Microseismic Location in Hardrock Metal Mines by Machine Learning Models Based on Hyperparameter Optimization Using Bayesian Optimizer
In recent years, with the gradual depletion of shallow mineral resources, the exploitation of deep mineral resources has become an inevitable trend. Microseismic monitoring is one of the main methods to solve high stress concentration problems such as rockbursts, roof caving and water inrush in deep...
Saved in:
| Published in | Rock mechanics and rock engineering Vol. 56; no. 12; pp. 8771 - 8788 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Vienna
Springer Vienna
01.12.2023
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0723-2632 1434-453X |
| DOI | 10.1007/s00603-023-03483-0 |
Cover
| Abstract | In recent years, with the gradual depletion of shallow mineral resources, the exploitation of deep mineral resources has become an inevitable trend. Microseismic monitoring is one of the main methods to solve high stress concentration problems such as rockbursts, roof caving and water inrush in deep mine. An accurate and fast microseismic location method is the basis of microseismic monitoring. At present, machine learning (ML) has become an important auxiliary method in the field of microseismic monitoring due to its powerful feature expression ability. Compared with other microseismic positioning methods, ML can construct a more objective positioning model. This paper uses three ML models including deep neural network (DNN), random forest (RF),and support vector regression (SVR) to construct a microseismic position method to search for the microseismic source. The travel time difference between stations is used as the input of the ML model. Since the number of field data sets is not enough to complete the training of the model, this paper uses a synthetic data set with a specific speed model as the training set and uses the field data set for testing. In order to analyze the location accuracy, we compare them with three traditional microseismic location methods. To improve the positioning performance of ML models, this paper uses a Bayesian optimizer (BO) to adjust their hyperparameters. The experimental results show that the performance of the ML model adjusted by the BO has been significantly improved. The positioning accuracy order of the three ML models is DNN > RF > SVR > traditional location method. The average positioning accuracies of the DNN inside and outside the sensors array are 27.81 m and 145.96 m, respectively. For the model proposed in this paper, the positioning accuracy inside the sensors array is significantly higher than that outside the array, which is similar to the traditional positioning method. In addition, the model has a certain tolerance to the error of the speed model.
Highlights
Utilization of machine learning (ML) for accurate and objective microseismic source location.
Comparative analysis of three ML models (DNN, RF, SVR) and traditional methods.
Enhancement of ML model performance using Bayesian optimizer for hyperparameter tuning.
Significant improvement in positioning accuracy with DNN model inside and outside the sensor array.
Tolerance to speed model errors in the proposed ML-based microseismic positioning method. |
|---|---|
| AbstractList | In recent years, with the gradual depletion of shallow mineral resources, the exploitation of deep mineral resources has become an inevitable trend. Microseismic monitoring is one of the main methods to solve high stress concentration problems such as rockbursts, roof caving and water inrush in deep mine. An accurate and fast microseismic location method is the basis of microseismic monitoring. At present, machine learning (ML) has become an important auxiliary method in the field of microseismic monitoring due to its powerful feature expression ability. Compared with other microseismic positioning methods, ML can construct a more objective positioning model. This paper uses three ML models including deep neural network (DNN), random forest (RF),and support vector regression (SVR) to construct a microseismic position method to search for the microseismic source. The travel time difference between stations is used as the input of the ML model. Since the number of field data sets is not enough to complete the training of the model, this paper uses a synthetic data set with a specific speed model as the training set and uses the field data set for testing. In order to analyze the location accuracy, we compare them with three traditional microseismic location methods. To improve the positioning performance of ML models, this paper uses a Bayesian optimizer (BO) to adjust their hyperparameters. The experimental results show that the performance of the ML model adjusted by the BO has been significantly improved. The positioning accuracy order of the three ML models is DNN > RF > SVR > traditional location method. The average positioning accuracies of the DNN inside and outside the sensors array are 27.81 m and 145.96 m, respectively. For the model proposed in this paper, the positioning accuracy inside the sensors array is significantly higher than that outside the array, which is similar to the traditional positioning method. In addition, the model has a certain tolerance to the error of the speed model.HighlightsUtilization of machine learning (ML) for accurate and objective microseismic source location.Comparative analysis of three ML models (DNN, RF, SVR) and traditional methods.Enhancement of ML model performance using Bayesian optimizer for hyperparameter tuning.Significant improvement in positioning accuracy with DNN model inside and outside the sensor array.Tolerance to speed model errors in the proposed ML-based microseismic positioning method. In recent years, with the gradual depletion of shallow mineral resources, the exploitation of deep mineral resources has become an inevitable trend. Microseismic monitoring is one of the main methods to solve high stress concentration problems such as rockbursts, roof caving and water inrush in deep mine. An accurate and fast microseismic location method is the basis of microseismic monitoring. At present, machine learning (ML) has become an important auxiliary method in the field of microseismic monitoring due to its powerful feature expression ability. Compared with other microseismic positioning methods, ML can construct a more objective positioning model. This paper uses three ML models including deep neural network (DNN), random forest (RF),and support vector regression (SVR) to construct a microseismic position method to search for the microseismic source. The travel time difference between stations is used as the input of the ML model. Since the number of field data sets is not enough to complete the training of the model, this paper uses a synthetic data set with a specific speed model as the training set and uses the field data set for testing. In order to analyze the location accuracy, we compare them with three traditional microseismic location methods. To improve the positioning performance of ML models, this paper uses a Bayesian optimizer (BO) to adjust their hyperparameters. The experimental results show that the performance of the ML model adjusted by the BO has been significantly improved. The positioning accuracy order of the three ML models is DNN > RF > SVR > traditional location method. The average positioning accuracies of the DNN inside and outside the sensors array are 27.81 m and 145.96 m, respectively. For the model proposed in this paper, the positioning accuracy inside the sensors array is significantly higher than that outside the array, which is similar to the traditional positioning method. In addition, the model has a certain tolerance to the error of the speed model. Highlights Utilization of machine learning (ML) for accurate and objective microseismic source location. Comparative analysis of three ML models (DNN, RF, SVR) and traditional methods. Enhancement of ML model performance using Bayesian optimizer for hyperparameter tuning. Significant improvement in positioning accuracy with DNN model inside and outside the sensor array. Tolerance to speed model errors in the proposed ML-based microseismic positioning method. |
| Author | Zhou, Jian Shen, Xiaojie Du, Kun Qiu, Yingui Shi, Xiuzhi |
| Author_xml | – sequence: 1 givenname: Jian surname: Zhou fullname: Zhou, Jian organization: School of Resources and Safety Engineering, Central South University – sequence: 2 givenname: Xiaojie surname: Shen fullname: Shen, Xiaojie organization: School of Resources and Safety Engineering, Central South University – sequence: 3 givenname: Yingui surname: Qiu fullname: Qiu, Yingui organization: School of Resources and Safety Engineering, Central South University – sequence: 4 givenname: Xiuzhi surname: Shi fullname: Shi, Xiuzhi organization: School of Resources and Safety Engineering, Central South University – sequence: 5 givenname: Kun surname: Du fullname: Du, Kun email: dukuncsu@csu.edu.cn organization: School of Resources and Safety Engineering, Central South University |
| BookMark | eNp9kMFOwzAMhiM0JMbgBThF4lxwmqxpjzABQ1rFhUncqix1RsaWlqQcxgPw3GQrCInDDrYj_f7s-D8lA9c4JOSCwRUDkNcBIAOeQBqDizzmIzJkgotEjPnLgAxBRinNeHpCTkNYAURR5kPyVVrtm4A2bKyms0arzjaOWkenyte-0W-0xE6taWkdBrrY0lLp1_imM1TeWbekZVPjOtBbFbCmkZ1uW_St8mqDHXr61HZ2Yz_7ufOwI27VFoNV7ldDf0aOjVoHPP-pIzK_v3ueTJPZ08Pj5GaWaM6KLqkNgMoFcMh4nqZMoxF5PF1ixmFhDGpRSK2lqeWCyQKUyrRhma6lMHUhaj4il_3c1jfvHxi6atV8eBdXVmleFKkYCzaOXWnftbMmeDRV6-1G-W3FoNr5XfV-V9Hvau93zCOS_4O07fZXd17Z9WGU92iIe9wS_d-vDlDfNqGY2g |
| CitedBy_id | crossref_primary_10_1007_s00603_024_03947_x crossref_primary_10_1007_s11600_024_01320_8 crossref_primary_10_1007_s10230_024_01011_2 crossref_primary_10_1016_j_jrmge_2024_02_014 crossref_primary_10_3390_buildings14030591 crossref_primary_10_1007_s11053_023_10259_4 crossref_primary_10_3390_app14093759 crossref_primary_10_3934_mbe_2024061 crossref_primary_10_1016_j_jrmge_2024_05_024 crossref_primary_10_3390_buildings14010225 crossref_primary_10_3390_app14146164 crossref_primary_10_3390_s24041285 crossref_primary_10_3390_math12223500 crossref_primary_10_1016_j_jenvman_2024_123068 crossref_primary_10_1007_s00603_024_04055_6 crossref_primary_10_1007_s42461_025_01221_4 crossref_primary_10_1515_rams_2023_0179 |
| Cites_doi | 10.1007/s10462-021-10065-5 10.1016/j.undsp.2020.05.008 10.1038/s41591-018-0268-3 10.1038/nature14539 10.1016/j.coal.2015.06.016 10.1029/98EO00426 10.1016/j.catena.2018.04.004 10.1007/s00603-017-1191-5 10.1016/j.tust.2021.104133 10.1016/j.tust.2018.07.006 10.1016/j.cageo.2021.104965 10.1007/s11440-023-01988-0 10.1109/ACCESS.2019.2906066 10.1016/j.engappai.2020.104015 10.1016/j.engappai.2020.103761 10.1007/s00366-019-00800-6 10.1109/TNNLS.2020.2982936 10.1016/j.energy.2020.118750 10.1016/j.tust.2022.104494 10.1002/stc.2693 10.1109/TPAMI.2019.2956703 10.1016/j.jrmge.2021.07.013 10.1029/2019RG000667 10.1016/j.knosys.2020.106247 10.1785/0120070002 10.1190/geo2020-0288.1 10.1007/s10462-021-09967-1 10.1007/s10462-021-10011-5 10.1016/j.gsf.2021.101198 10.1007/s00366-020-01014-x 10.5194/esurf-7-171-2019 10.1016/j.tust.2021.104183 10.1016/j.tust.2022.104570 10.3390/ma15186269 10.1029/2020GL088353 10.1016/j.gsf.2019.12.003 10.1016/j.ssci.2011.08.065 10.1016/j.matdes.2018.11.060 10.1126/science.aau0323 10.1785/BSSA0750030779 10.1016/j.renene.2018.08.044 10.1016/j.ijmst.2023.06.001 10.1016/j.undsp.2023.05.009 10.1007/s10479-019-03286-z 10.1016/j.neucom.2017.03.058 10.1007/s10712-018-9479-x 10.1016/j.ijrmms.2018.06.012 10.1016/j.enggeo.2020.105519 10.1007/s00603-020-02259-0 10.1007/s00158-020-02787-x 10.1016/j.jrmge.2015.06.010 10.1016/j.rse.2019.111599 10.1016/j.ijrmms.2017.03.001 10.1007/s00603-021-02614-9 10.1023/A:1010933404324 10.1016/j.rse.2020.111702 10.1155/2020/8810391 10.1080/17455030.2021.2009151 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 3V. 7TN 7UA 7XB 88I 8FD 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ H96 HCIFZ KR7 L.G L6V M2P M7S PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s00603-023-03483-0 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Oceanic Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Science Database Engineering Database Earth, Atmospheric & Aquatic Science Database Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Engineering |
