc. Eng. doi: 10.1155/2018/4940593 – ident: 11822_CR7 doi: 10.1109/ICAICT.2014.7036000 – volume: 178 start-page: 107793 year: 2021 ident: 11822_CR15 publication-title: Signal Process. doi: 10.1016/j.sigpro.2020.107793 – volume: 57 start-page: 887 issue: 4 year: 2019 ident: 11822_CR10 publication-title: Med Biol Eng Comput doi: 10.1007/s11517-018-1935-8 – ident: 11822_CR26 – ident: 11822_CR1 doi: 10.1007/978-981-15-5113-0_89 – volume: 13 start-page: 600 issue: 4 year: 2004 ident: 11822_CR31 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2003.819861 – volume: 23 start-page: 1647 issue: 4 year: 2019 ident: 11822_CR35 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2018.2869096 – ident: 11822_CR33 doi: 10.24963/ijcai.2019/549 |
| SSID | ssj0016524 |
| Score | 2.3946347 |
| Snippet | In recent years, the multimodal medical imaging assisted diagnosis and treatment technology has developed rapidly. In brain disease diagnosis, CT-SPECT,... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5889 |
| SubjectTerms | Algorithms Brain Computed tomography Computer Communication Networks Computer Science Computer vision Data Structures and Information Theory Diagnosis Discriminators Generative adversarial networks Image processing Image quality Image reconstruction Magnetic resonance imaging Medical imaging Multimedia Information Systems Physicians Positron emission Soft tissues Special Purpose and Application-Based Systems Texture Tomography |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwHA46L3rwMRWnU3LwpoHl0Tb1VsQ5hO3kYLeSJqkIWzvcJuy_N78-VhUVvBXyOPRL8vuS3-ND6Nr3JegcaRKEHiOCakoSIzhRIVNemipfh5CcPBz5g7F4mniTKilsUUe71y7J4qRukt0opJJASAGQYkbW22jHg3JebhWPWbTxHfheJWUre8TZQ1qlyvw8x1dz1HDMb27Rwtr0D9F-RRNxVOJ6hLZs1kYHtQQDrnZkG-19qid4jObDYf8xGt3hCGf5u53iIlxwlhs3VQJaEHhW-mXw68ydIzhdwVsZBktmsPtwZNC1wCtD8WiI8xS_FGWp4UzECrSbFwpWLM7K6PETNO4_PN8PSCWpQLTba0tilbuRSquZ4twq5VmVcGqZcSyPypRRkQjXbtJAWGalNp6kihmhjMMs0FrzU9TK8syeISwks3CBDIyQgidMJawnQ-XogOWa-raDaP1nY13VGwfZi2ncVEoGNGKHRlygEa876GYzZl5W2_izd7cGLK523iJmPqcicDSUd9BtDWLT_Pts5__rfoF2GWRCFAHcXdRavq3speMny-SqWI4f8ELcLg priority: 102 providerName: Springer Nature |
| Title | MMFGAN: A novel multimodal brain medical image fusion based on the improvement of generative adversarial network |
| URI | https://link.springer.com/article/10.1007/s11042-021-11822-y https://www.proquest.com/docview/2631474053 |
