MMFGAN: A novel multimodal brain medical image fusion based on the improvement of generative adversarial network

In recent years, the multimodal medical imaging assisted diagnosis and treatment technology has developed rapidly. In brain disease diagnosis, CT-SPECT, MRI-PET and MRI-SPECT fusion images are more favored by brain doctors because they contain both soft tissue structure information and organ metabol...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 81; no. 4; pp. 5889 - 5927
Main Authors Guo, Kai, Hu, Xiaohan, Li, Xiongfei
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1380-7501
1573-7721
DOI10.1007/s11042-021-11822-y

Cover

Abstract In recent years, the multimodal medical imaging assisted diagnosis and treatment technology has developed rapidly. In brain disease diagnosis, CT-SPECT, MRI-PET and MRI-SPECT fusion images are more favored by brain doctors because they contain both soft tissue structure information and organ metabolism information. Most of the previous medical image fusion algorithms are the migration of other types of image fusion methods and such operations often lose the features of the medical image itself. This paper proposes a multimodal medical image fusion model based on the residual attention mechanism of the generative adversarial network. In the design of the generator, we construct the residual attention mechanism block and the concat detail texture block. After source images are concatenated to a matrix , the matrix is put into two blocks at the same time to extract information such as size, shape, spatial location and texture details. The obtained features are put into the merge block to reconstruct the image. The obtained reconstructed image and source images are respectively put into two discriminators for correction to obtain the final fused image. The model has been experimented on the images of three databases and achieved good fusion results. Qualitative and quantitative evaluations prove that the model is superior to other comparison algorithms in terms of image fusion quality and detail information retention.
AbstractList In recent years, the multimodal medical imaging assisted diagnosis and treatment technology has developed rapidly. In brain disease diagnosis, CT-SPECT, MRI-PET and MRI-SPECT fusion images are more favored by brain doctors because they contain both soft tissue structure information and organ metabolism information. Most of the previous medical image fusion algorithms are the migration of other types of image fusion methods and such operations often lose the features of the medical image itself. This paper proposes a multimodal medical image fusion model based on the residual attention mechanism of the generative adversarial network. In the design of the generator, we construct the residual attention mechanism block and the concat detail texture block. After source images are concatenated to a matrix , the matrix is put into two blocks at the same time to extract information such as size, shape, spatial location and texture details. The obtained features are put into the merge block to reconstruct the image. The obtained reconstructed image and source images are respectively put into two discriminators for correction to obtain the final fused image. The model has been experimented on the images of three databases and achieved good fusion results. Qualitative and quantitative evaluations prove that the model is superior to other comparison algorithms in terms of image fusion quality and detail information retention.
Author Guo, Kai
Li, Xiongfei
Hu, Xiaohan
Author_xml – sequence: 1
  givenname: Kai
  surname: Guo
  fullname: Guo, Kai
  organization: Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, College of Computer Science and Technology, Jilin University
– sequence: 2
  givenname: Xiaohan
  surname: Hu
  fullname: Hu, Xiaohan
  organization: Department of Radiology, the First Hospital of Jilin University
– sequence: 3
  givenname: Xiongfei
  orcidid: 0000-0003-4724-4726
  surname: Li
  fullname: Li, Xiongfei
  email: xiongfei@jlu.edu.cn
  organization: Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, College of Computer Science and Technology, Jilin University
BookMark eNp9kE1PwzAMhiMEEjD4A5wicS7ESbsWbhOCgcTHBc5Rlrijo01Gkg3t32MYEhIHTrZlP7bf95Dt-uCRsRMQZyBEfZ4ARCkLIaEAaKQsNjvsAKpaFXUtYZdy1YiirgTss8OUFkLAuJLlAVs-PNxMJ4-XfMJ9WGPPh1WfuyE40_NZNJ3nA7rOUtUNZo68XaUueD4zCR2nJL8idZaR2AF95qHlc_QYTe7WyI1bY0wmdsR7zB8hvh2xvdb0CY9_4oi93Fw_X90W90_Tu6vJfWEVXOQCjWpUg1YapdCYCs1MAUonFelrJZSzkvqurUuU2FhXNWCkK40b24vaWqtG7HS7l357X2HKehFW0dNJLccKyroUlaIpuZ2yMaQUsdXLSELjRoPQX87qrbOanNXfzuoNQc0fyHaZBAefybH-f1Rt0UR3_Bzj71f_UJ9j0pGq
CitedBy_id crossref_primary_10_1016_j_bspc_2023_105370
crossref_primary_10_1016_j_bspc_2024_106571
crossref_primary_10_1080_13682199_2023_2190947
crossref_primary_10_1016_j_ntm_2024_100032
crossref_primary_10_1140_epjp_s13360_024_05220_0
crossref_primary_10_1007_s11045_022_00829_9
crossref_primary_10_1007_s11042_023_14769_4
crossref_primary_10_3389_fnins_2022_937861
crossref_primary_10_1016_j_bspc_2022_104343
crossref_primary_10_1007_s11042_023_15856_2
crossref_primary_10_1007_s11042_022_13560_1
crossref_primary_10_1109_ACCESS_2024_3370848
crossref_primary_10_1007_s40846_023_00801_3
crossref_primary_10_32604_cmc_2023_038398
crossref_primary_10_1007_s11042_022_13917_6
crossref_primary_10_1016_j_ins_2024_121772
crossref_primary_10_1016_j_cmpb_2025_108615
crossref_primary_10_1109_ACCESS_2024_3402965
crossref_primary_10_1007_s00521_023_09197_2
crossref_primary_10_1016_j_inffus_2022_10_017
Cites_doi 10.2174/1573405616666201118123220
10.1049/el:20000267
10.1109/TIP.2020.2977573
10.1080/16168658.2018.1517980
10.1109/TIM.2020.2975405
10.1007/s11760-018-1303-z
10.1016/j.inffus.2017.05.006
10.1016/j.inffus.2014.09.004
10.4018/IJSPPC.2020040102
10.23919/ICIF.2017.8009769
10.1109/ICPR.2018.8546006
10.1016/j.inffus.2011.08.002
10.1016/j.neuroimage.2019.03.041
10.1049/iet-ipr.2019.1319
10.3390/e22121423
10.1002/cpe.5632
10.1007/s00521-018-3441-1
10.1109/TIP.2013.2253483
10.1016/j.inffus.2018.09.004
10.1007/978-3-030-11726-9_32
10.1016/j.ijleo.2018.12.028
10.1109/ITAIC.2019.8785541
10.1109/ISSPIT47144.2019.9001891
10.1049/iet-ipr.2017.1298
10.1109/TENCON.2019.8929254
10.1155/2018/4940593
10.1109/ICAICT.2014.7036000
10.1016/j.sigpro.2020.107793
10.1007/s11517-018-1935-8
10.1007/978-981-15-5113-0_89
10.1109/TIP.2003.819861
10.1109/JBHI.2018.2869096
10.24963/ijcai.2019/549
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-021-11822-y
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 5927
ExternalDocumentID 10_1007_s11042_021_11822_y
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-ea3838ec2a33eaa5eab31e2d23118f214b4838df74e2e8cd581a2d4ad6c97ccc3
IEDL.DBID BENPR
ISSN 1380-7501
IngestDate Sat Jul 26 00:06:14 EDT 2025
Thu Apr 24 22:58:54 EDT 2025
Wed Oct 01 04:51:16 EDT 2025
Fri Feb 21 02:47:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Medical image fusion
Deep learning
Dual discriminator
Concat detail texture block
Residual attention mechanism block
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-ea3838ec2a33eaa5eab31e2d23118f214b4838df74e2e8cd581a2d4ad6c97ccc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4724-4726
PQID 2631474053
PQPubID 54626
PageCount 39
ParticipantIDs proquest_journals_2631474053
crossref_primary_10_1007_s11042_021_11822_y
crossref_citationtrail_10_1007_s11042_021_11822_y
springer_journals_10_1007_s11042_021_11822_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220200
2022-02-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 2
  year: 2022
  text: 20220200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Liu Y, Liu S, Wang Z (2014) A general framework for image fusion based on multi-scale transform and sparse representation. Inf Fusion 24(C):147-164
Tang X, Zhao J, Fu W, Pan J, Zhou H (2019) A Novel Classification Algorithm for MI-EEG based on Deep Learning. In :2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). IEEE, pp 606–611
Li H, Wu XJ (2018) Infrared and visible image fusion using Latent Low-Rank Representation. arXiv: 1804.08992
HouRZhouDNieRLiuDRuanXBrain CT and MRI medical image fusion using convolutional neural networks and a dual-channel spiking cortical modelMed Biol Eng Comput201957488790010.1007/s11517-018-1935-8
Xu H, Liang P, Yu W, Jiang J, Ma J (2019) Learning a generative model for fusing infrared and visible images via conditional generative adversarial network with dual discriminators. In : Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI). AAAI, pp 3954-3960
MaJXuHJiangJMeiXZhangXPDDcGAN: A Dual-Discriminator Conditional Generative Adversarial Network for Multi-Resolution Image FusionIEEE Trans. Image Process.2020294980499510.1109/TIP.2020.2977573
Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: Proceedings of the 3rd International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7-9 May 2015
Bhardwaj J, Nayak A, Gambhir D (2021) Multimodal Medical Image Fusion Based on Discrete Wavelet Transform and Genetic Algorithm. In: Gupta D, Khanna A, Bhattacharyya S, Hassanien AE, Anand S, Jaiswal A (Eds.), International Conference on Innovative Computing and Communications, Springer Singapore, pp 1047–1057
HuoYXuZXiongYAboudKParvathaneniPBaoSBermudezCResnickSMCuttingLELandmanBA3D whole brain segmentation using spatially localized atlas network tilesNeuroimage201919410511910.1016/j.neuroimage.2019.03.041
OuerghiHMouraliOZagroubaENon-subsampled shearlet transform based MRI and PET brain image fusion using simplified pulse coupled neural network and weight local features in YIQ colour spaceIET Image Process.201812101873188010.1049/iet-ipr.2017.1298
Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: the 27th International Conference on Neural Information Processing Systems. NIPS, pp 2672–2680
CuiSMaoLJiangJLiuCXiongSAutomatic Semantic Segmentation of Brain Gliomas From MRI Images Using a Deep Cascaded Neural NetworkJ. Healthc. Eng.20182018494059310.1155/2018/4940593
Sandheep P, Vineeth S, Poulose M, Subha DP (2019) Performance analysis of deep learning CNN in classification of depression EEG signals. In :2019 IEEE Region 10 Conference (TENCON). IEEE, pp 1339-1344
XiaKJYinHSWangJQA novel improved deep convolutional neural network model for medical fusionCluster Comput201822315151527
PrakashOParkCMKhareAJeonMGwakJMultiscale fusion of multimodal medical images using lifting scheme based biorthogonal wavelet transformOptik2019182995101410.1016/j.ijleo.2018.12.028
GuoKLiXZangHFanTMulti-modal medical image fusion based on FusionNet in YIQ color spaceEntropy202022121423422297310.3390/e22121423
WangSShenYMulti-modal image fusion based on saliency guided in NSCT domainIET IMAGE PROCESS.2020143188320110.1049/iet-ipr.2019.1319
LiuFChenLLuLAhmadAJeonGYangXMedical image fusion method by using laplacian pyramid and convolutional sparse representationConcurrency and Computation: Practice and Experience20203217e563210.1002/cpe.5632
YangYWuJHuangSFangYLinPQueYMultimodal medical image fusion based on fuzzy discrimination with structural patch decompositionIEEE J Biomed Health Inform20192341647166010.1109/JBHI.2018.2869096
Kumar M, Kaur A, Amita (2018) Improved image fusion of colored and grayscale medical images based on intuitionistic fuzzy sets. Fuzzy Inf. Eng. 10(2):295–306
WangZBovikACSheikhHRSimoncelliEPImage quality assessment: From error measurement to structural similarityIEEE Trans Image Process200413460061210.1109/TIP.2003.819861
HermessiHMourailOZagroubaEConvolutional neural network-based multimodal image fusion via similarity learning in the shearlet domainNEURAL COMPUT APPL20183072029204510.1007/s00521-018-3441-1
GaoTWangGYBrain Signal Classification Based on Deep CNNInternational Journal of Security and Privacy in Pervasive Computing2020122172910.4018/IJSPPC.2020040102
Ullah H, Zhao Y, Wu L, Abdalla FYO, Mkindu H (2019) NSST based MRI-PET/SPE, color image fusion using local features fuzzy rules and NSML in YIQ space. In: IEEE International Symposium on Signal Processing and Information Technology (ISSPIT). IEEE, pp 1-6
VanithaKSatyanarayanaDPrasadMNGMulti-modal Medical Image Fusion Algorithm Based on Spatial Frequency Motivated PA-PCNN in the NSST DomainCURRENT MEDICAL IMAGING202117563464310.2174/1573405616666201118123220
ZhaoCWangTLeiBMedical image fusion method based on dense block and deep convolutional generative adversarial networkNEURAL COMPUT APPL.20205116
LiBPengHWangJA novel fusion method based on dynamic threshold neural p systems and nonsubsampled contourlet transform for multi-modality medical imagesSignal Process.202117810779310.1016/j.sigpro.2020.107793
