Automatic handwritten character recognition of Devanagari language: a hybrid training algorithm for neural network
In the field of image processing and Artificial Intelligence the character recognition and handwritten recognition have been emerging as one of the active and challenging research areas. In recent years, there has been a notable development in the research associated with character recognition in ha...
        Saved in:
      
    
          | Published in | Evolutionary intelligence Vol. 15; no. 2; pp. 1499 - 1516 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Berlin/Heidelberg
          Springer Berlin Heidelberg
    
        01.06.2022
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1864-5909 1864-5917  | 
| DOI | 10.1007/s12065-021-00597-8 | 
Cover
| Abstract | In the field of image processing and Artificial Intelligence the character recognition and handwritten recognition have been emerging as one of the active and challenging research areas. In recent years, there has been a notable development in the research associated with character recognition in handwritten Devanagari documents. To improve the recognition performance, this paper tactics to develop new handwritten character recognition model using an improved machine learning approach. The proposed character recognition model includes four stages like pre-processing, Segmentation, Feature Extraction, and Classification. Initially, the scanned handwritten document for Devanagari language is subjected to pre-processing, which includes stages like, RGB to gray, thresholding, complement of image, morphological operations, linearization and noise removal using Median Filter. Then, the characters of the pre-processed image are segmented using k-means clustering that is a popular method for cluster analysis. Further, the features like, Kirsch Directional Edge, Freeman chain code and neighborhood distance weight using Delaunay Triangulation are extracted from the segmented characters. Subsequently, the classification of characters is done using Neural Network (NN) where the new training algorithm is used, in which the weights are optimized using a hybrid optimization by combining Lion Optimization Algorithm and Grey Wolf Optimization (GWO). Here, the update procedure of GWO is based on LA algorithm and hence, the proposed algorithm is named as Lion Updated GWO (LU-GWO). To the next of the implementation, a valuable comparative analysis confirms the improved performance of the proposed LU-GWO-NN model over conventional methods in classifying the consonants, numerals, and vowels from different characters. | 
    
|---|---|
| AbstractList | In the field of image processing and Artificial Intelligence the character recognition and handwritten recognition have been emerging as one of the active and challenging research areas. In recent years, there has been a notable development in the research associated with character recognition in handwritten Devanagari documents. To improve the recognition performance, this paper tactics to develop new handwritten character recognition model using an improved machine learning approach. The proposed character recognition model includes four stages like pre-processing, Segmentation, Feature Extraction, and Classification. Initially, the scanned handwritten document for Devanagari language is subjected to pre-processing, which includes stages like, RGB to gray, thresholding, complement of image, morphological operations, linearization and noise removal using Median Filter. Then, the characters of the pre-processed image are segmented using k-means clustering that is a popular method for cluster analysis. Further, the features like, Kirsch Directional Edge, Freeman chain code and neighborhood distance weight using Delaunay Triangulation are extracted from the segmented characters. Subsequently, the classification of characters is done using Neural Network (NN) where the new training algorithm is used, in which the weights are optimized using a hybrid optimization by combining Lion Optimization Algorithm and Grey Wolf Optimization (GWO). Here, the update procedure of GWO is based on LA algorithm and hence, the proposed algorithm is named as Lion Updated GWO (LU-GWO). To the next of the implementation, a valuable comparative analysis confirms the improved performance of the proposed LU-GWO-NN model over conventional methods in classifying the consonants, numerals, and vowels from different characters. | 
    
| Author | Yawalkar, Prashant Madhukar Kharat, Madan Uttamrao  | 
    
| Author_xml | – sequence: 1 givenname: Prashant Madhukar surname: Yawalkar fullname: Yawalkar, Prashant Madhukar email: yawalkarprashantm@gmail.com, prashant25yawalkar@gmail.com organization: MET’s Institute of Engineering, BKC – sequence: 2 givenname: Madan Uttamrao surname: Kharat fullname: Kharat, Madan Uttamrao organization: MET’s Institute of Engineering, BKC  | 
    
| BookMark | eNp9kM1OwzAQhC1UJNrCC3CyxDlgO66TcKvKr1SJC5ytreOkLqldNg5V356UIpA49LR7mG92Z0Zk4IO3hFxyds0Zy25aLpiaJEzwhLFJkSX5CRnyXMlkUvBs8Luz4oyM2nbFmBIsk0OC0y6GNURn6BJ8uUUXo_XULAHBRIsUrQm1d9EFT0NF7-wneKgBHW3A1x3U9pYCXe4W6EoaEZx3vqbQ1KG3Wq5pFZB62yE0_YjbgO_n5LSCprUXP3NM3h7uX2dPyfzl8Xk2nScm5UVMSmNyySSoFJQspC2rEjKZqlJUVnBprFjwrBK8BGl4Hz-DYsGZUtJyvrB5lY7J1cF3g-Gjs23Uq9Ch709qoTLJRCq46FX5QWUwtC3aShsXYR93H6bRnOl9w_rQsO4b1t8N67xHxT90g24NuDsOpQeo7cW-tvj31RHqC07Mkms | 
    
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3520248 crossref_primary_10_1007_s11220_023_00421_w  | 
    
| Cites_doi | 10.1016/j.matpr.2017.11.093 10.1016/j.patrec.2018.04.035 10.1016/j.neucom.2017.02.105 10.1016/j.amc.2013.03.026 10.1016/j.patrec.2018.04.001 10.46253/jcmps.v2i1.a2 10.1109/CEC.2014.6900561 10.1109/ACCESS.2020.2970438 10.1016/j.patrec.2017.07.011 10.1016/j.protcy.2012.10.016 10.1016/j.patcog.2015.07.007 10.1016/j.ins.2016.12.024 10.1016/j.lindif.2014.05.010 10.1016/j.patcog.2017.09.044 10.1016/j.neucom.2016.05.017 10.1016/j.ajodo.2015.07.039 10.1016/j.ifacol.2018.07.155 10.1016/j.patcog.2017.06.022 10.1016/j.ijleo.2016.05.106 10.1016/j.procs.2017.10.061 10.1016/j.ijleo.2015.05.032 10.1016/j.ins.2018.01.045 10.1016/j.cviu.2012.08.015 10.1016/j.jvcir.2017.11.016 10.1016/j.patrec.2018.04.025 10.1016/j.ipm.2012.12.010 10.1007/s12065-018-0168-y 10.1016/j.procs.2015.06.090 10.1016/j.jpdc.2018.10.003 10.1016/j.patcog.2017.06.032 10.1016/S1665-6423(14)70598-X 10.1016/j.procs.2015.08.074 10.1016/j.procs.2019.05.033 10.1016/j.cogsys.2017.11.002 10.1016/j.neucom.2017.04.025 10.1016/j.advengsoft.2013.12.007 10.1109/IECBES.2016.7843459 10.1016/j.patcog.2018.01.021 10.1016/j.patcog.2015.07.009 10.1016/j.procs.2016.06.069 10.1016/j.newast.2015.11.001 10.1016/j.patrec.2018.04.007 10.1016/j.jsb.2016.09.008  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.  | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.  | 
    
| DBID | AAYXX CITATION JQ2  | 
    
| DOI | 10.1007/s12065-021-00597-8 | 
    
| DatabaseName | CrossRef ProQuest Computer Science Collection  | 
    
| DatabaseTitle | CrossRef ProQuest Computer Science Collection  | 
    
| DatabaseTitleList | ProQuest Computer Science Collection | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science  | 
    
| EISSN | 1864-5917 | 
    
| EndPage | 1516 | 
    
| ExternalDocumentID | 10_1007_s12065_021_00597_8 | 
    
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 06D 0R~ 0VY 1N0 203 29G 29~ 2JN 2JY 2KG 2VQ 2~H 30V 4.4 406 408 409 40D 5GY 5VS 67Z 6NX 875 8TC 8UJ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG AUKKA AXYYD AYJHY B-. BA0 BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ I0C IJ- IKXTQ IWAJR IXC IXD IZIGR IZQ I~X J-C J0Z JBSCW JCJTX JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PT4 QOS R89 RLLFE ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG TSK U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION JQ2  | 
    
| ID | FETCH-LOGICAL-c319t-dcc8404a63a6494edfda7436d2fe214ce2b17f21da4c11207a9b10664e11be8f3 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 1864-5909 | 
    
| IngestDate | Wed Sep 17 23:56:40 EDT 2025 Wed Oct 01 04:42:25 EDT 2025 Thu Apr 24 23:00:34 EDT 2025 Fri Feb 21 02:49:18 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Keywords | Neural network classification Devanagari language Feature extraction Character recognition Pre-processing Optimization  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c319t-dcc8404a63a6494edfda7436d2fe214ce2b17f21da4c11207a9b10664e11be8f3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 2674023212 | 
    
| PQPubID | 2043920 | 
    
| PageCount | 18 | 
    
| ParticipantIDs | proquest_journals_2674023212 crossref_citationtrail_10_1007_s12065_021_00597_8 crossref_primary_10_1007_s12065_021_00597_8 springer_journals_10_1007_s12065_021_00597_8  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20220600 | 
    
| PublicationDateYYYYMMDD | 2022-06-01 | 
    
| PublicationDate_xml | – month: 6 year: 2022 text: 20220600  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Berlin/Heidelberg | 
    
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg  | 
    
| PublicationTitle | Evolutionary intelligence | 
    
| PublicationTitleAbbrev | Evol. Intel | 
    
| PublicationYear | 2022 | 
    
| Publisher | Springer Berlin Heidelberg Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V  | 
    
| References | Wang, Wang, Zhou, Sun, Cui (CR47) 2017; 382–383 Sahlol, Abd-Elaziz, Al-Qaness, Kim (CR49) 2020; 8 Žalik, Mongus, Lukač, Žalik (CR38) 2018; 439–440 Sohal (CR13) 2016; 127 Rahman, Verma (CR20) 2013; 49 CR33 Normand, Strand, Evenou, Arlicot (CR39) 2013; 117 Tian, Bhattacharya, Lu, Su, Tan (CR17) 2016; 51 Yao, Cheng (CR19) 2016; 207 Puri, Singh (CR30) 2019; 152 Roy (CR44) 2019; 2 Pramanik, Bag (CR12) 2018; 50 Bawane, Gadariye, Chaturvedi, Khurshid (CR5) 2018; 5 Wei, Lu, Lu (CR11) 2018; 76 Mirjalili, Mirjalili, Lewis (CR28) 2014; 69 Mhiri, Desrosiers, Cheriet (CR7) 2018; 111 CR41 Perrini, Lombardo, Arreghini, Medori, Siciliani (CR24) 2016; 149 CR40 Chang, Su, Tzeng, Ko, Yang (CR16) 2014; 34 Zhou, Zhang, Yin, Liu (CR26) 2016; 49 Zarro, Anwer (CR6) 2017; 20 Lin, Lin, Lv, Cai, Cao (CR2) 2018; 288 Khaire, Kumar, Imran (CR31) 2018; 115 Sharp, Faas, Koster, Gros (CR34) 2017; 197 Shekar, Uma (CR37) 2015; 58 Xiao, Jin, Yang, Yang, Chang (CR18) 2017; 72 Fan, Zeng (CR45) 2013; 219 Yuan, Li (CR35) 2015; 126 Zheng, Zeng, Lin, Zhao, Xiong (CR8) 2016; 45 Wang, Shi, Wang, Xiao, Qi (CR14) 2017; 97 Lombardo, Carinci, Martini, Gemmati, Nardone, Siciliani (CR25) 2016; 9 Boufenar, Kerboua, Batouche (CR1) 2018; 50 Phangtriastu, Harefa, Tanoto (CR15) 2017; 116 Guruprasad, Majumdar (CR23) 2016; 89 Li, Wang, Xu, Xiao (CR32) 2019; 123 Dhanachandra, Manglem, Chanu (CR36) 2015; 54 Shi, Wang, Jia, He, Xiao (CR3) 2017; 72 Qu, Wang, Lu, Zhou (CR10) 2018; 78 Bostik, Klecka (CR22) 2018; 51 Singla, Yadav (CR21) 2014; 12 CR29 Cilia, De Stefano, Fontanella, di Freca (CR9) 2018; 121 Qu, Wang, Lu, Zhou (CR4) 2018; 111 Zanwar, Vaidya, Bhuyar, Narote (CR48) 2020; 29 Brammya, Deepa (CR43) 2019; 2 Kobayashi (CR46) 2017; 260 Boothalingam (CR42) 2018; 11 Rajakumar (CR27) 2012; 6 ND Cilia (597_CR9) 2018; 121 C Boufenar (597_CR1) 2018; 50 J Fan (597_CR45) 2013; 219 S Puri (597_CR30) 2019; 152 N Normand (597_CR39) 2013; 117 S Mirjalili (597_CR28) 2014; 69 C Yao (597_CR19) 2016; 207 BH Shekar (597_CR37) 2015; 58 JS Sohal (597_CR13) 2016; 127 Y Wang (597_CR14) 2017; 97 M Mhiri (597_CR7) 2018; 111 C Shi (597_CR3) 2017; 72 D Lin (597_CR2) 2018; 288 TH Sharp (597_CR34) 2017; 197 N Dhanachandra (597_CR36) 2015; 54 AT Sahlol (597_CR49) 2020; 8 A Rahman (597_CR20) 2013; 49 S Tian (597_CR17) 2016; 51 RD Zarro (597_CR6) 2017; 20 F Perrini (597_CR24) 2016; 149 597_CR33 X Qu (597_CR4) 2018; 111 X Xiao (597_CR18) 2017; 72 BR Rajakumar (597_CR27) 2012; 6 X Qu (597_CR10) 2018; 78 DTA Brammya (597_CR43) 2019; 2 H Wang (597_CR47) 2017; 382–383 M Kobayashi (597_CR46) 2017; 260 597_CR29 L Lombardo (597_CR25) 2016; 9 RG Roy (597_CR44) 2019; 2 P Khaire (597_CR31) 2018; 115 597_CR40 S Zheng (597_CR8) 2016; 45 Y Chang (597_CR16) 2014; 34 597_CR41 P Bawane (597_CR5) 2018; 5 X Wei (597_CR11) 2018; 76 C Yuan (597_CR35) 2015; 126 MR Phangtriastu (597_CR15) 2017; 116 SK Singla (597_CR21) 2014; 12 X Li (597_CR32) 2019; 123 SR Zanwar (597_CR48) 2020; 29 B Žalik (597_CR38) 2018; 439–440 R Pramanik (597_CR12) 2018; 50 R Boothalingam (597_CR42) 2018; 11 P Guruprasad (597_CR23) 2016; 89 O Bostik (597_CR22) 2018; 51 M-K Zhou (597_CR26) 2016; 49  | 
    
| References_xml | – volume: 29 start-page: 5154 issue: 8s year: 2020 end-page: 5167 ident: CR48 article-title: Feature extraction methods for handwritten character recognition publication-title: Int J Adv Sci Technol – volume: 54 start-page: 764 year: 2015 end-page: 771 ident: CR36 article-title: Image segmentation using K-means clustering algorithm and subtractive clustering algorithm publication-title: Procedia Comput Sci – volume: 78 start-page: 267 year: 2018 end-page: 276 ident: CR10 article-title: In-air handwritten Chinese character recognition with locality-sensitive sparse representation toward optimized prototype classifier publication-title: Pattern Recognit – volume: 126 start-page: 1598 issue: 18 year: 2015 end-page: 1601 ident: CR35 article-title: Switching median and morphological filter for impulse noise removal from digital images publication-title: Optik – volume: 89 start-page: 836 year: 2016 end-page: 844 ident: CR23 article-title: Multimodal recognition framework: an accurate and powerful Nandinagari handwritten character recognition model publication-title: Procedia Comput Sci – volume: 111 start-page: 87 year: 2018 end-page: 93 ident: CR7 article-title: Convolutional pyramid of bidirectional character sequences for the recognition of handwritten words publication-title: Pattern Recognit Lett – ident: CR29 – volume: 197 start-page: 155 issue: 2 year: 2017 end-page: 162 ident: CR34 article-title: Imaging complement by phase-plate cryo-electron tomography from initiation to pore formation publication-title: J Struct Biol – volume: 121 start-page: 77 year: 2018 end-page: 86 ident: CR9 article-title: A ranking-based feature selection approach for handwritten character recognition publication-title: Pattern Recognit Lett – volume: 49 start-page: 852 issue: 4 year: 2013 end-page: 864 ident: CR20 article-title: Effect of ensemble classifier composition on offline cursive character recognition publication-title: Inf Process Manage – volume: 6 start-page: 126 year: 2012 end-page: 135 ident: CR27 article-title: The Lion's algorithm: a new nature-inspired search algorithm publication-title: Procedia Technol – volume: 51 start-page: 208 issue: 6 year: 2018 end-page: 213 ident: CR22 article-title: Recognition of CAPTCHA characters by supervised machine learning algorithms publication-title: IFAC-PapersOnLine – volume: 49 start-page: 7 year: 2016 end-page: 18 ident: CR26 article-title: Discriminative quadratic feature learning for handwritten Chinese character recognition publication-title: Pattern Recognit – volume: 72 start-page: 1 year: 2017 end-page: 14 ident: CR3 article-title: Fisher vector for scene character recognition: a comprehensive evaluation publication-title: Pattern Recognit – volume: 34 start-page: 43 year: 2014 end-page: 50 ident: CR16 article-title: The contribution of rapid automatized naming to Chinese character recognition publication-title: Learn Individ Differ – volume: 152 start-page: 111 year: 2019 end-page: 121 ident: CR30 article-title: An efficient Devanagari character classification in printed and handwritten documents using SVM publication-title: Procedia Comput Sci – volume: 207 start-page: 346 year: 2016 end-page: 353 ident: CR19 article-title: Approximative Bayes optimality linear discriminant analysis for Chinese handwriting character recognition publication-title: Neurocomputing – volume: 76 start-page: 679 year: 2018 end-page: 690 ident: CR11 article-title: Compact MQDF classifiers using sparse coding for handwritten Chinese character recognition publication-title: Pattern Recognit – volume: 127 start-page: 10510 issue: 22 year: 2016 end-page: 10518 ident: CR13 article-title: Improvement of artificial neural network based character recognition system, using SciLab publication-title: Optik – volume: 45 start-page: 54 year: 2016 end-page: 59 ident: CR8 article-title: Sunspot drawings handwritten character recognition method based on deep learning publication-title: New Astron – volume: 117 start-page: 409 issue: 4 year: 2013 end-page: 417 ident: CR39 article-title: Minimal-delay distance transform for neighborhood-sequence distances in 2D and 3D publication-title: Comput Vis Image Underst – volume: 97 start-page: 69 year: 2017 end-page: 76 ident: CR14 article-title: Multi-order co-occurrence activations encoded with Fisher Vector for scene character recognition publication-title: Pattern Recognition Letters – volume: 2 start-page: 1 issue: 1 year: 2019 end-page: 14 ident: CR43 article-title: Job Scheduling in cloud environment using lion algorithm publication-title: J Netw Commun Syst – volume: 51 start-page: 125 year: 2016 end-page: 134 ident: CR17 article-title: Multilingual scene character recognition with co-occurrence of histogram of oriented gradients publication-title: Pattern Recognit – volume: 116 start-page: 351 year: 2017 end-page: 357 ident: CR15 article-title: Comparison between neural network and support vector machine in optical character recognition publication-title: Procedia Comput Sci – volume: 439–440 start-page: 39 year: 2018 end-page: 49 ident: CR38 article-title: Efficient chain code compression with interpolative coding publication-title: Inf Sci – volume: 50 start-page: 123 year: 2018 end-page: 134 ident: CR12 article-title: Shape decomposition-based handwritten compound character recognition for Bangla OCR publication-title: J Vis Commun Image Represent – volume: 149 start-page: 238 issue: 2 year: 2016 end-page: 243 ident: CR24 article-title: Caries prevention during orthodontic treatment: In-vivo assessment of high-fluoride varnish to prevent white spot lesions publication-title: Am J Orthod Dentofac Orthop – volume: 382–383 start-page: 374 year: 2017 end-page: 387 ident: CR47 article-title: Firefly algorithm with neighborhood attraction publication-title: Inf Sci – ident: CR33 – volume: 12 start-page: 919 issue: 5 year: 2014 end-page: 926 ident: CR21 article-title: Optical character recognition based speech synthesis system using LabVIEW publication-title: J Appl Res Technol – volume: 11 start-page: 31 issue: 1 year: 2018 end-page: 52 ident: CR42 article-title: Optimization using lion algorithm: a biological inspiration from lion’s social behavior publication-title: Evol Intell – ident: CR40 – volume: 123 start-page: 223 year: 2019 end-page: 229 ident: CR32 article-title: Universal behavior of the linear threshold model on weighted networks publication-title: J Parallel Distrib Comput – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: CR28 article-title: Grey wolf optimizer publication-title: Adv Eng Softw – volume: 50 start-page: 180 year: 2018 end-page: 195 ident: CR1 article-title: Investigation on deep learning for off-line handwritten Arabic character recognition publication-title: Cogn Syst Res – volume: 72 start-page: 72 year: 2017 end-page: 81 ident: CR18 article-title: Building fast and compact convolutional neural networks for offline handwritten Chinese character recognition publication-title: Pattern Recognit – volume: 260 start-page: 174 year: 2017 end-page: 179 ident: CR46 article-title: Gradient descent learning for quaternionic Hopfield neural networks publication-title: Neurocomputing – volume: 9 start-page: 132 issue: 3 year: 2016 ident: CR25 article-title: Quantitive evaluation of dentin sialoprotein (DSP) using microbeads-A potential early marker of root resorption publication-title: ORAL Implantol – volume: 2 start-page: 9 issue: 1 year: 2019 end-page: 18 ident: CR44 article-title: Rescheduling based congestion management method using hybrid grey wolf optimization: grasshopper optimization algorithm in power system publication-title: J Comput Mech Power Syst Control – volume: 20 start-page: 783 issue: 2 year: 2017 end-page: 794 ident: CR6 article-title: Recognition-based online Kurdish character recognition using hidden Markov model and harmony search publication-title: Eng Sci Technol Int J – volume: 8 start-page: 23011 year: 2020 end-page: 23021 ident: CR49 article-title: Handwritten Arabic optical character recognition approach based on hybrid whale optimization algorithm with neighborhood rough set publication-title: IEEE Access – volume: 115 start-page: 107 year: 2018 end-page: 116 ident: CR31 article-title: Combining CNN streams of RGB-D and skeletal data for human activity recognition publication-title: Pattern Recognit Lett – ident: CR41 – volume: 219 start-page: 9438 issue: 17 year: 2013 end-page: 9446 ident: CR45 article-title: A Levenberg–Marquardt algorithm with correction for singular system of nonlinear equations publication-title: Appl Math Comput – volume: 5 start-page: 360 issue: 1 year: 2018 end-page: 366s ident: CR5 article-title: Object and character recognition using spiking neural network publication-title: Mater Today Proc – volume: 58 start-page: 565 year: 2015 end-page: 571 ident: CR37 article-title: Kirsch directional derivatives based shot boundary detection: an efficient and accurate method publication-title: Procedia Comput Sci – volume: 111 start-page: 9 year: 2018 end-page: 15 ident: CR4 article-title: Data augmentation and directional feature maps extraction for in-air handwritten Chinese character recognition based on convolutional neural network publication-title: Pattern Recognit Lett – volume: 288 start-page: 11 year: 2018 end-page: 19 ident: CR2 article-title: Chinese Character CAPTCHA Recognition and performance estimation via deep neural network publication-title: Neurocomputing – volume: 5 start-page: 360 issue: 1 year: 2018 ident: 597_CR5 publication-title: Mater Today Proc doi: 10.1016/j.matpr.2017.11.093 – ident: 597_CR29 – volume: 115 start-page: 107 year: 2018 ident: 597_CR31 publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2018.04.035 – volume: 288 start-page: 11 year: 2018 ident: 597_CR2 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.02.105 – volume: 219 start-page: 9438 issue: 17 year: 2013 ident: 597_CR45 publication-title: Appl Math Comput doi: 10.1016/j.amc.2013.03.026 – volume: 111 start-page: 9 year: 2018 ident: 597_CR4 publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2018.04.001 – volume: 2 start-page: 9 issue: 1 year: 2019 ident: 597_CR44 publication-title: J Comput Mech Power Syst Control doi: 10.46253/jcmps.v2i1.a2 – ident: 597_CR41 doi: 10.1109/CEC.2014.6900561 – volume: 8 start-page: 23011 year: 2020 ident: 597_CR49 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2970438 – volume: 97 start-page: 69 year: 2017 ident: 597_CR14 publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2017.07.011 – volume: 20 start-page: 783 issue: 2 year: 2017 ident: 597_CR6 publication-title: Eng Sci Technol Int J – volume: 6 start-page: 126 year: 2012 ident: 597_CR27 publication-title: Procedia Technol doi: 10.1016/j.protcy.2012.10.016 – volume: 49 start-page: 7 year: 2016 ident: 597_CR26 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2015.07.007 – volume: 382–383 start-page: 374 year: 2017 ident: 597_CR47 publication-title: Inf Sci doi: 10.1016/j.ins.2016.12.024 – volume: 34 start-page: 43 year: 2014 ident: 597_CR16 publication-title: Learn Individ Differ doi: 10.1016/j.lindif.2014.05.010 – volume: 76 start-page: 679 year: 2018 ident: 597_CR11 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2017.09.044 – volume: 207 start-page: 346 year: 2016 ident: 597_CR19 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.05.017 – volume: 149 start-page: 238 issue: 2 year: 2016 ident: 597_CR24 publication-title: Am J Orthod Dentofac Orthop doi: 10.1016/j.ajodo.2015.07.039 – volume: 51 start-page: 208 issue: 6 year: 2018 ident: 597_CR22 publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2018.07.155 – volume: 72 start-page: 1 year: 2017 ident: 597_CR3 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2017.06.022 – ident: 597_CR33 – volume: 127 start-page: 10510 issue: 22 year: 2016 ident: 597_CR13 publication-title: Optik doi: 10.1016/j.ijleo.2016.05.106 – volume: 116 start-page: 351 year: 2017 ident: 597_CR15 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2017.10.061 – volume: 126 start-page: 1598 issue: 18 year: 2015 ident: 597_CR35 publication-title: Optik doi: 10.1016/j.ijleo.2015.05.032 – volume: 2 start-page: 1 issue: 1 year: 2019 ident: 597_CR43 publication-title: J Netw Commun Syst – volume: 439–440 start-page: 39 year: 2018 ident: 597_CR38 publication-title: Inf Sci doi: 10.1016/j.ins.2018.01.045 – volume: 117 start-page: 409 issue: 4 year: 2013 ident: 597_CR39 publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2012.08.015 – volume: 50 start-page: 123 year: 2018 ident: 597_CR12 publication-title: J Vis Commun Image Represent doi: 10.1016/j.jvcir.2017.11.016 – volume: 9 start-page: 132 issue: 3 year: 2016 ident: 597_CR25 publication-title: ORAL Implantol – volume: 111 start-page: 87 year: 2018 ident: 597_CR7 publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2018.04.025 – volume: 49 start-page: 852 issue: 4 year: 2013 ident: 597_CR20 publication-title: Inf Process Manage doi: 10.1016/j.ipm.2012.12.010 – volume: 11 start-page: 31 issue: 1 year: 2018 ident: 597_CR42 publication-title: Evol Intell doi: 10.1007/s12065-018-0168-y – volume: 54 start-page: 764 year: 2015 ident: 597_CR36 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2015.06.090 – volume: 123 start-page: 223 year: 2019 ident: 597_CR32 publication-title: J Parallel Distrib Comput doi: 10.1016/j.jpdc.2018.10.003 – volume: 72 start-page: 72 year: 2017 ident: 597_CR18 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2017.06.032 – volume: 12 start-page: 919 issue: 5 year: 2014 ident: 597_CR21 publication-title: J Appl Res Technol doi: 10.1016/S1665-6423(14)70598-X – volume: 58 start-page: 565 year: 2015 ident: 597_CR37 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2015.08.074 – volume: 152 start-page: 111 year: 2019 ident: 597_CR30 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2019.05.033 – volume: 50 start-page: 180 year: 2018 ident: 597_CR1 publication-title: Cogn Syst Res doi: 10.1016/j.cogsys.2017.11.002 – volume: 260 start-page: 174 year: 2017 ident: 597_CR46 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.04.025 – volume: 69 start-page: 46 year: 2014 ident: 597_CR28 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2013.12.007 – ident: 597_CR40 doi: 10.1109/IECBES.2016.7843459 – volume: 78 start-page: 267 year: 2018 ident: 597_CR10 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2018.01.021 – volume: 51 start-page: 125 year: 2016 ident: 597_CR17 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2015.07.009 – volume: 89 start-page: 836 year: 2016 ident: 597_CR23 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2016.06.069 – volume: 29 start-page: 5154 issue: 8s year: 2020 ident: 597_CR48 publication-title: Int J Adv Sci Technol – volume: 45 start-page: 54 year: 2016 ident: 597_CR8 publication-title: New Astron doi: 10.1016/j.newast.2015.11.001 – volume: 121 start-page: 77 year: 2018 ident: 597_CR9 publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2018.04.007 – volume: 197 start-page: 155 issue: 2 year: 2017 ident: 597_CR34 publication-title: J Struct Biol doi: 10.1016/j.jsb.2016.09.008  | 
    
