Deep Learning-based Intelligent Fault Diagnosis for Power Distribution Networks
Power distribution networks with distributed generation (DG) face challenges in fault diagnosis due to the high uncertainty, randomness, and complexity introduced by DG integration. This study proposes a two-stage approach for fault location and identification in distribution networks with DG. First...
Saved in:
| Published in | International journal of computers, communications & control Vol. 19; no. 4 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Oradea
Agora University of Oradea
01.08.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1841-9836 1841-9844 1841-9844 |
| DOI | 10.15837/ijccc.2024.4.6607 |
Cover
| Abstract | Power distribution networks with distributed generation (DG) face challenges in fault diagnosis due to the high uncertainty, randomness, and complexity introduced by DG integration. This study proposes a two-stage approach for fault location and identification in distribution networks with DG. First, an improved bald eagle search algorithm combined with the Dijkstra algorithm (D-IBES) is developed for fault location. Second, a fusion deep residual shrinkage network (FDRSN) is integrated with IBES and support vector machine (SVM) to form the FDRSN-IBS-SVM model for fault identification. Experimental results showed that the D-IBES algorithm achieved a CPU loss rate of 0.54% and an average time consumption of 1.70 seconds in complex scenarios, outperforming the original IBES algorithm. The FDRSN-IBS-SVM model attained high fault identification accuracy (99.05% and 98.54%) under different DG output power levels and maintained robustness (97.89% accuracy and 97.54% recall) under 5% Gaussian white noise. The proposed approach demonstrates superior performance compared to existing methods and provides a promising solution for intelligent fault diagnosis in modern distribution networks. |
|---|---|
| AbstractList | Power distribution networks with distributed generation (DG) face challenges in fault diagnosis due to the high uncertainty, randomness, and complexity introduced by DG integration. This study proposes a two-stage approach for fault location and identification in distribution networks with DG. First, an improved bald eagle search algorithm combined with the Dijkstra algorithm (D-IBES) is developed for fault location. Second, a fusion deep residual shrinkage network (FDRSN) is integrated with IBES and support vector machine (SVM) to form the FDRSN-IBS-SVM model for fault identification. Experimental results showed that the D-IBES algorithm achieved a CPU loss rate of 0.54% and an average time consumption of 1.70 seconds in complex scenarios, outperforming the original IBES algorithm. The FDRSN-IBS-SVM model attained high fault identification accuracy (99.05% and 98.54%) under different DG output power levels and maintained robustness (97.89% accuracy and 97.54% recall) under 5% Gaussian white noise. The proposed approach demonstrates superior performance compared to existing methods and provides a promising solution for intelligent fault diagnosis in modern distribution networks. |
| Author | Liu, Zhidong Liu, Jingzhi Zhang, Jianming Yang, Hongyi Qu, Quanlei |
| Author_xml | – sequence: 1 givenname: Jingzhi surname: Liu fullname: Liu, Jingzhi – sequence: 2 givenname: Quanlei surname: Qu fullname: Qu, Quanlei – sequence: 3 givenname: Hongyi surname: Yang fullname: Yang, Hongyi – sequence: 4 givenname: Jianming surname: Zhang fullname: Zhang, Jianming – sequence: 5 givenname: Zhidong surname: Liu fullname: Liu, Zhidong |
| BookMark | eNqNkE1LAzEQhoMoWGv_gKcFz1vz1SR7lNZqoVgPeg5Jmi2pa7ImWUr_vdtWPHgQ5zLD8D7D8FyBcx-8BeAGwTGaCMLv3NYYM8YQ0zEdMwb5GRggQVFZCUrPf2bCLsEopS3si2AB-WQAVjNr22JpVfTOb0qtkl0XC59t07iN9bmYq67JxcypjQ_JpaIOsXgJOxv7XcrR6S674Itnm3chvqdrcFGrJtnRdx-Ct_nD6_SpXK4eF9P7ZWkIqnJpOcO8YqQmTAimITSaQ7LmzBBtONS1YkhRYmhNqWYVRgiJCTZUWEIZ0ZoMATnd7Xyr9jvVNLKN7kPFvURQHrXIoxZ50CKpPGjpqdsT1cbw2dmU5TZ00fePSgI554gxXPUpfEqZGFKKtv7fafELMi6rg5sclWv-Qr8AX3-HYg |
| CitedBy_id | crossref_primary_10_3390_pr13010048 |
| ContentType | Journal Article |
| Copyright | 2024. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTOC UNPAY |
| DOI | 10.15837/ijccc.2024.4.6607 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1841-9844 |
| ExternalDocumentID | 10.15837/ijccc.2024.4.6607 10_15837_ijccc_2024_4_6607 |
| GroupedDBID | .4S .DC 29J 2WC 5GY AAKPC AAYXX ACIPV ADBBV AENEX AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BCNDV BENPR BGLVJ CCPQU CITATION E3Z EDO EOJEC GROUPED_DOAJ HCIFZ ITG ITH K7- MK~ ML~ M~E OBODZ OK1 OVT PHGZM PHGZT PIMPY PQGLB PUEGO TR2 TUS 8FE 8FG ABUWG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY |
| ID | FETCH-LOGICAL-c319t-e7627963f36886b00cb703d76c3bc70bfa61a43c4f44b692111852c48e3463bb3 |
| IEDL.DBID | BENPR |
| ISSN | 1841-9836 1841-9844 |
| IngestDate | Tue Aug 19 17:49:57 EDT 2025 Fri Jul 25 09:23:15 EDT 2025 Thu Apr 24 23:06:20 EDT 2025 Wed Oct 01 02:31:45 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | http://creativecommons.org/licenses/by-nc/4.0 cc-by-nc |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-e7627963f36886b00cb703d76c3bc70bfa61a43c4f44b692111852c48e3463bb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/3077716629?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 3077716629 |
| PQPubID | 5045567 |
| ParticipantIDs | unpaywall_primary_10_15837_ijccc_2024_4_6607 proquest_journals_3077716629 crossref_primary_10_15837_ijccc_2024_4_6607 crossref_citationtrail_10_15837_ijccc_2024_4_6607 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-01 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Oradea |
| PublicationPlace_xml | – name: Oradea |
| PublicationTitle | International journal of computers, communications & control |
| PublicationYear | 2024 |
| Publisher | Agora University of Oradea |
| Publisher_xml | – name: Agora University of Oradea |
| SSID | ssj0000328075 ssib032305687 |
| Score | 2.3421977 |
| Snippet | Power distribution networks with distributed generation (DG) face challenges in fault diagnosis due to the high uncertainty, randomness, and complexity... |
| SourceID | unpaywall proquest crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| SubjectTerms | Algorithms Complexity Deep learning Dijkstra's algorithm Distributed generation Electric power distribution Fault diagnosis Fault location Machine learning Networks Normal distribution Search algorithms Support vector machines White noise |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT4MwFG7MdtCL82ecTtODNwXHKKUcF-cyPcwdXDJPpC3FqAQXgRj9632FDqcxZl4IkNKE9_pe30vf-z6ETkkkRMx9zwpiuBDuxRYX1LUUJY6Ko4BxVRbIjuloSm5m3szA5OhemOXzew-Sp4vHJyk11GCP2MSmVDeON6kHcXcDNafjSf9eZ1SMOFbASj5Ac0-I6ZD5fZLvu9BXaLlepHP-_saTZGmXGbYquqKsBCfUxSXPdpELW378gG5c7Qe20KYJNnG_Wh3baE2lO6i1IHLAxq530e1AqTk2UKsPlt7ZInxdg3XmeMiLJMeDqizvMcMQ6eKJ5leDd1nNmYXHVU15toemw6u7y5FlmBYsCSaYWwpcog-mGLuUMQqWKAV4gsin0hXS74I2qcOJK0lMiKABJI2651oSplxCXSHcfdRIX1J1gHBXUOHFPdlTEkIxnzPlM487TLpSwfSijZyF5ENpYMg1G0YS6nRESywsJRZqiYUk1BJro7P6m3kFwvHn6M5CoaExyCwEV-ZDakh7QRud10peYbbD_w0_Qhv6qSoR7KBG_lqoYwhbcnFi1usnj73lcA priority: 102 providerName: Unpaywall |