Chen W, Liu B, Peng S, Sun J, Qiao X (2019) S3D-UNet: Separable 3D U-Net for Brain Tumor Segmentation. In: Crimi A, Bakas S, Kuijf H, Keyvan F, Reyes M, van Walsum T (Eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2018. Lecture Notes in Computer Science, vol 11384. Springer, Cham. https://doi.org/10.1007/978-3-030-11726-9_32
HanYCaiYCaoYXuXA new image fusion performance metric based on visual information delityInf Fusion201314212713510.1016/j.inffus.2011.08.002
Haghighat M, Razian MA (2014) Fast-FMI: non-reference image fusion metric. In : 2014 IEEE 8th International Conference on Application of Information and Communication Technologies (AICT). IEEE, pp 1-3
LiSKangXHuJImage fusion with guided filteringIEEE Trans Image Process20132272864287510.1109/TIP.2013.2253483
MaJYuWLiangPLiCJiangJFusionGAN: A generative adversarial network for infrared and visible image fusionInf Fusion201948112610.1016/j.inffus.2018.09.004
ZhangQLiuYBlumRSHanJTaoDSparse representation based multi-sensor image fusion for multi-focus and multi-modality images: a reviewInf Fusion201840577510.1016/j.inffus.2017.05.006
RamlalSDSachdevaJAhujaCKKhandelwalNMultimodal medical image fusion using non-subsampled shearlet transform and pulse coupled neural network incorporated with morphological gradientSignal, Image Video Process2018121479148710.1007/s11760-018-1303-z
LiXGuoXHanPWangXLuoTLaplacian Re-Decomposition for Multimodal Medical Image FusionIEEE Trans Instrum Meas20206996880689010.1109/TIM.2020.2975405
Liu Y, Chen X, Cheng J, Peng H (2017) A medical image fusion method based on convolutional neural networks. In : 20th International Conference on Information Fusion (Fusion). IEEE, pp 1-7
XydeasCSPetrovi’cVObjective image fusion performance measureElectron Lett200036430830910.1049/el:20000267
H Hermessi (11822_CR9) 2018; 30
F Liu (11822_CR16) 2020; 32
C Zhao (11822_CR37) 2020; 5
K Guo (11822_CR6) 2020; 22
B Li (11822_CR15) 2021; 178
11822_CR7
11822_CR19
S Wang (11822_CR30) 2020; 14
11822_CR17
11822_CR18
Y Han (11822_CR8) 2013; 14
11822_CR33
11822_CR12
H Ouerghi (11822_CR22) 2018; 12
T Gao (11822_CR4) 2020; 12
R Hou (11822_CR10) 2019; 57
K Vanitha (11822_CR29) 2021; 17
Y Huo (11822_CR11) 2019; 194
S Cui (11822_CR3) 2018; 2018
O Prakash (11822_CR23) 2019; 182
KJ Xia (11822_CR32) 2018; 22
X Li (11822_CR14) 2020; 69
Z Wang (11822_CR31) 2004; 13
SD Ramlal (11822_CR24) 2018; 12
Q Zhang (11822_CR36) 2018; 40
11822_CR5
11822_CR2
J Ma (11822_CR20) 2019; 48
11822_CR28
CS Xydeas (11822_CR34) 2000; 36
S Li (11822_CR13) 2013; 22
11822_CR26
11822_CR1
11822_CR27
11822_CR25
Y Yang (11822_CR35) 2019; 23
J Ma (11822_CR21) 2020; 29
References_xml – reference: Kumar M, Kaur A, Amita (2018) Improved image fusion of colored and grayscale medical images based on intuitionistic fuzzy sets. Fuzzy Inf. Eng. 10(2):295–306
– reference: Tang X, Zhao J, Fu W, Pan J, Zhou H (2019) A Novel Classification Algorithm for MI-EEG based on Deep Learning. In :2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). IEEE, pp 606–611
– reference: HouRZhouDNieRLiuDRuanXBrain CT and MRI medical image fusion using convolutional neural networks and a dual-channel spiking cortical modelMed Biol Eng Comput201957488790010.1007/s11517-018-1935-8
– reference: VanithaKSatyanarayanaDPrasadMNGMulti-modal Medical Image Fusion Algorithm Based on Spatial Frequency Motivated PA-PCNN in the NSST DomainCURRENT MEDICAL IMAGING202117563464310.2174/1573405616666201118123220
– reference: ZhangQLiuYBlumRSHanJTaoDSparse representation based multi-sensor image fusion for multi-focus and multi-modality images: a reviewInf Fusion201840577510.1016/j.inffus.2017.05.006
– reference: Chen W, Liu B, Peng S, Sun J, Qiao X (2019) S3D-UNet: Separable 3D U-Net for Brain Tumor Segmentation. In: Crimi A, Bakas S, Kuijf H, Keyvan F, Reyes M, van Walsum T (Eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2018. Lecture Notes in Computer Science, vol 11384. Springer, Cham. https://doi.org/10.1007/978-3-030-11726-9_32
– reference: WangSShenYMulti-modal image fusion based on saliency guided in NSCT domainIET IMAGE PROCESS.2020143188320110.1049/iet-ipr.2019.1319
– reference: GaoTWangGYBrain Signal Classification Based on Deep CNNInternational Journal of Security and Privacy in Pervasive Computing2020122172910.4018/IJSPPC.2020040102
– reference: MaJYuWLiangPLiCJiangJFusionGAN: A generative adversarial network for infrared and visible image fusionInf Fusion201948112610.1016/j.inffus.2018.09.004
