Human Action Recognition Research Based on Fusion TS-CNN and LSTM Networks
Human action recognition (HAR) technology is currently of significant interest. The traditional HAR methods depend on the time and space of the video stream generally. It requires a mass of training datasets and produces a long response time, failing to simultaneously meet the real-time interaction...
Saved in:
| Published in | Arabian journal for science and engineering (2011) Vol. 48; no. 2; pp. 2331 - 2345 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2023
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2193-567X 1319-8025 2191-4281 |
| DOI | 10.1007/s13369-022-07236-z |
Cover
| Abstract | Human action recognition (HAR) technology is currently of significant interest. The traditional HAR methods depend on the time and space of the video stream generally. It requires a mass of training datasets and produces a long response time, failing to simultaneously meet the real-time interaction technical requirements-high accuracy, low delay, and low computational cost. For instance, the duration of a gymnastic action is as short as 0.2 s, from action capture to recognition, and then to the visualization of a three-dimensional character model. Only when the response time of the application system is short enough can it guide synchronous training and accurate evaluation. To reduce the dependence on the amount of video data and meet the HAR technical requirements, this paper proposes a three-stream long-short term memory (TS-CNN-LSTM) framework combining the CNN and LSTM networks. Firstly, human data of color, depth, and skeleton collected by Microsoft Kinect are used as input to reduce the sample sizes. Secondly, heterogeneous convolutional networks are established to reduce computing costs and elevate response time. The experiment results demonstrate the effectiveness of the proposed model on the NTU-RGB + D, reaching the best accuracy of 87.28% in the Cross-subject mode. Compared with the state-of-the-art methods, our method uses 75% of the training sample size, while the complexity of time and space only occupies 67.5% and 73.98% respectively. The response time of one set action recognition is improved by 0.90–1.61 s, which is especially valuable for timely action feedback. The proposed method provides an effective solution for real-time interactive applications which require timely human action recognition results and responses. |
|---|---|
| AbstractList | Human action recognition (HAR) technology is currently of significant interest. The traditional HAR methods depend on the time and space of the video stream generally. It requires a mass of training datasets and produces a long response time, failing to simultaneously meet the real-time interaction technical requirements-high accuracy, low delay, and low computational cost. For instance, the duration of a gymnastic action is as short as 0.2 s, from action capture to recognition, and then to the visualization of a three-dimensional character model. Only when the response time of the application system is short enough can it guide synchronous training and accurate evaluation. To reduce the dependence on the amount of video data and meet the HAR technical requirements, this paper proposes a three-stream long-short term memory (TS-CNN-LSTM) framework combining the CNN and LSTM networks. Firstly, human data of color, depth, and skeleton collected by Microsoft Kinect are used as input to reduce the sample sizes. Secondly, heterogeneous convolutional networks are established to reduce computing costs and elevate response time. The experiment results demonstrate the effectiveness of the proposed model on the NTU-RGB + D, reaching the best accuracy of 87.28% in the Cross-subject mode. Compared with the state-of-the-art methods, our method uses 75% of the training sample size, while the complexity of time and space only occupies 67.5% and 73.98% respectively. The response time of one set action recognition is improved by 0.90–1.61 s, which is especially valuable for timely action feedback. The proposed method provides an effective solution for real-time interactive applications which require timely human action recognition results and responses. Human action recognition (HAR) technology is currently of significant interest. The traditional HAR methods depend on the time and space of the video stream generally. It requires a mass of training datasets and produces a long response time, failing to simultaneously meet the real-time interaction technical requirements-high accuracy, low delay, and low computational cost. For instance, the duration of a gymnastic action is as short as 0.2 s, from action capture to recognition, and then to the visualization of a three-dimensional character model. Only when the response time of the application system is short enough can it guide synchronous training and accurate evaluation. To reduce the dependence on the amount of video data and meet the HAR technical requirements, this paper proposes a three-stream long-short term memory (TS-CNN-LSTM) framework combining the CNN and LSTM networks. Firstly, human data of color, depth, and skeleton collected by Microsoft Kinect are used as input to reduce the sample sizes. Secondly, heterogeneous convolutional networks are established to reduce computing costs and elevate response time. The experiment results demonstrate the effectiveness of the proposed model on the NTU-RGB + D, reaching the best accuracy of 87.28% in the Cross-subject mode. Compared with the state-of-the-art methods, our method uses 75% of the training sample size, while the complexity of time and space only occupies 67.5% and 73.98% respectively. The response time of one set action recognition is improved by 0.90–1.61 s, which is especially valuable for timely action feedback. The proposed method provides an effective solution for real-time interactive applications which require timely human action recognition results and responses. |
| Author | Zhao, Gang Zan, Hui |
| Author_xml | – sequence: 1 givenname: Hui surname: Zan fullname: Zan, Hui organization: Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Faculty of Artificial Intelligence in Education, Central China Normal University – sequence: 2 givenname: Gang surname: Zhao fullname: Zhao, Gang email: zhaogang@ccnu.edu.cn organization: Faculty of Artificial Intelligence in Education, Central China Normal University |
| BookMark | eNp9kE1LAzEQQINUsNb-AU8LnqNJZr9yrMVapVawFbyFZDepq222JruI_fXudguCh55mmJk3M7xz1LOl1QhdUnJNCUluPAWIOSaMYZIwiPHuBPUZ5RSHLKW9fQ44ipO3MzT0vlAkTIFHlEIfPU7rjbTBKKuK0gYvOitXtjjkXkuXvQe30us8aCqT2reN5QKP5_NA2jyYLZZPwVxX36X79Bfo1Mi118NDHKDXyd1yPMWz5_uH8WiGM6C8wppTAmAiYIlkucqVSQ0kSkVEqdRICHmspcohziLOFU-MUSB5qGlEYs6AwQBddXu3rvyqta_ER1k725wULEnCKCaEt1Osm8pc6b3TRmxdsZHuR1AiWm2i0yYabWKvTewaKP0HZUUlWx2Vk8X6OAod6ps7dqXd31dHqF85JoMQ |
| CitedBy_id | crossref_primary_10_1007_s10462_024_10934_9 crossref_primary_10_3390_s24082595 crossref_primary_10_3390_app14146335 crossref_primary_10_1007_s42452_024_05774_9 |
| Cites_doi | 10.3969/j.issn.1001-8972.2020.01.023 10.1016/j.neucom.2020.07.068 10.16652/j.issn.1004-373x.2020.04.035(InChinese) 10.1038/scientificamerican0675-76 10.1002/14651858.CD001941.pub3 10.1109/ACCESS.2018.2869751 10.1109/TPAMI.2016.2599174 10.3969/j.issn.1009-6833.2019.11.027 10.1007/978-3-319-46487-9_50 10.1109/TPAMI.2020.2976014 10.1145/1922649.1922653 10.13757/j.cnki.cn34-1328/n.2020.01.013 10.1109/TIP.2018.2812099 10.1016/j.eswa.2021.114693 10.1609/aaai.v33i01.33018989 10.1109/TIP.2019.2913544 10.1109/tpami.2019.2916873 10.3390/s17061261 10.1109/TASKP.2019.2959251 10.1109/TIP.2019.2907048 10.3390/s20143894 10.1088/1742-6596/1187/4/042027 10.1109/CVPR.2016.115 10.13274/j.cnki.hdzj.2019.11.004 10.1109/LSP.2017.2678539 10.1049/el.2020.2148 10.3390/s20123499 10.1016/j.asoc.2021.107728 10.1007/s42235-021-00083-y 10.1007/s11263-016-0917-2 10.1109/TPAMI.2017.2771306 10.3969/j.issn.1001-182X.2020.03.005 10.3390/s20113305 10.16208/j.issn1000-7024.2019.09.038 10.1109/CVPR.2016.213 10.1371/journal.pone.0212320 10.19734/j.issn.1001-3695.2018.05.0499 10.1109/SIBGRAPI.2019.00011 10.1109/TIP.2020.2965299 10.1109/tpami.2018.2880750 10.1109/ICMEW.2017.8026287 10.3390/s20071825 10.1109/TPAMI.2008.284 10.3390/s20102886 10.3390/s19051005 10.3390/s20113126 10.3390/s20082226 10.1109/ICAIIC48513.2020.9065078 10.1109/CVPR.2017.391 10.1109/UEMCON.2017.8249013 10.1109/TMM.2018.2802648 10.1109/CVPR.2017.387 10.1109/ICPR.2018.8545247 10.1109/CVPR.2005.177 10.1109/ICCV.2017.233 10.1109/AUTEEE.2018.8720753 10.1109/WCSP.2018.8555945 |
| ContentType | Journal Article |
| Copyright | King Fahd University of Petroleum & Minerals 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: King Fahd University of Petroleum & Minerals 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s13369-022-07236-z |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2191-4281 |
| EndPage | 2345 |
| ExternalDocumentID | 10_1007_s13369_022_07236_z |
| GrantInformation_xml | – fundername: Zhejiang Education Science Planning Project Zhejiang Province, China. grantid: 2021SCG309 – fundername: Research on Automatic Segmentation and Recognition of Teaching Scene with the Characteristics of Teaching Behavior of National Natural Science Foundation of China grantid: 61977034 – fundername: open fund of Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province grantid: NO.jykf20057 |