| Title | Deep Learning-based Intelligent Fault Diagnosis for Power Distribution Networks |
| URI | https://www.proquest.com/docview/3077716629 https://doi.org/10.15837/ijccc.2024.4.6607 |
| UnpaywallVersion | publishedVersion |
| Volume | 19 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1841-9844 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000328075 issn: 1841-9844 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1841-9844 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000328075 issn: 1841-9844 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1841-9844 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000328075 issn: 1841-9844 databaseCode: BENPR dateStart: 20060301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH6CcmCX_YKJbqzyYbdhILHjOIdp6gYd2yFUiEpwimzHQZ2qUmiqaf_93kuclhPaJVKixIfn956_Fz9_H8AnWVpbmTThWYUXaZKKG6sE90pGviozbXzTIJuri4n8dZPcbEHenYWhtsouJzaJurx39I_8BH0xRWyv4uzr4oGTahTtrnYSGiZIK5RfGoqxbdiJiRmrBzvfzvPxVedhIibEHABJk6tFHNh4sdKJeKZpL7M5WZNg5XYy_e0c8RzG8lgeK0Was09Xrw0k3V3NF-bvHzObPVmdRq_hZYCVbNj6wRvY8vO38KqTbGAhgvfg8sz7BQukqnec1rCS_VzTctZsZFazmp21DXjTJUNMy8akpIbPlmt1LJa33ePLfZiMzq-_X_CgqcAdBlvNPSa_FIOuEkprhTHnLMZ8mSonrEtPcd5UZKRwspLSqgzLQzpd7aT2QiphrXgHvfn93B8AO7XKJlXsYu8QdKVG-1QnJtJOOI_D2z5Ena0KFwjHSfdiVlDhQfYtGvsWZN9CFmTfPnxef7No6Taeffuwm4IihN6y2DhKH47W0_Ifo71_frQP8IJebpv_DqFXP678RwQktR3Ath79GARfGzRlPd5N8vHw9h-keeAg |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOMClT1C3pa0P5UQNJHac5ICqtstql8cWVSBxc23HqahWy7bJCvHn-ts6kzgLJ9QLlxyieKSMv8wjnpkP4IMsrC1NmvC8xIs0ScmNVYJ7JSNfFnlmfFMgO1bDC3l0mVwuwd-uF4bKKjub2Bjq4trRP_I9xGKKsb2K80-z35xYo-h0taPQMIFaoThoRoyFxo5jf3uDKVx1MOrjfm_H8eDw_OuQB5YB7hB-NfdoDlKEYSlUlilEobP4FRSpcsK6dB_fREVGCidLKa3KMWGifmMnMy-kEtYKlLsMq1LIHJO_1S-H47PvHaJFTBF6CIAa3yDiMP0XM6uI5xmdnTadPAlmintXv5yjuYqx3JW7ShHH7X1veRcCr82nM3N7YyaTe95w8AyehDCWfW5x9xyW_PQFPO0oIliwGC_hW9_7GQtDXH9y8pkFGy3GgNZsYOaTmvXbgr-rimEMzc6IuQ3vVQs2LjZuq9WrDbh4FO1uwsr0eupfAdu3yiZl7GLvMMhLTebTLDFR5oTzKN72IOp0pV0YcE48GxNNiQ7pVzf61aRfLTXptwc7izWzdrzHg09vdVugw6de6Ttg9uDjYlv-Q9rrh6W9h7Xh-emJPhmNj9_AOi1sCw-3YKX-M_dvMRiq7buAOAY_Hhvk_wD1lRfa |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT4MwFG7MdtCL82ecTtODNwXHKKUcF-cyPcwdXDJPpC3FqAQXgRj9632FDqcxZl4IkNKE9_pe30vf-z6ETkkkRMx9zwpiuBDuxRYX1LUUJY6Ko4BxVRbIjuloSm5m3szA5OhemOXzew-Sp4vHJyk11GCP2MSmVDeON6kHcXcDNafjSf9eZ1SMOFbASj5Ac0-I6ZD5fZLvu9BXaLlepHP-_saTZGmXGbYquqKsBCfUxSXPdpELW378gG5c7Qe20KYJNnG_Wh3baE2lO6i1IHLAxq530e1AqTk2UKsPlt7ZInxdg3XmeMiLJMeDqizvMcMQ6eKJ5leDd1nNmYXHVU15toemw6u7y5FlmBYsCSaYWwpcog-mGLuUMQqWKAV4gsin0hXS74I2qcOJK0lMiKABJI2651oSplxCXSHcfdRIX1J1gHBXUOHFPdlTEkIxnzPlM487TLpSwfSijZyF5ENpYMg1G0YS6nRESywsJRZqiYUk1BJro7P6m3kFwvHn6M5CoaExyCwEV-ZDakh7QRud10peYbbD_w0_Qhv6qSoR7KBG_lqoYwhbcnFi1usnj73lcA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning-based+Intelligent+Fault+Diagnosis+for+Power+Distribution+Networks&rft.jtitle=International+journal+of+computers%2C+communications+%26+control&rft.au=Liu%2C+Jingzhi&rft.au=Qu%2C+Quanlei&rft.au=Yang%2C+Hongyi&rft.au=Zhang%2C+Jianming&rft.date=2024-08-01&rft.issn=1841-9836&rft.eissn=1841-9844&rft.volume=19&rft.issue=4&rft_id=info:doi/10.15837%2Fijccc.2024.4.6607&rft.externalDBID=n%2Fa&rft.externalDocID=10_15837_ijccc_2024_4_6607 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1841-9836&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1841-9836&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1841-9836&client=summon |