A multi-label text classification method via dynamic semantic representation model and deep neural network
The increment of new words and text categories requires more accurate and robust classification methods. In this paper, we propose a novel multi-label text classification method that combines dynamic semantic representation model and deep neural network (DSRM-DNN). DSRM-DNN first utilizes word embed...
Saved in:
| Published in | Applied intelligence (Dordrecht, Netherlands) Vol. 50; no. 8; pp. 2339 - 2351 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.08.2020
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0924-669X 1573-7497 |
| DOI | 10.1007/s10489-020-01680-w |
Cover
| Summary: | The increment of new words and text categories requires more accurate and robust classification methods. In this paper, we propose a novel multi-label text classification method that combines dynamic semantic representation model and deep neural network (DSRM-DNN). DSRM-DNN first utilizes word embedding model and clustering algorithm to select semantic words. Then the selected words are designated as the elements of DSRM-DNN and quantified by the weighted combination of word attributes. Finally, we construct a text classifier by combining deep belief network and back-propagation neural network. During the classification process, the low-frequency words and new words are re-expressed by the existing semantic words under sparse constraint. We evaluate the performance of DSRM-DNN on RCV1-v2, Reuters-21578, EUR-Lex, and Bookmarks. Experimental results show that our method outperforms the state-of-the-art methods. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0924-669X 1573-7497 |
| DOI: | 10.1007/s10489-020-01680-w |