| GroupedDBID | -EM 0R~ 203 2KG 406 AAAVM AACDK AAHNG AAIAL AAJBT AANZL AARHV AASML AATNV AATVU AAUYE AAYTO AAYZH ABAKF ABDBF ABDZT ABECU ABFTD ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTKH ABTMW ABXPI ACAOD ACBXY ACDTI ACHSB ACMDZ ACMLO ACOKC ACPIV ACUHS ACZOJ ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AESKC AEVLU AEXYK AFBBN AFLOW AFQWF AGAYW AGJBK AGMZJ AGQEE AGQMX AGRTI AHAVH AHBYD AHSBF AIAKS AIGIU AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF AOCGG AXYYD BGNMA CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESX FERAY FIGPU FINBP FNLPD FSGXE GGCAI GQ6 GQ7 H13 HG6 I-F IKXTQ IWAJR J-C JBSCW JZLTJ L8X LLZTM M4Y MK~ NPVJJ NQJWS NU0 O9J PT4 ROL RSV SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG TUS UOJIU UTJUX UZXMN VFIZW Z5O Z7R Z7V Z7X Z7Y Z7Z Z81 Z83 Z85 Z88 ZMTXR ~8M AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 06D 0VY 23M 29~ 2KM 30V 408 5GY 96X AAJKR AARTL AAYIU AAYQN AAZMS ABTHY ACGFS ACKNC ADHHG ADHIR AEGNC AEJHL AENEX AEPYU AETCA AFWTZ AFZKB AGDGC AGWZB AGYKE AHYZX AIIXL AMKLP AMYQR ANMIH AYJHY ESBYG FFXSO FRRFC FYJPI GGRSB GJIRD GX1 HMJXF HRMNR HZ~ I0C IXD J9A KOV O93 OVT P9P R9I RLLFE S27 S3B SEG SHX T13 U2A UG4 VC2 W48 WK8 ~A9 |
| ID | FETCH-LOGICAL-c319t-e91033f5327a2dbdbf8f37bb50bb8fa3496eabd36c599b97ffb3a94e150692323 |
| ISSN | 2193-567X 1319-8025 |
| IngestDate | Mon Jun 30 09:00:05 EDT 2025 Thu Apr 24 23:03:24 EDT 2025 Wed Oct 01 02:18:42 EDT 2025 Fri Feb 21 02:45:04 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Human action recognition TS-LSTM Multistream network CNN-LSTM |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c319t-e91033f5327a2dbdbf8f37bb50bb8fa3496eabd36c599b97ffb3a94e150692323 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2774560092 |
| PQPubID | 2044268 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2774560092 crossref_primary_10_1007_s13369_022_07236_z crossref_citationtrail_10_1007_s13369_022_07236_z springer_journals_10_1007_s13369_022_07236_z |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-02-01 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Arabian journal for science and engineering (2011) |
| PublicationTitleAbbrev | Arab J Sci Eng |
| PublicationYear | 2023 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Shahroudy, Liu, Ng (CR50) 2016; 1 Gao, Zhang, Teng (CR37) 2021 Luvizon, Picard, Tabia (CR17) 2020; 8 Hadfield, Lebeda, Bowden (CR42) 2017; 121 CR38 Lee, Ahn (CR2) 2020; 20 Zhu, Wu, Cui, Wang, Hang, Hua, Snoussi (CR57) 2020; 414 Zhu, Zhang, Chen (CR7) 2020; 1 CR36 Chen, Du, He (CR40) 2021; 18 CR32 Ke, Bennamoun, An (CR22) 2018; 27 Wen, Gao, Fu (CR26) 2019; 33 Mou, Zhou, Zhao (CR35) 2021; 173 Zhu, Qianyu, Cui (CR39) 2020; 414 Yan, Chong-Chong, Han (CR33) 2019; 40 Pham, Salmane, Khoudour (CR8) 2020; 20 Zhang, Zhang, Zhong (CR5) 2020 CR6 Wang, Yu, Lai (CR31) 2019; 28 Wang, Zhao, Liu (CR61) 2018; 6 Simonyan, Zisserman (CR58) 2014; 1 CR49 Kim, Kim, Hernandez Montoya (CR41) 2019; 14 CR47 Xue-Chao (CR24) 2019; 43 Ren, Zhang, Qiao (CR63) 2020 CR43 Chen, Kong, Sun (CR19) 2020; 20 Kim, Park, Park (CR10) 2020; 20 Johansson (CR3) 1975; 232 Donahue, Hendricks, Rohrbach (CR29) 2017; 39 Dong, Fang, Xudong (CR4) 2020; 33 Dhiman, Vishwakarma (CR9) 2020; 29 Wang, Song, Li (CR30) 2020; 20 Ma, Wang, Mao (CR15) 2019; 11 Min, Lan (CR28) 2020; 26 Panareda, Iqbal, Gall (CR14) 2020; 42 Aggarwal, Ryoo (CR1) 2011; 43 Meng, Liu, Liang (CR20) 2019; 28 Ali, Shah (CR11) 2010; 32 CR59 Chan, Tian, Wu (CR45) 2020; 20 CR12 CR56 CR55 CR54 CR53 Yasin, Hussain, Weber (CR18) 2020; 20 Caetano, Bremond, Schwartz (CR25) 2019; 1 Feichtenhofer, Pinz, Zisserman (CR48) 2016; 1 Xi-Ting, Sheng, Yao (CR13) 2020; 41 Penghua, Min, Hua (CR16) 2020; 43 Liu, Shahroudy, Xu, Wang (CR51) 2016; 1 Nie, Wang, Wang (CR46) 2019; 28 Li, Wang, Wang, Hou, Li (CR52) 2017; 1 Liu, Shahroudy, Xu (CR27) 2018; 40 Sun, Guo, Li (CR21) 2019; 1187 Li, Hou, Wang, Li (CR60) 2017; 24 Kim, Kim, Kwak (CR23) 2017; 17 Yan, Yu, Han (CR34) 2019; 40 Liu, Shahroudy, Perez, Wang, Duan, Kot (CR44) 2019; 42 CR62 HH Pham (7236_CR8) 2020; 20 C Dhiman (7236_CR9) 2020; 29 7236_CR62 J Liu (7236_CR27) 2018; 40 Y Zhu (7236_CR7) 2020; 1 A Zhu (7236_CR57) 2020; 414 S Hadfield (7236_CR42) 2017; 121 Z Yan (7236_CR34) 2019; 40 C Feichtenhofer (7236_CR48) 2016; 1 J Wang (7236_CR31) 2019; 28 Z Sun (7236_CR21) 2019; 1187 J Liu (7236_CR51) 2016; 1 7236_CR32 S Xi-Ting (7236_CR13) 2020; 41 L Mou (7236_CR35) 2021; 173 J Chen (7236_CR19) 2020; 20 F Meng (7236_CR20) 2019; 28 YH Wen (7236_CR26) 2019; 33 W Gao (7236_CR37) 2021 B Xue-Chao (7236_CR24) 2019; 43 BP Panareda (7236_CR14) 2020; 42 S Min (7236_CR28) 2020; 26 J Lee (7236_CR2) 2020; 20 Q Ke (7236_CR22) 2018; 27 C Caetano (7236_CR25) 2019; 1 A Zhu (7236_CR39) 2020; 414 Z Yan (7236_CR33) 2019; 40 7236_CR38 C Li (7236_CR52) 2017; 1 7236_CR36 D Luvizon (7236_CR17) 2020; 8 J Donahue (7236_CR29) 2017; 39 7236_CR43 Q Nie (7236_CR46) 2019; 28 A Shahroudy (7236_CR50) 2016; 1 L Wang (7236_CR61) 2018; 6 H Yasin (7236_CR18) 2020; 20 HB Zhang (7236_CR5) 2020 H Wang (7236_CR30) 2020; 20 J Liu (7236_CR44) 2019; 42 H Kim (7236_CR10) 2020; 20 7236_CR49 C Ma (7236_CR15) 2019; 11 7236_CR47 7236_CR6 GE Penghua (7236_CR16) 2020; 43 7236_CR53 7236_CR54 Z Ren (7236_CR63) 2020 W Chan (7236_CR45) 2020; 20 JK Aggarwal (7236_CR1) 2011; 43 C Li (7236_CR60) 2017; 24 G Johansson (7236_CR3) 1975; 232 C Chen (7236_CR40) 2021; 18 K Simonyan (7236_CR58) 2014; 1 T Kim (7236_CR41) 2019; 14 7236_CR59 N Dong (7236_CR4) 2020; 33 D Kim (7236_CR23) 2017; 17 S Ali (7236_CR11) 2010; 32 7236_CR55 7236_CR12 7236_CR56 |
| References_xml | – volume: 1 start-page: 68 year: 2020 end-page: 70 ident: CR7 article-title: An intelligent system based on human action control publication-title: China Sci. Technol. Inf. doi: 10.3969/j.issn.1001-8972.2020.01.023 – volume: 414 start-page: 90 issue: 5 year: 2020 end-page: 100 ident: CR39 article-title: Exploring a rich spatial-temporal dependent relational model for Skeleton-based action recognition by bidirectional LSTM-CNN publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.07.068 – volume: 43 start-page: 137 issue: 4 year: 2020 end-page: 141 ident: CR16 article-title: Human action recognition based on two-stream independently recurrent neural network publication-title: Mod. Electron. Tech. doi: 10.16652/j.issn.1004-373x.2020.04.035(InChinese) – ident: CR49 – volume: 414 start-page: 90 year: 2020 end-page: 100 ident: CR57 article-title: Exploring a rich spatial-temporal dependent relational model for skeleton-based action recognition by bidirectional LSTM-CNN publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.07.068 – volume: 232 start-page: 76 issue: 6 year: 1975 end-page: 88 ident: CR3 article-title: Visual motion perception publication-title: Sci. Am. doi: 10.1038/scientificamerican0675-76 – ident: CR12 – volume: 40 start-page: 2620 issue: 009 year: 2019 end-page: 2624 ident: CR34 article-title: Short term traffic flow prediction method based on CNN+LSTM publication-title: Comput. Eng. Des. – volume: 1 start-page: 568 year: 2014 end-page: 576 ident: CR58 article-title: ‘Two-stream convolutional networks for action recognition in videos’, Advances in Neural Information Processing Systems (NIPS) publication-title: Montréal, Canada doi: 10.1002/14651858.CD001941.pub3 – volume: 6 start-page: 50788 year: 2018 end-page: 50800 ident: CR61 article-title: Skeleton feature fusion based on multistream lstm for action recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2869751 – volume: 39 start-page: 677 issue: 4 year: 2017 end-page: 691 ident: CR29 article-title: Long-term recurrent convolutional networks for visual recognition and description publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2599174 – ident: CR54 – volume: 11 start-page: 47 year: 2019 end-page: 50 ident: CR15 article-title: Action recognition based on spatiotemporal dual flow fusion network and am softmax publication-title: Netw. Secur. Technol. Appl. doi: 10.3969/j.issn.1009-6833.2019.11.027 – volume: 1 start-page: 816 year: 2016 end-page: 833 ident: CR51 article-title: Spatio-temporal lstm with trust gates for 3d human action recognition publication-title: European Conference on Computer Vision (ECCV) doi: 10.1007/978-3-319-46487-9_50 – volume: 8 start-page: 27522764 issue: 43 year: 2020 ident: CR17 article-title: Multi-task deep learning for real-time 3D human pose estimation and action recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2020.2976014 – volume: 43 start-page: 1 issue: 3 year: 2011 end-page: 43 ident: CR1 article-title: Human activity analysis: A review publication-title: ACM Comput. Surv. doi: 10.1145/1922649.1922653 – volume: 26 start-page: 73 issue: 1 year: 2020 end-page: 76 ident: CR28 article-title: Human movements recognition based on LSTM network model and front action view publication-title: J. Anqing Normal Univ. (Nat. Sci. Ed.) doi: 10.13757/j.cnki.cn34-1328/n.2020.01.013 – volume: 27 start-page: 2842 issue: 6 year: 2018 end-page: 2855 ident: CR22 article-title: Learning clip representations for Skeleton-based 3D action recognition publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2812099 – volume: 173 start-page: 1193 issue: 12 year: 2021 ident: CR35 article-title: Driver stress detection via multimodal fusion using attention-based CNN-LSTM publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.114693 – volume: 33 start-page: 8989 year: 2019 end-page: 8996 ident: CR26 article-title: Graph CNNs with motif and variable temporal block for Skeleton-based action recognition publication-title: Proceedings of the AAAI Conference on Artificial Intelligence doi: 10.1609/aaai.v33i01.33018989 – volume: 28 start-page: 5281 issue: 11 year: 2019 end-page: 5295 ident: CR20 article-title: Sample fusion network: an end-to-end data augmentation network for Skeleton-based human action recognition publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2913544 – volume: 42 start-page: 2684 issue: 10 year: 2019 end-page: 2701 ident: CR44 article-title: NTU-RGB+D 120: a large-scale benchmark for 3D human activity understanding publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) doi: 10.1109/tpami.2019.2916873 – ident: CR32 – ident: CR36 – volume: 17 start-page: 1261 issue: 6 year: 2017 ident: CR23 article-title: Classification of K-Pop dance movements based on skeleton information obtained by a kinect sensor publication-title: Sens. (Basel). doi: 10.3390/s17061261 – volume: 28 start-page: 581 year: 2019 end-page: 591 ident: CR31 article-title: Tree-structured regional CNN-LSTM model for dimensional sentiment analysis publication-title: IEEE/ACM Trans. Audio Speech Language Process. doi: 10.1109/TASKP.2019.2959251 – volume: 28 start-page: 3959 issue: 8 year: 2019 end-page: 3972 ident: CR46 article-title: View-Invariant Human Action Recognition Based on a 3D Bio-Constrained Skeleton Model publication-title: IEEE Trans Image Process. doi: 10.1109/TIP.2019.2907048 – volume: 20 start-page: 1 issue: 14 year: 2020 ident: CR10 article-title: Enhanced action recognition using multiple stream deep learning with optical flow and weighted sum publication-title: Sens. (Basel). doi: 10.3390/s20143894 – volume: 1187 start-page: 42027 year: 2019 ident: CR21 article-title: Cooperative warp of two discriminative features for Skeleton based action recognition publication-title: J. Phys.: Conf. Ser. doi: 10.1088/1742-6596/1187/4/042027 – volume: 1 start-page: 1010 year: 2016 end-page: 1019 ident: CR50 article-title: NTU RGB+D: a large scale dataset for 3D human activity analysis publication-title: IEEE Comput. Soc. doi: 10.1109/CVPR.2016.115 – volume: 43 start-page: 16 issue: 11 year: 2019 end-page: 19 ident: CR24 article-title: Dance-specific action recognition based on spatial skeleton sequence diagram publication-title: Inf. Technol. doi: 10.13274/j.cnki.hdzj.2019.11.004 – volume: 24 start-page: 624 issue: 5 year: 2017 end-page: 628 ident: CR60 article-title: Joint distance maps based action recognition with convolutional neural networks publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2017.2678539 – year: 2020 ident: CR63 article-title: Joint learning of convolution neural networks for RGB-D-based human action recognition publication-title: Electron. Lett. doi: 10.1049/el.2020.2148 – ident: CR43 – ident: CR47 – volume: 20 start-page: 3499 issue: 12 year: 2020 ident: CR45 article-title: GAS-GCN: gated action-specific graph convolutional networks for skeleton-based action recognition publication-title: Sensors (Basel) doi: 10.3390/s20123499 – ident: CR53 – year: 2021 ident: CR37 article-title: DanHAR: dual attention network for multimodal human activity recognition using wearable sensors publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107728 – ident: CR6 – volume: 18 start-page: 1059 year: 2021 end-page: 1072 ident: CR40 article-title: A novel gait pattern recognition method based on LSTM-CNN for lower limb exoskeleton publication-title: J. Bionic Eng. doi: 10.1007/s42235-021-00083-y – volume: 121 start-page: 95 issue: 1 year: 2017 end-page: 110 ident: CR42 article-title: Hollywood 3D: What are the best 3D features for action recognition publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-016-0917-2 – ident: CR56 – volume: 40 start-page: 3007 issue: 12 year: 2018 end-page: 3021 ident: CR27 article-title: Skeleton-based action recognition using spatio-temporal LSTM network with trust gates publication-title: IEEE Trans. Pattern. Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2771306 – volume: 33 start-page: 12 issue: 3 year: 2020 end-page: 14 ident: CR4 article-title: A human activity recognition method based on DBMM publication-title: Ind. Control Comput. doi: 10.3969/j.issn.1001-182X.2020.03.005 – volume: 20 start-page: 3305 issue: 11 year: 2020 ident: CR30 article-title: A hybrid network for large-scale action recognition from RGB and depth modalities publication-title: Sensors (Basel). doi: 10.3390/s20113305 – volume: 40 start-page: 1 issue: 09 year: 2019 ident: CR33 article-title: Short-term traffic flow forecasting method based on CNN+LSTM publication-title: Comput. Eng. Des. doi: 10.16208/j.issn1000-7024.2019.09.038 – volume: 1 start-page: 1933 year: 2016 end-page: 1941 ident: CR48 article-title: Convolutional two-stream network fusion for video action recognition publication-title: Comput. Vis. Pattern Recognit. doi: 10.1109/CVPR.2016.213 – volume: 14 start-page: e212320 issue: 2 year: 2019 ident: CR41 article-title: Forecasting stock prices with a feature fusion LSTM-CNN model using different representations of the same data publication-title: PLoS ONE doi: 10.1371/journal.pone.0212320 – ident: CR38 – volume: 41 start-page: 304 issue: 4 year: 2020 end-page: 307 ident: CR13 article-title: Human action recognition method based on deep learning publication-title: Comput. Eng. Des. doi: 10.19734/j.issn.1001-3695.2018.05.0499 – volume: 1 start-page: 16 year: 2019 end-page: 23 ident: CR25 article-title: Skeleton image representation for 3D action recognition based on tree structure and reference joints publication-title: IEEE doi: 10.1109/SIBGRAPI.2019.00011 – volume: 29 start-page: 3835 year: 2020 end-page: 3844 ident: CR9 article-title: View-invariant deep architecture for human action recognition using two-stream motion and shape temporal dynamics publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.2965299 – ident: CR55 – volume: 42 start-page: 413 issue: 2 year: 2020 end-page: 429 ident: CR14 article-title: Open set domain adaptation for image and action recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/tpami.2018.2880750 – volume: 1 start-page: 585 year: 2017 end-page: 590 ident: CR52 article-title: Skeleton-based action recognition using lstm and CNN publication-title: IEEE International Conference on Multimedia & Expo Workshops doi: 10.1109/ICMEW.2017.8026287 – ident: CR59 – volume: 20 start-page: 1825 issue: 7 year: 2020 ident: CR8 article-title: A unified deep framework for joint 3D pose estimation and action recognition from a single RGB camera publication-title: Sensors (Basel) doi: 10.3390/s20071825 – volume: 32 start-page: 288 issue: 2 year: 2010 end-page: 303 ident: CR11 article-title: Human action recognition in videos using kinematic features and multiple instance learning publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2008.284 – volume: 20 start-page: 2886 issue: 10 year: 2020 ident: CR2 article-title: Real-time human action recognition with a low-cost RGB camera and mobile robot platform publication-title: Sens. (Basel, Switzerland). doi: 10.3390/s20102886 – year: 2020 ident: CR5 article-title: A comprehensive survey of vision-based human action recognition methods publication-title: Sensors (Basel). doi: 10.3390/s19051005 – ident: CR62 – volume: 20 start-page: 3126 issue: 11 year: 2020 ident: CR19 article-title: Spatiotemporal interaction residual networks with pseudo3D for video action recognition publication-title: Sensors (Basel). doi: 10.3390/s20113126 – volume: 20 start-page: 2226 issue: 8 year: 2020 ident: CR18 article-title: Keys for action: an efficient keyframe-based approach for 3D action recognition using a deep neural network publication-title: Sensors (Basel). doi: 10.3390/s20082226 – volume: 173 start-page: 1193 issue: 12 year: 2021 ident: 7236_CR35 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.114693 – volume: 1 start-page: 816 year: 2016 ident: 7236_CR51 publication-title: European Conference on Computer Vision (ECCV) doi: 10.1007/978-3-319-46487-9_50 – year: 2020 ident: 7236_CR5 publication-title: Sensors (Basel). doi: 10.3390/s19051005 – volume: 1 start-page: 68 year: 2020 ident: 7236_CR7 publication-title: China Sci. Technol. Inf. doi: 10.3969/j.issn.1001-8972.2020.01.023 – volume: 18 start-page: 1059 year: 2021 ident: 7236_CR40 publication-title: J. Bionic Eng. doi: 10.1007/s42235-021-00083-y – volume: 28 start-page: 5281 issue: 11 year: 2019 ident: 7236_CR20 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2913544 – volume: 28 start-page: 3959 issue: 8 year: 2019 ident: 7236_CR46 publication-title: IEEE Trans Image Process. doi: 10.1109/TIP.2019.2907048 – volume: 1 start-page: 568 year: 2014 ident: 7236_CR58 publication-title: Montréal, Canada doi: 10.1002/14651858.CD001941.pub3 – volume: 40 start-page: 2620 issue: 009 year: 2019 ident: 7236_CR34 publication-title: Comput. Eng. Des. – volume: 