Applying ANN – PSO algorithm to maximize the compressive strength and split tensile strength of blended self curing concrete on the impact of supplementary cementitious materials

This study was intended to get the optimized Compressive strength and split tensile strength of Blended Self CuringConcrete(BSCC) on the impact of Supplementary Cementitious Materials (SCM’s). The experiments were conducted by varying the quantity of Cement, Flyash, Ground Granulated Blast Furnace S...

Full description

Saved in:
Bibliographic Details
Published inInternational journal on interactive design and manufacturing Vol. 18; no. 4; pp. 1997 - 2006
Main Authors Kumar, C. Vivek, Sargunan, K., Vasa, J. S. S. K., Jesuraj, V. Praveen, Punitha, A., Karthikeyan, R.
Format Journal Article
LanguageEnglish
Published Paris Springer Paris 01.05.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1955-2513
1955-2505
DOI10.1007/s12008-022-00907-z

Cover

Abstract This study was intended to get the optimized Compressive strength and split tensile strength of Blended Self CuringConcrete(BSCC) on the impact of Supplementary Cementitious Materials (SCM’s). The experiments were conducted by varying the quantity of Cement, Flyash, Ground Granulated Blast Furnace Slag (GGBFS), Silica Fume and Slump with fixed quantity of Fine aggregate, Coarse aggregate, S.P and Water. Totally 13 different mix proportions were prepared and tested for Compressive Strength (CS) and Split Tensile Strength (STS). Both strengths were calculated for 7, 14 and 28 days. To optimize the compressive strength and split tensile strength, a feed forward Artificial Neural Network (ANN) model was developed, and Particle Swarm Optimization (PSO) algorithm was used by optimizing the weighing factors of the network in the neural power software. Finally, with a root mean square error of 0.008223, 0.006559, and 0.009743 for CS and 0.008905, 0.006999, and 0.008745 for STS, the model was obtained for 7, 14, and 28 days. The percentage contribution of input parameters is also discussed separately for compressive strength and split tensile strength of 7, 14 and 28 days of curing. Finally, the optimized compressive strength and split tensile strength were found to be 42.3552 N/mm 2 and 4.3113 N/mm 2 respectively for 28 days. .
AbstractList This study was intended to get the optimized Compressive strength and split tensile strength of Blended Self CuringConcrete(BSCC) on the impact of Supplementary Cementitious Materials (SCM’s). The experiments were conducted by varying the quantity of Cement, Flyash, Ground Granulated Blast Furnace Slag (GGBFS), Silica Fume and Slump with fixed quantity of Fine aggregate, Coarse aggregate, S.P and Water. Totally 13 different mix proportions were prepared and tested for Compressive Strength (CS) and Split Tensile Strength (STS). Both strengths were calculated for 7, 14 and 28 days. To optimize the compressive strength and split tensile strength, a feed forward Artificial Neural Network (ANN) model was developed, and Particle Swarm Optimization (PSO) algorithm was used by optimizing the weighing factors of the network in the neural power software. Finally, with a root mean square error of 0.008223, 0.006559, and 0.009743 for CS and 0.008905, 0.006999, and 0.008745 for STS, the model was obtained for 7, 14, and 28 days. The percentage contribution of input parameters is also discussed separately for compressive strength and split tensile strength of 7, 14 and 28 days of curing. Finally, the optimized compressive strength and split tensile strength were found to be 42.3552 N/mm 2 and 4.3113 N/mm 2 respectively for 28 days. .
This study was intended to get the optimized Compressive strength and split tensile strength of Blended Self CuringConcrete(BSCC) on the impact of Supplementary Cementitious Materials (SCM’s). The experiments were conducted by varying the quantity of Cement, Flyash, Ground Granulated Blast Furnace Slag (GGBFS), Silica Fume and Slump with fixed quantity of Fine aggregate, Coarse aggregate, S.P and Water. Totally 13 different mix proportions were prepared and tested for Compressive Strength (CS) and Split Tensile Strength (STS). Both strengths were calculated for 7, 14 and 28 days. To optimize the compressive strength and split tensile strength, a feed forward Artificial Neural Network (ANN) model was developed, and Particle Swarm Optimization (PSO) algorithm was used by optimizing the weighing factors of the network in the neural power software. Finally, with a root mean square error of 0.008223, 0.006559, and 0.009743 for CS and 0.008905, 0.006999, and 0.008745 for STS, the model was obtained for 7, 14, and 28 days. The percentage contribution of input parameters is also discussed separately for compressive strength and split tensile strength of 7, 14 and 28 days of curing. Finally, the optimized compressive strength and split tensile strength were found to be 42.3552 N/mm2 and 4.3113 N/mm2 respectively for 28 days..
Author Kumar, C. Vivek
Vasa, J. S. S. K.
Sargunan, K.
Jesuraj, V. Praveen
Karthikeyan, R.
Punitha, A.
Author_xml – sequence: 1
  givenname: C. Vivek
  orcidid: 0000-0002-0194-0999
  surname: Kumar
  fullname: Kumar, C. Vivek
  email: vivekkumarcr@gmail.com
  organization: Civil Engineering, Gokaraju Rangaraju Institute of Engineering and Technology
– sequence: 2
  givenname: K.
  surname: Sargunan
  fullname: Sargunan, K.
  organization: Civil Engineering, Malla Reddy Engineering College
– sequence: 3
  givenname: J. S. S. K.
  surname: Vasa
  fullname: Vasa, J. S. S. K.
  organization: Civil Engineering, Malla Reddy Engineering College
– sequence: 4
  givenname: V. Praveen
  surname: Jesuraj
  fullname: Jesuraj, V. Praveen
  organization: Civil Engineering, SSM Institute of Engineering and Technology
– sequence: 5
  givenname: A.
  surname: Punitha
  fullname: Punitha, A.
  organization: Computer Science & Engineering, Annamalai University
– sequence: 6
  givenname: R.
  surname: Karthikeyan
  fullname: Karthikeyan, R.
  organization: Mechanical Engineering, Gokaraju Rangaraju Institute of Engineering and Technology
BookMark eNp9UUtOHDEQtSIiBQgXyMpS1k3Kdn-XIxQgEoJIgbVl7OoZo267Y7ujMCvuwFU4ESeJZyZKEAtWVap6r-pVvQOy57xDQj4xOGYAzZfIOEBbAOcFQAdNsX5H9llXVQWvoNr7lzPxgRzEeAdQt9DCPnlaTNNwb92SLi4v6fPDI_3-44qqYemDTauRJk9H9duOdo00rZBqP04BY7S_kMYU0C3TiipnaJwGm2hCF-3wouV7ejugM5gROPRUz2GzTHunAyak3m3H2nFSOm3Qcc6CcESXVLinepvZZP0cs5CEwaohfiTv-xzw6G88JDenX69PzouLq7NvJ4uLQgvWpcLc5nv70hjFmakb7MBg2apGlKprVMlqwbFua1W2JpcV57plpemVyJWOl0Ycks-7uVPwP2eMSd75Obi8UgqoWSWaumMZ1e5QOvgYA_ZS26SyZJeCsoNkIDceyZ1HMnsktx7JdabyV9Qp2DEf_jZJ7Ehx2vwSw39Vb7D-AAs7rFQ
CitedBy_id crossref_primary_10_1088_1742_6596_2837_1_012015
crossref_primary_10_1007_s12008_023_01386_6
crossref_primary_10_1007_s42107_023_00886_w
crossref_primary_10_1007_s00500_023_09414_z
Cites_doi 10.1016/j.conbuildmat.2011.07.028
10.1007/s00170-010-2958-y
10.1155/2015/849126
10.1080/01694243.2014.995343
10.1590/S1679-78252014001100002
10.1016/j.heliyon.2018.e01115
10.12989/cac.2016.18.1.001
10.1016/j.conbuildmat.2007.01.002
10.1016/j.indcrop.2014.03.016
10.1016/j.mspro.2014.07.090
10.1016/j.clet.2021.100250
10.1007/s11709-016-0363-9
10.1080/2374068X.2020.1793267
10.1016/j.matpr.2020.02.591
10.1016/j.conbuildmat.2016.05.034
10.1016/j.compositesb.2012.05.054
10.1007/s12046-017-0667-z
10.1016/j.conbuildmat.2009.10.037
10.12989/cac.2014.13.5.621
10.1590/S1679-78252014000600004
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature 2022.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s12008-022-00907-z
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central (New)
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
ProQuest One Business
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList
ProQuest One Business
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1955-2505
EndPage 2006
ExternalDocumentID 10_1007_s12008_022_00907_z
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
203
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
875
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
M7S
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9P
PF0
PQBIZ
PQBZA
PT4
PTHSS
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
DWQXO
L6V
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-db513f4dda21d67e90de48a734a97a41632e686a48d48aa22c814dfa3a48924d3
IEDL.DBID BENPR
ISSN 1955-2513
IngestDate Fri Jul 25 10:47:52 EDT 2025
Wed Oct 01 00:33:21 EDT 2025
Thu Apr 24 22:52:55 EDT 2025
Fri Feb 21 02:41:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords ANN
PSO
Cementitious materials
Blended self curing concrete
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-db513f4dda21d67e90de48a734a97a41632e686a48d48aa22c814dfa3a48924d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0194-0999
PQID 3061537691
PQPubID 2044253
PageCount 10
ParticipantIDs proquest_journals_3061537691
crossref_citationtrail_10_1007_s12008_022_00907_z
crossref_primary_10_1007_s12008_022_00907_z
springer_journals_10_1007_s12008_022_00907_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240500
2024-05-00
20240501
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 5
  year: 2024
  text: 20240500
PublicationDecade 2020
PublicationPlace Paris
PublicationPlace_xml – name: Paris
– name: Heidelberg
PublicationTitle International journal on interactive design and manufacturing
PublicationTitleAbbrev Int J Interact Des Manuf
PublicationYear 2024
Publisher Springer Paris
Springer Nature B.V
Publisher_xml – name: Springer Paris
– name: Springer Nature B.V
References Boğa, Öztürk, Topcu (CR9) 2013; 45
Karthikeyan, Senthil Kumar, Punitha, Chavan (CR14) 2020
Uysal, Tanyildizi (CR8) 2012; 27
Bharathi Raja, Baskar (CR22) 2011; 54
CR15
Awolusi, Oke, Akinkurolere (CR21) 2019; 5
CR13
Ebrahimpour, Abd, Chng (CR17) 2008; 8
Mashhadban, Kutanaei, Sayarinejad (CR18) 2016
CR12
CR32
Nikoo, Torabian Moghadam, Sadowski (CR7) 2015
Das, Kumar, Barman, Sahoo (CR27) 2014; 6
CR31
Khademi, Akbari, Jamal, Nikoo (CR5) 2017
Kutanaei, Choobbasti (CR28) 2015; 29
Yazıcı (CR1) 2008; 22
Tavakoli, Omran, Shiade, Kutanaei (CR19) 2014; 11
Gulbandilar, Kocak (CR11) 2016; 18
Pilkington, Prestonb, Gomesa (CR16) 2014; 58
Samad, Shah, Limbachiya (CR30) 2017; 42
Athiyamaan (CR2) 2021
Sobhani, Najimi, Pourkhorshidi, Parhizkar (CR6) 2010; 24
CR26
Lingam, Karthikeya (CR10) 2014; 13
Yan, Zhang, Luo, Li, Chen, Liu (CR29) 2012; 9
CR20
Suryawanshi, Thakare, Jain (CR3) 2020; 29
Singh, Singhal, Kumar (CR25) 2020
Tavakoli, Omran, Kutanaei, Shiade (CR23) 2014; 11
Muthupriya, Subramanian, Vishnuram (CR24) 2011; 1
Feizbakhsh, Khatibinia (CR4) 2017; 7
P Muthupriya (907_CR24) 2011; 1
HR Tavakoli (907_CR19) 2014; 11
X Yan (907_CR29) 2012; 9
JL Pilkington (907_CR16) 2014; 58
A Feizbakhsh (907_CR4) 2017; 7
A Lingam (907_CR10) 2014; 13
907_CR20
907_CR26
M Nikoo (907_CR7) 2015
NT Suryawanshi (907_CR3) 2020; 29
R Karthikeyan (907_CR14) 2020
S Bharathi Raja (907_CR22) 2011; 54
J Sobhani (907_CR6) 2010; 24
H Mashhadban (907_CR18) 2016
K Das (907_CR27) 2014; 6
S Samad (907_CR30) 2017; 42
907_CR12
AK Singh (907_CR25) 2020
SS Kutanaei (907_CR28) 2015; 29
907_CR32
TF Awolusi (907_CR21) 2019; 5
907_CR31
M Uysal (907_CR8) 2012; 27
907_CR15
F Khademi (907_CR5) 2017
907_CR13
V Athiyamaan (907_CR2) 2021
H Yazıcı (907_CR1) 2008; 22
HR Tavakoli (907_CR23) 2014; 11
A Ebrahimpour (907_CR17) 2008; 8
AR Boğa (907_CR9) 2013; 45
E Gulbandilar (907_CR11) 2016; 18
References_xml – volume: 27
  start-page: 404
  issue: 1
  year: 2012
  end-page: 414
  ident: CR8
  article-title: Estimation of compressive strength of self compacting concrete containing polypropylene fiber and mineral additives exposed to high temperature using artificial neural network
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2011.07.028
– volume: 54
  start-page: 445
  year: 2011
  end-page: 463
  ident: CR22
  article-title: Particle swarm optimization technique for determining optimalmachining parameters of different work piece materials in turning operation
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-010-2958-y
– year: 2015
  ident: CR7
  article-title: Prediction of concrete compressive strength by evolutionary artificial neural networks
  publication-title: Adv. Mater. Sci. Eng.
  doi: 10.1155/2015/849126
– volume: 29
  start-page: 487
  issue: 6
  year: 2015
  end-page: 501
  ident: CR28
  article-title: Prediction of combined effects of fibers and cement on the mechanical properties of sand using particle swarm optimization algorithm
  publication-title: J. Adhes. Sci. Technol.
  doi: 10.1080/01694243.2014.995343
– ident: CR12
– volume: 11
  start-page: 1906
  issue: 11
  year: 2014
  end-page: 1923
  ident: CR19
  article-title: Prediction of combined effects of fibers and nano-silica on the mechanical properties of selfcompacting concrete using artificial neural network
  publication-title: Lat. Am. J. Solids Struct.
  doi: 10.1590/S1679-78252014001100002
– volume: 5
  year: 2019
  ident: CR21
  article-title: Performance comparison of neural networktraining algorithms in the modeling properties of steel fiber reinforced concrete
  publication-title: Heliyon.
  doi: 10.1016/j.heliyon.2018.e01115
– volume: 18
  start-page: 1
  issue: 1
  year: 2016
  end-page: 16
  ident: CR11
  article-title: Application of expert systems in prediction of flexural strength of cement mortars
  publication-title: Comput. Concr.
  doi: 10.12989/cac.2016.18.1.001
– volume: 22
  start-page: 456
  issue: 4
  year: 2008
  end-page: 462
  ident: CR1
  article-title: The effect of silica fume and high-volume Class C fly ash on mechanical properties, chloride penetration and freeze–thaw resistance of self-compacting concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2007.01.002
– volume: 58
  start-page: 15
  year: 2014
  end-page: 24
  ident: CR16
  article-title: Comparison of response surface methodology (RSM) and artificial neural networks (ANN) towards efficient extraction of artemisinin from Artemisia annual
  publication-title: Ind. Crop. Prod.
  doi: 10.1016/j.indcrop.2014.03.016
– volume: 7
  start-page: 367
  issue: 3
  year: 2017
  end-page: 382
  ident: CR4
  article-title: A comparative study of Traditional and Intelligence Soft Computing methods for predicting Compressive strength of Self Compacting concretes
  publication-title: Int. J. Optim. Civil Eng.
– volume: 6
  start-page: 741
  year: 2014
  end-page: 751
  ident: CR27
  article-title: Application of artificial bee colony algorithm for optimization of MRR and surface roughness in EDM of EN31 tool steel, Procedia
  publication-title: Mater. Sci.
  doi: 10.1016/j.mspro.2014.07.090
– year: 2021
  ident: CR2
  article-title: Admixture-based self-compacted concrete with self-curing concrete techniques a state of art of review
  publication-title: Cleaner Eng. Technol.
  doi: 10.1016/j.clet.2021.100250
– year: 2017
  ident: CR5
  article-title: Multiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concrete
  publication-title: Front. Struct. Civil Eng.