| Volume | 81 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1573-7721 dateEnd: 20241103 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: ADMLS dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-7721 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-7721 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT9swFH8q7WUcGIMhyljlw27MGv5I4k6apgy1RUOtJkQldooc25km0aRAQeK_n1_iUDZpvUWx40Oe_d7P7-sH8CGOFfIcGZoMI04lM4zmVgqqh1xHRaFjM8Ti5OksPp_L79fRdQdmbS0MplW2OrFW1LYy6CP_xGPBZOLhhfi6vKXIGoXR1ZZCQwdqBfulbjG2BT2OnbG60Ps2mv24fI4rxFGguVWn1NtKFspommI6hqUqmLKAoJvTp79N1Rp__hMyrS3ReBd2AoQkaSPzN9Bx5R68bukZSDite7D9otfgPiyn0_EknX0mKSmrR3dD6lTCRWX9UjnyRJBFE7Mhvxdex5DiAf1oBK2cJf7BA0U_gh6I2qFIqoL8qltWo74kGnmd7zXuZlI2meVvYT4eXZ2d00C3QI0_hyvqtL-tKme4FsJpHTmdC-a49QiQqYIzmUs_botEOu6UsZFimluprZdnYowRB9Atq9IdApGKO7xcJlYqKXKuc36qhtpDBScMi10fWPtnMxN6kSMlxk227qKM0si8NLJaGtlTH06ev1k2nTg2zj5uBZaFU3mfrfdQHz62QlwP_3-1o82rvYNXHKsi6mTuY-iu7h7ce49VVvkAttR4MoBeOvl5MRqE7ejfznn6B_Gy6LU |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9gA9FCigBgrsAU6wovvwC6lCARpS2kQItVJvZr27rio1dmhSUP4cv40Ze90AEr31ZmntkewZz3vmA3gRxynhHFmeZJHkWljBC6cVN5k0UVma2GY0nDwax8Nj_fkkOlmBX90sDLVVdjqxUdSutpQjfyNjJXSC7oV6N_3OCTWKqqsdhIYJ0Aput1kxFgY7DvziJ4Zws939j8jvl1IO9o4-DHlAGeAWxW_OvcEgLfVWGqW8MZE3hRJeOnR8RFpKoQuN565MtJc-tS5KhZFOG4evkVhrFdK9BWta6QyDv7X3e-MvX6_qGHEUYHXTHY62WYSxnXZ4T9BoDLVIkJMv-eJv07j0d_8p0TaWb3APNoLLyvqtjN2HFV9twt0ODoIF7bAJ63_sNnwA09Fo8Kk_fsv6rKp_-HPWtC5OaoekCsKlYJO2RsTOJqjTWHlJeTtGVtUxvEDHFE8o49EkMFldstNmRTbpZ2YIR3pm6O9hVdvJ_hCOb-TDP4LVqq78FjCdSk_BbOJ0qlUhTSF30syga-KVFbHvgei-bG7D7nOC4DjPl1ubiRs5ciNvuJEvevDq6plpu_nj2ru3O4blQQvM8qXM9uB1x8Tl8f-pPb6e2nO4PTwaHeaH--ODJ3BH0kRG00i-Davzi0v_FP2kefEsCCODbzct_78BmHYj4Q |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ8gJEYfEFHjKeI-6JNuYD_a7pEQcxEKiHfxQRLe6nZ3a0y49vQOzP1r_HXM9INDE3jjrcm2k3RndmZ2vn4A7-LYEM6R40k_klwLJ3juteK2L21UFDZ2fWpOHo7iwxP95TQ6XYLLrheGyio7nVgral85ipFvyVgJnaB7obaKtizi2176afKbE4IUZVo7OI1GRI7D_C9e36a7R3vI6_dSpvvfPx_yFmGAOxS9GQ8WL2gmOGmVCtZGweZKBOnR6RGmkELnGtd9keggg3E-MsJKr63HX0iccwrpPoCVhKa4U5d6enCdwYijFlDXbHO0yqJt2Gna9gQ1xVBxBLn3ks__NYoLT_e_5Gxt89I1WG2dVTZopOspLIVyHZ50QBCs1Qvr8PjGVMNnMBkO04PBaIcNWFldhDNWFy2OK4-kckKkYOMmO8R-jVGbseKcInaM7Kln-IAuKa5QrKMOXbKqYD_r4dikmZklBOmppXPDyqaG_Tmc3Mu2v4DlsirDS2DayEDX2MRro1UubS63Td-iUxKUE3Hogeh2NnPt1HMC3zjLFvOaiRsZciOruZHNe_Dh-ptJM_Pjzrc3OoZl7fmfZgtp7cHHjomL5dupvbqb2lt4iFKffT0aHb-GR5JaMeoK8g1Ynv05D2_QQZrlm7UkMvhx36J_BZm1IXs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MMFGAN%3A+A+novel+multimodal+brain+medical+image+fusion+based+on+the+improvement+of+generative+adversarial+network&rft.jtitle=Multimedia+tools+and+applications&rft.au=Guo%2C+Kai&rft.au=Hu+Xiaohan&rft.au=Li%2C+Xiongfei&rft.date=2022-02-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=81&rft.issue=4&rft.spage=5889&rft.epage=5927&rft_id=info:doi/10.1007%2Fs11042-021-11822-y&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |