Microseismic Location in Hardrock Metal Mines by Machine Learning Models Based on Hyperparameter Optimization Using Bayesian Optimizer

In recent years, with the gradual depletion of shallow mineral resources, the exploitation of deep mineral resources has become an inevitable trend. Microseismic monitoring is one of the main methods to solve high stress concentration problems such as rockbursts, roof caving and water inrush in deep...

Full description

Saved in:
Bibliographic Details
Published inRock mechanics and rock engineering Vol. 56; no. 12; pp. 8771 - 8788
Main Authors Zhou, Jian, Shen, Xiaojie, Qiu, Yingui, Shi, Xiuzhi, Du, Kun
Format Journal Article
LanguageEnglish
Published Vienna Springer Vienna 01.12.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0723-2632
1434-453X
DOI10.1007/s00603-023-03483-0

Cover

Abstract In recent years, with the gradual depletion of shallow mineral resources, the exploitation of deep mineral resources has become an inevitable trend. Microseismic monitoring is one of the main methods to solve high stress concentration problems such as rockbursts, roof caving and water inrush in deep mine. An accurate and fast microseismic location method is the basis of microseismic monitoring. At present, machine learning (ML) has become an important auxiliary method in the field of microseismic monitoring due to its powerful feature expression ability. Compared with other microseismic positioning methods, ML can construct a more objective positioning model. This paper uses three ML models including deep neural network (DNN), random forest (RF),and support vector regression (SVR) to construct a microseismic position method to search for the microseismic source. The travel time difference between stations is used as the input of the ML model. Since the number of field data sets is not enough to complete the training of the model, this paper uses a synthetic data set with a specific speed model as the training set and uses the field data set for testing. In order to analyze the location accuracy, we compare them with three traditional microseismic location methods. To improve the positioning performance of ML models, this paper uses a Bayesian optimizer (BO) to adjust their hyperparameters. The experimental results show that the performance of the ML model adjusted by the BO has been significantly improved. The positioning accuracy order of the three ML models is DNN > RF > SVR > traditional location method. The average positioning accuracies of the DNN inside and outside the sensors array are 27.81 m and 145.96 m, respectively. For the model proposed in this paper, the positioning accuracy inside the sensors array is significantly higher than that outside the array, which is similar to the traditional positioning method. In addition, the model has a certain tolerance to the error of the speed model. Highlights Utilization of machine learning (ML) for accurate and objective microseismic source location. Comparative analysis of three ML models (DNN, RF, SVR) and traditional methods. Enhancement of ML model performance using Bayesian optimizer for hyperparameter tuning. Significant improvement in positioning accuracy with DNN model inside and outside the sensor array. Tolerance to speed model errors in the proposed ML-based microseismic positioning method.
AbstractList In recent years, with the gradual depletion of shallow mineral resources, the exploitation of deep mineral resources has become an inevitable trend. Microseismic monitoring is one of the main methods to solve high stress concentration problems such as rockbursts, roof caving and water inrush in deep mine. An accurate and fast microseismic location method is the basis of microseismic monitoring. At present, machine learning (ML) has become an important auxiliary method in the field of microseismic monitoring due to its powerful feature expression ability. Compared with other microseismic positioning methods, ML can construct a more objective positioning model. This paper uses three ML models including deep neural network (DNN), random forest (RF),and support vector regression (SVR) to construct a microseismic position method to search for the microseismic source. The travel time difference between stations is used as the input of the ML model. Since the number of field data sets is not enough to complete the training of the model, this paper uses a synthetic data set with a specific speed model as the training set and uses the field data set for testing. In order to analyze the location accuracy, we compare them with three traditional microseismic location methods. To improve the positioning performance of ML models, this paper uses a Bayesian optimizer (BO) to adjust their hyperparameters. The experimental results show that the performance of the ML model adjusted by the BO has been significantly improved. The positioning accuracy order of the three ML models is DNN > RF > SVR > traditional location method. The average positioning accuracies of the DNN inside and outside the sensors array are 27.81 m and 145.96 m, respectively. For the model proposed in this paper, the positioning accuracy inside the sensors array is significantly higher than that outside the array, which is similar to the traditional positioning method. In addition, the model has a certain tolerance to the error of the speed model.HighlightsUtilization of machine learning (ML) for accurate and objective microseismic source location.Comparative analysis of three ML models (DNN, RF, SVR) and traditional methods.Enhancement of ML model performance using Bayesian optimizer for hyperparameter tuning.Significant improvement in positioning accuracy with DNN model inside and outside the sensor array.Tolerance to speed model errors in the proposed ML-based microseismic positioning method.
In recent years, with the gradual depletion of shallow mineral resources, the exploitation of deep mineral resources has become an inevitable trend. Microseismic monitoring is one of the main methods to solve high stress concentration problems such as rockbursts, roof caving and water inrush in deep mine. An accurate and fast microseismic location method is the basis of microseismic monitoring. At present, machine learning (ML) has become an important auxiliary method in the field of microseismic monitoring due to its powerful feature expression ability. Compared with other microseismic positioning methods, ML can construct a more objective positioning model. This paper uses three ML models including deep neural network (DNN), random forest (RF),and support vector regression (SVR) to construct a microseismic position method to search for the microseismic source. The travel time difference between stations is used as the input of the ML model. Since the number of field data sets is not enough to complete the training of the model, this paper uses a synthetic data set with a specific speed model as the training set and uses the field data set for testing. In order to analyze the location accuracy, we compare them with three traditional microseismic location methods. To improve the positioning performance of ML models, this paper uses a Bayesian optimizer (BO) to adjust their hyperparameters. The experimental results show that the performance of the ML model adjusted by the BO has been significantly improved. The positioning accuracy order of the three ML models is DNN > RF > SVR > traditional location method. The average positioning accuracies of the DNN inside and outside the sensors array are 27.81 m and 145.96 m, respectively. For the model proposed in this paper, the positioning accuracy inside the sensors array is significantly higher than that outside the array, which is similar to the traditional positioning method. In addition, the model has a certain tolerance to the error of the speed model. Highlights Utilization of machine learning (ML) for accurate and objective microseismic source location. Comparative analysis of three ML models (DNN, RF, SVR) and traditional methods. Enhancement of ML model performance using Bayesian optimizer for hyperparameter tuning. Significant improvement in positioning accuracy with DNN model inside and outside the sensor array. Tolerance to speed model errors in the proposed ML-based microseismic positioning method.
