Deep Learning-based Intelligent Fault Diagnosis for Power Distribution Networks

Power distribution networks with distributed generation (DG) face challenges in fault diagnosis due to the high uncertainty, randomness, and complexity introduced by DG integration. This study proposes a two-stage approach for fault location and identification in distribution networks with DG. First...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of computers, communications & control Vol. 19; no. 4
Main Authors Liu, Jingzhi, Qu, Quanlei, Yang, Hongyi, Zhang, Jianming, Liu, Zhidong
Format Journal Article
LanguageEnglish
Published Oradea Agora University of Oradea 01.08.2024
Subjects
Online AccessGet full text
ISSN1841-9836
1841-9844
1841-9844
DOI10.15837/ijccc.2024.4.6607

Cover

Abstract Power distribution networks with distributed generation (DG) face challenges in fault diagnosis due to the high uncertainty, randomness, and complexity introduced by DG integration. This study proposes a two-stage approach for fault location and identification in distribution networks with DG. First, an improved bald eagle search algorithm combined with the Dijkstra algorithm (D-IBES) is developed for fault location. Second, a fusion deep residual shrinkage network (FDRSN) is integrated with IBES and support vector machine (SVM) to form the FDRSN-IBS-SVM model for fault identification. Experimental results showed that the D-IBES algorithm achieved a CPU loss rate of 0.54% and an average time consumption of 1.70 seconds in complex scenarios, outperforming the original IBES algorithm. The FDRSN-IBS-SVM model attained high fault identification accuracy (99.05% and 98.54%) under different DG output power levels and maintained robustness (97.89% accuracy and 97.54% recall) under 5% Gaussian white noise. The proposed approach demonstrates superior performance compared to existing methods and provides a promising solution for intelligent fault diagnosis in modern distribution networks.
AbstractList Power distribution networks with distributed generation (DG) face challenges in fault diagnosis due to the high uncertainty, randomness, and complexity introduced by DG integration. This study proposes a two-stage approach for fault location and identification in distribution networks with DG. First, an improved bald eagle search algorithm combined with the Dijkstra algorithm (D-IBES) is developed for fault location. Second, a fusion deep residual shrinkage network (FDRSN) is integrated with IBES and support vector machine (SVM) to form the FDRSN-IBS-SVM model for fault identification. Experimental results showed that the D-IBES algorithm achieved a CPU loss rate of 0.54% and an average time consumption of 1.70 seconds in complex scenarios, outperforming the original IBES algorithm. The FDRSN-IBS-SVM model attained high fault identification accuracy (99.05% and 98.54%) under different DG output power levels and maintained robustness (97.89% accuracy and 97.54% recall) under 5% Gaussian white noise. The proposed approach demonstrates superior performance compared to existing methods and provides a promising solution for intelligent fault diagnosis in modern distribution networks.
Author Liu, Zhidong
Liu, Jingzhi
Zhang, Jianming
Yang, Hongyi
Qu, Quanlei
Author_xml – sequence: 1
  givenname: Jingzhi
  surname: Liu
  fullname: Liu, Jingzhi
– sequence: 2
  givenname: Quanlei
  surname: Qu
  fullname: Qu, Quanlei
– sequence: 3
  givenname: Hongyi
  surname: Yang
  fullname: Yang, Hongyi
– sequence: 4
  givenname: Jianming
  surname: Zhang
  fullname: Zhang, Jianming
– sequence: 5
  givenname: Zhidong
  surname: Liu
  fullname: Liu, Zhidong
BookMark eNqNkE1LAzEQhoMoWGv_gKcFz1vz1SR7lNZqoVgPeg5Jmi2pa7ImWUr_vdtWPHgQ5zLD8D7D8FyBcx-8BeAGwTGaCMLv3NYYM8YQ0zEdMwb5GRggQVFZCUrPf2bCLsEopS3si2AB-WQAVjNr22JpVfTOb0qtkl0XC59t07iN9bmYq67JxcypjQ_JpaIOsXgJOxv7XcrR6S674Itnm3chvqdrcFGrJtnRdx-Ct_nD6_SpXK4eF9P7ZWkIqnJpOcO8YqQmTAimITSaQ7LmzBBtONS1YkhRYmhNqWYVRgiJCTZUWEIZ0ZoMATnd7Xyr9jvVNLKN7kPFvURQHrXIoxZ50CKpPGjpqdsT1cbw2dmU5TZ00fePSgI554gxXPUpfEqZGFKKtv7fafELMi6rg5sclWv-Qr8AX3-HYg
CitedBy_id crossref_primary_10_3390_pr13010048
ContentType Journal Article
Copyright 2024. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.15837/ijccc.2024.4.6607
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1841-9844
ExternalDocumentID 10.15837/ijccc.2024.4.6607
10_15837_ijccc_2024_4_6607
GroupedDBID .4S
.DC
29J
2WC
5GY
AAKPC
AAYXX
ACIPV
ADBBV
AENEX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
E3Z
EDO
EOJEC
GROUPED_DOAJ
HCIFZ
ITG
ITH
K7-
MK~
ML~
M~E
OBODZ
OK1
OVT
PHGZM
PHGZT
PIMPY
PQGLB
PUEGO
TR2
TUS
8FE
8FG
ABUWG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-c319t-e7627963f36886b00cb703d76c3bc70bfa61a43c4f44b692111852c48e3463bb3
IEDL.DBID BENPR
ISSN 1841-9836
1841-9844
IngestDate Tue Aug 19 17:49:57 EDT 2025
Fri Jul 25 09:23:15 EDT 2025
Thu Apr 24 23:06:20 EDT 2025
Wed Oct 01 02:31:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://creativecommons.org/licenses/by-nc/4.0
cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-e7627963f36886b00cb703d76c3bc70bfa61a43c4f44b692111852c48e3463bb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3077716629?pq-origsite=%requestingapplication%&accountid=15518
PQID 3077716629
PQPubID 5045567
ParticipantIDs unpaywall_primary_10_15837_ijccc_2024_4_6607
proquest_journals_3077716629
crossref_primary_10_15837_ijccc_2024_4_6607
crossref_citationtrail_10_15837_ijccc_2024_4_6607
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Oradea
PublicationPlace_xml – name: Oradea
PublicationTitle International journal of computers, communications & control
PublicationYear 2024
Publisher Agora University of Oradea
Publisher_xml – name: Agora University of Oradea
SSID ssj0000328075
ssib032305687
Score 2.3421977
Snippet Power distribution networks with distributed generation (DG) face challenges in fault diagnosis due to the high uncertainty, randomness, and complexity...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
SubjectTerms Algorithms
Complexity
Deep learning
Dijkstra's algorithm
Distributed generation
Electric power distribution
Fault diagnosis
Fault location
Machine learning
Networks
Normal distribution
Search algorithms
Support vector machines
White noise
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT4MwFG7MdtCL82ecTtODNwXHKKUcF-cyPcwdXDJPpC3FqAQXgRj9632FDqcxZl4IkNKE9_pe30vf-z6ETkkkRMx9zwpiuBDuxRYX1LUUJY6Ko4BxVRbIjuloSm5m3szA5OhemOXzew-Sp4vHJyk11GCP2MSmVDeON6kHcXcDNafjSf9eZ1SMOFbASj5Ac0-I6ZD5fZLvu9BXaLlepHP-_saTZGmXGbYquqKsBCfUxSXPdpELW378gG5c7Qe20KYJNnG_Wh3baE2lO6i1IHLAxq530e1AqTk2UKsPlt7ZInxdg3XmeMiLJMeDqizvMcMQ6eKJ5leDd1nNmYXHVU15toemw6u7y5FlmBYsCSaYWwpcog-mGLuUMQqWKAV4gsin0hXS74I2qcOJK0lMiKABJI2651oSplxCXSHcfdRIX1J1gHBXUOHFPdlTEkIxnzPlM487TLpSwfSijZyF5ENpYMg1G0YS6nRESywsJRZqiYUk1BJro7P6m3kFwvHn6M5CoaExyCwEV-ZDakh7QRud10peYbbD_w0_Qhv6qSoR7KBG_lqoYwhbcnFi1usnj73lcA
  priority: 102
  providerName: Unpaywall
Title Deep Learning-based Intelligent Fault Diagnosis for Power Distribution Networks
URI https://www.proquest.com/docview/3077716629
https://doi.org/10.15837/ijccc.2024.4.6607
UnpaywallVersion publishedVersion
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1841-9844
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000328075
  issn: 1841-9844
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1841-9844
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000328075
  issn: 1841-9844
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1841-9844
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000328075
  issn: 1841-9844
  databaseCode: BENPR
  dateStart: 20060301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH6CcmCX_YKJbqzyYbdhILHjOIdp6gYd2yFUiEpwimzHQZ2qUmiqaf_93kuclhPaJVKixIfn956_Fz9_H8AnWVpbmTThWYUXaZKKG6sE90pGviozbXzTIJuri4n8dZPcbEHenYWhtsouJzaJurx39I_8BH0xRWyv4uzr4oGTahTtrnYSGiZIK5RfGoqxbdiJiRmrBzvfzvPxVedhIibEHABJk6tFHNh4sdKJeKZpL7M5WZNg5XYy_e0c8RzG8lgeK0Was09Xrw0k3V3NF-bvHzObPVmdRq_hZYCVbNj6wRvY8vO38KqTbGAhgvfg8sz7BQukqnec1rCS_VzTctZsZFazmp21DXjTJUNMy8akpIbPlmt1LJa33ePLfZiMzq-_X_CgqcAdBlvNPSa_FIOuEkprhTHnLMZ8mSonrEtPcd5UZKRwspLSqgzLQzpd7aT2QiphrXgHvfn93B8AO7XKJlXsYu8QdKVG-1QnJtJOOI_D2z5Ena0KFwjHSfdiVlDhQfYtGvsWZN9CFmTfPnxef7No6Taeffuwm4IihN6y2DhKH47W0_Ifo71_frQP8IJebpv_DqFXP678RwQktR3Ath79GARfGzRlPd5N8vHw9h-keeAg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOMClT1C3pa0P5UQNJHac5ICqtstql8cWVSBxc23HqahWy7bJCvHn-ts6kzgLJ9QLlxyieKSMv8wjnpkP4IMsrC1NmvC8xIs0ScmNVYJ7JSNfFnlmfFMgO1bDC3l0mVwuwd-uF4bKKjub2Bjq4trRP_I9xGKKsb2K80-z35xYo-h0taPQMIFaoThoRoyFxo5jf3uDKVx1MOrjfm_H8eDw_OuQB5YB7hB-NfdoDlKEYSlUlilEobP4FRSpcsK6dB_fREVGCidLKa3KMWGifmMnMy-kEtYKlLsMq1LIHJO_1S-H47PvHaJFTBF6CIAa3yDiMP0XM6uI5xmdnTadPAlmintXv5yjuYqx3JW7ShHH7X1veRcCr82nM3N7YyaTe95w8AyehDCWfW5x9xyW_PQFPO0oIliwGC_hW9_7GQtDXH9y8pkFGy3GgNZsYOaTmvXbgr-rimEMzc6IuQ3vVQs2LjZuq9WrDbh4FO1uwsr0eupfAdu3yiZl7GLvMMhLTebTLDFR5oTzKN72IOp0pV0YcE48GxNNiQ7pVzf61aRfLTXptwc7izWzdrzHg09vdVugw6de6Ttg9uDjYlv-Q9rrh6W9h7Xh-emJPhmNj9_AOi1sCw-3YKX-M_dvMRiq7buAOAY_Hhvk_wD1lRfa
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT4MwFG7MdtCL82ecTtODNwXHKKUcF-cyPcwdXDJPpC3FqAQXgRj9632FDqcxZl4IkNKE9_pe30vf-z6ETkkkRMx9zwpiuBDuxRYX1LUUJY6Ko4BxVRbIjuloSm5m3szA5OhemOXzew-Sp4vHJyk11GCP2MSmVDeON6kHcXcDNafjSf9eZ1SMOFbASj5Ac0-I6ZD5fZLvu9BXaLlepHP-_saTZGmXGbYquqKsBCfUxSXPdpELW378gG5c7Qe20KYJNnG_Wh3baE2lO6i1IHLAxq530e1AqTk2UKsPlt7ZInxdg3XmeMiLJMeDqizvMcMQ6eKJ5leDd1nNmYXHVU15toemw6u7y5FlmBYsCSaYWwpcog-mGLuUMQqWKAV4gsin0hXS74I2qcOJK0lMiKABJI2651oSplxCXSHcfdRIX1J1gHBXUOHFPdlTEkIxnzPlM487TLpSwfSijZyF5ENpYMg1G0YS6nRESywsJRZqiYUk1BJro7P6m3kFwvHn6M5CoaExyCwEV-ZDakh7QRud10peYbbD_w0_Qhv6qSoR7KBG_lqoYwhbcnFi1usnj73lcA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning-based+Intelligent+Fault+Diagnosis+for+Power+Distribution+Networks&rft.jtitle=International+journal+of+computers%2C+communications+%26+control&rft.au=Liu%2C+Jingzhi&rft.au=Qu%2C+Quanlei&rft.au=Yang%2C+Hongyi&rft.au=Zhang%2C+Jianming&rft.date=2024-08-01&rft.issn=1841-9836&rft.eissn=1841-9844&rft.volume=19&rft.issue=4&rft_id=info:doi/10.15837%2Fijccc.2024.4.6607&rft.externalDBID=n%2Fa&rft.externalDocID=10_15837_ijccc_2024_4_6607
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1841-9836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1841-9836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1841-9836&client=summon