| EISSN | 1434-453X |
| EndPage | 8788 |
| ExternalDocumentID | 10_1007_s00603_023_03483_0 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 42177164; 41807259 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: The science and technology innovation program of Hunan province grantid: 2021RC3007 – fundername: Innovation-Driven Project of Central South University grantid: 2020CX040 funderid: http://dx.doi.org/10.13039/501100012486 |
| GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29P 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67M 67Z 6NX 78A 88I 8FE 8FG 8FH 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKIV ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V L8X LAS LK5 LLZTM M2P M4Y M7R M7S MA- MK~ MM- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P PCBAR PF0 PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK6 WK8 Y6R YLTOR Z45 Z5O Z7Y Z7Z Z81 Z85 Z86 Z8S Z8T Z8U Z8Z ZMTXR ZY4 ~02 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7TN 7UA 7XB 8FD 8FK C1K F1W FR3 H96 KR7 L.G PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c319t-df00a84030638221cef480067e630bffec497cc7fd7b1790aa6cf16cd74fd94d3 |
| IEDL.DBID | U2A |
| ISSN | 0723-2632 |
| IngestDate | Sat Aug 23 14:14:18 EDT 2025 Thu Apr 24 23:03:17 EDT 2025 Wed Oct 01 04:12:48 EDT 2025 Fri Feb 21 02:41:01 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | Support vector regression Deep neural network Microseismic location Random forest Bayesian optimizer Machine learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-df00a84030638221cef480067e630bffec497cc7fd7b1790aa6cf16cd74fd94d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2899245415 |
| PQPubID | 60272 |
| PageCount | 18 |
| ParticipantIDs | proquest_journals_2899245415 crossref_primary_10_1007_s00603_023_03483_0 crossref_citationtrail_10_1007_s00603_023_03483_0 springer_journals_10_1007_s00603_023_03483_0 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20231200 2023-12-00 20231201 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: 20231200 |
| PublicationDecade | 2020 |
| PublicationPlace | Vienna |
| PublicationPlace_xml | – name: Vienna – name: Wien |
| PublicationTitle | Rock mechanics and rock engineering |
| PublicationTitleAbbrev | Rock Mech Rock Eng |
| PublicationYear | 2023 |
| Publisher | Springer Vienna Springer Nature B.V |
| Publisher_xml | – name: Springer Vienna – name: Springer Nature B.V |
| References | HannunAYRajpurkarPHaghpanahiMTisonGHBournCTurakhiaMPNgAYCardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural networkNat Med20192565 Ma T, Lin D, Tang CA, Yadav KP, Feng Z, Ma K (2020) Microseismic monitoring, positioning principle, and sensor layout strategy of rock mass engineering. Geofluids 2020:1-20 Wamriew D, Charara M, Pissarenko D (2022) Joint event location and velocity model update in real-time for downhole microseismic monitoring: A deep learning approach. Comput Geosci 158:104965 BakhteevOYStrijovVVComprehensive analysis of gradient-based hyperparameter optimization algorithmsAnn Oper Res20202895165 BoseMWenzelFErdikMPreSEIS: a neural network-based approach to earthquake early warning, for finite faultsBull Seismol Soc Am200898366382 Agrawal AK, Chakraborty G (2021) On the use of acquisition function-based Bayesian optimization method to efficiently tune SVM hyperparameters for structural damage detection. Struct Control Health Monit 28(4):e2693 Bergen KJ, Johnson PA, Maarten V, Beroza GC (2019) Machine learning for data-driven discovery in solid Earth geoscience. Science 363(6433):eaau0323 ZhangWZhangRWuCGohATCLacasseSLiuZLiuHState-of-the-art review of soft computing applications in underground excavationsGeosci Front202011410951106 ZhouJQiuYGArmaghaniDJZhangWGLiCQZhuSLTarinejadRPredicting TBM penetration rate in hard rock condition: a comparative study among six XGB-based metaheuristic techniquesGeosci Front20211213 ZhaoHChenBLiSLiZZhuCUpdating the models and uncertainty of mechanical parameters for rock tunnels using Bayesian inferenceGeosci Front2021125 DongXShenJWangWShaoLLingHPorikliFDynamical hyperparameter optimization via deep reinforcement learning in trackingIEEE Trans Pattern Anal Mach Intell20214315151529 Saad OM, Chen Y (2020) Automatic waveform-based source-location imaging using deep learning extracted microseismic signals. Geophysics 85:KS171–KS183 TangSWangJTangCIdentification of microseismic events in rock engineering by a convolutional neural network combined with an attention mechanismRock Mech Rock Eng2021544769 Zhou J, Zhang Y, Li C, He H, Li X (2023) Rockburst prediction and prevention in underground space excavation. Underground Space. 1-29. https://doi.org/10.1016/j.undsp.2023.05.009 ZhouJLiXBShiXZLong-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machinesSaf Sci201250629644 Karasu S, Altan A, Bekiros S, Ahmad W (2020) A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series. Energy 212:118750 ArmaghaniDJYagizSMohamadETZhouJPrediction of TBM performance in fresh through weathered granite using empirical and statistical approachesTunn Undergr Space Technol2021118 ChengFLiuJWangJYangZAbbasiSSTianZXuHLocating leaking buried pipes based on ground microseismic records in 3D spaceSurv Geophys2018399931007 Armaghani DJ, Harandizadeh H, Momeni E, Maizir H, Zhou J (2021a) An optimized system of GMDH-ANFIS predictive model by ICA for estimating pile bearing capacity. Artif Intell Rev 55: 2313–2350 Binh ThaiPLe HoangSTuan-AnhHDuc-ManhNDieu TienBPrediction of shear strength of soft soil using machine learning methodsCATENA2018166181191 Maimaitijiang M, Sagan V, Sidike P, Hartling S, Esposito F, Fritschi FB (2020) Soybean yield prediction from UAV using multimodal data fusion and deep learning. Remote Sens Environ 237:111599 SiGDurucanSJamnikarSLazarJAbrahamKKorreAShiJ-QZavgekSMutkeGLurkaASeismic monitoring and analysis of excessive gas emissions in heterogeneous coal seamsInt J Coal Geol20151494154 ZhouJQiuYZhuSArmaghaniDJLiCNguyenHYagizSOptimization of support vector machine through the use of metaheuristic algorithms in forecasting TBM advance rateEng Appl Artif Intell202197 Gibson R, Danaher T, Hehir W, Collins L (2020) A remote sensing approach to mapping fire severity in south-eastern Australia using sentinel 2 and random forest. Remote Sens Environ 240:111702 Shin S, Lee Y, Kim M, Park J, Lee S, Min K (2020) Deep neural network model with Bayesian hyperparameter optimization for prediction of NOx at transient conditions in a diesel engine. Eng Appl Artif Intell 94:103761 ShendeSGillmanAYooDBuskohlPVemagantiKBayesian topology optimization for efficient design of origami folding structuresStruct Multidiscip Optim20216319071926 IngladaVDie Berechnung der Herdkoordinaten eines Nahbebens aus den Eintrittszeiten der in einigen benachbarten Stationen aufgezeichneten P- oder S-WellenGerlands Beitr Geophys1928197398 Joy TT, Rana S, Gupta S, Venkatesh S (2020) Fast hyperparameter tuning using Bayesian optimization with directional derivatives. Knowl Based Syst 205:106247 XuPQinXZhuHDeep neural networks trained by the adaptive momentum-based technique for stability simulation of organic solar cellsStruct Eng Mech2022832259272 Wang K-K, Tang CA, Ma K, Yu G, Zhang S, Peng Y (2021) Cross-related microseismic location based on improved particle swarm optimization and the double-difference location method of jointed coal rock mass. Waves Random Complex Media 1-24. https://doi.org/10.1080/17455030.2021.2009151 WesselPSmithWHNew, improved version of generic mapping tools releasedEOS Trans Am Geophys Union199879579579 Yin X, Liu Q, Huang X, Pan Y (2021) Real-time prediction of rockburst intensity using an integrated CNN-Adam-BO algorithm based on microseismic data and its engineering application. Tunnel Undergr Space Technol 117:104133 Brochu E, Cora VM, De Freitas N (2010) A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv:1012.2599 ZhouJShenXQiuYLiERaoDShiXImproving the efficiency of microseismic source locating using a heuristic algorithm-based virtual field optimization methodGeomech Geophys Geo-Energy Geo-Resour202173118 Li L, Tan J, Schwarz B, Stanek F, Poiata N, Shi P, Diekmann L, Eisner L, Gajewski D (2020) Recent advances and challenges of waveform-based seismic location methods at multiple scales. Rev Geophys 58(1):e2019RG000667 DruckerHBurgesCJKaufmanLSmolaAVapnikVSupport vector regression machinesAdv Neural Inf Process Syst19979155161 ZhouJShenXQiuYShiXKhandelwalMCross-correlation stacking-based microseismic source location using three metaheuristic optimization algorithmsTunnel Undergr Space Technol2022126 TangCALiLXuNMaKMicroseismic monitoring and numerical simulation on the stability of high-steep rock slopes in hydropower engineeringJ Rock Mech Geotech Eng20157493508 Geiger L (1912) Probability method for determination of earthquake epicenters from arrival time only. Bulletin of Saint Louis University 8: 60–71. XieCNguyenHBuiXNChoiYZhouJNguyen-TrangTPredicting rock size distribution in mine blasting using various novel soft computing models based on meta-heuristics and machine learning algorithmsGeosci Front2021123 YaoCCaiDBuJChenGPre-training the deep generative models with adaptive hyperparameter optimizationNeurocomputing2017247144155 LivXTangCALiLLvPSunRMicroseismic monitoring and stability analysis of the right bank slope at Dagangshan hydropower station after the initial impoundmentInt J Rock Mech Min Sci2018108128141 Pu Y, Apel DB, Hall R (2020) Using machine learning approach for microseismic events recognition in underground excavations: comparison of ten frequently-used models. Eng Geol 268:105519 LiEYangFRenMZhangXZhouJKhandelwalMPrediction of blasting mean fragment size using support vector regression combined with five optimization algorithmsJ Rock Mech Geotech Eng202113613801397 Qiu Y, Zhou J (2023) Short-term rockburst prediction in underground project: insights from an explainable and interpretable ensemble learning model. Acta Geotechnica. 1-31. https://doi.org/10.1007/s11440-023-01988-0 BenaliLNottonGFouilloyAVoyantCDizeneRSolar radiation forecasting using artificial neural network and random forest methods: application to normal beam, horizontal diffuse and global componentsRenew Energy2019132871884 LiuXTangCALiLLvPLiuHMicroseismic monitoring and 3D finite element analysis of the right bank slope, Dagangshan hydropower station, during reservoir impoundingRock Mech Rock Eng20175019011917 WuLZLiSHHuangRQWangSYMicro-seismic source location determined by a modified objective functionEng Comput20203618491856 BreimanLRandom forestsMach Learn200145532 HuangLQLiJHaoHLiXBMicro-seismic event detection and location in underground mines by using convolutional neural networks (CNN) and deep learningTunn Undergr Space Technol201881265276 LiEZhouJShiXJahed ArmaghaniDYuZChenXHuangPDeveloping a hybrid model of salp swarm algorithm-based support vector machine to predict the strength of fiber-reinforced cemented paste backfillEng Comput202137435193540 Johnson CW, Ben-Zion Y, Meng H, Vernon F (2020) Identifying different classes of seismic noise signals using unsupervised learning. Geophys Res Lett 47(15):e2020GL088353 Zhang W, Li H, Li Y, Liu H, Chen Y, Ding X (2021b) Application of deep learning algorithms in geotechnical engineering: a short critical review. Artif Intell Rev 54: 5633–5673 Wen S, Li X, Wang B, Tan J, Liu Y, Lv J, Tan Z, Yin L, Du Y (2022) Deep neural network-evaluated thermal conductivity for two-phase WC-M (M = Ag, Co) cemented carbides. Materials (Basel, Switzerland) 15(18):6269 CliffordHThurber,Nonlinear earthquake location: theory and examplesBull Seismol Soc Am198575779790 LeCunYBengioYHintonGDeep learningNature2015521436444 WainerJFonsecaPHow to tune the RBF SVM hyperparameters? An empirical evaluation of 18 search algorithmsArtif Intell Rev20215447714797 ZhangHZengJMaJFangYMaCYaoZChenZTime series prediction of microseismic multi-parameter related to rockburst based on deep learningRock Mech Rock Eng20215462996321 Zhou J, Huang S, Qiu Y (2022b) Optimization of random forest through the use of MVO, GWO and MFO in evaluating the stability of underground entry-type excavations. Tunnelling and Underground Space LZ Wu (3483_CR49) 2020; 36 3483_CR18 3483_CR17 J Zhou (3483_CR62) 2021; 6 J Zhou (3483_CR59) 2012; 