Author Zhou, Jian
Shen, Xiaojie
Du, Kun
Qiu, Yingui
Shi, Xiuzhi
Author_xml – sequence: 1
  givenname: Jian
  surname: Zhou
  fullname: Zhou, Jian
  organization: School of Resources and Safety Engineering, Central South University
– sequence: 2
  givenname: Xiaojie
  surname: Shen
  fullname: Shen, Xiaojie
  organization: School of Resources and Safety Engineering, Central South University
– sequence: 3
  givenname: Yingui
  surname: Qiu
  fullname: Qiu, Yingui
  organization: School of Resources and Safety Engineering, Central South University
– sequence: 4
  givenname: Xiuzhi
  surname: Shi
  fullname: Shi, Xiuzhi
  organization: School of Resources and Safety Engineering, Central South University
– sequence: 5
  givenname: Kun
  surname: Du
  fullname: Du, Kun
  email: dukuncsu@csu.edu.cn
  organization: School of Resources and Safety Engineering, Central South University
BookMark eNp9kMFOwzAMhiM0JMbgBThF4lxwmqxpjzABQ1rFhUncqix1RsaWlqQcxgPw3GQrCInDDrYj_f7s-D8lA9c4JOSCwRUDkNcBIAOeQBqDizzmIzJkgotEjPnLgAxBRinNeHpCTkNYAURR5kPyVVrtm4A2bKyms0arzjaOWkenyte-0W-0xE6taWkdBrrY0lLp1_imM1TeWbekZVPjOtBbFbCmkZ1uW_St8mqDHXr61HZ2Yz_7ufOwI27VFoNV7ldDf0aOjVoHPP-pIzK_v3ueTJPZ08Pj5GaWaM6KLqkNgMoFcMh4nqZMoxF5PF1ixmFhDGpRSK2lqeWCyQKUyrRhma6lMHUhaj4il_3c1jfvHxi6atV8eBdXVmleFKkYCzaOXWnftbMmeDRV6-1G-W3FoNr5XfV-V9Hvau93zCOS_4O07fZXd17Z9WGU92iIe9wS_d-vDlDfNqGY2g
CitedBy_id crossref_primary_10_1007_s00603_024_03947_x
crossref_primary_10_1007_s11600_024_01320_8
crossref_primary_10_1007_s10230_024_01011_2
crossref_primary_10_1016_j_jrmge_2024_02_014
crossref_primary_10_3390_buildings14030591
crossref_primary_10_1007_s11053_023_10259_4
crossref_primary_10_3390_app14093759
crossref_primary_10_3934_mbe_2024061
crossref_primary_10_1016_j_jrmge_2024_05_024
crossref_primary_10_3390_buildings14010225
crossref_primary_10_3390_app14146164
crossref_primary_10_3390_s24041285
crossref_primary_10_3390_math12223500
crossref_primary_10_1016_j_jenvman_2024_123068
crossref_primary_10_1007_s00603_024_04055_6
crossref_primary_10_1007_s42461_025_01221_4
crossref_primary_10_1515_rams_2023_0179
Cites_doi 10.1007/s10462-021-10065-5
10.1016/j.undsp.2020.05.008
10.1038/s41591-018-0268-3
10.1038/nature14539
10.1016/j.coal.2015.06.016
10.1029/98EO00426
10.1016/j.catena.2018.04.004
10.1007/s00603-017-1191-5
10.1016/j.tust.2021.104133
10.1016/j.tust.2018.07.006
10.1016/j.cageo.2021.104965
10.1007/s11440-023-01988-0
10.1109/ACCESS.2019.2906066
10.1016/j.engappai.2020.104015
10.1016/j.engappai.2020.103761
10.1007/s00366-019-00800-6
10.1109/TNNLS.2020.2982936
10.1016/j.energy.2020.118750
10.1016/j.tust.2022.104494
10.1002/stc.2693
10.1109/TPAMI.2019.2956703
10.1016/j.jrmge.2021.07.013
10.1029/2019RG000667
10.1016/j.knosys.2020.106247
10.1785/0120070002
10.1190/geo2020-0288.1
10.1007/s10462-021-09967-1
10.1007/s10462-021-10011-5
10.1016/j.gsf.2021.101198
10.1007/s00366-020-01014-x
10.5194/esurf-7-171-2019
10.1016/j.tust.2021.104183
10.1016/j.tust.2022.104570
10.3390/ma15186269
10.1029/2020GL088353
10.1016/j.gsf.2019.12.003
10.1016/j.ssci.2011.08.065
10.1016/j.matdes.2018.11.060
10.1126/science.aau0323
10.1785/BSSA0750030779
10.1016/j.renene.2018.08.044
10.1016/j.ijmst.2023.06.001
10.1016/j.undsp.2023.05.009
10.1007/s10479-019-03286-z
10.1016/j.neucom.2017.03.058
10.1007/s10712-018-9479-x
10.1016/j.ijrmms.2018.06.012
10.1016/j.enggeo.2020.105519
10.1007/s00603-020-02259-0
10.1007/s00158-020-02787-x
10.1016/j.jrmge.2015.06.010
10.1016/j.rse.2019.111599
10.1016/j.ijrmms.2017.03.001
10.1007/s00603-021-02614-9
10.1023/A:1010933404324
10.1016/j.rse.2020.111702
10.1155/2020/8810391
10.1080/17455030.2021.2009151
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7TN
7UA
7XB
88I
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
H96
HCIFZ
KR7
L.G
L6V
M2P
M7S
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s00603-023-03483-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Oceanic Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Science Database
Engineering Database
Earth, Atmospheric & Aquatic Science Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Engineering
EISSN 1434-453X
EndPage 8788
ExternalDocumentID 10_1007_s00603_023_03483_0
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 42177164; 41807259
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: The science and technology innovation program of Hunan province
  grantid: 2021RC3007
– fundername: Innovation-Driven Project of Central South University
  grantid: 2020CX040
  funderid: http://dx.doi.org/10.13039/501100012486
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29P
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67M
67Z
6NX
78A
88I
8FE
8FG
8FH
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKIV
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
L8X
LAS
LK5
LLZTM
M2P
M4Y
M7R
M7S
MA-
MK~
MM-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PCBAR
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK6
WK8
Y6R
YLTOR
Z45
Z5O
Z7Y
Z7Z
Z81
Z85
Z86
Z8S
Z8T
Z8U
Z8Z
ZMTXR
ZY4
~02
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7TN
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H96
KR7
L.G
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-df00a84030638221cef480067e630bffec497cc7fd7b1790aa6cf16cd74fd94d3
IEDL.DBID U2A
ISSN 0723-2632
IngestDate Sat Aug 23 14:14:18 EDT 2025
Thu Apr 24 23:03:17 EDT 2025
Wed Oct 01 04:12:48 EDT 2025
Fri Feb 21 02:41:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Support vector regression
Deep neural network
Microseismic location
Random forest
Bayesian optimizer
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-df00a84030638221cef480067e630bffec497cc7fd7b1790aa6cf16cd74fd94d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2899245415
PQPubID 60272
PageCount 18
ParticipantIDs proquest_journals_2899245415
crossref_primary_10_1007_s00603_023_03483_0
crossref_citationtrail_10_1007_s00603_023_03483_0
springer_journals_10_1007_s00603_023_03483_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231200
2023-12-00
20231201
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 20231200
PublicationDecade 2020
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
– name: Wien
PublicationTitle Rock mechanics and rock engineering
PublicationTitleAbbrev Rock Mech Rock Eng
PublicationYear 2023
Publisher Springer Vienna
Springer Nature B.V
Publisher_xml – name: Springer Vienna
– name: Springer Nature B.V
References HannunAYRajpurkarPHaghpanahiMTisonGHBournCTurakhiaMPNgAYCardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural networkNat Med20192565
Ma T, Lin D, Tang CA, Yadav KP, Feng Z, Ma K (2020) Microseismic monitoring, positioning principle, and sensor layout strategy of rock mass engineering. Geofluids 2020:1-20
Wamriew D, Charara M, Pissarenko D (2022) Joint event location and velocity model update in real-time for downhole microseismic monitoring: A deep learning approach. Comput Geosci 158:104965
BakhteevOYStrijovVVComprehensive analysis of gradient-based hyperparameter optimization algorithmsAnn Oper Res20202895165
BoseMWenzelFErdikMPreSEIS: a neural network-based approach to earthquake early warning, for finite faultsBull Seismol Soc Am200898366382
Agrawal AK, Chakraborty G (2021) On the use of acquisition function-based Bayesian optimization method to efficiently tune SVM hyperparameters for structural damage detection. Struct Control Health Monit 28(4):e2693
Bergen KJ, Johnson PA, Maarten V, Beroza GC (2019) Machine learning for data-driven discovery in solid Earth geoscience. Science 363(6433):eaau0323
ZhangWZhangRWuCGohATCLacasseSLiuZLiuHState-of-the-art review of soft computing applications in underground excavationsGeosci Front202011410951106
ZhouJQiuYGArmaghaniDJZhangWGLiCQZhuSLTarinejadRPredicting TBM penetration rate in hard rock condition: a comparative study among six XGB-based metaheuristic techniquesGeosci Front20211213
ZhaoHChenBLiSLiZZhuCUpdating the models and uncertainty of mechanical parameters for rock tunnels using Bayesian inferenceGeosci Front2021125
DongXShenJWangWShaoLLingHPorikliFDynamical hyperparameter optimization via deep reinforcement learning in trackingIEEE Trans Pattern Anal Mach Intell20214315151529
Saad OM, Chen Y (2020) Automatic waveform-based source-location imaging using deep learning extracted microseismic signals. Geophysics 85:KS171–KS183
TangSWangJTangCIdentification of microseismic events in rock engineering by a convolutional neural network combined with an attention mechanismRock Mech Rock Eng2021544769
Zhou J, Zhang Y, Li C, He H, Li X (2023) Rockburst prediction and prevention in underground space excavation. Underground Space. 1-29. https://doi.org/10.1016/j.undsp.2023.05.009
ZhouJLiXBShiXZLong-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machinesSaf Sci201250629644
Karasu S, Altan A, Bekiros S, Ahmad W (2020) A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series. Energy 212:118750
ArmaghaniDJYagizSMohamadETZhouJPrediction of TBM performance in fresh through weathered granite using empirical and statistical approachesTunn Undergr Space Technol2021118
ChengFLiuJWangJYangZAbbasiSSTianZXuHLocating leaking buried pipes based on ground microseismic records in 3D spaceSurv Geophys2018399931007
Armaghani DJ, Harandizadeh H, Momeni E, Maizir H, Zhou J (2021a) An optimized system of GMDH-ANFIS predictive model by ICA for estimating pile bearing capacity. Artif Intell Rev 55: 2313–2350
Binh ThaiPLe HoangSTuan-AnhHDuc-ManhNDieu TienBPrediction of shear strength of soft soil using machine learning methodsCATENA2018166181191
Maimaitijiang M, Sagan V, Sidike P, Hartling S, Esposito F, Fritschi FB (2020) Soybean yield prediction from UAV using multimodal data fusion and deep learning. Remote Sens Environ 237:111599
SiGDurucanSJamnikarSLazarJAbrahamKKorreAShiJ-QZavgekSMutkeGLurkaASeismic monitoring and analysis of excessive gas emissions in heterogeneous coal seamsInt J Coal Geol20151494154
ZhouJQiuYZhuSArmaghaniDJLiCNguyenHYagizSOptimization of support vector machine through the use of metaheuristic algorithms in forecasting TBM advance rateEng Appl Artif Intell202197
Gibson R, Danaher T, Hehir W, Collins L (2020) A remote sensing approach to mapping fire severity in south-eastern Australia using sentinel 2 and random forest. Remote Sens Environ 240:111702
Shin S, Lee Y, Kim M, Park J, Lee S, Min K (2020) Deep neural network model with Bayesian hyperparameter optimization for prediction of NOx at transient conditions in a diesel engine. Eng Appl Artif Intell 94:103761
ShendeSGillmanAYooDBuskohlPVemagantiKBayesian topology optimization for efficient design of origami folding structuresStruct Multidiscip Optim20216319071926
IngladaVDie Berechnung der Herdkoordinaten eines Nahbebens aus den Eintrittszeiten der in einigen benachbarten Stationen aufgezeichneten P- oder S-WellenGerlands Beitr Geophys1928197398
Joy TT, Rana S, Gupta S, Venkatesh S (2020) Fast hyperparameter tuning using Bayesian optimization with directional derivatives. Knowl Based Syst 205:106247
XuPQinXZhuHDeep neural networks trained by the adaptive momentum-based technique for stability simulation of organic solar cellsStruct Eng Mech2022832259272
Wang K-K, Tang CA, Ma K, Yu G, Zhang S, Peng Y (2021) Cross-related microseismic location based on improved particle swarm optimization and the double-difference location method of jointed coal rock mass. Waves Random Complex Media 1-24. https://doi.org/10.1080/17455030.2021.2009151
WesselPSmithWHNew, improved version of generic mapping tools releasedEOS Trans Am Geophys Union199879579579
Yin X, Liu Q, Huang X, Pan Y (2021) Real-time prediction of rockburst intensity using an integrated CNN-Adam-BO algorithm based on microseismic data and its engineering application. Tunnel Undergr Space Technol 117:104133
Brochu E, Cora VM, De Freitas N (2010) A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv:1012.2599
ZhouJShenXQiuYLiERaoDShiXImproving the efficiency of microseismic source locating using a heuristic algorithm-based virtual field optimization methodGeomech Geophys Geo-Energy Geo-Resour202173118
Li L, Tan J, Schwarz B, Stanek F, Poiata N, Shi P, Diekmann L, Eisner L, Gajewski D (2020) Recent advances and challenges of waveform-based seismic location methods at multiple scales. Rev Geophys 58(1):e2019RG000667
DruckerHBurgesCJKaufmanLSmolaAVapnikVSupport vector regression machinesAdv Neural Inf Process Syst19979155161
ZhouJShenXQiuYShiXKhandelwalMCross-correlation stacking-based microseismic source location using three metaheuristic optimization algorithmsTunnel Undergr Space Technol2022126
TangCALiLXuNMaKMicroseismic monitoring and numerical simulation on the stability of high-steep rock slopes in hydropower engineeringJ Rock Mech Geotech Eng20157493508
Geiger L (1912) Probability method for determination of earthquake epicenters from arrival time only. Bulletin of Saint Louis University 8: 60–71.
XieCNguyenHBuiXNChoiYZhouJNguyen-TrangTPredicting rock size distribution in mine blasting using various novel soft computing models based on meta-heuristics and machine learning algorithmsGeosci Front2021123
YaoCCaiDBuJChenGPre-training the deep generative models with adaptive hyperparameter optimizationNeurocomputing2017247144155
LivXTangCALiLLvPSunRMicroseismic monitoring and stability analysis of the right bank slope at Dagangshan hydropower station after the initial impoundmentInt J Rock Mech Min Sci2018108128141
Pu Y, Apel DB, Hall R (2020) Using machine learning approach for microseismic events recognition in underground excavations: comparison of ten frequently-used models. Eng Geol 268:105519
LiEYangFRenMZhangXZhouJKhandelwalMPrediction of blasting mean fragment size using support vector regression combined with five optimization algorithmsJ Rock Mech Geotech Eng202113613801397
Qiu Y, Zhou J (2023) Short-term rockburst prediction in underground project: insights from an explainable and interpretable ensemble learning model. Acta Geotechnica. 1-31. https://doi.org/10.1007/s11440-023-01988-0
BenaliLNottonGFouilloyAVoyantCDizeneRSolar radiation forecasting using artificial neural network and random forest methods: application to normal beam, horizontal diffuse and global componentsRenew Energy2019132871884
LiuXTangCALiLLvPLiuHMicroseismic monitoring and 3D finite element analysis of the right bank slope, Dagangshan hydropower station, during reservoir impoundingRock Mech Rock Eng20175019011917
WuLZLiSHHuangRQWangSYMicro-seismic source location determined by a modified objective functionEng Comput20203618491856
BreimanLRandom forestsMach Learn200145532
HuangLQLiJHaoHLiXBMicro-seismic event detection and location in underground mines by using convolutional neural networks (CNN) and deep learningTunn Undergr Space Technol201881265276
LiEZhouJShiXJahed ArmaghaniDYuZChenXHuangPDeveloping a hybrid model of salp swarm algorithm-based support vector machine to predict the strength of fiber-reinforced cemented paste backfillEng Comput202137435193540
Johnson CW, Ben-Zion Y, Meng H, Vernon F (2020) Identifying different classes of seismic noise signals using unsupervised learning. Geophys Res Lett 47(15):e2020GL088353
Zhang W, Li H, Li Y, Liu H, Chen Y, Ding X (2021b) Application of deep learning algorithms in geotechnical engineering: a short critical review. Artif Intell Rev 54: 5633–5673
Wen S, Li X, Wang B, Tan J, Liu Y, Lv J, Tan Z, Yin L, Du Y (2022) Deep neural network-evaluated thermal conductivity for two-phase WC-M (M = Ag, Co) cemented carbides. Materials (Basel, Switzerland) 15(18):6269
CliffordHThurber,Nonlinear earthquake location: theory and examplesBull Seismol Soc Am198575779790
LeCunYBengioYHintonGDeep learningNature2015521436444
WainerJFonsecaPHow to tune the RBF SVM hyperparameters? An empirical evaluation of 18 search algorithmsArtif Intell Rev20215447714797
ZhangHZengJMaJFangYMaCYaoZChenZTime series prediction of microseismic multi-parameter related to rockburst based on deep learningRock Mech Rock Eng20215462996321
Zhou J, Huang S, Qiu Y (2022b) Optimization of random forest through the use of MVO, GWO and MFO in evaluating the stability of underground entry-type excavations. Tunnelling and Underground Space
LZ Wu (3483_CR49) 2020; 36
3483_CR18
3483_CR17
J Zhou (3483_CR62) 2021; 6
J Zhou (3483_CR59) 2012; 50
3483_CR57
E Li (3483_CR27) 2021; 13
3483_CR10
3483_CR54
J Zhou (3483_CR64) 2022; 126
P Binh Thai (3483_CR7) 2018; 166
G Cheng (3483_CR12) 2017; 94
OY Bakhteev (3483_CR4) 2020; 289
V Inglada (3483_CR21) 1928; 19
P Xu (3483_CR52) 2022; 83
3483_CR29
DJ Armaghani (3483_CR3) 2021; 118
S Feng (3483_CR16) 2019; 162
3483_CR24
P Wessel (3483_CR48) 1998; 79
3483_CR2
3483_CR26
J Wainer (3483_CR44) 2021; 54
3483_CR65
3483_CR6
X Dong (3483_CR14) 2021; 43
3483_CR23
C Yao (3483_CR53) 2017; 247
3483_CR22
J Zhou (3483_CR63) 2021; 7
3483_CR66
X Liu (3483_CR30) 2017; 50
W Zhang (3483_CR56) 2020; 11
J Zhou (3483_CR60) 2021; 97
Y Wu (3483_CR50) 2019; 7
Y LeCun (3483_CR25) 2015; 521
L Breiman (3483_CR9) 2001; 45
CA Tang (3483_CR42) 2015; 7
F Cheng (3483_CR11) 2018; 39
3483_CR36
3483_CR38
3483_CR37
3483_CR32
H Zhang (3483_CR55) 2021; 54
3483_CR33
LQ Huang (3483_CR20) 2018; 81
L Benali (3483_CR5) 2019; 132
3483_CR1
H Zhao (3483_CR58) 2021; 12
S Shende (3483_CR39) 2021; 63
J Zhou (3483_CR61) 2021; 12
M Bose (3483_CR8) 2008; 98
X Liv (3483_CR31) 2018; 108
C Xie (3483_CR51) 2021; 12
H Clifford (3483_CR13) 1985; 75
E Li (3483_CR28) 2021; 37
G Muniraju (3483_CR35) 2021; 32
3483_CR47
AY Hannun (3483_CR19) 2019; 25
3483_CR46
M Meyer (3483_CR34) 2019; 7
G Si (3483_CR41) 2015; 149
H Drucker (3483_CR15) 1997; 9
S Tang (3483_CR43) 2021; 54
3483_CR45
3483_CR40
References_xml – reference: Wang K-K, Tang CA, Ma K, Yu G, Zhang S, Peng Y (2021) Cross-related microseismic location based on improved particle swarm optimization and the double-difference location method of jointed coal rock mass. Waves Random Complex Media 1-24. https://doi.org/10.1080/17455030.2021.2009151
– reference: ZhangWZhangRWuCGohATCLacasseSLiuZLiuHState-of-the-art review of soft computing applications in underground excavationsGeosci Front202011410951106
– reference: BoseMWenzelFErdikMPreSEIS: a neural network-based approach to earthquake early warning, for finite faultsBull Seismol Soc Am200898366382
– reference: Agrawal AK, Chakraborty G (2021) On the use of acquisition function-based Bayesian optimization method to efficiently tune SVM hyperparameters for structural damage detection. Struct Control Health Monit 28(4):e2693
– reference: ZhangHZengJMaJFangYMaCYaoZChenZTime series prediction of microseismic multi-parameter related to rockburst based on deep learningRock Mech Rock Eng20215462996321
– reference: DruckerHBurgesCJKaufmanLSmolaAVapnikVSupport vector regression machinesAdv Neural Inf Process Syst19979155161
– reference: Brochu E, Cora VM, De Freitas N (2010) A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv:1012.2599
– reference: XuPQinXZhuHDeep neural networks trained by the adaptive momentum-based technique for stability simulation of organic solar cellsStruct Eng Mech2022832259272
– reference: ChengFLiuJWangJYangZAbbasiSSTianZXuHLocating leaking buried pipes based on ground microseismic records in 3D spaceSurv Geophys2018399931007
– reference: Wamriew D, Charara M, Pissarenko D (2022) Joint event location and velocity model update in real-time for downhole microseismic monitoring: A deep learning approach. Comput Geosci 158:104965
– reference: ShendeSGillmanAYooDBuskohlPVemagantiKBayesian topology optimization for efficient design of origami folding structuresStruct Multidiscip Optim20216319071926
– reference: ArmaghaniDJYagizSMohamadETZhouJPrediction of TBM performance in fresh through weathered granite using empirical and statistical approachesTunn Undergr Space Technol2021118
– reference: ZhaoHChenBLiSLiZZhuCUpdating the models and uncertainty of mechanical parameters for rock tunnels using Bayesian inferenceGeosci Front2021125
– reference: Karasu S, Altan A, Bekiros S, Ahmad W (2020) A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series. Energy 212:118750
– reference: Pu Y, Apel DB, Hall R (2020) Using machine learning approach for microseismic events recognition in underground excavations: comparison of ten frequently-used models. Eng Geol 268:105519
– reference: WesselPSmithWHNew, improved version of generic mapping tools releasedEOS Trans Am Geophys Union199879579579
– reference: LiEYangFRenMZhangXZhouJKhandelwalMPrediction of blasting mean fragment size using support vector regression combined with five optimization algorithmsJ Rock Mech Geotech Eng202113613801397
– reference: LiEZhouJShiXJahed ArmaghaniDYuZChenXHuangPDeveloping a hybrid model of salp swarm algorithm-based support vector machine to predict the strength of fiber-reinforced cemented paste backfillEng Comput202137435193540
– reference: Wen S, Li X, Wang B, Tan J, Liu Y, Lv J, Tan Z, Yin L, Du Y (2022) Deep neural network-evaluated thermal conductivity for two-phase WC-M (M = Ag, Co) cemented carbides. Materials (Basel, Switzerland) 15(18):6269
– reference: ZhouJQiuYGArmaghaniDJZhangWGLiCQZhuSLTarinejadRPredicting TBM penetration rate in hard rock condition: a comparative study among six XGB-based metaheuristic techniquesGeosci Front20211213
– reference: YaoCCaiDBuJChenGPre-training the deep generative models with adaptive hyperparameter optimizationNeurocomputing2017247144155
– reference: HannunAYRajpurkarPHaghpanahiMTisonGHBournCTurakhiaMPNgAYCardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural networkNat Med20192565
– reference: ZhouJLiXBShiXZLong-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machinesSaf Sci201250629644
– reference: Armaghani DJ, Harandizadeh H, Momeni E, Maizir H, Zhou J (2021a) An optimized system of GMDH-ANFIS predictive model by ICA for estimating pile bearing capacity. Artif Intell Rev 55: 2313–2350
– reference: Gibson R, Danaher T, Hehir W, Collins L (2020) A remote sensing approach to mapping fire severity in south-eastern Australia using sentinel 2 and random forest. Remote Sens Environ 240:111702
– reference: Binh ThaiPLe HoangSTuan-AnhHDuc-ManhNDieu TienBPrediction of shear strength of soft soil using machine learning methodsCATENA2018166181191
– reference: XieCNguyenHBuiXNChoiYZhouJNguyen-TrangTPredicting rock size distribution in mine blasting using various novel soft computing models based on meta-heuristics and machine learning algorithmsGeosci Front2021123
– reference: CliffordHThurber,Nonlinear earthquake location: theory and examplesBull Seismol Soc Am198575779790
– reference: Bergen KJ, Johnson PA, Maarten V, Beroza GC (2019) Machine learning for data-driven discovery in solid Earth geoscience. Science 363(6433):eaau0323
– reference: Zhang W, Li H, Li Y, Liu H, Chen Y, Ding X (2021b) Application of deep learning algorithms in geotechnical engineering: a short critical review. Artif Intell Rev 54: 5633–5673
– reference: BreimanLRandom forestsMach Learn200145532
– reference: Zhou J, Huang S, Qiu Y (2022b) Optimization of random forest through the use of MVO, GWO and MFO in evaluating the stability of underground entry-type excavations. Tunnelling and Underground Space Technology 124:104494
– reference: BenaliLNottonGFouilloyAVoyantCDizeneRSolar radiation forecasting using artificial neural network and random forest methods: application to normal beam, horizontal diffuse and global componentsRenew Energy2019132871884
– reference: Shin S, Lee Y, Kim M, Park J, Lee S, Min K (2020) Deep neural network model with Bayesian hyperparameter optimization for prediction of NOx at transient conditions in a diesel engine. Eng Appl Artif Intell 94:103761
– reference: TangSWangJTangCIdentification of microseismic events in rock engineering by a convolutional neural network combined with an attention mechanismRock Mech Rock Eng2021544769
– reference: Johnson CW, Ben-Zion Y, Meng H, Vernon F (2020) Identifying different classes of seismic noise signals using unsupervised learning. Geophys Res Lett 47(15):e2020GL088353
– reference: ZhouJShenXQiuYShiXKhandelwalMCross-correlation stacking-based microseismic source location using three metaheuristic optimization algorithmsTunnel Undergr Space Technol2022126
– reference: LeCunYBengioYHintonGDeep learningNature2015521436444
– reference: WuLZLiSHHuangRQWangSYMicro-seismic source location determined by a modified objective functionEng Comput20203618491856
– reference: DongXShenJWangWShaoLLingHPorikliFDynamical hyperparameter optimization via deep reinforcement learning in trackingIEEE Trans Pattern Anal Mach Intell20214315151529
– reference: Geiger L (1912) Probability method for determination of earthquake epicenters from arrival time only. Bulletin of Saint Louis University 8: 60–71.
– reference: Joy TT, Rana S, Gupta S, Venkatesh S (2020) Fast hyperparameter tuning using Bayesian optimization with directional derivatives. Knowl Based Syst 205:106247
– reference: TangCALiLXuNMaKMicroseismic monitoring and numerical simulation on the stability of high-steep rock slopes in hydropower engineeringJ Rock Mech Geotech Eng20157493508
– reference: Zhou J, Zhang Y, Li C, He H, Li X (2023) Rockburst prediction and prevention in underground space excavation. Underground Space. 1-29. https://doi.org/10.1016/j.undsp.2023.05.009
– reference: LivXTangCALiLLvPSunRMicroseismic monitoring and stability analysis of the right bank slope at Dagangshan hydropower station after the initial impoundmentInt J Rock Mech Min Sci2018108128141
– reference: Saad OM, Chen Y (2020) Automatic waveform-based source-location imaging using deep learning extracted microseismic signals. Geophysics 85:KS171–KS183
– reference: Qiu Y, Zhou J (2023) Short-term rockburst prediction in underground project: insights from an explainable and interpretable ensemble learning model. Acta Geotechnica. 1-31. https://doi.org/10.1007/s11440-023-01988-0
– reference: WainerJFonsecaPHow to tune the RBF SVM hyperparameters? An empirical evaluation of 18 search algorithmsArtif Intell Rev20215447714797
– reference: Li L, Tan J, Schwarz B, Stanek F, Poiata N, Shi P, Diekmann L, Eisner L, Gajewski D (2020) Recent advances and challenges of waveform-based seismic location methods at multiple scales. Rev Geophys 58(1):e2019RG000667
– reference: MeyerMWeberSBeutelJThieleLSystematic identification of external influences in multi-year microseismic recordings using convolutional neural networksEarth Surf Dyn20197171190
– reference: WuYWeiJPanJChenPResearch on microseismic source locations based on deep reinforcement learningIEEE Access201973996239973
– reference: HuangLQLiJHaoHLiXBMicro-seismic event detection and location in underground mines by using convolutional neural networks (CNN) and deep learningTunn Undergr Space Technol201881265276
– reference: IngladaVDie Berechnung der Herdkoordinaten eines Nahbebens aus den Eintrittszeiten der in einigen benachbarten Stationen aufgezeichneten P- oder S-WellenGerlands Beitr Geophys1928197398
– reference: LiuXTangCALiLLvPLiuHMicroseismic monitoring and 3D finite element analysis of the right bank slope, Dagangshan hydropower station, during reservoir impoundingRock Mech Rock Eng20175019011917
– reference: Maimaitijiang M, Sagan V, Sidike P, Hartling S, Esposito F, Fritschi FB (2020) Soybean yield prediction from UAV using multimodal data fusion and deep learning. Remote Sens Environ 237:111599
– reference: MunirajuGKailkhuraBThiagarajanJJBremerP-TTepedelenliogluCSpaniasACoverage-based designs improve sample mining and hyperparameter optimizationIEEE Trans Neural Netw Learn Syst20213212411253
– reference: ZhouJQiuYZhuSArmaghaniDJLiCNguyenHYagizSOptimization of support vector machine through the use of metaheuristic algorithms in forecasting TBM advance rateEng Appl Artif Intell202197
– reference: ZhouJQiuYZhuSArmaghaniDJKhandelwalMMohamadETEstimation of the TBM advance rate under hard rock conditions using XGBoost and Bayesian optimizationUndergr Space202165506515
– reference: ZhouJShenXQiuYLiERaoDShiXImproving the efficiency of microseismic source locating using a heuristic algorithm-based virtual field optimization methodGeomech Geophys Geo-Energy Geo-Resour202173118
– reference: Li C, Zhou J, Du K, Dias D (2023) Stability prediction of hard rock pillar using support vector machine optimized by three metaheuristic algorithms. International Journal of Mining Science and Technology. 1-18. https://doi.org/10.1016/j.ijmst.2023.06.001
– reference: FengSZhouHDongHUsing deep neural network with small dataset to predict material defectsMater Des2019162300310
– reference: Ma T, Lin D, Tang CA, Yadav KP, Feng Z, Ma K (2020) Microseismic monitoring, positioning principle, and sensor layout strategy of rock mass engineering. Geofluids 2020:1-20
– reference: SiGDurucanSJamnikarSLazarJAbrahamKKorreAShiJ-QZavgekSMutkeGLurkaASeismic monitoring and analysis of excessive gas emissions in heterogeneous coal seamsInt J Coal Geol20151494154
– reference: BakhteevOYStrijovVVComprehensive analysis of gradient-based hyperparameter optimization algorithmsAnn Oper Res20202895165
– reference: ChengGMaTTangCLiuHWangSA zoning model for coal mining-induced strata movement based on microseismic monitoringInt J Rock Mech Min Sci201794123138
– reference: Yin X, Liu Q, Huang X, Pan Y (2021) Real-time prediction of rockburst intensity using an integrated CNN-Adam-BO algorithm based on microseismic data and its engineering application. Tunnel Undergr Space Technol 117:104133
– volume: 12
  start-page: 13
  year: 2021
  ident: 3483_CR61
  publication-title: Geosci Front
– ident: 3483_CR2
  doi: 10.1007/s10462-021-10065-5
– volume: 6
  start-page: 506
  issue: 5
  year: 2021
  ident: 3483_CR62
  publication-title: Undergr Space
  doi: 10.1016/j.undsp.2020.05.008
– volume: 25
  start-page: 65
  year: 2019
  ident: 3483_CR19
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0268-3
– volume: 521
  start-page: 436
  year: 2015
  ident: 3483_CR25
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 149
  start-page: 41
  year: 2015
  ident: 3483_CR41
  publication-title: Int J Coal Geol
  doi: 10.1016/j.coal.2015.06.016
– volume: 79
  start-page: 579
  year: 1998
  ident: 3483_CR48
  publication-title: EOS Trans Am Geophys Union
  doi: 10.1029/98EO00426
– volume: 166
  start-page: 181
  year: 2018
  ident: 3483_CR7
  publication-title: CATENA
  doi: 10.1016/j.catena.2018.04.004
– volume: 50
  start-page: 1901
  year: 2017
  ident: 3483_CR30
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-017-1191-5
– ident: 3483_CR54
  doi: 10.1016/j.tust.2021.104133
– volume: 9
  start-page: 155
  year: 1997
  ident: 3483_CR15
  publication-title: Adv Neural Inf Process Syst
– volume: 81
  start-page: 265
  year: 2018
  ident: 3483_CR20
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2018.07.006
– ident: 3483_CR45
  doi: 10.1016/j.cageo.2021.104965
– ident: 3483_CR37
  doi: 10.1007/s11440-023-01988-0
– volume: 7
  start-page: 39962
  year: 2019
  ident: 3483_CR50
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2906066
– volume: 97
  year: 2021
  ident: 3483_CR60
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2020.104015
– ident: 3483_CR40
  doi: 10.1016/j.engappai.2020.103761
– volume: 36
  start-page: 1849
  year: 2020
  ident: 3483_CR49
  publication-title: Eng Comput
  doi: 10.1007/s00366-019-00800-6
– volume: 19
  start-page: 73
  year: 1928
  ident: 3483_CR21
  publication-title: Gerlands Beitr Geophys
– volume: 32
  start-page: 1241
  year: 2021
  ident: 3483_CR35
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2020.2982936
– ident: 3483_CR24
  doi: 10.1016/j.energy.2020.118750
– ident: 3483_CR65
  doi: 10.1016/j.tust.2022.104494
– ident: 3483_CR1
  doi: 10.1002/stc.2693
– volume: 12
  issue: 3
  year: 2021
  ident: 3483_CR51
  publication-title: Geosci Front
– volume: 43
  start-page: 1515
  year: 2021
  ident: 3483_CR14
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2019.2956703
– volume: 13
  start-page: 1380
  issue: 6
  year: 2021
  ident: 3483_CR27
  publication-title: J Rock Mech Geotech Eng
  doi: 10.1016/j.jrmge.2021.07.013
– ident: 3483_CR29
  doi: 10.1029/2019RG000667
– ident: 3483_CR23
  doi: 10.1016/j.knosys.2020.106247
– volume: 98
  start-page: 366
  year: 2008
  ident: 3483_CR8
  publication-title: Bull Seismol Soc Am
  doi: 10.1785/0120070002
– ident: 3483_CR38
  doi: 10.1190/geo2020-0288.1
– ident: 3483_CR57
  doi: 10.1007/s10462-021-09967-1
– volume: 54
  start-page: 4771
  year: 2021
  ident: 3483_CR44
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-021-10011-5
– volume: 7
  start-page: 1
  issue: 3
  year: 2021
  ident: 3483_CR63
  publication-title: Geomech Geophys Geo-Energy Geo-Resour
– volume: 12
  issue: 5
  year: 2021
  ident: 3483_CR58
  publication-title: Geosci Front
  doi: 10.1016/j.gsf.2021.101198
– ident: 3483_CR17
– volume: 37
  start-page: 3519
  issue: 4
  year: 2021
  ident: 3483_CR28
  publication-title: Eng Comput
  doi: 10.1007/s00366-020-01014-x
– volume: 7
  start-page: 171
  year: 2019
  ident: 3483_CR34
  publication-title: Earth Surf Dyn
  doi: 10.5194/esurf-7-171-2019
– volume: 118
  year: 2021
  ident: 3483_CR3
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2021.104183
– ident: 3483_CR10
– volume: 83
  start-page: 259
  issue: 2
  year: 2022
  ident: 3483_CR52
  publication-title: Struct Eng Mech
– volume: 126
  year: 2022
  ident: 3483_CR64
  publication-title: Tunnel Undergr Space Technol
  doi: 10.1016/j.tust.2022.104570
– ident: 3483_CR47
  doi: 10.3390/ma15186269
– ident: 3483_CR22
  doi: 10.1029/2020GL088353
– volume: 11
  start-page: 1095
  issue: 4
  year: 2020
  ident: 3483_CR56
  publication-title: Geosci Front
  doi: 10.1016/j.gsf.2019.12.003
– volume: 50
  start-page: 629
  year: 2012
  ident: 3483_CR59
  publication-title: Saf Sci
  doi: 10.1016/j.ssci.2011.08.065
– volume: 162
  start-page: 300
  year: 2019
  ident: 3483_CR16
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2018.11.060
– ident: 3483_CR6
  doi: 10.1126/science.aau0323
– volume: 75
  start-page: 779
  year: 1985
  ident: 3483_CR13
  publication-title: Bull Seismol Soc Am
  doi: 10.1785/BSSA0750030779
– volume: 132
  start-page: 871
  year: 2019
  ident: 3483_CR5
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2018.08.044
– ident: 3483_CR26
  doi: 10.1016/j.ijmst.2023.06.001
– ident: 3483_CR66
  doi: 10.1016/j.undsp.2023.05.009
– volume: 289
  start-page: 51
  year: 2020
  ident: 3483_CR4
  publication-title: Ann Oper Res
  doi: 10.1007/s10479-019-03286-z
– volume: 247
  start-page: 144
  year: 2017
  ident: 3483_CR53
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.03.058
– volume: 39
  start-page: 993
  year: 2018
  ident: 3483_CR11
  publication-title: Surv Geophys
  doi: 10.1007/s10712-018-9479-x
– volume: 108
  start-page: 128
  year: 2018
  ident: 3483_CR31
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2018.06.012
– ident: 3483_CR36
  doi: 10.1016/j.enggeo.2020.105519
– volume: 54
  start-page: 47
  year: 2021
  ident: 3483_CR43
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-020-02259-0
– volume: 63
  start-page: 1907
  year: 2021
  ident: 3483_CR39
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-020-02787-x
– volume: 7
  start-page: 493
  year: 2015
  ident: 3483_CR42
  publication-title: J Rock Mech Geotech Eng
  doi: 10.1016/j.jrmge.2015.06.010
– ident: 3483_CR33
  doi: 10.1016/j.rse.2019.111599
– volume: 94
  start-page: 123
  year: 2017
  ident: 3483_CR12
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2017.03.001
– volume: 54
  start-page: 6299
  year: 2021
  ident: 3483_CR55
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-021-02614-9
– volume: 45
  start-page: 5
  year: 2001
  ident: 3483_CR9
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– ident: 3483_CR18
  doi: 10.1016/j.rse.2020.111702
– ident: 3483_CR32
  doi: 10.1155/2020/8810391
– ident: 3483_CR46
  doi: 10.1080/17455030.2021.2009151
SSID ssj0014378
Score 2.4690924
Snippet In recent years, with the gradual depletion of shallow mineral resources, the exploitation of deep mineral resources has become an inevitable trend....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8771
SubjectTerms Accuracy
Artificial neural networks
Bayesian analysis
Bayesian theory
Civil Engineering
Comparative analysis
Datasets
Earth and Environmental Science
Earth Sciences
Geophysics/Geodesy
Learning algorithms
Machine learning
Mathematical models
Metals
Methods
Microseisms
Mineral resources
Model accuracy
Monitoring
Neural networks
Original Paper
Probability theory
Rockbursts
Sensor arrays
Sensors
Stress concentration
Support vector machines
Synthetic data
Training
Travel time
Water inrush
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9swDCayBAPWw9BmG_raoMNurTHbkl-HYliHpEExp8WwALkZsiQPwZqkTdJD_kB_90hZTroBzcEnmYJhSiQlfvwI8DmSqSmTEhdvrDNPmJR7qfK5F2dhGkmhklLSQTEfxoORuB5H4xYMm1oYglU2NtEaaj1XdEf-hQ4GoYjQ33y9f_CoaxRlV5sWGtK1VtAXlmLsFXRCYsZqQ-eyN7z9uckrCF7b5iTkHjGVuzIaW0xH1CSU08SHC_xm_19XtY0__0uZWk_U34e3LoRk32qdH0DLzLqw94xYsAuvr2zD3vU7eMoJcbc0k-V0otiPeX1DxyYzRjl79F5_WG4wAGc54d9ZuWa5hVca5phXfzNql3a3ZJfo7zRD2QEeXRdEGT4lKA27QaMzddWczCIQ8NW1oeLMZsws3sOo3_v1feC53guewk258nTl-xIPf5xCmjAMlKlESq7NxNwvCWoiskSppNJJSSRfUsaqCmKlE1HpTGj-Adqz-cwcAotNItIwqyKUFzINpIx4mKlUlDowQeUfQdD85kI5YnLqj3FXbCiVrWoKVE1hVVOgzNlG5r6m5dj59mmjvcJt0WWxXVBHcN5odDv88mzHu2c7gTfUkr6GvJxCe7V4NB8xcFmVn9xq_AvmWOlg
  priority: 102
  providerName: ProQuest
Title Microseismic Location in Hardrock Metal Mines by Machine Learning Models Based on Hyperparameter Optimization Using Bayesian Optimizer
URI https://link.springer.com/article/10.1007/s00603-023-03483-0
https://www.proquest.com/docview/2899245415
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1434-453X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014378
  issn: 0723-2632
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1434-453X
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0014378
  issn: 0723-2632
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1434-453X
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0014378
  issn: 0723-2632
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1434-453X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014378
  issn: 0723-2632
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1434-453X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014378
  issn: 0723-2632
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gExIcEAwQgzHlwA0q9ZG26XFDewjoQIhJ41SlaYomtg6t47A_wO_G7mMDBEgcqh7i5FAnsV1__kzIuS24Ct0QNq8TeRpT3NK41C3N8UxuCybdUGCg6A-c_pBdj-xRURSWlmj3MiWZ3dSrYjekDsGcIzwWgzUhUK_aSOcFu3hotla5A2bl968LkshGXpTK_LzGV3O09jG_pUUza9PdI7uFm0hbuV73yYZKamTnE3lgjWz1sqa8ywPy7iOqLlXjdDqW9HaW_4Wj44RiXh4s1Av1FTjZ1EeMOw2X1M8glIoW7KrPFFuiTVLaBpsWUZjbh_B0jrTgU4TL0Du4WKZFxSbNUAYgulRYgFmOqfkhGXY7j1d9reivoEk4eAstinVdQIBnodtimoZUMeNovpRj6SHCSZjnSunGkRsikZcQjowNR0YuiyOPRdYRqSSzRB0T6iiXcdOLbZjPBDeEsC3Tk5yFkaGMWK8To_zMgSzIx7EHxiRY0SZnqglANUGmmgDmXKzmvObUG39KN0rtBcUxTAOMJk1mg5NSJ5elRtfDv6928j_xU7KNbehzmEuDVBbzN3UGzsoibJJN3u01SbXVe7rpwLvdGdw_NLMd-wEA3-Ow
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB6VVAg4VFBAFNriA5xgxa7t_TtUiP6R0mxAqJV6W7y2F0U0ScmmqvICPFafjRnHmwASvfWwJ3t88MzOeOxvvgF4FavMVmmFxpuYPJA2E0GmQxEkOc9iJXVaKUoUi37SPZWfzuKzFbhua2EIVtn6ROeozVjTHfk7Sgy4jDHevL_4GVDXKHpdbVtoKN9awew4ijFf2HFsZ1eYwjU7R_uo79ecHx6c7HUD32Ug0Gh-08DUYagwzREUvDmPtK1lRk7cJiKsCFQh81TrtDZpRXRWSiW6jhJtUlmbXBqB696BVSlwWgdWdw_6X74u3jGkmMeClIuAmNF92Y4r3iMqFHpDxU9I3KPw79C4PO_-80TrIt_hQ1jzR1b2YW5jj2DFjtbhwR9Ehutw96NrEDx7DL8KQvg1dtAMB5r1xvMbQTYYMcIIYLT8wQqLB35WEN6eVTNWODinZZ7p9Tuj9mznDdvF-GoYynYxVZ4QRfmQoDvsMzq5oa8eZQ7xgFNnlopB2zE7eQKnt6KFp9AZjUf2GbDEpjLjeR2jvFRZpFQseK4zWZnIRnW4AVG7zaX2ROjUj-O8XFA4O9WUqJrSqaZEmTcLmYs5DciNszdb7ZXeJTTl0oA34G2r0eXw_1d7fvNqL-Fe96Tolb2j_vELuM_JoBzcZhM608ml3cJD07Ta9pbJ4Ntt_wy_ATt6Ju8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VViA4oFJAFNriA5wgamI7cXJAiP5st7QpHKjUW-rYDlq1u9tuFqF9AR6Kp2PGSXahEr31kJMzPnjGMx77m28A3sQ6daUq0XgTmwXSpSJITSiCJONprKVRpaZEMT9J-qfy81l8tgS_u1oYglV2PtE7ajs2dEe-TYkBlzHGm-2qhUV83et9vLoOqIMUvbR27TQaEzlys5-YvtUfDvdQ12857-1_2-0HbYeBwKDpTQNbhaHGFEdQ4OY8Mq6SKTlwl4iwJECFzJQxqrKqJCorrRNTRYmxSlY2k1bgvPdgRRGLO1Wp9w7mLxhSNFFAcREQJ3pbsOPL9ogEhV5P8RMSVyf8NyguTro3Hmd9zOutwuP2sMo-Ndb1BJbcaA0e_UVhuAb3D3xr4NlT-JUTtq92g3o4MOx43NwFssGIEToA4-QFyx0e9VlOSHtWzljugZyOtRyv3xk1Zrus2Q5GVstQto9J8oTIyYcE2mFf0L0N27pR5rEO-OvMURloN-Ymz-D0TnTwHJZH45F7ASxxSqY8q2KUlzqNtI4Fz0wqSxu5qArXIeqWuTAtBTp14rgs5uTNXjUFqqbwqilQ5t1c5qohALn1741Oe0XrDOpiYbrr8L7T6GL4_7O9vH221_AAt0BxfHhy9AoecrInj7PZgOXp5IfbxNPStNzyZsng_K73wR8hZSSJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microseismic+Location+in+Hardrock+Metal+Mines+by+Machine+Learning+Models+Based+on+Hyperparameter+Optimization+Using+Bayesian+Optimizer&rft.jtitle=Rock+mechanics+and+rock+engineering&rft.au=Zhou%2C+Jian&rft.au=Shen%2C+Xiaojie&rft.au=Qiu%2C+Yingui&rft.au=Shi%2C+Xiuzhi&rft.date=2023-12-01&rft.pub=Springer+Vienna&rft.issn=0723-2632&rft.eissn=1434-453X&rft.volume=56&rft.issue=12&rft.spage=8771&rft.epage=8788&rft_id=info:doi/10.1007%2Fs00603-023-03483-0&rft.externalDocID=10_1007_s00603_023_03483_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0723-2632&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0723-2632&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0723-2632&client=summon