– reference: YangYWuJHuangSFangYLinPQueYMultimodal medical image fusion based on fuzzy discrimination with structural patch decompositionIEEE J Biomed Health Inform20192341647166010.1109/JBHI.2018.2869096
– reference: PrakashOParkCMKhareAJeonMGwakJMultiscale fusion of multimodal medical images using lifting scheme based biorthogonal wavelet transformOptik2019182995101410.1016/j.ijleo.2018.12.028
– reference: ZhaoCWangTLeiBMedical image fusion method based on dense block and deep convolutional generative adversarial networkNEURAL COMPUT APPL.20205116
– reference: CuiSMaoLJiangJLiuCXiongSAutomatic Semantic Segmentation of Brain Gliomas From MRI Images Using a Deep Cascaded Neural NetworkJ. Healthc. Eng.20182018494059310.1155/2018/4940593
– reference: LiuFChenLLuLAhmadAJeonGYangXMedical image fusion method by using laplacian pyramid and convolutional sparse representationConcurrency and Computation: Practice and Experience20203217e563210.1002/cpe.5632
– reference: Liu Y, Chen X, Cheng J, Peng H (2017) A medical image fusion method based on convolutional neural networks. In : 20th International Conference on Information Fusion (Fusion). IEEE, pp 1-7
– reference: Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: Proceedings of the 3rd International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7-9 May 2015
– reference: Xu H, Liang P, Yu W, Jiang J, Ma J (2019) Learning a generative model for fusing infrared and visible images via conditional generative adversarial network with dual discriminators. In : Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI). AAAI, pp 3954-3960
– reference: Liu Y, Liu S, Wang Z (2014) A general framework for image fusion based on multi-scale transform and sparse representation. Inf Fusion 24(C):147-164
– reference: RamlalSDSachdevaJAhujaCKKhandelwalNMultimodal medical image fusion using non-subsampled shearlet transform and pulse coupled neural network incorporated with morphological gradientSignal, Image Video Process2018121479148710.1007/s11760-018-1303-z
– reference: LiBPengHWangJA novel fusion method based on dynamic threshold neural p systems and nonsubsampled contourlet transform for multi-modality medical imagesSignal Process.202117810779310.1016/j.sigpro.2020.107793
– reference: XiaKJYinHSWangJQA novel improved deep convolutional neural network model for medical fusionCluster Comput201822315151527
– reference: Sandheep P, Vineeth S, Poulose M, Subha DP (2019) Performance analysis of deep learning CNN in classification of depression EEG signals. In :2019 IEEE Region 10 Conference (TENCON). IEEE, pp 1339-1344
– reference: HuoYXuZXiongYAboudKParvathaneniPBaoSBermudezCResnickSMCuttingLELandmanBA3D whole brain segmentation using spatially localized atlas network tilesNeuroimage201919410511910.1016/j.neuroimage.2019.03.041
– reference: WangZBovikACSheikhHRSimoncelliEPImage quality assessment: From error measurement to structural similarityIEEE Trans Image Process200413460061210.1109/TIP.2003.819861
– reference: LiSKangXHuJImage fusion with guided filteringIEEE Trans Image Process20132272864287510.1109/TIP.2013.2253483
– reference: LiXGuoXHanPWangXLuoTLaplacian Re-Decomposition for Multimodal Medical Image FusionIEEE Trans Instrum Meas20206996880689010.1109/TIM.2020.2975405
– reference: GuoKLiXZangHFanTMulti-modal medical image fusion based on FusionNet in YIQ color spaceEntropy202022121423422297310.3390/e22121423
– reference: MaJXuHJiangJMeiXZhangXPDDcGAN: A Dual-Discriminator Conditional Generative Adversarial Network for Multi-Resolution Image FusionIEEE Trans. Image Process.2020294980499510.1109/TIP.2020.2977573
– reference: OuerghiHMouraliOZagroubaENon-subsampled shearlet transform based MRI and PET brain image fusion using simplified pulse coupled neural network and weight local features in YIQ colour spaceIET Image Process.201812101873188010.1049/iet-ipr.2017.1298
– reference: XydeasCSPetrovi’cVObjective image fusion performance measureElectron Lett200036430830910.1049/el:20000267
– reference: Haghighat M, Razian MA (2014) Fast-FMI: non-reference image fusion metric. In : 2014 IEEE 8th International Conference on Application of Information and Communication Technologies (AICT). IEEE, pp 1-3
– reference: Ullah H, Zhao Y, Wu L, Abdalla FYO, Mkindu H (2019) NSST based MRI-PET/SPE, color image fusion using local features fuzzy rules and NSML in YIQ space. In: IEEE International Symposium on Signal Processing and Information Technology (ISSPIT). IEEE, pp 1-6
– reference: HanYCaiYCaoYXuXA new image fusion performance metric based on visual information delityInf Fusion201314212713510.1016/j.inffus.2011.08.002
– reference: HermessiHMourailOZagroubaEConvolutional neural network-based multimodal image fusion via similarity learning in the shearlet domainNEURAL COMPUT APPL20183072029204510.1007/s00521-018-3441-1
– reference: Bhardwaj J, Nayak A, Gambhir D (2021) Multimodal Medical Image Fusion Based on Discrete Wavelet Transform and Genetic Algorithm. In: Gupta D, Khanna A, Bhattacharyya S, Hassanien AE, Anand S, Jaiswal A (Eds.), International Conference on Innovative Computing and Communications, Springer Singapore, pp 1047–1057
– reference: Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: the 27th International Conference on Neural Information Processing Systems. NIPS, pp 2672–2680
– reference: Li H, Wu XJ (2018) Infrared and visible image fusion using Latent Low-Rank Representation. arXiv: 1804.08992
– volume: 17
  start-page: 634
  issue: 5
  year: 2021
  ident: 11822_CR29
  publication-title: CURRENT MEDICAL IMAGING
  doi: 10.2174/1573405616666201118123220
– volume: 22
  start-page: 1515
  issue: 3
  year: 2018
  ident: 11822_CR32
  publication-title: Cluster Comput
– volume: 36
  start-page: 308
  issue: 4
  year: 2000
  ident: 11822_CR34
  publication-title: Electron Lett
  doi: 10.1049/el:20000267
– ident: 11822_CR5
– volume: 29
  start-page: 4980
  year: 2020
  ident: 11822_CR21
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.2977573
– ident: 11822_CR12
  doi: 10.1080/16168658.2018.1517980
– volume: 69
  start-page: 6880
  issue: 9
  year: 2020
  ident: 11822_CR14
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2020.2975405
– volume: 12
  start-page: 1479
  year: 2018
  ident: 11822_CR24
  publication-title: Signal, Image Video Process
  doi: 10.1007/s11760-018-1303-z
– volume: 40
  start-page: 57
  year: 2018
  ident: 11822_CR36
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2017.05.006
– ident: 11822_CR18
  doi: 10.1016/j.inffus.2014.09.004
– volume: 12
  start-page: 17
  issue: 2
  year: 2020
  ident: 11822_CR4
  publication-title: International Journal of Security and Privacy in Pervasive Computing
  doi: 10.4018/IJSPPC.2020040102
– volume: 5
  start-page: 1
  year: 2020
  ident: 11822_CR37
  publication-title: NEURAL COMPUT APPL.
– ident: 11822_CR17
  doi: 10.23919/ICIF.2017.8009769
– ident: 11822_CR19
  doi: 10.1109/ICPR.2018.8546006
– volume: 14
  start-page: 127
  issue: 2
  year: 2013
  ident: 11822_CR8
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2011.08.002
– volume: 194
  start-page: 105
  year: 2019
  ident: 11822_CR11
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.03.041
– volume: 14
  start-page: 3188
  year: 2020
  ident: 11822_CR30
  publication-title: IET IMAGE PROCESS.
  doi: 10.1049/iet-ipr.2019.1319
– volume: 22
  start-page: 1423
  issue: 12
  year: 2020
  ident: 11822_CR6
  publication-title: Entropy
  doi: 10.3390/e22121423
– volume: 32
  start-page: e5632
  issue: 17
  year: 2020
  ident: 11822_CR16
  publication-title: Concurrency and Computation: Practice and Experience
  doi: 10.1002/cpe.5632
– volume: 30
  start-page: 2029
  issue: 7
  year: 2018
  ident: 11822_CR9
  publication-title: NEURAL COMPUT APPL
  doi: 10.1007/s00521-018-3441-1
– volume: 22
  start-page: 2864
  issue: 7
  year: 2013
  ident: 11822_CR13
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2013.2253483
– volume: 48
  start-page: 11
  year: 2019
  ident: 11822_CR20
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2018.09.004
– ident: 11822_CR2
  doi: 10.1007/978-3-030-11726-9_32
– volume: 182
  start-page: 995
  year: 2019
  ident: 11822_CR23
  publication-title: Optik
  doi: 10.1016/j.ijleo.2018.12.028
– ident: 11822_CR27
  doi: 10.1109/ITAIC.2019.8785541
– ident: 11822_CR28
  doi: 10.1109/ISSPIT47144.2019.9001891
– volume: 12
  start-page: 1873
  issue: 10
  year: 2018
  ident: 11822_CR22
  publication-title: IET Image Process.