50 3483_CR57 E Li (3483_CR27) 2021; 13 3483_CR10 3483_CR54 J Zhou (3483_CR64) 2022; 126 P Binh Thai (3483_CR7) 2018; 166 G Cheng (3483_CR12) 2017; 94 OY Bakhteev (3483_CR4) 2020; 289 V Inglada (3483_CR21) 1928; 19 P Xu (3483_CR52) 2022; 83 3483_CR29 DJ Armaghani (3483_CR3) 2021; 118 S Feng (3483_CR16) 2019; 162 3483_CR24 P Wessel (3483_CR48) 1998; 79 3483_CR2 3483_CR26 J Wainer (3483_CR44) 2021; 54 3483_CR65 3483_CR6 X Dong (3483_CR14) 2021; 43 3483_CR23 C Yao (3483_CR53) 2017; 247 3483_CR22 J Zhou (3483_CR63) 2021; 7 3483_CR66 X Liu (3483_CR30) 2017; 50 W Zhang (3483_CR56) 2020; 11 J Zhou (3483_CR60) 2021; 97 Y Wu (3483_CR50) 2019; 7 Y LeCun (3483_CR25) 2015; 521 L Breiman (3483_CR9) 2001; 45 CA Tang (3483_CR42) 2015; 7 F Cheng (3483_CR11) 2018; 39 3483_CR36 3483_CR38 3483_CR37 3483_CR32 H Zhang (3483_CR55) 2021; 54 3483_CR33 LQ Huang (3483_CR20) 2018; 81 L Benali (3483_CR5) 2019; 132 3483_CR1 H Zhao (3483_CR58) 2021; 12 S Shende (3483_CR39) 2021; 63 J Zhou (3483_CR61) 2021; 12 M Bose (3483_CR8) 2008; 98 X Liv (3483_CR31) 2018; 108 C Xie (3483_CR51) 2021; 12 H Clifford (3483_CR13) 1985; 75 E Li (3483_CR28) 2021; 37 G Muniraju (3483_CR35) 2021; 32 3483_CR47 AY Hannun (3483_CR19) 2019; 25 3483_CR46 M Meyer (3483_CR34) 2019; 7 G Si (3483_CR41) 2015; 149 H Drucker (3483_CR15) 1997; 9 S Tang (3483_CR43) 2021; 54 3483_CR45 3483_CR40 |
| References_xml | – reference: Wang K-K, Tang CA, Ma K, Yu G, Zhang S, Peng Y (2021) Cross-related microseismic location based on improved particle swarm optimization and the double-difference location method of jointed coal rock mass. Waves Random Complex Media 1-24. https://doi.org/10.1080/17455030.2021.2009151 – reference: ZhangWZhangRWuCGohATCLacasseSLiuZLiuHState-of-the-art review of soft computing applications in underground excavationsGeosci Front202011410951106 – reference: BoseMWenzelFErdikMPreSEIS: a neural network-based approach to earthquake early warning, for finite faultsBull Seismol Soc Am200898366382 – reference: Agrawal AK, Chakraborty G (2021) On the use of acquisition function-based Bayesian optimization method to efficiently tune SVM hyperparameters for structural damage detection. Struct Control Health Monit 28(4):e2693 – reference: ZhangHZengJMaJFangYMaCYaoZChenZTime series prediction of microseismic multi-parameter related to rockburst based on deep learningRock Mech Rock Eng20215462996321 – reference: DruckerHBurgesCJKaufmanLSmolaAVapnikVSupport vector regression machinesAdv Neural Inf Process Syst19979155161 – reference: Brochu E, Cora VM, De Freitas N (2010) A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv:1012.2599 – reference: XuPQinXZhuHDeep neural networks trained by the adaptive momentum-based technique for stability simulation of organic solar cellsStruct Eng Mech2022832259272 – reference: ChengFLiuJWangJYangZAbbasiSSTianZXuHLocating leaking buried pipes based on ground microseismic records in 3D spaceSurv Geophys2018399931007 – reference: Wamriew D, Charara M, Pissarenko D (2022) Joint event location and velocity model update in real-time for downhole microseismic monitoring: A deep learning approach. Comput Geosci 158:104965 – reference: ShendeSGillmanAYooDBuskohlPVemagantiKBayesian topology optimization for efficient design of origami folding structuresStruct Multidiscip Optim20216319071926 – reference: ArmaghaniDJYagizSMohamadETZhouJPrediction of TBM performance in fresh through weathered granite using empirical and statistical approachesTunn Undergr Space Technol2021118 – reference: ZhaoHChenBLiSLiZZhuCUpdating the models and uncertainty of mechanical parameters for rock tunnels using Bayesian inferenceGeosci Front2021125 – reference: Karasu S, Altan A, Bekiros S, Ahmad W (2020) A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series. Energy 212:118750 – reference: Pu Y, Apel DB, Hall R (2020) Using machine learning approach for microseismic events recognition in underground excavations: comparison of ten frequently-used models. Eng Geol 268:105519 – reference: WesselPSmithWHNew, improved version of generic mapping tools releasedEOS Trans Am Geophys Union199879579579 – reference: LiEYangFRenMZhangXZhouJKhandelwalMPrediction of blasting mean fragment size using support vector regression combined with five optimization algorithmsJ Rock Mech Geotech Eng202113613801397 – reference: LiEZhouJShiXJahed ArmaghaniDYuZChenXHuangPDeveloping a hybrid model of salp swarm algorithm-based support vector machine to predict the strength of fiber-reinforced cemented paste backfillEng Comput202137435193540 – reference: Wen S, Li X, Wang B, Tan J, Liu Y, Lv J, Tan Z, Yin L, Du Y (2022) Deep neural network-evaluated thermal conductivity for two-phase WC-M (M = Ag, Co) cemented carbides. Materials (Basel, Switzerland) 15(18):6269 – reference: ZhouJQiuYGArmaghaniDJZhangWGLiCQZhuSLTarinejadRPredicting TBM penetration rate in hard rock condition: a comparative study among six XGB-based metaheuristic techniquesGeosci Front20211213 – reference: YaoCCaiDBuJChenGPre-training the deep generative models with adaptive hyperparameter optimizationNeurocomputing2017247144155 – reference: HannunAYRajpurkarPHaghpanahiMTisonGHBournCTurakhiaMPNgAYCardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural networkNat Med20192565 – reference: ZhouJLiXBShiXZLong-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machinesSaf Sci201250629644 – reference: Armaghani DJ, Harandizadeh H, Momeni E, Maizir H, Zhou J (2021a) An optimized system of GMDH-ANFIS predictive model by ICA for estimating pile bearing capacity. Artif Intell Rev 55: 2313–2350 – reference: Gibson R, Danaher T, Hehir W, Collins L (2020) A remote sensing approach to mapping fire severity in south-eastern Australia using sentinel 2 and random forest. Remote Sens Environ 240:111702 – reference: Binh ThaiPLe HoangSTuan-AnhHDuc-ManhNDieu TienBPrediction of shear strength of soft soil using machine learning methodsCATENA2018166181191 – reference: XieCNguyenHBuiXNChoiYZhouJNguyen-TrangTPredicting rock size distribution in mine blasting using various novel soft computing models based on meta-heuristics and machine learning algorithmsGeosci Front2021123 – reference: CliffordHThurber,Nonlinear earthquake location: theory and examplesBull Seismol Soc Am198575779790 – reference: Bergen KJ, Johnson PA, Maarten V, Beroza GC (2019) Machine learning for data-driven discovery in solid Earth geoscience. Science 363(6433):eaau0323 – reference: Zhang W, Li H, Li Y, Liu H, Chen Y, Ding X (2021b) Application of deep learning algorithms in geotechnical engineering: a short critical review. Artif Intell Rev 54: 5633–5673 – reference: BreimanLRandom forestsMach Learn200145532 – reference: Zhou J, Huang S, Qiu Y (2022b) Optimization of random forest through the use of MVO, GWO and MFO in evaluating the stability of underground entry-type excavations. Tunnelling and Underground Space Technology 124:104494 – reference: BenaliLNottonGFouilloyAVoyantCDizeneRSolar radiation forecasting using artificial neural network and random forest methods: application to normal beam, horizontal diffuse and global componentsRenew Energy2019132871884 – reference: Shin S, Lee Y, Kim M, Park J, Lee S, Min K (2020) Deep neural network model with Bayesian hyperparameter optimization for prediction of NOx at transient conditions in a diesel engine. Eng Appl Artif Intell 94:103761 – reference: TangSWangJTangCIdentification of microseismic events in rock engineering by a convolutional neural network combined with an attention mechanismRock Mech Rock Eng2021544769 – reference: Johnson CW, Ben-Zion Y, Meng H, Vernon F (2020) Identifying different classes of seismic noise signals using unsupervised learning. Geophys Res Lett 47(15):e2020GL088353 – reference: ZhouJShenXQiuYShiXKhandelwalMCross-correlation stacking-based microseismic source location using three metaheuristic optimization algorithmsTunnel Undergr Space Technol2022126 – reference: LeCunYBengioYHintonGDeep learningNature2015521436444 – reference: WuLZLiSHHuangRQWangSYMicro-seismic source location determined by a modified objective functionEng Comput20203618491856 – reference: DongXShenJWangWShaoLLingHPorikliFDynamical hyperparameter optimization via deep reinforcement learning in trackingIEEE Trans Pattern Anal Mach Intell20214315151529 – reference: Geiger L (1912) Probability method for determination of earthquake epicenters from arrival time only. Bulletin of Saint Louis University 8: 60–71. – reference: Joy TT, Rana S, Gupta S, Venkatesh S (2020) Fast hyperparameter tuning using Bayesian optimization with directional derivatives. Knowl Based Syst 205:106247 – reference: TangCALiLXuNMaKMicroseismic monitoring and numerical simulation on the stability of high-steep rock slopes in hydropower engineeringJ Rock Mech Geotech Eng20157493508 – reference: Zhou J, Zhang Y, Li C, He H, Li X (2023) Rockburst prediction and prevention in underground space excavation. Underground Space. 1-29. https://doi.org/10.1016/j.undsp.2023.05.009 – reference: LivXTangCALiLLvPSunRMicroseismic monitoring and stability analysis of the right bank slope at Dagangshan hydropower station after the initial impoundmentInt J Rock Mech Min Sci2018108128141 – reference: Saad OM, Chen Y (2020) Automatic waveform-based source-location imaging using deep learning extracted microseismic signals. Geophysics 85:KS171–KS183 – reference: Qiu Y, Zhou J (2023) Short-term rockburst prediction in underground project: insights from an explainable and interpretable ensemble learning model. Acta Geotechnica. 1-31. https://doi.org/10.1007/s11440-023-01988-0 – reference: WainerJFonsecaPHow to tune the RBF SVM hyperparameters? An empirical evaluation of 18 search algorithmsArtif Intell Rev20215447714797 – reference: Li L, Tan J, Schwarz B, Stanek F, Poiata N, Shi P, Diekmann L, Eisner L, Gajewski D (2020) Recent advances and challenges of waveform-based seismic location methods at multiple scales. Rev Geophys 58(1):e2019RG000667 – reference: MeyerMWeberSBeutelJThieleLSystematic identification of external influences in multi-year microseismic recordings using convolutional neural networksEarth Surf Dyn20197171190 – reference: WuYWeiJPanJChenPResearch on microseismic source locations based on deep reinforcement learningIEEE Access201973996239973 – reference: HuangLQLiJHaoHLiXBMicro-seismic event detection and location in underground mines by using convolutional neural networks (CNN) and deep learningTunn Undergr Space Technol201881265276 – reference: IngladaVDie Berechnung der Herdkoordinaten eines Nahbebens aus den Eintrittszeiten der in einigen benachbarten Stationen aufgezeichneten P- oder S-WellenGerlands Beitr Geophys1928197398 – reference: LiuXTangCALiLLvPLiuHMicroseismic monitoring and 3D finite element analysis of the right bank slope, Dagangshan hydropower station, during reservoir impoundingRock Mech Rock Eng20175019011917 – reference: Maimaitijiang M, Sagan V, Sidike P, Hartling S, Esposito F, Fritschi FB (2020) Soybean yield prediction from UAV using multimodal data fusion and deep learning. Remote Sens Environ 237:111599 – reference: MunirajuGKailkhuraBThiagarajanJJBremerP-TTepedelenliogluCSpaniasACoverage-based designs improve sample mining and hyperparameter optimizationIEEE Trans Neural Netw Learn Syst20213212411253 – reference: ZhouJQiuYZhuSArmaghaniDJLiCNguyenHYagizSOptimization of support vector machine through the use of metaheuristic algorithms in forecasting TBM advance rateEng Appl Artif Intell202197 – reference: ZhouJQiuYZhuSArmaghaniDJKhandelwalMMohamadETEstimation of the TBM advance rate under hard rock conditions using XGBoost and Bayesian optimizationUndergr Space202165506515 – reference: ZhouJShenXQiuYLiERaoDShiXImproving the efficiency of microseismic source locating using a heuristic algorithm-based virtual field optimization methodGeomech Geophys Geo-Energy Geo-Resour202173118 – reference: Li C, Zhou J, Du K, Dias D (2023) Stability prediction of hard rock pillar using support vector machine optimized by three metaheuristic algorithms. International Journal of Mining Science and Technology. 