41 start-page: 304 issue: 4 year: 2020 ident: 7236_CR13 publication-title: Comput. Eng. Des. doi: 10.19734/j.issn.1001-3695.2018.05.0499 – volume: 6 start-page: 50788 year: 2018 ident: 7236_CR61 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2869751 – ident: 7236_CR38 doi: 10.1109/ICAIIC48513.2020.9065078 – volume: 1 start-page: 1933 year: 2016 ident: 7236_CR48 publication-title: Comput. Vis. Pattern Recognit. doi: 10.1109/CVPR.2016.213 – ident: 7236_CR53 doi: 10.1109/CVPR.2017.391 – volume: 20 start-page: 3499 issue: 12 year: 2020 ident: 7236_CR45 publication-title: Sensors (Basel) doi: 10.3390/s20123499 – volume: 8 start-page: 27522764 issue: 43 year: 2020 ident: 7236_CR17 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2020.2976014 – ident: 7236_CR32 doi: 10.1109/UEMCON.2017.8249013 – volume: 43 start-page: 1 issue: 3 year: 2011 ident: 7236_CR1 publication-title: ACM Comput. Surv. doi: 10.1145/1922649.1922653 – volume: 11 start-page: 47 year: 2019 ident: 7236_CR15 publication-title: Netw. Secur. Technol. Appl. doi: 10.3969/j.issn.1009-6833.2019.11.027 – volume: 27 start-page: 2842 issue: 6 year: 2018 ident: 7236_CR22 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2812099 – volume: 33 start-page: 8989 year: 2019 ident: 7236_CR26 publication-title: Proceedings of the AAAI Conference on Artificial Intelligence doi: 10.1609/aaai.v33i01.33018989 – volume: 43 start-page: 137 issue: 4 year: 2020 ident: 7236_CR16 publication-title: Mod. Electron. Tech. doi: 10.16652/j.issn.1004-373x.2020.04.035(InChinese) – volume: 26 start-page: 73 issue: 1 year: 2020 ident: 7236_CR28 publication-title: J. Anqing Normal Univ. (Nat. Sci. Ed.) doi: 10.13757/j.cnki.cn34-1328/n.2020.01.013 – volume: 20 start-page: 3305 issue: 11 year: 2020 ident: 7236_CR30 publication-title: Sensors (Basel). doi: 10.3390/s20113305 – volume: 20 start-page: 1 issue: 14 year: 2020 ident: 7236_CR10 publication-title: Sens. (Basel). doi: 10.3390/s20143894 – volume: 232 start-page: 76 issue: 6 year: 1975 ident: 7236_CR3 publication-title: Sci. Am. doi: 10.1038/scientificamerican0675-76 – ident: 7236_CR56 doi: 10.1109/TMM.2018.2802648 – volume: 20 start-page: 3126 issue: 11 year: 2020 ident: 7236_CR19 publication-title: Sensors (Basel). doi: 10.3390/s20113126 – volume: 121 start-page: 95 issue: 1 year: 2017 ident: 7236_CR42 publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-016-0917-2 – volume: 414 start-page: 90 issue: 5 year: 2020 ident: 7236_CR39 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.07.068 – volume: 32 start-page: 288 issue: 2 year: 2010 ident: 7236_CR11 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2008.284 – volume: 20 start-page: 1825 issue: 7 year: 2020 ident: 7236_CR8 publication-title: Sensors (Basel) doi: 10.3390/s20071825 – volume: 40 start-page: 1 issue: 09 year: 2019 ident: 7236_CR33 publication-title: Comput. Eng. Des. doi: 10.16208/j.issn1000-7024.2019.09.038 – year: 2020 ident: 7236_CR63 publication-title: Electron. Lett. doi: 10.1049/el.2020.2148 – volume: 33 start-page: 12 issue: 3 year: 2020 ident: 7236_CR4 publication-title: Ind. Control Comput. doi: 10.3969/j.issn.1001-182X.2020.03.005 – volume: 1 start-page: 585 year: 2017 ident: 7236_CR52 publication-title: IEEE International Conference on Multimedia & Expo Workshops doi: 10.1109/ICMEW.2017.8026287 – ident: 7236_CR59 doi: 10.1109/CVPR.2017.387 – volume: 43 start-page: 16 issue: 11 year: 2019 ident: 7236_CR24 publication-title: Inf. Technol. doi: 10.13274/j.cnki.hdzj.2019.11.004 – volume: 17 start-page: 1261 issue: 6 year: 2017 ident: 7236_CR23 publication-title: Sens. (Basel). doi: 10.3390/s17061261 – volume: 1187 start-page: 42027 year: 2019 ident: 7236_CR21 publication-title: J. Phys.: Conf. Ser. doi: 10.1088/1742-6596/1187/4/042027 – volume: 40 start-page: 3007 issue: 12 year: 2018 ident: 7236_CR27 publication-title: IEEE Trans. Pattern. Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2771306 – volume: 42 start-page: 2684 issue: 10 year: 2019 ident: 7236_CR44 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) doi: 10.1109/tpami.2019.2916873 – volume: 24 start-page: 624 issue: 5 year: 2017 ident: 7236_CR60 publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2017.2678539 – ident: 7236_CR43 doi: 10.1109/CVPR.2016.115 – ident: 7236_CR55 doi: 10.1109/ICPR.2018.8545247 – volume: 39 start-page: 677 issue: 4 year: 2017 ident: 7236_CR29 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2599174 – ident: 7236_CR47 – volume: 29 start-page: 3835 year: 2020 ident: 7236_CR9 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.2965299 – ident: 7236_CR49 doi: 10.1007/978-3-319-46487-9_50 – volume: 1 start-page: 16 year: 2019 ident: 7236_CR25 publication-title: IEEE doi: 10.1109/SIBGRAPI.2019.00011 – volume: 28 start-page: 581 year: 2019 ident: 7236_CR31 publication-title: IEEE/ACM Trans. Audio Speech Language Process. doi: 10.1109/TASKP.2019.2959251 – volume: 20 start-page: 2226 issue: 8 year: 2020 ident: 7236_CR18 publication-title: Sensors (Basel). doi: 10.3390/s20082226 – volume: 20 start-page: 2886 issue: 10 year: 2020 ident: 7236_CR2 publication-title: Sens. (Basel, Switzerland). doi: 10.3390/s20102886 – ident: 7236_CR6 doi: 10.1109/CVPR.2005.177 – ident: 7236_CR54 doi: 10.1109/ICCV.2017.233 – ident: 7236_CR12 doi: 10.1109/AUTEEE.2018.8720753 – volume: 14 start-page: e212320 issue: 2 year: 2019 ident: 7236_CR41 publication-title: PLoS ONE doi: 10.1371/journal.pone.0212320 – ident: 7236_CR62 doi: 10.1109/SIBGRAPI.2019.00011 – volume: 1 start-page: 1010 year: 2016 ident: 7236_CR50 publication-title: IEEE Comput. Soc. doi: 10.1109/CVPR.2016.115 – year: 2021 ident: 7236_CR37 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107728 – volume: 414 start-page: 90 year: 2020 ident: 7236_CR57 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.07.068 – ident: 7236_CR36 doi: 10.1109/WCSP.2018.8555945 – volume: 42 start-page: 413 issue: 2 year: 2020 ident: 7236_CR14 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/tpami.2018.2880750 |
| SSID | ssib048395113 ssj0001916267 ssj0061873 |
| Score | 2.3016999 |
| Snippet | Human action recognition (HAR) technology is currently of significant interest. The traditional HAR methods depend on the time and space of the video stream... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2331 |
| SubjectTerms | Accuracy Computational efficiency Engineering Human activity recognition Human motion Humanities and Social Sciences multidisciplinary Networks Real time Research Article-Computer Engineering and Computer Science Response time Response time (computers) Science Three dimensional models Training Video data |
| Title | Human Action Recognition Research Based on Fusion TS-CNN and LSTM Networks |
| URI | https://link.springer.com/article/10.1007/s13369-022-07236-z https://www.proquest.com/docview/2774560092 |
| Volume | 48 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2191-4281 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0001916267 issn: 2193-567X databaseCode: ABDBF dateStart: 20041001 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2191-4281 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061873 issn: 2193-567X databaseCode: GX1 dateStart: 20020101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2191-4281 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001916267 issn: 2193-567X databaseCode: AFBBN dateStart: 20110101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 2191-4281 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061873 issn: 2193-567X databaseCode: AGYKE dateStart: 20110101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 2191-4281 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061873 issn: 2193-567X databaseCode: U2A dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECYaZ2mHok_UbRpw6OaykEm9ODpBHSNIPDQOYHQRSIkEChRukdiLf33v-JAUty6SLIJMU4Kt-3SPj7w7Qj4VPOe20ZxpW2iWapuwMqsbZgXEHgYMQqmQGric57Pr9HyZLTsyx2WXrPWXevvPvJLHSBXGQK6YJfsAybY3hQE4B_nCESQMx3vJ2DPwE9_t-1vcCuTOYyoDGKkGFwSmG6TFRosrdjqfuxWDi6vFJeb74s6s276POrlRWIi8LSqBGxFj9g9eaLoShuifom3v8QnfPaM62_zocdKOjz1TwUoGkoGLuC95h2Qc7avBBeoKVJ9gWe4a34NliWMQoXLflCXq27Ts4Yr3lWdM3jLhoy80-ZeST0LSsxC5ZJiNkBRc5GzbmbR2o2FXlBknVzC5cpOr7QE55GAIkgE5nExPTuZRCaXgMYITKjqiDhxo7joRt_8wJF_5FMzdX3HXwemilp2Fdue_LF6Q5yHwoBOPopfkiVm9Is965Shfk3OHJ-rxRHt4ohFP1OGJwojHE_V4ogALiniiEU9vyPX06-J0xkKvDVaDEl4zA26jEDYTvFC80Y22pRWF1lmidWkVthUwSjcirzMptSys1ULJ1GCBSogRuHhLBqtfK_OO0MIKJZQtpB6rtM6NrJXMJE8017Uok2ZIxvEBVXUoRI_9UH5W-6U1JKP2mt--DMt_Zx_F516Fd-W24hDooHsv-ZB8jrLovt5_t_cPm_6BPO3eoCMyWN9szEdwXNf6OEDtmBycLcd_AN99jz8 |
| linkProvider | Library Specific Holdings |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+Action+Recognition+Research+Based+on+Fusion+TS-CNN+and+LSTM+Networks&rft.jtitle=Arabian+journal+for+science+and+engineering+%282011%29&rft.au=Zan%2C+Hui&rft.au=Zhao%2C+Gang&rft.date=2023-02-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=2193-567X&rft.eissn=2191-4281&rft.volume=48&rft.issue=2&rft.spage=2331&rft.epage=2345&rft_id=info:doi/10.1007%2Fs13369-022-07236-z&rft.externalDocID=10_1007_s13369_022_07236_z |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-567X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-567X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-567X&client=summon |