  doi: 10.1049/iet-ipr.2017.1298
– ident: 11822_CR25
  doi: 10.1109/TENCON.2019.8929254
– volume: 2018
  start-page: 4940593
  year: 2018
  ident: 11822_CR3
  publication-title: J. Healthc. Eng.
  doi: 10.1155/2018/4940593
– ident: 11822_CR7
  doi: 10.1109/ICAICT.2014.7036000
– volume: 178
  start-page: 107793
  year: 2021
  ident: 11822_CR15
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2020.107793
– volume: 57
  start-page: 887
  issue: 4
  year: 2019
  ident: 11822_CR10
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-018-1935-8
– ident: 11822_CR26
– ident: 11822_CR1
  doi: 10.1007/978-981-15-5113-0_89
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  ident: 11822_CR31
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2003.819861
– volume: 23
  start-page: 1647
  issue: 4
  year: 2019
  ident: 11822_CR35
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2018.2869096
– ident: 11822_CR33
  doi: 10.24963/ijcai.2019/549
SSID ssj0016524
Score 2.3946347
Snippet In recent years, the multimodal medical imaging assisted diagnosis and treatment technology has developed rapidly. In brain disease diagnosis, CT-SPECT,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5889
SubjectTerms Algorithms
Brain
Computed tomography
Computer Communication Networks
Computer Science
Computer vision
Data Structures and Information Theory
Diagnosis
Discriminators
Generative adversarial networks
Image processing
Image quality
Image reconstruction
Magnetic resonance imaging
Medical imaging
Multimedia Information Systems
Physicians
Positron emission
Soft tissues
Special Purpose and Application-Based Systems
Texture
Tomography
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwHA46L3rwMRWnU3LwpoHl0Tb1VsQ5hO3kYLeSJqkIWzvcJuy_N78-VhUVvBXyOPRL8vuS3-ND6Nr3JegcaRKEHiOCakoSIzhRIVNemipfh5CcPBz5g7F4mniTKilsUUe71y7J4qRukt0opJJASAGQYkbW22jHg3JebhWPWbTxHfheJWUre8TZQ1qlyvw8x1dz1HDMb27Rwtr0D9F-RRNxVOJ6hLZs1kYHtQQDrnZkG-19qid4jObDYf8xGt3hCGf5u53iIlxwlhs3VQJaEHhW-mXw68ydIzhdwVsZBktmsPtwZNC1wCtD8WiI8xS_FGWp4UzECrSbFwpWLM7K6PETNO4_PN8PSCWpQLTba0tilbuRSquZ4twq5VmVcGqZcSyPypRRkQjXbtJAWGalNp6kihmhjMMs0FrzU9TK8syeISwks3CBDIyQgidMJawnQ-XogOWa-raDaP1nY13VGwfZi2ncVEoGNGKHRlygEa876GYzZl5W2_izd7cGLK523iJmPqcicDSUd9BtDWLT_Pts5__rfoF2GWRCFAHcXdRavq3speMny-SqWI4f8ELcLg
  priority: 102
  providerName: Springer Nature
Title MMFGAN: A novel multimodal brain medical image fusion based on the improvement of generative adversarial network
URI https://link.springer.com/article/10.1007/s11042-021-11822-y
https://www.proquest.com/docview/2631474053
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241103
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: ADMLS