| SSID | ssj0062074 | 
    
| Score | 2.2486017 | 
    
| Snippet | In the field of image processing and Artificial Intelligence the character recognition and handwritten recognition have been emerging as one of the active and... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1499 | 
    
| SubjectTerms | Algorithms Applications of Mathematics Artificial Intelligence Bioinformatics Character recognition Classification Cluster analysis Clustering Control Delaunay triangulation Documents Engineering Feature extraction Handwriting recognition Image processing Image segmentation Machine learning Mathematical and Computational Engineering Mechatronics Neural networks Object recognition Optimization Robotics Special Issue Statistical Physics and Dynamical Systems Tactics Vector quantization  | 
    
| Title | Automatic handwritten character recognition of Devanagari language: a hybrid training algorithm for neural network | 
    
| URI | https://link.springer.com/article/10.1007/s12065-021-00597-8 https://www.proquest.com/docview/2674023212  | 
    
| Volume | 15 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1864-5917 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062074 issn: 1864-5909 databaseCode: AFBBN dateStart: 20080301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1864-5917 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062074 issn: 1864-5909 databaseCode: AGYKE dateStart: 20080101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1864-5917 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062074 issn: 1864-5909 databaseCode: U2A dateStart: 20080301 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1Bu8DAN6J8VB7YwFLtOI7DVkFLBYKJSmWKnNgpAyQIWiH-Pec0bgEBEnMcy8rZd--ce-8AjoUyJrWaU8yVLRUYQqhSWlP0lzrigWUmdEThm1s5GIqrUTiqSWGvvtrd_5KsPPWC7MYxXFJXUuAYk-hbl6EZOjkv3MVD3vX-V_JOpb3MlBQ0jDtxTZX5eY6v4WiBMb_9Fq2iTX8D1mqYSLozu27Cki22YN23YCD1idyC1U96gtvw0p1OykqDlbgL8TdM_BESk8yLMpN5uVBZkDInF9a1VB5jukz8veUZ0eTh3dG4iO8eQfTjuMSpHp4IIlziFDBxacWsfnwHhv3e3fmA1k0VaIanbUJNlmFOJ7QMtBSxsCY3GlGENDy3nInM8pRFOWdGiwyxWCfScYppoxSWsdSqPNiFRlEWdg9IpFJjuFZK5EaEYZCq3LDARDqPZcpj0QLmv22S1YrjbumPyUIr2dkjQXsklT0S1YKT-TvPM72NP0cfepMl9dl7TbiMMCkOMCa34NSbcfH499n2_zf8AFa440JUVzKH0Ji8TO0RIpRJ2oZm9_L-uteuNuYH3l7fCw | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61y4FyKJSH2PKoD9yo0dpxHKe3Fa9teZxYiZ4iO3YAAQlaskLtr-84G7OAoBLnJJbjx8w39nzfAGwJZa1xmlOMlR0V6EKoUlpTtJc64ZFjNvZE4ZNTORiKX-fxeUsKuw_Z7uFKsrHUU7IbR3dJfUqBZ0yibf0IMwIDFN6Bmf7h76P9YIEl7zXqy0xJQeO0l7Zkmddbee6QpijzxcVo428O5mEYejpJM7neGddmJ__7QsTxvb-yAJ9bAEr6kxXzBT64chHmQ3EH0u71RZh7olS4BKP-uK4adVfij9ofRlc1gm2SB7ln8piIVJWkKsie88WaLzAQJ-FE9AfR5PKPJ4iRUJeC6JuLCpu6vCWInYnX1sSulZPM9GUYHuyf7Q5oW66B5riPa2rzHKNFoWWkpUiFs4XViE-k5YXjTOSOG5YUnFktckR5vUSnBgNSKRxjxqkiWoFOWZVuFUiijLVcKyUKK-I4MqqwLLKJLlJpeCq6wMKcZXmrZe67fpNNVZj9EGc4xFkzxJnqwvbjN3cTJY__vr0elkLW7ur7jMsEw-0IvX0XvoeZnT5-u7Wv73v9G8wOzk6Os-Ofp0dr8Il7xkVz8LMOnXo0dhuIg2qz2S77f-Qu_Vk | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFH9iQ5q2Ax8FtMLGfOA2rNaO4zjcKrqqMKg4UKm3yIntFalLpi4T4r_nOYnbMg0kznEsJ89-X36_3wN4J5QxudWcYqxsqUATQpXSmqK-1AmPLDOxBwp_ncnpXHxexIsdFH9T7R6uJFtMg2dpKuvBjXGDLfCNo-mkvrzAoydRz-7BY-GJEnBHz_ko6GLJhw0PM1NS0Dgdph1s5uE5_jRNW3_z3hVpY3kmz-BJ5zKSUSvj5_DIlj14GtoxkO509uBoh1vwBaxHd3XV8LESnxz_uf5R4weSIhA0k03pUFWSypGx9e2VrzB0JiGH-YFosvzlIV0kdJIgenVV4VTLa4LeLvFsmLi0sq0lfwnzycX3j1PaNVigBZ68mpqiwPhOaBlpKVJhjTMaPQppuLOcicLynCWOM6NFgX7ZMNFpjiGkFJax3CoXvYL9sirtMZBE5cZwrZRwRsRxlCtnWGQS7VKZ81T0gYV_mxUd-7hf-irb8iZ7eWQoj6yRR6b6cL5556bl3vjn6JMgsqw7h7cZlwkGyBHa5z68D2LcPv77bK__b_gZHHwbT7Ivn2aXb-CQe4hEk6k5gf16fWdP0XGp87fN3vwNcPbknw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+handwritten+character+recognition+of+Devanagari+language%3A+a+hybrid+training+algorithm+for+neural+network&rft.jtitle=Evolutionary+intelligence&rft.au=Yawalkar%2C+Prashant+Madhukar&rft.au=Kharat%2C+Madan+Uttamrao&rft.date=2022-06-01&rft.issn=1864-5909&rft.eissn=1864-5917&rft.volume=15&rft.issue=2&rft.spage=1499&rft.epage=1516&rft_id=info:doi/10.1007%2Fs12065-021-00597-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12065_021_00597_8 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5909&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5909&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5909&client=summon |