1-18. https://doi.org/10.1016/j.ijmst.2023.06.001 – reference: FengSZhouHDongHUsing deep neural network with small dataset to predict material defectsMater Des2019162300310 – reference: Ma T, Lin D, Tang CA, Yadav KP, Feng Z, Ma K (2020) Microseismic monitoring, positioning principle, and sensor layout strategy of rock mass engineering. Geofluids 2020:1-20 – reference: SiGDurucanSJamnikarSLazarJAbrahamKKorreAShiJ-QZavgekSMutkeGLurkaASeismic monitoring and analysis of excessive gas emissions in heterogeneous coal seamsInt J Coal Geol20151494154 – reference: BakhteevOYStrijovVVComprehensive analysis of gradient-based hyperparameter optimization algorithmsAnn Oper Res20202895165 – reference: ChengGMaTTangCLiuHWangSA zoning model for coal mining-induced strata movement based on microseismic monitoringInt J Rock Mech Min Sci201794123138 – reference: Yin X, Liu Q, Huang X, Pan Y (2021) Real-time prediction of rockburst intensity using an integrated CNN-Adam-BO algorithm based on microseismic data and its engineering application. Tunnel Undergr Space Technol 117:104133 – volume: 12 start-page: 13 year: 2021 ident: 3483_CR61 publication-title: Geosci Front – ident: 3483_CR2 doi: 10.1007/s10462-021-10065-5 – volume: 6 start-page: 506 issue: 5 year: 2021 ident: 3483_CR62 publication-title: Undergr Space doi: 10.1016/j.undsp.2020.05.008 – volume: 25 start-page: 65 year: 2019 ident: 3483_CR19 publication-title: Nat Med doi: 10.1038/s41591-018-0268-3 – volume: 521 start-page: 436 year: 2015 ident: 3483_CR25 publication-title: Nature doi: 10.1038/nature14539 – volume: 149 start-page: 41 year: 2015 ident: 3483_CR41 publication-title: Int J Coal Geol doi: 10.1016/j.coal.2015.06.016 – volume: 79 start-page: 579 year: 1998 ident: 3483_CR48 publication-title: EOS Trans Am Geophys Union doi: 10.1029/98EO00426 – volume: 166 start-page: 181 year: 2018 ident: 3483_CR7 publication-title: CATENA doi: 10.1016/j.catena.2018.04.004 – volume: 50 start-page: 1901 year: 2017 ident: 3483_CR30 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-017-1191-5 – ident: 3483_CR54 doi: 10.1016/j.tust.2021.104133 – volume: 9 start-page: 155 year: 1997 ident: 3483_CR15 publication-title: Adv Neural Inf Process Syst – volume: 81 start-page: 265 year: 2018 ident: 3483_CR20 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2018.07.006 – ident: 3483_CR45 doi: 10.1016/j.cageo.2021.104965 – ident: 3483_CR37 doi: 10.1007/s11440-023-01988-0 – volume: 7 start-page: 39962 year: 2019 ident: 3483_CR50 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2906066 – volume: 97 year: 2021 ident: 3483_CR60 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2020.104015 – ident: 3483_CR40 doi: 10.1016/j.engappai.2020.103761 – volume: 36 start-page: 1849 year: 2020 ident: 3483_CR49 publication-title: Eng Comput doi: 10.1007/s00366-019-00800-6 – volume: 19 start-page: 73 year: 1928 ident: 3483_CR21 publication-title: Gerlands Beitr Geophys – volume: 32 start-page: 1241 year: 2021 ident: 3483_CR35 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2020.2982936 – ident: 3483_CR24 doi: 10.1016/j.energy.2020.118750 – ident: 3483_CR65 doi: 10.1016/j.tust.2022.104494 – ident: 3483_CR1 doi: 10.1002/stc.2693 – volume: 12 issue: 3 year: 2021 ident: 3483_CR51 publication-title: Geosci Front – volume: 43 start-page: 1515 year: 2021 ident: 3483_CR14 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2019.2956703 – volume: 13 start-page: 1380 issue: 6 year: 2021 ident: 3483_CR27 publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2021.07.013 – ident: 3483_CR29 doi: 10.1029/2019RG000667 – ident: 3483_CR23 doi: 10.1016/j.knosys.2020.106247 – volume: 98 start-page: 366 year: 2008 ident: 3483_CR8 publication-title: Bull Seismol Soc Am doi: 10.1785/0120070002 – ident: 3483_CR38 doi: 10.1190/geo2020-0288.1 – ident: 3483_CR57 doi: 10.1007/s10462-021-09967-1 – volume: 54 start-page: 4771 year: 2021 ident: 3483_CR44 publication-title: Artif Intell Rev doi: 10.1007/s10462-021-10011-5 – volume: 7 start-page: 1 issue: 3 year: 2021 ident: 3483_CR63 publication-title: Geomech Geophys Geo-Energy Geo-Resour – volume: 12 issue: 5 year: 2021 ident: 3483_CR58 publication-title: Geosci Front doi: 10.1016/j.gsf.2021.101198 – ident: 3483_CR17 – volume: 37 start-page: 3519 issue: 4 year: 2021 ident: 3483_CR28 publication-title: Eng Comput doi: 10.1007/s00366-020-01014-x – volume: 7 start-page: 171 year: 2019 ident: 3483_CR34 publication-title: Earth Surf Dyn doi: 10.5194/esurf-7-171-2019 – volume: 118 year: 2021 ident: 3483_CR3 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2021.104183 – ident: 3483_CR10 – volume: 83 start-page: 259 issue: 2 year: 2022 ident: 3483_CR52 publication-title: Struct Eng Mech – volume: 126 year: 2022 ident: 3483_CR64 publication-title: Tunnel Undergr Space Technol doi: 10.1016/j.tust.2022.104570 – ident: 3483_CR47 doi: 10.3390/ma15186269 – ident: 3483_CR22 doi: 10.1029/2020GL088353 – volume: 11 start-page: 1095 issue: 4 year: 2020 ident: 3483_CR56 publication-title: Geosci Front doi: 10.1016/j.gsf.2019.12.003 – volume: 50 start-page: 629 year: 2012 ident: 3483_CR59 publication-title: Saf Sci doi: 10.1016/j.ssci.2011.08.065 – volume: 162 start-page: 300 year: 2019 ident: 3483_CR16 publication-title: Mater Des doi: 10.1016/j.matdes.2018.11.060 – ident: 3483_CR6 doi: 10.1126/science.aau0323 – volume: 75 start-page: 779 year: 1985 ident: 3483_CR13 publication-title: Bull Seismol Soc Am doi: 10.1785/BSSA0750030779 – volume: 132 start-page: 871 year: 2019 ident: 3483_CR5 publication-title: Renew Energy doi: 10.1016/j.renene.2018.08.044 – ident: 3483_CR26 doi: 10.1016/j.ijmst.2023.06.001 – ident: 3483_CR66 doi: 10.1016/j.undsp.2023.05.009 – volume: 289 start-page: 51 year: 2020 ident: 3483_CR4 publication-title: Ann Oper Res doi: 10.1007/s10479-019-03286-z – volume: 247 start-page: 144 year: 2017 ident: 3483_CR53 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.03.058 – volume: 39 start-page: 993 year: 2018 ident: 3483_CR11 publication-title: Surv Geophys doi: 10.1007/s10712-018-9479-x – volume: 108 start-page: 128 year: 2018 ident: 3483_CR31 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2018.06.012 – ident: 3483_CR36 doi: 10.1016/j.enggeo.2020.105519 – volume: 54 start-page: 47 year: 2021 ident: 3483_CR43 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-020-02259-0 – volume: 63 start-page: 1907 year: 2021 ident: 3483_CR39 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-020-02787-x – volume: 7 start-page: 493 year: 2015 ident: 3483_CR42 publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2015.06.010 – ident: 3483_CR33 doi: 10.1016/j.rse.2019.111599 – volume: 94 start-page: 123 year: 2017 ident: 3483_CR12 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2017.03.001 – volume: 54 start-page: 6299 year: 2021 ident: 3483_CR55 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-021-02614-9 – volume: 45 start-page: 5 year: 2001 ident: 3483_CR9 publication-title: Mach Learn doi: 10.1023/A:1010933404324 – ident: 3483_CR18 doi: 10.1016/j.rse.2020.111702 – ident: 3483_CR32 doi: 10.1155/2020/8810391 – ident: 3483_CR46 doi: 10.1080/17455030.2021.2009151 |
| SSID | ssj0014378 |
| Score | 2.4690924 |
| Snippet | In recent years, with the gradual depletion of shallow mineral resources, the exploitation of deep mineral resources has become an inevitable trend.... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 8771 |
| SubjectTerms | Accuracy Artificial neural networks Bayesian analysis Bayesian theory Civil Engineering Comparative analysis Datasets Earth and Environmental Science Earth Sciences Geophysics/Geodesy Learning algorithms Machine learning Mathematical models Metals Methods Microseisms Mineral resources Model accuracy Monitoring Neural networks Original Paper Probability theory Rockbursts Sensor arrays Sensors Stress concentration Support vector machines Synthetic data Training Travel time Water inrush |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9swDCayBAPWw9BmG_raoMNurTHbkl-HYliHpEExp8WwALkZsiQPwZqkTdJD_kB_90hZTroBzcEnmYJhSiQlfvwI8DmSqSmTEhdvrDNPmJR7qfK5F2dhGkmhklLSQTEfxoORuB5H4xYMm1oYglU2NtEaaj1XdEf-hQ4GoYjQ33y9f_CoaxRlV5sWGtK1VtAXlmLsFXRCYsZqQ-eyN7z9uckrCF7b5iTkHjGVuzIaW0xH1CSU08SHC_xm_19XtY0__0uZWk_U34e3LoRk32qdH0DLzLqw94xYsAuvr2zD3vU7eMoJcbc0k-V0otiPeX1DxyYzRjl79F5_WG4wAGc54d9ZuWa5hVca5phXfzNql3a3ZJfo7zRD2QEeXRdEGT4lKA27QaMzddWczCIQ8NW1oeLMZsws3sOo3_v1feC53guewk258nTl-xIPf5xCmjAMlKlESq7NxNwvCWoiskSppNJJSSRfUsaqCmKlE1HpTGj-Adqz-cwcAotNItIwqyKUFzINpIx4mKlUlDowQeUfQdD85kI5YnLqj3FXbCiVrWoKVE1hVVOgzNlG5r6m5dj59mmjvcJt0WWxXVBHcN5odDv88mzHu2c7gTfUkr6GvJxCe7V4NB8xcFmVn9xq_AvmWOlg priority: 102 providerName: ProQuest |
| Title | Microseismic Location in Hardrock Metal Mines by Machine Learning Models Based on Hyperparameter Optimization Using Bayesian Optimizer |
| URI | https://link.springer.com/article/10.1007/s00603-023-03483-0 https://www.proquest.com/docview/2899245415 |
| Volume | 56 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1434-453X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014378 issn: 0723-2632 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1434-453X dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0014378 issn: 0723-2632 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1434-453X dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0014378 issn: 0723-2632 databaseCode: 8FG dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1434-453X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014378 issn: 0723-2632 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1434-453X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014378 issn: 0723-2632 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gExIcEAwQgzHlwA0q9ZG26XFDewjoQIhJ41SlaYomtg6t47A_wO_G7mMDBEgcqh7i5FAnsV1__kzIuS24Ct0QNq8TeRpT3NK41C3N8UxuCybdUGCg6A-c_pBdj-xRURSWlmj3MiWZ3dSrYjekDsGcIzwWgzUhUK_aSOcFu3hotla5A2bl968LkshGXpTK_LzGV3O09jG_pUUza9PdI7uFm0hbuV73yYZKamTnE3lgjWz1sqa8ywPy7iOqLlXjdDqW9HaW_4Wj44RiXh4s1Av1FTjZ1EeMOw2X1M8glIoW7KrPFFuiTVLaBpsWUZjbh_B0jrTgU4TL0Du4WKZFxSbNUAYgulRYgFmOqfkhGXY7j1d9reivoEk4eAstinVdQIBnodtimoZUMeNovpRj6SHCSZjnSunGkRsikZcQjowNR0YuiyOPRdYRqSSzRB0T6iiXcdOLbZjPBDeEsC3Tk5yFkaGMWK8To_zMgSzIx7EHxiRY0SZnqglANUGmmgDmXKzmvObUG39KN0rtBcUxTAOMJk1mg5NSJ5elRtfDv6928j_xU7KNbehzmEuDVBbzN3UGzsoibJJN3u01SbXVe7rpwLvdGdw_NLMd-wEA3-Ow |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB6VVAg4VFBAFNriA5xgxa7t_TtUiP6R0mxAqJV6W7y2F0U0ScmmqvICPFafjRnHmwASvfWwJ3t88MzOeOxvvgF4FavMVmmFxpuYPJA2E0GmQxEkOc9iJXVaKUoUi37SPZWfzuKzFbhua2EIVtn6ROeozVjTHfk7Sgy4jDHevL_4GVDXKHpdbVtoKN9awew4ijFf2HFsZ1eYwjU7R_uo79ecHx6c7HUD32Ug0Gh-08DUYagwzREUvDmPtK1lRk7cJiKsCFQh81TrtDZpRXRWSiW6jhJtUlmbXBqB696BVSlwWgdWdw_6X74u3jGkmMeClIuAmNF92Y4r3iMqFHpDxU9I3KPw79C4PO_-80TrIt_hQ1jzR1b2YW5jj2DFjtbhwR9Ehutw96NrEDx7DL8KQvg1dtAMB5r1xvMbQTYYMcIIYLT8wQqLB35WEN6eVTNWODinZZ7p9Tuj9mznDdvF-GoYynYxVZ4QRfmQoDvsMzq5oa8eZQ7xgFNnlopB2zE7eQKnt6KFp9AZjUf2GbDEpjLjeR2jvFRZpFQseK4zWZnIRnW4AVG7zaX2ROjUj-O8XFA4O9WUqJrSqaZEmTcLmYs5DciNszdb7ZXeJTTl0oA34G2r0eXw_1d7fvNqL-Fe96Tolb2j_vELuM_JoBzcZhM608ml3cJD07Ta9pbJ4Ntt_wy_ATt6Ju8 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VViA4oFJAFNriA5wgamI7cXJAiP5st7QpHKjUW-rYDlq1u9tuFqF9AR6Kp2PGSXahEr31kJMzPnjGMx77m28A3sQ6daUq0XgTmwXSpSJITSiCJONprKVRpaZEMT9J-qfy81l8tgS_u1oYglV2PtE7ajs2dEe-TYkBlzHGm-2qhUV83et9vLoOqIMUvbR27TQaEzlys5-YvtUfDvdQ12857-1_2-0HbYeBwKDpTQNbhaHGFEdQ4OY8Mq6SKTlwl4iwJECFzJQxqrKqJCorrRNTRYmxSlY2k1bgvPdgRRGLO1Wp9w7mLxhSNFFAcREQJ3pbsOPL9ogEhV5P8RMSVyf8NyguTro3Hmd9zOutwuP2sMo-Ndb1BJbcaA0e_UVhuAb3D3xr4NlT-JUTtq92g3o4MOx43NwFssGIEToA4-QFyx0e9VlOSHtWzljugZyOtRyv3xk1Zrus2Q5GVstQto9J8oTIyYcE2mFf0L0N27pR5rEO-OvMURloN-Ymz-D0TnTwHJZH45F7ASxxSqY8q2KUlzqNtI4Fz0wqSxu5qArXIeqWuTAtBTp14rgs5uTNXjUFqqbwqilQ5t1c5qohALn1741Oe0XrDOpiYbrr8L7T6GL4_7O9vH221_AAt0BxfHhy9AoecrInj7PZgOXp5IfbxNPStNzyZsng_K73wR8hZSSJ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microseismic+Location+in+Hardrock+Metal+Mines+by+Machine+Learning+Models+Based+on+Hyperparameter+Optimization+Using+Bayesian+Optimizer&rft.jtitle=Rock+mechanics+and+rock+engineering&rft.au=Zhou%2C+Jian&rft.au=Shen%2C+Xiaojie&rft.au=Qiu%2C+Yingui&rft.au=Shi%2C+Xiuzhi&rft.date=2023-12-01&rft.pub=Springer+Vienna&rft.issn=0723-2632&rft.eissn=1434-453X&rft.volume=56&rft.issue=12&rft.spage=8771&rft.epage=8788&rft_id=info:doi/10.1007%2Fs00603-023-03483-0&rft.externalDocID=10_1007_s00603_023_03483_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0723-2632&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0723-2632&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0723-2632&client=summon |