Seismic vulnerability estimation of RC structures considering empirical and numerical simulation methods
Empirical and probabilistic risk analysis methods can relatively accurately predict the seismic vulnerability of reinforced concrete (RC) structures. Using various intensity measures to estimate and forecast the seismic hazard of RC structures can contribute to the development of typical structural...
Saved in:
| Published in | Archives of Civil and Mechanical Engineering Vol. 24; no. 2; p. 68 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Springer London
05.03.2024
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2083-3318 1644-9665 2083-3318 |
| DOI | 10.1007/s43452-024-00874-0 |
Cover
| Abstract | Empirical and probabilistic risk analysis methods can relatively accurately predict the seismic vulnerability of reinforced concrete (RC) structures. Using various intensity measures to estimate and forecast the seismic hazard of RC structures can contribute to the development of typical structural seismic resilience and vulnerability models. However, traditional empirical and analytical vulnerability studies rely more on field observation data and seismic risk algorithms and less on numerical simulation analysis for validation and optimization, resulting in limitations and fuzziness in the accuracy of the developed structural risk models. To explore the damage modes of RC frame structures under different intensities, this paper innovatively combines numerical model algorithms with empirical vulnerability methods to conduct empirical vulnerability and numerical simulation analyses on RC structures. Using probability statistics and nonlinear regression analysis methods, a prediction model for estimating the fragility of RC structures was proposed, and 858 RC structure damage samples from a typical city (Dujiangyan) during the Wenchuan earthquake in China on May 12, 2008, were used for model verification and comparative analysis. Using seismic response analysis theory, 901,530 acceleration records of the Wenchuan earthquake detected by eight actual seismic stations were selected, and nonlinear dynamic time history analysis was conducted. A four-story RC structural model was established using finite element software, and numerical simulation analysis was conducted on the model using 117,863 real earthquake acceleration data points obtained from actual monitoring stations during the Wenchuan earthquake. The acceleration time history curves and incremental dynamic analysis curves of the RC structure under different intensity measures were generated. By combining the moire algorithm and numerical simulation technology, damage stress clouds of steel bars and concrete under different intensity measures were generated, and the accuracy of the developed empirical vulnerability model was verified via numerical simulation results. |
|---|---|
| AbstractList | Empirical and probabilistic risk analysis methods can relatively accurately predict the seismic vulnerability of reinforced concrete (RC) structures. Using various intensity measures to estimate and forecast the seismic hazard of RC structures can contribute to the development of typical structural seismic resilience and vulnerability models. However, traditional empirical and analytical vulnerability studies rely more on field observation data and seismic risk algorithms and less on numerical simulation analysis for validation and optimization, resulting in limitations and fuzziness in the accuracy of the developed structural risk models. To explore the damage modes of RC frame structures under different intensities, this paper innovatively combines numerical model algorithms with empirical vulnerability methods to conduct empirical vulnerability and numerical simulation analyses on RC structures. Using probability statistics and nonlinear regression analysis methods, a prediction model for estimating the fragility of RC structures was proposed, and 858 RC structure damage samples from a typical city (Dujiangyan) during the Wenchuan earthquake in China on May 12, 2008, were used for model verification and comparative analysis. Using seismic response analysis theory, 901,530 acceleration records of the Wenchuan earthquake detected by eight actual seismic stations were selected, and nonlinear dynamic time history analysis was conducted. A four-story RC structural model was established using finite element software, and numerical simulation analysis was conducted on the model using 117,863 real earthquake acceleration data points obtained from actual monitoring stations during the Wenchuan earthquake. The acceleration time history curves and incremental dynamic analysis curves of the RC structure under different intensity measures were generated. By combining the moire algorithm and numerical simulation technology, damage stress clouds of steel bars and concrete under different intensity measures were generated, and the accuracy of the developed empirical vulnerability model was verified via numerical simulation results. |
| ArticleNumber | 68 |
| Author | Qin, Peng-Fei Du, Ke Liu, Hong-Bo Li, Si-Qi Han, Jia-Cheng Li, Yi-Ru |
| Author_xml | – sequence: 1 givenname: Si-Qi orcidid: 0000-0002-2761-9116 surname: Li fullname: Li, Si-Qi email: lisiqi@hlju.edu.cn organization: School of Civil Engineering, Heilongjiang University, Institute of Engineering Mechanics, China Earthquake Administration, Key Laboratory of Earthquake Disaster Mitigation, Ministry of Emergency Management, Heilongjiang University Key Laboratory of Earthquake Engineering and Engineering Vibration, Harbin Institute of Technology – sequence: 2 givenname: Ke surname: Du fullname: Du, Ke organization: School of Civil Engineering, Heilongjiang University – sequence: 3 givenname: Yi-Ru surname: Li fullname: Li, Yi-Ru organization: School of Civil Engineering, Heilongjiang University – sequence: 4 givenname: Jia-Cheng surname: Han fullname: Han, Jia-Cheng organization: School of Civil Engineering, Heilongjiang University – sequence: 5 givenname: Peng-Fei surname: Qin fullname: Qin, Peng-Fei organization: School of Civil Engineering, Heilongjiang University – sequence: 6 givenname: Hong-Bo surname: Liu fullname: Liu, Hong-Bo organization: School of Civil Engineering, Heilongjiang University |
| BookMark | eNp9kMtKAzEUhoNUsNa-gKuA69GTy9yWUrxBQfCyDplMxqbMJGOSEfr2TjuC4qKbnBw4_0m-7xzNrLMaoUsC1wQgvwmc8ZQmQHkCUOTjeYLmFAqWMEaK2Z_7GVqGsAUAAjklWTpHm1dtQmcU_hpaq72sTGviDusQTSejcRa7Br-scIh-UHHwOmDlbDC19sZ-YN31xhslWyxtje3Q6akLphvaKd_puHF1uECnjWyDXv7UBXq_v3tbPSbr54en1e06UYyUMdFZ2aRFRjmvMtqQrJZpLQvJy7Iuc0W5arK8gGqEATnCshKyOoWcSKCVblJgC3Q17e29-xxGDrF1g7fjk4KWLOdlmrFinKLTlPIuBK8b0fsR2O8EAbGXKiapYpQqDlLFfnXxL6RMPEBGL017PMqmaOj33rT__dWR1Dc85I68 |
| CitedBy_id | crossref_primary_10_1007_s42452_024_06099_3 crossref_primary_10_1016_j_ress_2024_110460 crossref_primary_10_1016_j_eswa_2024_123962 crossref_primary_10_1007_s10518_024_01880_6 crossref_primary_10_1016_j_cscm_2024_e03827 crossref_primary_10_3390_su162310392 crossref_primary_10_1016_j_soildyn_2024_108871 crossref_primary_10_1016_j_jobe_2024_110799 |
| Cites_doi | 10.1007/s10518-022-01395-y 10.12989/sem.2023.86.4.547 10.1016/j.ijdrr.2023.103617 10.1007/s10518-022-01535-4 10.1007/s10518-022-01516-7 10.1007/s10518-023-01703-0 10.1007/s10518-016-0026-1 10.1016/j.jobe.2022.105797 10.1016/j.engstruct.2021.113346 10.1016/j.soildyn.2023.108121 10.1080/13632469.2023.2167889 10.1080/13632469.2023.2193652 10.1007/s10518-022-01585-8 10.1016/j.engstruct.2023.117431 10.1080/13632469.2023.2220033 10.1016/j.jobe.2023.106936 10.1016/j.jobe.2023.106130 10.1002/eqe.3887 10.1007/s10518-023-01741-8 10.1016/j.engstruct.2022.115276 10.1007/s10518-023-01793-w 10.1016/j.soildyn.2023.107975 10.1016/j.engfailanal.2022.106207 10.1016/j.soildyn.2023.108256 10.1016/j.jobe.2023.106951 10.1016/j.ijdrr.2023.103903 10.1007/s10518-022-01361-8 10.1007/s43452-023-00631-9 10.1080/19648189.2019.1596164 10.1007/s11069-023-05993-0 10.1016/j.jobe.2020.101847 10.1177/87552930231156462 10.1177/87552930221131830 10.1016/j.soildyn.2023.107761 10.1007/s43452-023-00720-9 10.1007/s10518-023-01701-2 10.1016/j.jobe.2023.107032 10.3390/buildings11020038 10.1016/j.soildyn.2023.108022 10.1016/j.soildyn.2023.108120 10.1016/j.jobe.2019.100813 10.1016/j.scs.2022.104363 10.1016/j.ijdrr.2021.102740 10.1080/13632469.2023.2197078 10.1016/j.soildyn.2022.107630 10.1007/s10518-023-01728-5 10.1007/s10518-023-01814-8 10.1080/13632469.2023.2217945 10.1016/j.ijdrr.2023.103631 10.1016/j.asej.2023.102287 10.1016/j.jobe.2023.105916 10.1016/j.jobe.2021.103838 10.1007/s10518-022-01589-4 10.1016/j.ijdrr.2023.103738 10.1016/j.autcon.2023.104839 10.1016/j.strusafe.2022.102264 |
| ContentType | Journal Article |
| Copyright | Wroclaw University of Science and Technology 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: Wroclaw University of Science and Technology 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS |
| DOI | 10.1007/s43452-024-00874-0 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection (Proquest) ProQuest Engineering Collection Engineering Database (subscription) ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection |
| DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
| DatabaseTitleList | Engineering Database |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2083-3318 |
| ExternalDocumentID | 10_1007_s43452_024_00874_0 |
| GeographicLocations | Italy China |
| GeographicLocations_xml | – name: China – name: Italy |
| GroupedDBID | --M .~1 0R~ 1~. 23M 2JY 4.4 406 457 4G. 5GY 7-5 8P~ AACDK AACTN AAEDT AAEPC AAHNG AAIKJ AAJBT AALRI AAOAW AASML AATNV AAUYE ABAKF ABECU ABJNI ABMQK ABTEG ABTKH ABTMW ABXRA ACAOD ACDAQ ACDTI ACGFS ACHSB ACPIV ACZOJ ADBBV ADEZE ADTZH AECPX AEFQL AEKER AEMSY AENEX AESKC AFBBN AFQWF AFTJW AGHFR AGMZJ AGQEE AGUBO AGYEJ AIGIU AILAN AJOXV AJZVZ AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMXSW AMYLF BLXMC DPUIP EBLON EBS ESX FDB FEDTE FIGPU FIRID FNPLU GBLVA HVGLF IKXTQ IWAJR JJJVA LLZTM MAGPM MO0 NPVJJ NQJWS O-L O9- OAUVE P-8 P-9 P2P PC. PT4 Q38 ROL RSV SDF SJYHP SNE SNPRN SOHCF SOJ SRMVM SSLCW SSZ T5K Y2W ~G- AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC AEZWR AFDZB AFHIU AFKRA AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ I-F JZLTJ M7S PHGZM PHGZT PQGLB PTHSS PUEGO TUS ~HD 8FE 8FG DWQXO L6V PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c319t-e69f586244b62f16da5da8a499d97c24cf6780b3310a0083906d5071a02bef503 |
| IEDL.DBID | BENPR |
| ISSN | 2083-3318 1644-9665 |
| IngestDate | Fri Jul 25 11:42:42 EDT 2025 Wed Oct 01 04:54:41 EDT 2025 Thu Apr 24 22:51:31 EDT 2025 Fri Feb 21 02:40:20 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Numerical simulation analysis Empirical seismic vulnerability Structural failure analysis Damage modal analysis Reinforced concrete structure |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-e69f586244b62f16da5da8a499d97c24cf6780b3310a0083906d5071a02bef503 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2761-9116 |
| PQID | 2937495638 |
| PQPubID | 6587200 |
| ParticipantIDs | proquest_journals_2937495638 crossref_primary_10_1007_s43452_024_00874_0 crossref_citationtrail_10_1007_s43452_024_00874_0 springer_journals_10_1007_s43452_024_00874_0 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-05 |
| PublicationDateYYYYMMDD | 2024-03-05 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-05 day: 05 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Wrocław |
| PublicationTitle | Archives of Civil and Mechanical Engineering |
| PublicationTitleAbbrev | Archiv.Civ.Mech.Eng |
| PublicationYear | 2024 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | GioiellaLMoriciMDall’Asta, A. Empirical predictive model for seismic damage and economic losses of Italian school building heritageInt J Disaster Risk Red202310.1016/j.ijdrr.2023.103631 LiSQEmpirical resilience and vulnerability model of regional group structure considering optimized macroseismic intensity measureSoil Dyn Earthq Eng202316410763010.1016/j.soildyn.2022.107630 RuggieriSVukobratovićVAcceleration demands in single-storey RC buildings with flexible diaphragmsEng Struct202327510.1016/j.engstruct.2022.115276 KhanmohammadiMEshraghiMSayadiSMashhadinezhadMGPost-earthquake seismic assessment of residential buildings following Sarpol-e Zahab (Iran) earthquake (Mw7.3) part 2: Seismic vulnerability curves using quantitative damage indexSoil Dyn Earthq Eng202317310812010.1016/j.soildyn.2023.108120 SathurshanMThambooJMallikarachchiCWijesundaraKDiasPRapid seismic visual screen method for masonry infilled reinforced concrete framed buildings: Application to typical Sri Lankan school buildingsInt J Disaster Risk Red202310.1016/j.ijdrr.2023.103738 ZucconiMLudovicoMDSorrentinoLCensus-based typological usability fragility curves for Italian unreinforced masonry buildingsBull Earthq Eng202210.1007/s10518-022-01361-8 Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for design of concrete structures, China (GB 50010–2020). 2020. TekesteGGCorreiaAACostaAGBayesian updating of seismic fragility curves through experimental testsBull Earthq Eng2023211943197610.1007/s10518-022-01589-4 BoakyeJMurphyCGardoniPKumarRWhich consequences matter in risk analysis and disaster assessment?Int J Disaster Risk Red20227110274010.1016/j.ijdrr.2021.102740 RuggieriSCalòMCardellicchioAUvaGAnalytical-mechanical based framework for seismic overall fragility analysis of existing RC buildings in town compartmentsBull Earthq Eng2022208179821610.1007/s10518-022-01516-7 ChieffoNFormisanoAMiguel FerreiraTDamage scenario-based approach and retrofitting strategies for seismic risk mitigation: an application to the historical Centre of Sant’Antimo (Italy)Eur J Environ Civ Eng202125111929194810.1080/19648189.2019.1596164 IervolinoIImplications of GMPE’s structure for multi-site seismic hazardSoil Dyn Earthq Eng202317210802210.1016/j.soildyn.2023.108022 LudovicoMDCattariSVerderameGVecchioCDOttonelliDDel GaudioCProtaALagomarsinoSFragility curves of Italian school buildings: derivation from L’Aquila 2009 earthquake damage via observational and heuristic approachesBull Earthq Eng202210.1007/s10518-022-01535-4 ElyasiNKimEYeumCMA machine-learning-based seismic Vulnerability assessment approach for low-rise RC buildingsJ Earthq Eng202310.1080/13632469.2023.2220033 Del MeseSGrazianiLMeroniFPessinaVTertullianiAConsiderations on using MCS and EMS-98 macroseismic scales for the intensity assessment of contemporary Italian earthquakesBull Earthq Eng202310.1007/s10518-023-01703-0 Formisano A, De Matteis G, Panico S, Calderoni B, Mazzolani FM. Full-scale test on existing RC frame reinforced with slender shear steel plates. Proceedings of the 5th International Conference on Behaviour of Steel Structures in Seismic Areas – Stessa. 2006;2006:827–834. KassemMMNazriFMFarsangiENOzturkBDevelopment of a uniform seismic vulnerability index framework for reinforced concrete building typologyJ of Build Eng20234710383810.1016/j.jobe.2021.103838 LiSQLiuHBVulnerability prediction model of typical structures considering empirical seismic damage observation dataBull Earthq Eng2022205161520310.1007/s10518-022-01395-y KoYYTsaiCCHwangJHHwangYWGeLChuMCFailure of engineering structures and associated geotechnical problems during the 2022 ML 6.8 Chihshang earthquakeBull Earthq Eng202310.1007/s11069-023-05993-0 IervolinoIBaraschinoRBelleriACardoneDCorteGDFranchinPLagomarsinoSMagliuloGMarchiAPennaAViggianiLRSZonaASeismic fragility of Italian code-conforming buildings by multi-stripe dynamic analysis of three-dimensional structural modelsJ Earthq Eng202310.1080/13632469.2023.2167889 LiSQChenYSLiuHBDel GaudioCEmpirical seismic vulnerability assessment model of typical urban buildingsBull Earthq Eng202310.1007/s10518-022-01585-8 SagbasGGarjanRSSarikayaKDenizDField reconnaissance on seismic performance and functionality of Turkish industrial facilities affected by the 2023 Kahramanmaras earthquake sequenceBull Earthq Eng202310.1007/s10518-023-01741-8 KimTParkJHYuESeismic fragility of low-rise piloti buildings based on 2017 Pohang earthquake damageJ Build Eng20237610703210.1016/j.jobe.2023.107032 ElaissiAMArgyroudisSAKassemMMNazriFMIntegrated seismic vulnerability assessment of road network in complex built environment toward more resilient CitiesSustain Cities Soc202310.1016/j.scs.2022.104363 GB/T 17742. The Chinese seismic intensity scale. 2020 (in Chinese) VukobratovićVRuggieriSFloor acceleration demands in a twelve-storey RC shear wall buildingBuildings2021113810.3390/buildings11020038 LiSQFormisanoAStatistical model analysis of typical bridges considering the actual seismic damage observation databaseArch Civil Mech Eng20232317810.1007/s43452-023-00720-9 KazemiFAsgarkhaniNJankowskiRMachine learning-based seismic fragility and seismic vulnerability assessment of reinforced concrete structuresSoil Dyn Earthq Eng202316610776110.1016/j.soildyn.2023.107761 ChieffoNClementiFFormisanoALenciSComparative fragility methods for seismic assessment of masonry buildings located in Muccia (Italy)J Build Eng20192510081310.1016/j.jobe.2019.100813 SharmaMSinghYBurtonHVParametric study on the collapse probability of modern reinforced concrete frames with infillsEarthq Spectra202310.1177/87552930231156462 GB/T 17742. The Chinese seismic intensity scale. 1999 (in Chinese) KazemiFAsgarkhaniNJankowskiRMachine learning-based seismic response and performance assessment of reinforced concrete buildingsArch Civil Mech Eng2023239410.1007/s43452-023-00631-9 NaleMBenvenutiEChiozziAMinghiniFTralliAEffect of uncertainties on seismic fragility for out-of-plane collapse of unreinforced masonry wallsJ Build Eng20237510693610.1016/j.jobe.2023.106936 BaiZLiuTZouDZhangMZhouALiYImage-based reinforced concrete component mechanical damage recognition and structural safety rapid assessment using deep learning with frequency informationAutom Constr202315010483910.1016/j.autcon.2023.104839 Li SQ, Zhong J. Development of a seismic vulnerability and risk model for typical bridges considering innovative intensity measures. Eng Struct. 2024;302:117431. https://doi.org/10.1016/j.engstruct.2023.117431 Li SQ, Formisano A. Updated empirical vulnerability model considering the seismic damage of typical structures. Bull Earthq Eng 2024;22(3):1147–1185. https://doi.org/10.1007/s10518-023-01814-8 TabandehASharmaNGardoniPSeismic risk and resilience analysis of networked industrial facilitiesBull Earthq Eng202310.1007/s10518-023-01728-5 LiSQChenYSVulnerability and economic loss evaluation model of a typical group structure considering empirical field inspection dataInt J Disaster Risk Red20238810361710.1016/j.ijdrr.2023.103617 LiSQComparison of RC girder bridge and building vulnerability considering empirical seismic damageAin Shams Eng J202310.1016/j.asej.2023.102287 Li SQ. Improved seismic intensity measures and regional structural risk estimation models. Soil Dyn Earthq Eng. 2024;176:108256. https://doi.org/10.1016/j.soildyn.2023.108256 LiSQA simplified prediction model of structural seismic vulnerability considering a multivariate fuzzy membership algorithmJ Earthq Eng202310.1080/13632469.2023.2217945 IervolinoIAsymptotic behavior of seismic hazard curvesStruct Saf20229910226410.1016/j.strusafe.2022.102264 OrnthammarathTChuaCTSuppasriAFoytongPSeismic damage and comparison of fragility functions of public and residential buildings damaged by the 2014 Mae Lao (Northern Thailand) earthquakeEarthq Spectra202339112614710.1177/87552930221131830 FormisanoAChieffoNAsterisPGLourenço. Seismic risk scenario for the historical centre of castelpoto in Southern ItalyEarthquake Eng Struct Dynam202310.1002/eqe.3887 RuggieriSLiguoriFSLeggieriVBilottaAMadeoACasoloSUvaGAn archetype-based automated procedure to derive global-local seismic fragility of masonry building aggregates: META-FORMA-XLInt J Disaster Risk Reduct20239510390310.1016/j.ijdrr.2023.103903 LiSQLiuHBDuKHanJCLiYRYinLHEmpirical seismic vulnerability probability prediction model of RC structures considering historical field observationStruct Eng Mech202386454757110.12989/sem.2023.86.4.547 HuYXEarthquake Engineering2006BeijingEarthquake Press XofiMFerreiraTMDominguesJCSantosPPPereiraSOliveiraCReisEZezereJLGarciaRACLourencoPBOn the seismic vulnerability assessment of urban areas using census data: the lisbon metropolitan area as a pilot study areaJ Earthq Eng202310.1080/13632469.2023.2197078 ChieffoNFormisanoALandolfoRMilaniGA vulnerability index based-approach for the historical centre of the city of Latronico (Potenza, Southern Italy)Eng Fail Anal202213610620710.1016/j.engfailanal.2022.106207 BigdeliAEmamikoupaeiATsavdaridisKDProbabilistic seismic demand model and optimal intensity measures for mid-rise steel modular building systems (MBS) under near-field ground motionsJ Build Eng20236710591610.1016/j.jobe.2023.105916 JaraJMFlorioEOlmosBAMartínezGFactors influencing soft-story building failures during the September 19, 2017 earthquake in MexicoBull Earthq Eng202310.1007/s10518-023-01701-2 Li SQ, Gardoni P. Seismic loss assessment for regional building portfolios considering empirical seismic vulnerability functions. Bull Earthq Eng 2024;22(2):487–517. https://doi.org/10.1007/s10518-023-01793-w ChieffoNMosoarcaMFormisanoALourençoPBMilaniGThe effect of ground motion vertical component on the seismic response of historical masonry buildings: the case study of the Banloc Castle in RomaniaEng Struct202124911334610.1016/j.engstruct.2021.113346 MohebiBYazdanpanahOKazemiFFormisanoASeismic damage diagnosis in adjacent steel and RC MRFs considering pounding effects through improved wavelet-based damage-sensitive featureJ S Del Mese (874_CR22) 2023 M Sathurshan (874_CR26) 2023 G Sagbas (874_CR32) 2023 N Elyasi (874_CR18) 2023 SQ Li (874_CR20) 2023 SQ Li (874_CR37) 2023; 164 SQ Li (874_CR29) 2023; 23 A Bigdeli (874_CR3) 2023; 67 M Khanmohammadi (874_CR34) 2023; 173 M Xofi (874_CR23) 2023 G Blasi (874_CR12) 2023 874_CR61 874_CR62 GG Tekeste (874_CR5) 2023; 21 874_CR60 M Sharma (874_CR13) 2023 I Iervolino (874_CR9) 2023; 172 SQ Li (874_CR41) 2023 Z Bai (874_CR19) 2023; 150 YY Ko (874_CR27) 2023 N Chieffo (874_CR49) 2022; 136 B Mohebi (874_CR57) 2021; 33 M Zucconi (874_CR50) 2022 N Chieffo (874_CR48) 2021; 249 YX Hu (874_CR1) 2006 T Kim (874_CR4) 2023; 76 SQ Li (874_CR2) 2023; 68 M Nale (874_CR21) 2023; 75 T Ornthammarath (874_CR46) 2023; 39 AM Elaissi (874_CR40) 2023 I Iervolino (874_CR10) 2023 L Gioiella (874_CR24) 2023 M Khanmohammadi (874_CR33) 2023; 173 J Boakye (874_CR6) 2022; 71 SQ Li (874_CR36) 2023; 88 MD Ludovico (874_CR30) 2022 N Chieffo (874_CR56) 2021; 25 C Del Gaudio (874_CR31) 2017; 15 874_CR45 MM Kassem (874_CR39) 2023; 47 SQ Li (874_CR42) 2022; 20 874_CR43 874_CR44 S Ruggieri (874_CR52) 2022; 20 I Iervolino (874_CR8) 2022; 99 S Ruggieri (874_CR51) 2023; 95 F Kazemi (874_CR14) 2023; 166 H Zhang (874_CR17) 2023; 65 SQ Li (874_CR28) 2023 A Formisano (874_CR38) 2023 F Kazemi (874_CR15) 2023; 23 N Chieffo (874_CR47) 2019; 25 JM Jara (874_CR25) 2023 A Tabandeh (874_CR11) 2023 G Saed (874_CR7) 2023; 171 A Georgiou (874_CR16) 2023 874_CR58 874_CR59 SQ Li (874_CR35) 2023; 86 874_CR55 S Ruggieri (874_CR53) 2023; 275 V Vukobratović (874_CR54) 2021; 11 |
| References_xml | – reference: LiSQA simplified prediction model of structural seismic vulnerability considering a multivariate fuzzy membership algorithmJ Earthq Eng202310.1080/13632469.2023.2217945 – reference: Li SQ, Gardoni P. Seismic loss assessment for regional building portfolios considering empirical seismic vulnerability functions. Bull Earthq Eng 2024;22(2):487–517. https://doi.org/10.1007/s10518-023-01793-w – reference: LiSQEmpirical resilience and vulnerability model of regional group structure considering optimized macroseismic intensity measureSoil Dyn Earthq Eng202316410763010.1016/j.soildyn.2022.107630 – reference: GB/T 17742. The Chinese seismic intensity scale. 2020 (in Chinese) – reference: Li SQ, Formisano A. Updated empirical vulnerability model considering the seismic damage of typical structures. Bull Earthq Eng 2024;22(3):1147–1185. https://doi.org/10.1007/s10518-023-01814-8 – reference: ChieffoNMosoarcaMFormisanoALourençoPBMilaniGThe effect of ground motion vertical component on the seismic response of historical masonry buildings: the case study of the Banloc Castle in RomaniaEng Struct202124911334610.1016/j.engstruct.2021.113346 – reference: TekesteGGCorreiaAACostaAGBayesian updating of seismic fragility curves through experimental testsBull Earthq Eng2023211943197610.1007/s10518-022-01589-4 – reference: NaleMBenvenutiEChiozziAMinghiniFTralliAEffect of uncertainties on seismic fragility for out-of-plane collapse of unreinforced masonry wallsJ Build Eng20237510693610.1016/j.jobe.2023.106936 – reference: KimTParkJHYuESeismic fragility of low-rise piloti buildings based on 2017 Pohang earthquake damageJ Build Eng20237610703210.1016/j.jobe.2023.107032 – reference: KazemiFAsgarkhaniNJankowskiRMachine learning-based seismic fragility and seismic vulnerability assessment of reinforced concrete structuresSoil Dyn Earthq Eng202316610776110.1016/j.soildyn.2023.107761 – reference: Li SQ, Zhong J. Development of a seismic vulnerability and risk model for typical bridges considering innovative intensity measures. Eng Struct. 2024;302:117431. https://doi.org/10.1016/j.engstruct.2023.117431 – reference: BlasiGPerroneDAielloMAFragility curves for reinforced concrete frames with retrofitted masonry infillsJ Build Eng202310.1016/j.jobe.2023.106951 – reference: LiSQChenYSVulnerability and economic loss evaluation model of a typical group structure considering empirical field inspection dataInt J Disaster Risk Red20238810361710.1016/j.ijdrr.2023.103617 – reference: RuggieriSLiguoriFSLeggieriVBilottaAMadeoACasoloSUvaGAn archetype-based automated procedure to derive global-local seismic fragility of masonry building aggregates: META-FORMA-XLInt J Disaster Risk Reduct20239510390310.1016/j.ijdrr.2023.103903 – reference: TabandehASharmaNGardoniPSeismic risk and resilience analysis of networked industrial facilitiesBull Earthq Eng202310.1007/s10518-023-01728-5 – reference: LiSQComparison of RC girder bridge and building vulnerability considering empirical seismic damageAin Shams Eng J202310.1016/j.asej.2023.102287 – reference: HuYXEarthquake Engineering2006BeijingEarthquake Press – reference: KassemMMNazriFMFarsangiENOzturkBDevelopment of a uniform seismic vulnerability index framework for reinforced concrete building typologyJ of Build Eng20234710383810.1016/j.jobe.2021.103838 – reference: ChieffoNFormisanoAMiguel FerreiraTDamage scenario-based approach and retrofitting strategies for seismic risk mitigation: an application to the historical Centre of Sant’Antimo (Italy)Eur J Environ Civ Eng202125111929194810.1080/19648189.2019.1596164 – reference: GB/T 17742. The Chinese seismic intensity scale. 1999 (in Chinese) – reference: ElyasiNKimEYeumCMA machine-learning-based seismic Vulnerability assessment approach for low-rise RC buildingsJ Earthq Eng202310.1080/13632469.2023.2220033 – reference: FormisanoAChieffoNAsterisPGLourenço. Seismic risk scenario for the historical centre of castelpoto in Southern ItalyEarthquake Eng Struct Dynam202310.1002/eqe.3887 – reference: Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for design of concrete structures, China (GB 50010–2020). 2020. – reference: SathurshanMThambooJMallikarachchiCWijesundaraKDiasPRapid seismic visual screen method for masonry infilled reinforced concrete framed buildings: Application to typical Sri Lankan school buildingsInt J Disaster Risk Red202310.1016/j.ijdrr.2023.103738 – reference: BoakyeJMurphyCGardoniPKumarRWhich consequences matter in risk analysis and disaster assessment?Int J Disaster Risk Red20227110274010.1016/j.ijdrr.2021.102740 – reference: Del MeseSGrazianiLMeroniFPessinaVTertullianiAConsiderations on using MCS and EMS-98 macroseismic scales for the intensity assessment of contemporary Italian earthquakesBull Earthq Eng202310.1007/s10518-023-01703-0 – reference: SagbasGGarjanRSSarikayaKDenizDField reconnaissance on seismic performance and functionality of Turkish industrial facilities affected by the 2023 Kahramanmaras earthquake sequenceBull Earthq Eng202310.1007/s10518-023-01741-8 – reference: OrnthammarathTChuaCTSuppasriAFoytongPSeismic damage and comparison of fragility functions of public and residential buildings damaged by the 2014 Mae Lao (Northern Thailand) earthquakeEarthq Spectra202339112614710.1177/87552930221131830 – reference: Del GaudioCMartinoGDLudovicoMDManfrediGProtaARicciPVerderameGMEmpirical fragility curves from damage data on RC buildings after the 2009 L’Aquila earthquakeBull Earthq Eng2017151425145010.1007/s10518-016-0026-1 – reference: RuggieriSVukobratovićVAcceleration demands in single-storey RC buildings with flexible diaphragmsEng Struct202327510.1016/j.engstruct.2022.115276 – reference: XofiMFerreiraTMDominguesJCSantosPPPereiraSOliveiraCReisEZezereJLGarciaRACLourencoPBOn the seismic vulnerability assessment of urban areas using census data: the lisbon metropolitan area as a pilot study areaJ Earthq Eng202310.1080/13632469.2023.2197078 – reference: JaraJMFlorioEOlmosBAMartínezGFactors influencing soft-story building failures during the September 19, 2017 earthquake in MexicoBull Earthq Eng202310.1007/s10518-023-01701-2 – reference: Li SQ. Improved seismic intensity measures and regional structural risk estimation models. Soil Dyn Earthq Eng. 2024;176:108256. https://doi.org/10.1016/j.soildyn.2023.108256 – reference: ZucconiMLudovicoMDSorrentinoLCensus-based typological usability fragility curves for Italian unreinforced masonry buildingsBull Earthq Eng202210.1007/s10518-022-01361-8 – reference: GioiellaLMoriciMDall’Asta, A. Empirical predictive model for seismic damage and economic losses of Italian school building heritageInt J Disaster Risk Red202310.1016/j.ijdrr.2023.103631 – reference: LiSQChenYSLiuHBDel GaudioCEmpirical seismic vulnerability assessment model of typical urban buildingsBull Earthq Eng202310.1007/s10518-022-01585-8 – reference: IervolinoIImplications of GMPE’s structure for multi-site seismic hazardSoil Dyn Earthq Eng202317210802210.1016/j.soildyn.2023.108022 – reference: GeorgiouAKotakisSLoukidisDIoannouICase study of seismic assessment of a short irregular historic reinforced concrete structure: time-history vs. pushover nonlinear methodsJ Earthq Eng202310.1080/13632469.2023.2193652 – reference: SharmaMSinghYBurtonHVParametric study on the collapse probability of modern reinforced concrete frames with infillsEarthq Spectra202310.1177/87552930231156462 – reference: KhanmohammadiMEshraghiMSayadiSMashhadinezhadMGPost-earthquake seismic assessment of residential buildings following Sarpol-e Zahab (Iran) earthquake (Mw7.3) part 2: Seismic vulnerability curves using quantitative damage indexSoil Dyn Earthq Eng202317310812010.1016/j.soildyn.2023.108120 – reference: VukobratovićVRuggieriSFloor acceleration demands in a twelve-storey RC shear wall buildingBuildings2021113810.3390/buildings11020038 – reference: LiSQLiuHBVulnerability prediction model of typical structures considering empirical seismic damage observation dataBull Earthq Eng2022205161520310.1007/s10518-022-01395-y – reference: BaiZLiuTZouDZhangMZhouALiYImage-based reinforced concrete component mechanical damage recognition and structural safety rapid assessment using deep learning with frequency informationAutom Constr202315010483910.1016/j.autcon.2023.104839 – reference: RuggieriSCalòMCardellicchioAUvaGAnalytical-mechanical based framework for seismic overall fragility analysis of existing RC buildings in town compartmentsBull Earthq Eng2022208179821610.1007/s10518-022-01516-7 – reference: KazemiFAsgarkhaniNJankowskiRMachine learning-based seismic response and performance assessment of reinforced concrete buildingsArch Civil Mech Eng2023239410.1007/s43452-023-00631-9 – reference: ChieffoNClementiFFormisanoALenciSComparative fragility methods for seismic assessment of masonry buildings located in Muccia (Italy)J Build Eng20192510081310.1016/j.jobe.2019.100813 – reference: LiSQFormisanoAStatistical model analysis of typical bridges considering the actual seismic damage observation databaseArch Civil Mech Eng20232317810.1007/s43452-023-00720-9 – reference: KoYYTsaiCCHwangJHHwangYWGeLChuMCFailure of engineering structures and associated geotechnical problems during the 2022 ML 6.8 Chihshang earthquakeBull Earthq Eng202310.1007/s11069-023-05993-0 – reference: IervolinoIBaraschinoRBelleriACardoneDCorteGDFranchinPLagomarsinoSMagliuloGMarchiAPennaAViggianiLRSZonaASeismic fragility of Italian code-conforming buildings by multi-stripe dynamic analysis of three-dimensional structural modelsJ Earthq Eng202310.1080/13632469.2023.2167889 – reference: ElaissiAMArgyroudisSAKassemMMNazriFMIntegrated seismic vulnerability assessment of road network in complex built environment toward more resilient CitiesSustain Cities Soc202310.1016/j.scs.2022.104363 – reference: BigdeliAEmamikoupaeiATsavdaridisKDProbabilistic seismic demand model and optimal intensity measures for mid-rise steel modular building systems (MBS) under near-field ground motionsJ Build Eng20236710591610.1016/j.jobe.2023.105916 – reference: LudovicoMDCattariSVerderameGVecchioCDOttonelliDDel GaudioCProtaALagomarsinoSFragility curves of Italian school buildings: derivation from L’Aquila 2009 earthquake damage via observational and heuristic approachesBull Earthq Eng202210.1007/s10518-022-01535-4 – reference: GB/T 17742. The Chinese seismic intensity scale. 2008 (in Chinese) – reference: LiSQLiuHBDuKHanJCLiYRYinLHEmpirical seismic vulnerability probability prediction model of RC structures considering historical field observationStruct Eng Mech202386454757110.12989/sem.2023.86.4.547 – reference: Formisano A, De Matteis G, Panico S, Calderoni B, Mazzolani FM. Full-scale test on existing RC frame reinforced with slender shear steel plates. Proceedings of the 5th International Conference on Behaviour of Steel Structures in Seismic Areas – Stessa. 2006;2006:827–834. – reference: ZhangHChengXLiYHeDDuXRapid seismic damage state assessment of RC frames using machine learning methodsJ Build Eng20236510579710.1016/j.jobe.2022.105797 – reference: IervolinoIAsymptotic behavior of seismic hazard curvesStruct Saf20229910226410.1016/j.strusafe.2022.102264 – reference: LiSQGardoniPEmpirical seismic vulnerability models for building clusters considering hybrid intensity measuresJ Build Eng20236810613010.1016/j.jobe.2023.106130 – reference: MohebiBYazdanpanahOKazemiFFormisanoASeismic damage diagnosis in adjacent steel and RC MRFs considering pounding effects through improved wavelet-based damage-sensitive featureJ Build Eng20213310184710.1016/j.jobe.2020.101847 – reference: KhanmohammadiMEshraghiMSayadiSMashhadinezhadMGPost-earthquake seismic assessment of residential buildings following Sarpol-e Zahab (Iran) earthquake (Mw7.3) part 1: Damage types and damage statesSoil Dyn Earthq Eng202317310812110.1016/j.soildyn.2023.108121 – reference: SaedGBalomenosGPFragility framework for corroded steel moment-resisting frame buildings subjected to mainshock-aftershock sequencesSoil Dyn Earthq Eng202317110797510.1016/j.soildyn.2023.107975 – reference: ChieffoNFormisanoALandolfoRMilaniGA vulnerability index based-approach for the historical centre of the city of Latronico (Potenza, Southern Italy)Eng Fail Anal202213610620710.1016/j.engfailanal.2022.106207 – volume: 20 start-page: 5161 year: 2022 ident: 874_CR42 publication-title: Bull Earthq Eng doi: 10.1007/s10518-022-01395-y – volume: 86 start-page: 547 issue: 4 year: 2023 ident: 874_CR35 publication-title: Struct Eng Mech doi: 10.12989/sem.2023.86.4.547 – volume: 88 start-page: 103617 year: 2023 ident: 874_CR36 publication-title: Int J Disaster Risk Red doi: 10.1016/j.ijdrr.2023.103617 – year: 2022 ident: 874_CR30 publication-title: Bull Earthq Eng doi: 10.1007/s10518-022-01535-4 – volume: 20 start-page: 8179 year: 2022 ident: 874_CR52 publication-title: Bull Earthq Eng doi: 10.1007/s10518-022-01516-7 – year: 2023 ident: 874_CR22 publication-title: Bull Earthq Eng doi: 10.1007/s10518-023-01703-0 – volume: 15 start-page: 1425 year: 2017 ident: 874_CR31 publication-title: Bull Earthq Eng doi: 10.1007/s10518-016-0026-1 – volume: 65 start-page: 105797 year: 2023 ident: 874_CR17 publication-title: J Build Eng doi: 10.1016/j.jobe.2022.105797 – volume: 249 start-page: 113346 year: 2021 ident: 874_CR48 publication-title: Eng Struct doi: 10.1016/j.engstruct.2021.113346 – volume: 173 start-page: 108121 year: 2023 ident: 874_CR33 publication-title: Soil Dyn Earthq Eng doi: 10.1016/j.soildyn.2023.108121 – year: 2023 ident: 874_CR10 publication-title: J Earthq Eng doi: 10.1080/13632469.2023.2167889 – year: 2023 ident: 874_CR16 publication-title: J Earthq Eng doi: 10.1080/13632469.2023.2193652 – year: 2023 ident: 874_CR41 publication-title: Bull Earthq Eng doi: 10.1007/s10518-022-01585-8 – ident: 874_CR55 – ident: 874_CR58 doi: 10.1016/j.engstruct.2023.117431 – year: 2023 ident: 874_CR18 publication-title: J Earthq Eng doi: 10.1080/13632469.2023.2220033 – volume: 75 start-page: 106936 year: 2023 ident: 874_CR21 publication-title: J Build Eng doi: 10.1016/j.jobe.2023.106936 – volume: 68 start-page: 106130 year: 2023 ident: 874_CR2 publication-title: J Build Eng doi: 10.1016/j.jobe.2023.106130 – year: 2023 ident: 874_CR38 publication-title: Earthquake Eng Struct Dynam doi: 10.1002/eqe.3887 – year: 2023 ident: 874_CR32 publication-title: Bull Earthq Eng doi: 10.1007/s10518-023-01741-8 – volume: 275 year: 2023 ident: 874_CR53 publication-title: Eng Struct doi: 10.1016/j.engstruct.2022.115276 – ident: 874_CR61 doi: 10.1007/s10518-023-01793-w – volume: 171 start-page: 107975 year: 2023 ident: 874_CR7 publication-title: Soil Dyn Earthq Eng doi: 10.1016/j.soildyn.2023.107975 – ident: 874_CR43 – volume: 136 start-page: 106207 year: 2022 ident: 874_CR49 publication-title: Eng Fail Anal doi: 10.1016/j.engfailanal.2022.106207 – ident: 874_CR59 doi: 10.1016/j.soildyn.2023.108256 – year: 2023 ident: 874_CR12 publication-title: J Build Eng doi: 10.1016/j.jobe.2023.106951 – volume: 95 start-page: 103903 year: 2023 ident: 874_CR51 publication-title: Int J Disaster Risk Reduct doi: 10.1016/j.ijdrr.2023.103903 – year: 2022 ident: 874_CR50 publication-title: Bull Earthq Eng doi: 10.1007/s10518-022-01361-8 – volume: 23 start-page: 94 year: 2023 ident: 874_CR15 publication-title: Arch Civil Mech Eng doi: 10.1007/s43452-023-00631-9 – volume: 25 start-page: 1929 issue: 11 year: 2021 ident: 874_CR56 publication-title: Eur J Environ Civ Eng doi: 10.1080/19648189.2019.1596164 – year: 2023 ident: 874_CR27 publication-title: Bull Earthq Eng doi: 10.1007/s11069-023-05993-0 – volume-title: Earthquake Engineering year: 2006 ident: 874_CR1 – volume: 33 start-page: 101847 year: 2021 ident: 874_CR57 publication-title: J Build Eng doi: 10.1016/j.jobe.2020.101847 – year: 2023 ident: 874_CR13 publication-title: Earthq Spectra doi: 10.1177/87552930231156462 – volume: 39 start-page: 126 issue: 1 year: 2023 ident: 874_CR46 publication-title: Earthq Spectra doi: 10.1177/87552930221131830 – volume: 166 start-page: 107761 year: 2023 ident: 874_CR14 publication-title: Soil Dyn Earthq Eng doi: 10.1016/j.soildyn.2023.107761 – volume: 23 start-page: 178 year: 2023 ident: 874_CR29 publication-title: Arch Civil Mech Eng doi: 10.1007/s43452-023-00720-9 – year: 2023 ident: 874_CR25 publication-title: Bull Earthq Eng doi: 10.1007/s10518-023-01701-2 – ident: 874_CR44 – volume: 76 start-page: 107032 year: 2023 ident: 874_CR4 publication-title: J Build Eng doi: 10.1016/j.jobe.2023.107032 – volume: 11 start-page: 38 year: 2021 ident: 874_CR54 publication-title: Buildings doi: 10.3390/buildings11020038 – volume: 172 start-page: 108022 year: 2023 ident: 874_CR9 publication-title: Soil Dyn Earthq Eng doi: 10.1016/j.soildyn.2023.108022 – volume: 173 start-page: 108120 year: 2023 ident: 874_CR34 publication-title: Soil Dyn Earthq Eng doi: 10.1016/j.soildyn.2023.108120 – volume: 25 start-page: 100813 year: 2019 ident: 874_CR47 publication-title: J Build Eng doi: 10.1016/j.jobe.2019.100813 – year: 2023 ident: 874_CR40 publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2022.104363 – ident: 874_CR45 – volume: 71 start-page: 102740 year: 2022 ident: 874_CR6 publication-title: Int J Disaster Risk Red doi: 10.1016/j.ijdrr.2021.102740 – year: 2023 ident: 874_CR23 publication-title: J Earthq Eng doi: 10.1080/13632469.2023.2197078 – volume: 164 start-page: 107630 year: 2023 ident: 874_CR37 publication-title: Soil Dyn Earthq Eng doi: 10.1016/j.soildyn.2022.107630 – year: 2023 ident: 874_CR11 publication-title: Bull Earthq Eng doi: 10.1007/s10518-023-01728-5 – ident: 874_CR60 doi: 10.1007/s10518-023-01814-8 – year: 2023 ident: 874_CR20 publication-title: J Earthq Eng doi: 10.1080/13632469.2023.2217945 – year: 2023 ident: 874_CR24 publication-title: Int J Disaster Risk Red doi: 10.1016/j.ijdrr.2023.103631 – year: 2023 ident: 874_CR28 publication-title: Ain Shams Eng J doi: 10.1016/j.asej.2023.102287 – volume: 67 start-page: 105916 year: 2023 ident: 874_CR3 publication-title: J Build Eng doi: 10.1016/j.jobe.2023.105916 – volume: 47 start-page: 103838 year: 2023 ident: 874_CR39 publication-title: J of Build Eng doi: 10.1016/j.jobe.2021.103838 – volume: 21 start-page: 1943 year: 2023 ident: 874_CR5 publication-title: Bull Earthq Eng doi: 10.1007/s10518-022-01589-4 – year: 2023 ident: 874_CR26 publication-title: Int J Disaster Risk Red doi: 10.1016/j.ijdrr.2023.103738 – volume: 150 start-page: 104839 year: 2023 ident: 874_CR19 publication-title: Autom Constr doi: 10.1016/j.autcon.2023.104839 – ident: 874_CR62 – volume: 99 start-page: 102264 year: 2022 ident: 874_CR8 publication-title: Struct Saf doi: 10.1016/j.strusafe.2022.102264 |
| SSID | ssj0001072165 |
| Score | 2.3783855 |
| Snippet | Empirical and probabilistic risk analysis methods can relatively accurately predict the seismic vulnerability of reinforced concrete (RC) structures. Using... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 68 |
| SubjectTerms | Accuracy Algorithms Artificial intelligence Civil Engineering Computer simulation Data points Design optimization Design specifications Dynamic structural analysis Earthquake damage Earthquake resistance Earthquakes Empirical analysis Engineering Estimation Finite element analysis Finite element method Fragility Frame structures Fuzzy logic Fuzzy sets Machine learning Masonry Mathematical models Mechanical Engineering Nonlinear dynamics Numerical methods Numerical models Original Article Performance evaluation Regression analysis Reinforced concrete Reinforcing steels Risk analysis Risk assessment Seismic engineering Seismic hazard Seismic response Simulation Software Statistical analysis Structural damage Structural Materials Structural models Temperature effects |
| Title | Seismic vulnerability estimation of RC structures considering empirical and numerical simulation methods |
| URI | https://link.springer.com/article/10.1007/s43452-024-00874-0 https://www.proquest.com/docview/2937495638 |
| Volume | 24 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 2083-3318 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001072165 issn: 2083-3318 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 2083-3318 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001072165 issn: 2083-3318 databaseCode: .~1 dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2083-3318 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001072165 issn: 2083-3318 databaseCode: AKRWK dateStart: 20060101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2083-3318 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001072165 issn: 2083-3318 databaseCode: AFBBN dateStart: 20060301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2083-3318 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0001072165 issn: 2083-3318 databaseCode: BENPR dateStart: 20060301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFH647aIH8SfOHyMHbxrt2rRrDyIqziE4ZCrsVtImxcHWTeYEL_7tvpemmwruUihtcshL8r6XvPd9AMfEORf5nuZB5koulNPiMsRXBCcqTJSbtExuzkM36LyI-77fX4FuWQtDaZXlnmg2ajVO6Yz8HN1Si8C8F15O3jipRtHtaimhIa20growFGMVqLnEjFWF2vVt97G3OHUhOjCjL4lhgiBqSt9W0ph6OuEJ3-XotjhRteHzt7daQNA_t6bGGbU3YN2iSHZVmH0TVnS-BWs_uAW34fVJD6ajQco-ZkNiljZJsJ-MSDWKakU2zljvhhUEsjOMullqxTuxPdOjycCwhzCZK5bPioudIZsORlbwixXi09MdeGnfPt90uJVV4Cmut3eugyjzqS5EJIGbNQMlfSVDiaGPilqpK9IMHZiTeAj8JCG0yAkUoUbpuInOfMfbhWo-zvUeMOlhAB1oRGUqFElTyizIQlLK9bSIlIzq0CyHL04t5zhJXwzjOVuyGfIYhzw2Qx47dTiZt5kUjBtL_z4srRLb1TeNF3OlDqelpRaf_-9tf3lvB7DqmslBKY-HUEUD6SPEJO9JAypnX018hu27hp10325-3n4 |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9tAEB1BOBQOCFoqAmnZAz2VFc567dgHhAoFha-o4kPi5q69axEpcYJMQPlz_DZm1mvSVio3LpYse_cwM9594515D2CbOOfiwDc8zIXiUnsdriK8RXCio1SLtGNrcy56YfdGnt4Gt3PwXPfCUFllvSbahVqPMvpHvovbUofAvB_tj-85qUbR6WotoaGctILesxRjrrHjzEyfMIUr905-or-_CXF8dH3Y5U5lgGcYfg_chHEeUJuETEORt0OtAq0ihZmAjjuZkFmO67mX-oiDFAGW2As1gSjlidTkgefjvPOwIH0ZY_K3cHDU-3U5-8tD9GNWzxLTEklUmIHr3LH9ezgoEBy3SU7UcHj9e3ecQd5_Tmnt5ne8AssOtbIfVZitwpwpPsLSH1yGn-DuyvTLYT9jj5MBMVnbotspIxKPqjuSjXJ2ecgqwtoJZvksc2KhOJ6Z4bhv2UqYKjQrJtVB0oCV_aETGGOV2HW5BjfvYuDP0ChGhVkHpnxM2EODKFBHMm0rlYd5RMq8vpGxVnET2rX5ksxxnJPUxiB5ZWe2Jk_Q5Ik1eeI14fvrmHHF8PHm263aK4n72stkFptN2Kk9NXv8_9k23p5tCz50ry_Ok_OT3tkmLAobKFRu2YIGOst8QTz0kH51Qcfg93vH-Quw7xfh |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Seismic+vulnerability+estimation+of+RC+structures+considering+empirical+and+numerical+simulation+methods&rft.jtitle=Archives+of+Civil+and+Mechanical+Engineering&rft.au=Li%2C+Si-Qi&rft.au=Du%2C+Ke&rft.au=Li%2C+Yi-Ru&rft.au=Han%2C+Jia-Cheng&rft.date=2024-03-05&rft.issn=2083-3318&rft.eissn=2083-3318&rft.volume=24&rft.issue=2&rft_id=info:doi/10.1007%2Fs43452-024-00874-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s43452_024_00874_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2083-3318&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2083-3318&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2083-3318&client=summon |