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-7721
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT9swFH8q7WUcGIMhyljlw27MGv5I4k6apgy1RUOtJkQldooc25km0aRAQeK_n1_iUDZpvUWx40Oe_d7P7-sH8CGOFfIcGZoMI04lM4zmVgqqh1xHRaFjM8Ti5OksPp_L79fRdQdmbS0MplW2OrFW1LYy6CP_xGPBZOLhhfi6vKXIGoXR1ZZCQwdqBfulbjG2BT2OnbG60Ps2mv24fI4rxFGguVWn1NtKFspommI6hqUqmLKAoJvTp79N1Rp__hMyrS3ReBd2AoQkaSPzN9Bx5R68bukZSDite7D9otfgPiyn0_EknX0mKSmrR3dD6lTCRWX9UjnyRJBFE7Mhvxdex5DiAf1oBK2cJf7BA0U_gh6I2qFIqoL8qltWo74kGnmd7zXuZlI2meVvYT4eXZ2d00C3QI0_hyvqtL-tKme4FsJpHTmdC-a49QiQqYIzmUs_botEOu6UsZFimluprZdnYowRB9Atq9IdApGKO7xcJlYqKXKuc36qhtpDBScMi10fWPtnMxN6kSMlxk227qKM0si8NLJaGtlTH06ev1k2nTg2zj5uBZaFU3mfrfdQHz62QlwP_3-1o82rvYNXHKsi6mTuY-iu7h7ce49VVvkAttR4MoBeOvl5MRqE7ejfznn6B_Gy6LU
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9gA9FCigBgrsAU6wovvwC6lCARpS2kQItVJvZr27rio1dmhSUP4cv40Ze90AEr31ZmntkewZz3vmA3gRxynhHFmeZJHkWljBC6cVN5k0UVma2GY0nDwax8Nj_fkkOlmBX90sDLVVdjqxUdSutpQjfyNjJXSC7oV6N_3OCTWKqqsdhIYJ0Aput1kxFgY7DvziJ4Zws939j8jvl1IO9o4-DHlAGeAWxW_OvcEgLfVWGqW8MZE3hRJeOnR8RFpKoQuN565MtJc-tS5KhZFOG4evkVhrFdK9BWta6QyDv7X3e-MvX6_qGHEUYHXTHY62WYSxnXZ4T9BoDLVIkJMv-eJv07j0d_8p0TaWb3APNoLLyvqtjN2HFV9twt0ODoIF7bAJ63_sNnwA09Fo8Kk_fsv6rKp_-HPWtC5OaoekCsKlYJO2RsTOJqjTWHlJeTtGVtUxvEDHFE8o49EkMFldstNmRTbpZ2YIR3pm6O9hVdvJ_hCOb-TDP4LVqq78FjCdSk_BbOJ0qlUhTSF30syga-KVFbHvgei-bG7D7nOC4DjPl1ubiRs5ciNvuJEvevDq6plpu_nj2ru3O4blQQvM8qXM9uB1x8Tl8f-pPb6e2nO4PTwaHeaH--ODJ3BH0kRG00i-Davzi0v_FP2kefEsCCODbzct_78BmHYj4Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ8gJEYfEFHjKeI-6JNuYD_a7pEQcxEKiHfxQRLe6nZ3a0y49vQOzP1r_HXM9INDE3jjrcm2k3RndmZ2vn4A7-LYEM6R40k_klwLJ3juteK2L21UFDZ2fWpOHo7iwxP95TQ6XYLLrheGyio7nVgral85ipFvyVgJnaB7obaKtizi2176afKbE4IUZVo7OI1GRI7D_C9e36a7R3vI6_dSpvvfPx_yFmGAOxS9GQ8WL2gmOGmVCtZGweZKBOnR6RGmkELnGtd9keggg3E-MsJKr63HX0iccwrpPoCVhKa4U5d6enCdwYijFlDXbHO0yqJt2Gna9gQ1xVBxBLn3ks__NYoLT_e_5Gxt89I1WG2dVTZopOspLIVyHZ50QBCs1Qvr8PjGVMNnMBkO04PBaIcNWFldhDNWFy2OK4-kckKkYOMmO8R-jVGbseKcInaM7Kln-IAuKa5QrKMOXbKqYD_r4dikmZklBOmppXPDyqaG_Tmc3Mu2v4DlsirDS2DayEDX2MRro1UubS63Td-iUxKUE3Hogeh2NnPt1HMC3zjLFvOaiRsZciOruZHNe_Dh-ptJM_Pjzrc3OoZl7fmfZgtp7cHHjomL5dupvbqb2lt4iFKffT0aHb-GR5JaMeoK8g1Ynv05D2_QQZrlm7UkMvhx36J_BZm1IXs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MMFGAN%3A+A+novel+multimodal+brain+medical+image+fusion+based+on+the+improvement+of+generative+adversarial+network&rft.jtitle=Multimedia+tools+and+applications&rft.au=Guo%2C+Kai&rft.au=Hu+Xiaohan&rft.au=Li%2C+Xiongfei&rft.date=2022-02-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=81&rft.issue=4&rft.spage=5889&rft.epage=5927&rft_id=info:doi/10.1007%2Fs11042-021-11822-y&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon