Meerkat: A Framework for Dynamic Graph Algorithms on GPUs

Graph algorithms are challenging to implement due to their varying topology and irregular access patterns. Real-world graphs are dynamic in nature and routinely undergo edge and vertex additions, as well as, deletions. Typical examples of dynamic graphs are social networks, collaboration networks, a...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of parallel programming Vol. 52; no. 5-6; pp. 400 - 453
Main Authors Concessao, Kevin Jude, Cheramangalath, Unnikrishnan, Dev, Ricky, Nasre, Rupesh
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0885-7458
1573-7640
DOI10.1007/s10766-024-00774-z

Cover

Abstract Graph algorithms are challenging to implement due to their varying topology and irregular access patterns. Real-world graphs are dynamic in nature and routinely undergo edge and vertex additions, as well as, deletions. Typical examples of dynamic graphs are social networks, collaboration networks, and road networks. Applying static algorithms repeatedly on dynamic graphs is inefficient. Further, due to the rapid growth of unstructured and semi-structured data, graph algorithms demand efficient parallel processing. Unfortunately, we know only a little about how to efficiently process dynamic graphs on massively parallel architectures such as GPUs. Existing approaches to represent and process dynamic graphs are either not general or are inefficient. In this work, we propose a graph library for dynamic graph algorithms over a GPU-tailored graph representation and exploits the warp-cooperative work-sharing execution model . The library, named Meerkat, builds upon a recently proposed dynamic graph representation on GPUs. This representation exploits a hashtable-based mechanism to store a vertex’s neighborhood. Meerkat also enables fast iteration through a group of vertices, a pattern common and crucial for achieving performance in graph applications. Our framework supports dynamic edge additions and edge deletions, along with their batched versions. Based on the efficient iterative patterns encoded in Meerkat, we implement dynamic versions of popular graph algorithms such as breadth-first search, single-source shortest paths, triangle counting, PageRank, and weakly connected components. We evaluated our implementations over the ones in other publicly available dynamic graph data structures and frameworks: GPMA , Hornet , and faimGraph . Using a variety of real-world graphs, we observe that Meerkat significantly improves the efficiency of the underlying dynamic graph algorithm, outperforming these frameworks.
AbstractList Graph algorithms are challenging to implement due to their varying topology and irregular access patterns. Real-world graphs are dynamic in nature and routinely undergo edge and vertex additions, as well as, deletions. Typical examples of dynamic graphs are social networks, collaboration networks, and road networks. Applying static algorithms repeatedly on dynamic graphs is inefficient. Further, due to the rapid growth of unstructured and semi-structured data, graph algorithms demand efficient parallel processing. Unfortunately, we know only a little about how to efficiently process dynamic graphs on massively parallel architectures such as GPUs. Existing approaches to represent and process dynamic graphs are either not general or are inefficient. In this work, we propose a graph library for dynamic graph algorithms over a GPU-tailored graph representation and exploits the warp-cooperative work-sharing execution model . The library, named Meerkat, builds upon a recently proposed dynamic graph representation on GPUs. This representation exploits a hashtable-based mechanism to store a vertex’s neighborhood. Meerkat also enables fast iteration through a group of vertices, a pattern common and crucial for achieving performance in graph applications. Our framework supports dynamic edge additions and edge deletions, along with their batched versions. Based on the efficient iterative patterns encoded in Meerkat, we implement dynamic versions of popular graph algorithms such as breadth-first search, single-source shortest paths, triangle counting, PageRank, and weakly connected components. We evaluated our implementations over the ones in other publicly available dynamic graph data structures and frameworks: GPMA , Hornet , and faimGraph . Using a variety of real-world graphs, we observe that Meerkat significantly improves the efficiency of the underlying dynamic graph algorithm, outperforming these frameworks.
Graph algorithms are challenging to implement due to their varying topology and irregular access patterns. Real-world graphs are dynamic in nature and routinely undergo edge and vertex additions, as well as, deletions. Typical examples of dynamic graphs are social networks, collaboration networks, and road networks. Applying static algorithms repeatedly on dynamic graphs is inefficient. Further, due to the rapid growth of unstructured and semi-structured data, graph algorithms demand efficient parallel processing. Unfortunately, we know only a little about how to efficiently process dynamic graphs on massively parallel architectures such as GPUs. Existing approaches to represent and process dynamic graphs are either not general or are inefficient. In this work, we propose a graph library for dynamic graph algorithms over a GPU-tailored graph representation and exploits the warp-cooperative work-sharing execution model. The library, named Meerkat, builds upon a recently proposed dynamic graph representation on GPUs. This representation exploits a hashtable-based mechanism to store a vertex’s neighborhood. Meerkat also enables fast iteration through a group of vertices, a pattern common and crucial for achieving performance in graph applications. Our framework supports dynamic edge additions and edge deletions, along with their batched versions. Based on the efficient iterative patterns encoded in Meerkat, we implement dynamic versions of popular graph algorithms such as breadth-first search, single-source shortest paths, triangle counting, PageRank, and weakly connected components. We evaluated our implementations over the ones in other publicly available dynamic graph data structures and frameworks: GPMA, Hornet, and faimGraph. Using a variety of real-world graphs, we observe that Meerkat significantly improves the efficiency of the underlying dynamic graph algorithm, outperforming these frameworks.
Author Concessao, Kevin Jude
Nasre, Rupesh
Cheramangalath, Unnikrishnan
Dev, Ricky
Author_xml – sequence: 1
  givenname: Kevin Jude
  surname: Concessao
  fullname: Concessao, Kevin Jude
  email: 112014001@smail.iitpkd.ac.in
  organization: Department of Computer Science and Engineering, Indian Institute of Technology Palakkad
– sequence: 2
  givenname: Unnikrishnan
  surname: Cheramangalath
  fullname: Cheramangalath, Unnikrishnan
  organization: Department of Computer Science and Engineering, Indian Institute of Technology Palakkad
– sequence: 3
  givenname: Ricky
  surname: Dev
  fullname: Dev, Ricky
  organization: Department of Computer Science and Engineering, Indian Institute of Technology Madras
– sequence: 4
  givenname: Rupesh
  surname: Nasre
  fullname: Nasre, Rupesh
  organization: Department of Computer Science and Engineering, Indian Institute of Technology Madras
BookMark eNp9kE9PwjAYhxuDiYB-AU9NPFffrtvaeiMoaILRg5ybdnQwYCu2IwY-vdWZmHjg1LfJ73n_PAPUa1xjEbqmcEsB-F2gwPOcQJKS-OUpOZ6hPs04IzxPoYf6IERGeJqJCzQIYQ0AkgvRR_LFWr_R7T0e4YnXtf10foNL5_HDodF1VeCp17sVHm2Xzlftqg7YNXj6Ng-X6LzU22Cvft8hmk8e38dPZPY6fR6PZqRgVLbEJloKa23JeKEBDI-VLhcySyHJC2N1ZrVMjUklN5JzTqVZlGxhmABji3jBEN10fXfefextaNXa7X0TRypGKVAmZJ7FlOhShXcheFuqomp1W7mm9braKgrqW5TqRKkoSv2IUseIJv_Qna9q7Q-nIdZBIYabpfV_W52gvgBIpH1i
CitedBy_id crossref_primary_10_3390_app15063172
Cites_doi 10.1109/IPDPS.2018.00052
10.1007/978-3-030-35225-7_17
10.1145/1150402.1150412
10.14778/3514061.3514065
10.1145/3364180
10.1109/IPDPSW.2010.5470817
10.1109/HPEC.2018.8547541
10.1016/0304-3975(95)00079-8
10.1145/3208040.3208041
10.1145/3037697.3037748
10.1145/1142351.1142355
10.14778/3384345.3384351
10.1080/15427951.2009.10129177
10.14778/3436905.3436923
10.1109/SC41404.2022.00050
10.1007/978-0-387-30162-4_61
10.1109/IPDPS.2018.00012
10.1109/HPEC.2017.8091058
10.1109/TKDE.2022.3171588
10.1109/IPDPS47924.2020.00081
10.1109/HiPC.2017.00011
10.1109/HPEC.2016.7761622
10.1007/978-3-030-90888-1_36
10.1145/3448016.3457313
10.1007/978-3-030-41886-1_6
10.1109/HPEC.2012.6408680
10.1038/srep02980
10.1145/3314221.3314598
10.1109/IPDPS.2019.00110
10.1145/2660193.2660227
10.1109/SC.2018.00063
10.1145/2350190.2350193
10.1145/2442516.2442530
10.1145/3575693.3575713
10.1145/1753326.1753532
10.1145/3410463.3414657
10.14778/3447689.3447708
10.14778/3151113.3151122
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10766-024-00774-z
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7640
EndPage 453
ExternalDocumentID 10_1007_s10766_024_00774_z
GrantInformation_xml – fundername: National Super Computing Mission, India
  grantid: DST/NSM/R&D Exascale/2021/18
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
2.D
203
28-
29J
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYJJ
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFSI
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARAPS
ARCSS
ARMRJ
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BKOMP
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
E.L
EAD
EAP
EAS
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
MS~
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U5U
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZY4
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c319t-e2a98eeef37ca00b7ef3afd954026cbea5ea94bb497b977719bdf3db380bec573
IEDL.DBID U2A
ISSN 0885-7458
IngestDate Sat Jul 26 01:13:14 EDT 2025
Wed Oct 01 01:32:53 EDT 2025
Thu Apr 24 22:59:14 EDT 2025
Fri Feb 21 02:41:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5-6
Keywords CUDA
Parallel computing
GPU programming
Dynamic graph algorithms
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-e2a98eeef37ca00b7ef3afd954026cbea5ea94bb497b977719bdf3db380bec573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3110138965
PQPubID 48389
PageCount 54
ParticipantIDs proquest_journals_3110138965
crossref_citationtrail_10_1007_s10766_024_00774_z
crossref_primary_10_1007_s10766_024_00774_z
springer_journals_10_1007_s10766_024_00774_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20241200
2024-12-00
20241201
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 20241200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of parallel programming
PublicationTitleAbbrev Int J Parallel Prog
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Leskovec, J., Huttenlocher, D., Kleinberg, J.: Signed networks in social media. CHI ’10, 1361–1370 (Association for Computing Machinery, New York, NY, USA, 2010). https://doi.org/10.1145/1753326.1753532
Winter, M., Zayer, R., Steinberger, M.: Autonomous, independent management of dynamic graphs on gpus. In: 2017 IEEE High Performance Extreme Computing Conference (HPEC), 1–7 (2017). https://doi.org/10.1109/HPEC.2017.8091058
Ashkiani, S., Farach-Colton, M., Owens, J. D.: A dynamic hash table for the GPU. In: 2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS), 419–429 (2018). https://doi.org/10.1109/IPDPS.2018.00052
Ediger, D., McColl, R., Riedy, J., Bader, D. A.: Stinger: high performance data structure for streaming graphs. In: 2012 IEEE Conference on High Performance Extreme Computing, 1–5 (2012). https://doi.org/10.1109/HPEC.2012.6408680
Jaiyeoba, W., Skadron, K.: Graphtinker: a high performance data structure for dynamic graph processing. In: 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS), 1030–1041 (2019). https://doi.org/10.1109/IPDPS.2019.00110
KumarPHuangHHGraphone: a data store for real-time analytics on evolving graphsACM Trans. Storage202015414010.1145/3364180
Shun, J., Blelloch, G. E.: Ligra: a lightweight graph processing framework for shared memory. In: Proceedings of the 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP ’13, 135–146 (Association for Computing Machinery, New York, NY, USA), (2013)https://doi.org/10.1145/2442516.2442530
Zhang, F., Zou, L., Yu, Y. Zhang, W., Zou, L., Maamar, Z., Chen, L.: (eds) Lpma - an efficient data structure for dynamic graph on gpus. Web Information Systems Engineering – WISE 2021, 469–484 (Springer International Publishing, Cham), (2021)
CheramangalathUNasreRSrikantYNDynamic Graph Algorithms2020BerlinSpringer International Publishing13715110.1007/978-3-030-41886-1_6
De LeoDBonczPTeseo and the analysis of structural dynamic graphsProc. VLDB Endow.2021141053106610.14778/3447689.3447708
Backstrom, L., Huttenlocher, D., Kleinberg, J., Lan, X.: Group formation in large social networks: membership, growth, and evolution. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’06, 44–54 (Association for Computing Machinery, New York, NY, USA), (2006). https://doi.org/10.1145/1150402.1150412
CUDA Pro Tip: Write Flexible Kernels with Grid-Stride Loops | NVIDIA Technical Blog — developer.nvidia.com. https://developer.nvidia.com/blog/cuda-pro-tip-write-flexible-kernels-grid-stride-loops/. [Accessed 08-11-2023]
ZhangYEgraph: efficient concurrent GPU-based dynamic graph processingIEEE Transactions on Knowledge and Data Engineering2023355823583610.1109/TKDE.2022.3171588
Jaiganesh, J., Burtscher, M.: A high-performance connected components implementation for gpus. In: Proceedings of the 27th International Symposium on High-Performance Parallel and Distributed Computing, HPDC ’18, 92–104 (Association for Computing Machinery, New York, NY, USA), (2018). https://doi.org/10.1145/3208040.3208041
DIMACS Implementation Challege. http://www.diag.uniroma1.it//challenge9/download.shtml
Bender, M. A., Hu, H.: An adaptive packed-memory array. In: Proceedings of the Twenty-Fifth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS ’06, 20–29 (Association for Computing Machinery, New York, NY, USA), (2006). https://doi.org/10.1145/1142351.1142355
Soman, J., Kishore, K., Narayanan, P. J.: A fast gpu algorithm for graph connectivity. In: 2010 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW), 1–8 (2010). https://doi.org/10.1109/IPDPSW.2010.5470817
Nvidia. Nvidia warp primitives. https://developer.nvidia.com/blog/using-cuda-warp-level-primitives
Fagerberg, R.: Cache-Oblivious B-Tree, 121–123 (Springer US, Boston, MA), (2008). https://doi.org/10.1007/978-0-387-30162-4_61
Busato, F., Green, O., Bombieri, N., Bader, D. A.: Hornet: an efficient data structure for dynamic sparse graphs and matrices on gpus. In: 2018 IEEE High Performance extreme Computing Conference (HPEC), 1–7 (IEEE), (2018). https://doi.org/10.1109/HPEC.2018.8547541
Malhotra, G., Chappidi, H., Nasre, R. Rauchwerger, L.: (ed.) Fast Dynamic Graph Algorithms. Languages and Compilers for Parallel Computing - 30th International Workshop, LCPC 2017, College Station, TX, USA, October 11-13, 2017, Revised Selected Papers, Vol. 11403 of Lecture Notes in Computer Science, 262–277 (Springer), (2017). https://doi.org/10.1007/978-3-030-35225-7_17
ShaMLiYHeBTanK-LAccelerating dynamic graph analytics on GPUsProc. VLDB Endow.20171110712010.14778/3151113.3151122
Vora, K., Koduru, S. C., Gupta, R.: Aspire: exploiting asynchronous parallelism in iterative algorithms using a relaxed consistency based DSM. In: Proceedings of the 2014 ACM International Conference on Object Oriented Programming Systems Languages & Applications, OOPSLA ’14, 861–878 (Association for Computing Machinery, New York, NY, USA), (2014). https://doi.org/10.1145/2660193.2660227
CUDA C++ Programming Guide - Cooperative Groups (2023). https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cooperative-groups. [Accessed 08-11-2023]
Yang, J., Leskovec, J.: Defining and evaluating network communities based on ground-truth. In: Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics, MDS ’12 (Association for Computing Machinery, New York, NY, USA), (2012). https://doi.org/10.1145/2350190.2350193
Dhulipala, L., Blelloch, G. E., Shun, J.: Low-latency graph streaming using compressed purely-functional trees. In: Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2019, 918–934 (Association for Computing Machinery, New York, NY, USA), (2019). https://doi.org/10.1145/3314221.3314598
Awad, M.A., Ashkiani, S., Porumbescu, S.D., Owens, J.D.: Dynamic graphs on the GPU (2020). https://doi.org/10.1109/IPDPS47924.2020.00081
Arasu, A., Novak, J., Tomkins, A., Tomlin, J. A.: Pagerank computation and the structure of the web: experiments and algorithms (2002)
DhulipalaLHongCShunJConnectit: a framework for static and incremental parallel graph connectivity algorithmsProc. VLDB Endow.20201465366710.14778/3436905.3436923
Makkar, D., Bader, D. A., Green, O.: Exact and parallel triangle counting in dynamic graphs. In: 2017 IEEE 24th International Conference on High Performance Computing (HiPC), 2–12 (2017). https://doi.org/10.1109/HiPC.2017.00011
Afarin, M., Gao, C., Rahman, S., Abu-Ghazaleh, N., Gupta, R.: Commongraph: graph analytics on evolving data. In: Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2, ASPLOS 2023, 133–145 (Association for Computing Machinery, New York, NY, USA), (2023). https://doi.org/10.1145/3575693.3575713
Winter, M., Mlakar, D., Zayer, R., Seidel, H.-P., Steinberger, M.: Faimgraph: high performance management of fully-dynamic graphs under tight memory constraints on the gpu. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis, SC ’18 (IEEE Press), (2018)
Pandey, P., Wheatman, B., Xu, H., Buluc, A.: Terrace: a hierarchical graph container for skewed dynamic graphs. In: Proceedings of the 2021 International Conference on Management of Data, SIGMOD ’21, 1372–1385 (Association for Computing Machinery, New York, NY, USA), (2021). https://doi.org/10.1145/3448016.3457313
De DomenicoMLimaAMougelPMusolesiMThe anatomy of a scientific rumorScientific reports201331298010.1038/srep02980
Takac, L., Zábovský, M.: Data analysis in public social networks. In: International Scientific Conference and International Workshop Present Day Trends of Innovations 1–6 (2012)
Green, O., Bader, D. A.: cuSTINGER: supporting dynamic graph algorithms for gpus. In: 2016 IEEE High Performance Extreme Computing Conference (HPEC), 1–6 (2016). https://doi.org/10.1109/HPEC.2016.7761622
Vora, K., Gupta, R., Xu, G.: Kickstarter: fast and accurate computations on streaming graphs via trimmed approximations. In: Proceedings of the Twenty-Second International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’17, 237–251 (Association for Computing Machinery, New York, NY, USA), (2017). https://doi.org/10.1145/3037697.3037748
ZhuXLivegraph: a transactional graph storage system with purely sequential adjacency list scansProc. VLDB Endow2020131020103410.14778/3384345.3384351
Leskovec, J., Lang, K. J., Dasgupta, A., Mahoney, M. W.: Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters (2008). arXiv:0810.1355
Chen, D., et al.: Graphfly: efficient asynchronous streaming graphs processing via dependency-flow. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, SC ’22 (IEEE Press, 2022)
Hong, C., Dhulipala, L., Shun, J.: Exploring the design space of static and incremental graph connectivity algorithms on gpus. Proceedings of the ACM International Conference on Parallel Architectures and Compilation Techniques, PACT ’20, 55–69 (Association for Computing Machinery, New York, NY, USA), (2020). https://doi.org/10.1145/3410463.3414657
FuchsPMarganDGicevaJSortledton: a universal, transactional graph data structureProc. VLDB Endow.2022151173118610.14778/3514061.3514065
Sutton, M., Ben-Nun, T., Barak, A.: Optimizing parallel graph connectivity computation via subgraph sampling. In: 2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS), 12–21 (2018). https://doi.org/10.1109/IPDPS.2018.00012
RamalingamGRepsTOn the computational complexity of dynamic graph problemsTheor. Comput. Sci.1996158233277138897210.1016/0304-3975(95)00079-8
D De Leo (774_CR25) 2021; 14
M Sha (774_CR8) 2017; 11
U Cheramangalath (774_CR42) 2020
G Ramalingam (774_CR43) 1996; 158
774_CR18
774_CR17
774_CR39
Y Zhang (774_CR33) 2023; 35
774_CR19
774_CR27
774_CR21
774_CR20
774_CR23
774_CR44
774_CR41
774_CR40
774_CR4
774_CR5
774_CR2
774_CR3
774_CR9
774_CR6
774_CR7
P Fuchs (774_CR26) 2022; 15
774_CR29
L Dhulipala (774_CR38) 2020; 14
774_CR1
774_CR28
P Kumar (774_CR24) 2020; 15
774_CR36
774_CR13
774_CR35
774_CR16
774_CR15
774_CR37
774_CR10
774_CR32
774_CR31
774_CR12
774_CR34
774_CR11
774_CR30
X Zhu (774_CR22) 2020; 13
M De Domenico (774_CR14) 2013; 3
References_xml – reference: Leskovec, J., Lang, K. J., Dasgupta, A., Mahoney, M. W.: Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters (2008). arXiv:0810.1355
– reference: Yang, J., Leskovec, J.: Defining and evaluating network communities based on ground-truth. In: Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics, MDS ’12 (Association for Computing Machinery, New York, NY, USA), (2012). https://doi.org/10.1145/2350190.2350193
– reference: Arasu, A., Novak, J., Tomkins, A., Tomlin, J. A.: Pagerank computation and the structure of the web: experiments and algorithms (2002)
– reference: Backstrom, L., Huttenlocher, D., Kleinberg, J., Lan, X.: Group formation in large social networks: membership, growth, and evolution. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’06, 44–54 (Association for Computing Machinery, New York, NY, USA), (2006). https://doi.org/10.1145/1150402.1150412
– reference: Pandey, P., Wheatman, B., Xu, H., Buluc, A.: Terrace: a hierarchical graph container for skewed dynamic graphs. In: Proceedings of the 2021 International Conference on Management of Data, SIGMOD ’21, 1372–1385 (Association for Computing Machinery, New York, NY, USA), (2021). https://doi.org/10.1145/3448016.3457313
– reference: Chen, D., et al.: Graphfly: efficient asynchronous streaming graphs processing via dependency-flow. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, SC ’22 (IEEE Press, 2022)
– reference: Vora, K., Koduru, S. C., Gupta, R.: Aspire: exploiting asynchronous parallelism in iterative algorithms using a relaxed consistency based DSM. In: Proceedings of the 2014 ACM International Conference on Object Oriented Programming Systems Languages & Applications, OOPSLA ’14, 861–878 (Association for Computing Machinery, New York, NY, USA), (2014). https://doi.org/10.1145/2660193.2660227
– reference: CUDA C++ Programming Guide - Cooperative Groups (2023). https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cooperative-groups. [Accessed 08-11-2023]
– reference: De LeoDBonczPTeseo and the analysis of structural dynamic graphsProc. VLDB Endow.2021141053106610.14778/3447689.3447708
– reference: Jaiganesh, J., Burtscher, M.: A high-performance connected components implementation for gpus. In: Proceedings of the 27th International Symposium on High-Performance Parallel and Distributed Computing, HPDC ’18, 92–104 (Association for Computing Machinery, New York, NY, USA), (2018). https://doi.org/10.1145/3208040.3208041
– reference: CheramangalathUNasreRSrikantYNDynamic Graph Algorithms2020BerlinSpringer International Publishing13715110.1007/978-3-030-41886-1_6
– reference: Ediger, D., McColl, R., Riedy, J., Bader, D. A.: Stinger: high performance data structure for streaming graphs. In: 2012 IEEE Conference on High Performance Extreme Computing, 1–5 (2012). https://doi.org/10.1109/HPEC.2012.6408680
– reference: Green, O., Bader, D. A.: cuSTINGER: supporting dynamic graph algorithms for gpus. In: 2016 IEEE High Performance Extreme Computing Conference (HPEC), 1–6 (2016). https://doi.org/10.1109/HPEC.2016.7761622
– reference: Jaiyeoba, W., Skadron, K.: Graphtinker: a high performance data structure for dynamic graph processing. In: 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS), 1030–1041 (2019). https://doi.org/10.1109/IPDPS.2019.00110
– reference: Dhulipala, L., Blelloch, G. E., Shun, J.: Low-latency graph streaming using compressed purely-functional trees. In: Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2019, 918–934 (Association for Computing Machinery, New York, NY, USA), (2019). https://doi.org/10.1145/3314221.3314598
– reference: DIMACS Implementation Challege. http://www.diag.uniroma1.it//challenge9/download.shtml
– reference: Shun, J., Blelloch, G. E.: Ligra: a lightweight graph processing framework for shared memory. In: Proceedings of the 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP ’13, 135–146 (Association for Computing Machinery, New York, NY, USA), (2013)https://doi.org/10.1145/2442516.2442530
– reference: Takac, L., Zábovský, M.: Data analysis in public social networks. In: International Scientific Conference and International Workshop Present Day Trends of Innovations 1–6 (2012)
– reference: ZhangYEgraph: efficient concurrent GPU-based dynamic graph processingIEEE Transactions on Knowledge and Data Engineering2023355823583610.1109/TKDE.2022.3171588
– reference: Makkar, D., Bader, D. A., Green, O.: Exact and parallel triangle counting in dynamic graphs. In: 2017 IEEE 24th International Conference on High Performance Computing (HiPC), 2–12 (2017). https://doi.org/10.1109/HiPC.2017.00011
– reference: Ashkiani, S., Farach-Colton, M., Owens, J. D.: A dynamic hash table for the GPU. In: 2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS), 419–429 (2018). https://doi.org/10.1109/IPDPS.2018.00052
– reference: FuchsPMarganDGicevaJSortledton: a universal, transactional graph data structureProc. VLDB Endow.2022151173118610.14778/3514061.3514065
– reference: KumarPHuangHHGraphone: a data store for real-time analytics on evolving graphsACM Trans. Storage202015414010.1145/3364180
– reference: Malhotra, G., Chappidi, H., Nasre, R. Rauchwerger, L.: (ed.) Fast Dynamic Graph Algorithms. Languages and Compilers for Parallel Computing - 30th International Workshop, LCPC 2017, College Station, TX, USA, October 11-13, 2017, Revised Selected Papers, Vol. 11403 of Lecture Notes in Computer Science, 262–277 (Springer), (2017). https://doi.org/10.1007/978-3-030-35225-7_17
– reference: De DomenicoMLimaAMougelPMusolesiMThe anatomy of a scientific rumorScientific reports201331298010.1038/srep02980
– reference: RamalingamGRepsTOn the computational complexity of dynamic graph problemsTheor. Comput. Sci.1996158233277138897210.1016/0304-3975(95)00079-8
– reference: Vora, K., Gupta, R., Xu, G.: Kickstarter: fast and accurate computations on streaming graphs via trimmed approximations. In: Proceedings of the Twenty-Second International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’17, 237–251 (Association for Computing Machinery, New York, NY, USA), (2017). https://doi.org/10.1145/3037697.3037748
– reference: DhulipalaLHongCShunJConnectit: a framework for static and incremental parallel graph connectivity algorithmsProc. VLDB Endow.20201465366710.14778/3436905.3436923
– reference: Leskovec, J., Huttenlocher, D., Kleinberg, J.: Signed networks in social media. CHI ’10, 1361–1370 (Association for Computing Machinery, New York, NY, USA, 2010). https://doi.org/10.1145/1753326.1753532
– reference: Zhang, F., Zou, L., Yu, Y. Zhang, W., Zou, L., Maamar, Z., Chen, L.: (eds) Lpma - an efficient data structure for dynamic graph on gpus. Web Information Systems Engineering – WISE 2021, 469–484 (Springer International Publishing, Cham), (2021)
– reference: ShaMLiYHeBTanK-LAccelerating dynamic graph analytics on GPUsProc. VLDB Endow.20171110712010.14778/3151113.3151122
– reference: Bender, M. A., Hu, H.: An adaptive packed-memory array. In: Proceedings of the Twenty-Fifth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS ’06, 20–29 (Association for Computing Machinery, New York, NY, USA), (2006). https://doi.org/10.1145/1142351.1142355
– reference: Fagerberg, R.: Cache-Oblivious B-Tree, 121–123 (Springer US, Boston, MA), (2008). https://doi.org/10.1007/978-0-387-30162-4_61
– reference: Winter, M., Zayer, R., Steinberger, M.: Autonomous, independent management of dynamic graphs on gpus. In: 2017 IEEE High Performance Extreme Computing Conference (HPEC), 1–7 (2017). https://doi.org/10.1109/HPEC.2017.8091058
– reference: Busato, F., Green, O., Bombieri, N., Bader, D. A.: Hornet: an efficient data structure for dynamic sparse graphs and matrices on gpus. In: 2018 IEEE High Performance extreme Computing Conference (HPEC), 1–7 (IEEE), (2018). https://doi.org/10.1109/HPEC.2018.8547541
– reference: Hong, C., Dhulipala, L., Shun, J.: Exploring the design space of static and incremental graph connectivity algorithms on gpus. Proceedings of the ACM International Conference on Parallel Architectures and Compilation Techniques, PACT ’20, 55–69 (Association for Computing Machinery, New York, NY, USA), (2020). https://doi.org/10.1145/3410463.3414657
– reference: Afarin, M., Gao, C., Rahman, S., Abu-Ghazaleh, N., Gupta, R.: Commongraph: graph analytics on evolving data. In: Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2, ASPLOS 2023, 133–145 (Association for Computing Machinery, New York, NY, USA), (2023). https://doi.org/10.1145/3575693.3575713
– reference: CUDA Pro Tip: Write Flexible Kernels with Grid-Stride Loops | NVIDIA Technical Blog — developer.nvidia.com. https://developer.nvidia.com/blog/cuda-pro-tip-write-flexible-kernels-grid-stride-loops/. [Accessed 08-11-2023]
– reference: Winter, M., Mlakar, D., Zayer, R., Seidel, H.-P., Steinberger, M.: Faimgraph: high performance management of fully-dynamic graphs under tight memory constraints on the gpu. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis, SC ’18 (IEEE Press), (2018)
– reference: Nvidia. Nvidia warp primitives. https://developer.nvidia.com/blog/using-cuda-warp-level-primitives/
– reference: ZhuXLivegraph: a transactional graph storage system with purely sequential adjacency list scansProc. VLDB Endow2020131020103410.14778/3384345.3384351
– reference: Soman, J., Kishore, K., Narayanan, P. J.: A fast gpu algorithm for graph connectivity. In: 2010 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW), 1–8 (2010). https://doi.org/10.1109/IPDPSW.2010.5470817
– reference: Awad, M.A., Ashkiani, S., Porumbescu, S.D., Owens, J.D.: Dynamic graphs on the GPU (2020). https://doi.org/10.1109/IPDPS47924.2020.00081
– reference: Sutton, M., Ben-Nun, T., Barak, A.: Optimizing parallel graph connectivity computation via subgraph sampling. In: 2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS), 12–21 (2018). https://doi.org/10.1109/IPDPS.2018.00012
– ident: 774_CR6
  doi: 10.1109/IPDPS.2018.00052
– ident: 774_CR1
  doi: 10.1007/978-3-030-35225-7_17
– ident: 774_CR15
  doi: 10.1145/1150402.1150412
– volume: 15
  start-page: 1173
  year: 2022
  ident: 774_CR26
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/3514061.3514065
– ident: 774_CR20
– volume: 15
  start-page: 1
  issue: 4
  year: 2020
  ident: 774_CR24
  publication-title: ACM Trans. Storage
  doi: 10.1145/3364180
– ident: 774_CR39
  doi: 10.1109/IPDPSW.2010.5470817
– ident: 774_CR4
  doi: 10.1109/HPEC.2018.8547541
– volume: 158
  start-page: 233
  year: 1996
  ident: 774_CR43
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/0304-3975(95)00079-8
– ident: 774_CR16
– ident: 774_CR40
  doi: 10.1145/3208040.3208041
– ident: 774_CR11
  doi: 10.1145/3037697.3037748
– ident: 774_CR35
  doi: 10.1145/1142351.1142355
– volume: 13
  start-page: 1020
  year: 2020
  ident: 774_CR22
  publication-title: Proc. VLDB Endow
  doi: 10.14778/3384345.3384351
– ident: 774_CR12
– ident: 774_CR17
  doi: 10.1080/15427951.2009.10129177
– volume: 14
  start-page: 653
  year: 2020
  ident: 774_CR38
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/3436905.3436923
– ident: 774_CR9
– ident: 774_CR10
– ident: 774_CR27
  doi: 10.1109/SC41404.2022.00050
– ident: 774_CR36
  doi: 10.1007/978-0-387-30162-4_61
– ident: 774_CR41
  doi: 10.1109/IPDPS.2018.00012
– ident: 774_CR32
  doi: 10.1109/HPEC.2017.8091058
– volume: 35
  start-page: 5823
  year: 2023
  ident: 774_CR33
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2022.3171588
– ident: 774_CR2
  doi: 10.1109/IPDPS47924.2020.00081
– ident: 774_CR13
  doi: 10.1109/HiPC.2017.00011
– ident: 774_CR5
  doi: 10.1109/HPEC.2016.7761622
– ident: 774_CR31
  doi: 10.1007/978-3-030-90888-1_36
– ident: 774_CR28
  doi: 10.1145/3448016.3457313
– start-page: 137
  volume-title: Dynamic Graph Algorithms
  year: 2020
  ident: 774_CR42
  doi: 10.1007/978-3-030-41886-1_6
– ident: 774_CR7
  doi: 10.1109/HPEC.2012.6408680
– volume: 3
  start-page: 2980
  issue: 1
  year: 2013
  ident: 774_CR14
  publication-title: Scientific reports
  doi: 10.1038/srep02980
– ident: 774_CR29
  doi: 10.1145/3314221.3314598
– ident: 774_CR23
  doi: 10.1109/IPDPS.2019.00110
– ident: 774_CR34
  doi: 10.1145/2660193.2660227
– ident: 774_CR3
  doi: 10.1109/SC.2018.00063
– ident: 774_CR19
  doi: 10.1145/2350190.2350193
– ident: 774_CR37
  doi: 10.1145/2442516.2442530
– ident: 774_CR30
  doi: 10.1145/3575693.3575713
– ident: 774_CR18
  doi: 10.1145/1753326.1753532
– ident: 774_CR21
  doi: 10.1145/3410463.3414657
– volume: 14
  start-page: 1053
  year: 2021
  ident: 774_CR25
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/3447689.3447708
– ident: 774_CR44
– volume: 11
  start-page: 107
  year: 2017
  ident: 774_CR8
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/3151113.3151122
SSID ssj0009788
Score 2.3443604
Snippet Graph algorithms are challenging to implement due to their varying topology and irregular access patterns. Real-world graphs are dynamic in nature and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 400
SubjectTerms Algorithms
Apexes
Computer Science
Cooperative work
Data structures
Graph representations
Graph theory
Graphical representations
Graphics processing units
Parallel processing
Processor Architectures
Search algorithms
Search engines
Shortest-path problems
Social networks
Software Engineering/Programming and Operating Systems
Structured data
Theory of Computation
Topology
Unstructured data
Title Meerkat: A Framework for Dynamic Graph Algorithms on GPUs
URI https://link.springer.com/article/10.1007/s10766-024-00774-z
https://www.proquest.com/docview/3110138965
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7640
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009788
  issn: 0885-7458
  databaseCode: AFBBN
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7640
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009788
  issn: 0885-7458
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7640
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009788
  issn: 0885-7458
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT4MwFG50u3jxt3E6lx68aRNGKaXeiLotmhkPkswTactDjZOZgZf99bYMRI2aeCNQevj6PvqRvvc9hI5l4FDFDZG4pJR4llJSpECMsgXRZ1qoskJufOOPIu9qwiZVUVheZ7vXR5Lll_pTsRv3bcKsR6wHjUcWq6jNrJ2XieLIDRurXV52mzT0YYR7LKhKZX6e4-t21GjMb8ei5W4z2ETrlUzE4XJdt9AKZNtoo27BgCtG7iAxBpg_y-IMh3hQ51lhI0TxxbLVPB5aR2ocTh9m86fi8SXHswwPb6N8F0WDy7vzEam6IRBtaFIQcKUIACClXEvHUdxcyTQRRnK5vlYgGUjhKeUJroyo432hkpQmigaOWSfG6R5qZbMM9hHWHAKmHfBVyjxKmUqFVuaOBPM_nNCgg_o1KLGurMJtx4pp3JgcWyBjA2RcAhkvOujk453XpVHGn6O7NdZxRZo8pkaK2HNTn3XQaY1_8_j32Q7-N_wQrbk2BMqklC5qFfM3ODLSolA91A6H99eXvTKi3gEeLMXh
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9ROOhF_Iwoag_edGTQdl29LcqH8hEPkOBpaUunBgQD48Jfb_clStTE27J1zfo-1l_z3vs9gEvh2lgy40hMYGyRyKUED7RlkK3mFaq4jCvkOl2n2ScPAzpIi8LmWbZ7FpKM_9Rfit2YEyXMEivioCHWchPyxBxQqjnIe42nVm1FtsvifpPGgajFCHXTYpmfZ_m-Ia1Q5lpgNN5v6gXoZ1-apJmMyotQltVyjcTxv0vZhZ0UgCIvsZg92NCTfShkzR1Q6usHwDtaz0YivEEeqmcZXMhAXHSXNLFHjYjrGnnj5-nsNXx5m6PpBDUe-_ND6NdrvdumlfZZsJRxwNDSVcFdrXWAmRK2LZm5EsGQGzBXdZTUgmrBiZSEM2ngIqtwOQzwUGLXNhZAGT6C3GQ60ceAFNMuVbZ2ZEAJxlQGXElzR2hz0h5itwiVTNi-SknIo14YY39FnxzJxjey8WPZ-MsiXH2-855QcPw5upTp0E_dce5jA3KiiKxDi3CdqWT1-PfZTv43_AK2mr1O22_fd1unsF2NNBynvpQgF84W-swAmFCep_b6AVWP5Hc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLWgSIiFN6JQwAMbWE1jO47ZIkpaHq06UKlbZCcOIEpatWHp12PnQQoCJLYosT0c3yOfyPeeC8C5cC0smSYSExgjYigleKyQVraKt2jIZVYh1-s73SG5G9HRUhV_lu1eXknmNQ3GpSlJm9Mobi4VvjHHJM8SZPxoCFqsgjVijBJ0RA9tr7LdZVnnSU0lihihblE28_MaX4-mSm9-uyLNTh5_G2wWkhF6-R7vgBWV7IKtsh0DLNi5B3hPqdmrSK-gB_0y5wpqUQrbedt52DHu1NAbP01mL-nz2xxOEtgZDOf7YOjfPF53UdEZAYWaMilStuCuUirGLBSWJZl-EnHEtfyynVAqQZXgRErCmdQCj7W4jGIcSexaes8owweglkwSdQhgyJRLQ0s5MqYEYypjHkr9Rij9bxxhtw5aJShBWNiGm-4V46AyPDZABhrIIAMyWNTBxeecaW6a8efoRol1UBBoHmAtS8wdqkPr4LLEv_r8-2pH_xt-BtYHbT94uO3fH4MN20RDlqvSALV09q5OtOJI5WkWVB8Z2ct1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Meerkat%3A+A+Framework+for+Dynamic+Graph+Algorithms+on+GPUs&rft.jtitle=International+journal+of+parallel+programming&rft.au=Concessao%2C+Kevin+Jude&rft.au=Cheramangalath%2C+Unnikrishnan&rft.au=Dev%2C+Ricky&rft.au=Nasre%2C+Rupesh&rft.date=2024-12-01&rft.pub=Springer+US&rft.issn=0885-7458&rft.eissn=1573-7640&rft.volume=52&rft.issue=5-6&rft.spage=400&rft.epage=453&rft_id=info:doi/10.1007%2Fs10766-024-00774-z&rft.externalDocID=10_1007_s10766_024_00774_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7458&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7458&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7458&client=summon