  doi: 10.1007/s11709-016-0363-9
– year: 2020
  ident: CR14
  article-title: An integrated ANN - GA approach to maximize the material removal rate and to minimize the surface roughness of wire cut EDM on Titanium alloy
  publication-title: Adv. Mater. Process. Technol.
  doi: 10.1080/2374068X.2020.1793267
– year: 2020
  ident: CR25
  article-title: Machining of aluminum 7075 alloy using EDM process: an ANN validation
  publication-title: Mater. Today
  doi: 10.1016/j.matpr.2020.02.591
– ident: CR15
– volume: 29
  start-page: 3829
  issue: 9s
  year: 2020
  end-page: 3835
  ident: CR3
  article-title: Self-curing possibilities of blended concrete using water soluble polymer
  publication-title: Int. J. Adv. Sci. Technol.
– year: 2016
  ident: CR18
  article-title: Prediction and modeling of mechanical properties in fiber reinforced self-compacting concrete using particle swarm optimization algorithm and artificial neural network
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.05.034
– volume: 45
  start-page: 688
  issue: 1
  year: 2013
  end-page: 696
  ident: CR9
  article-title: Using ANN and ANFIS to predict the mechanical and chloride permeability properties of concrete containing GGBFS and CNI
  publication-title: Compos. Part B Eng.
  doi: 10.1016/j.compositesb.2012.05.054
– volume: 8
  start-page: 96
  year: 2008
  ident: CR17
  article-title: A modeling study by response surfacemethodologyandartificial neural network on culture parameters optimization for thermostable lipase production from a newly isolated thermophilic Geobacillus sp. Strain ARM
  publication-title: BioMedCentral
– ident: CR31
– ident: CR13
– volume: 42
  start-page: 1203
  year: 2017
  end-page: 1213
  ident: CR30
  article-title: Strength development characteristics of concrete produced with blended cement using ground granulated blast furnace slag (GGBS) under various curing conditions
  publication-title: Sādhanā
  doi: 10.1007/s12046-017-0667-z
– ident: CR32
– volume: 24
  start-page: 709
  issue: 5
  year: 2010
  end-page: 718
  ident: CR6
  article-title: Prediction of the compressive strength of no-slump concrete: a comparative study of regression, neural network and ANFIS models
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2009.10.037
– volume: 13
  start-page: 621
  issue: 5
  year: 2014
  end-page: 632
  ident: CR10
  article-title: Prediction of compressive strength for HPC mixes containing different blends using ANN
  publication-title: Comput. Concr.
  doi: 10.12989/cac.2014.13.5.621
– volume: 9
  start-page: 264
  issue: 6
  year: 2012
  ident: CR29
  article-title: Solve traveling salesman problem using particle swarm optimization algorithm
  publication-title: Int. J. Comput. Sci.
– volume: 1
  start-page: 189
  year: 2011
  end-page: 209
  ident: CR24
  article-title: Prediction of compressive strength and durability of high performance concrete by artificial neural networks
  publication-title: Int. J. Optim. Civil Eng.
– volume: 11
  start-page: 966
  issue: 6
  year: 2014
  end-page: 979
  ident: CR23
  article-title: Prediction of energy absorption capability in fiber reinforced self-compacting concrete containing nano-silica particles using artificial neural network
  publication-title: Lat. Am. J. Solids Struct.
  doi: 10.1590/S1679-78252014000600004
– ident: CR26
– ident: CR20
– ident: 907_CR15
– volume: 8
  start-page: 96
  year: 2008
  ident: 907_CR17
  publication-title: BioMedCentral
– ident: 907_CR13
– volume: 42
  start-page: 1203
  year: 2017
  ident: 907_CR30
  publication-title: Sādhanā
  doi: 10.1007/s12046-017-0667-z
– year: 2015
  ident: 907_CR7
  publication-title: Adv. Mater. Sci. Eng.
  doi: 10.1155/2015/849126
– volume: 58
  start-page: 15
  year: 2014
  ident: 907_CR16
  publication-title: Ind. Crop. Prod.
  doi: 10.1016/j.indcrop.2014.03.016
– volume: 1
  start-page: 189
  year: 2011
  ident: 907_CR24
  publication-title: Int. J. Optim. Civil Eng.
– year: 2017
  ident: 907_CR5
  publication-title: Front. Struct. Civil Eng.
  doi: 10.1007/s11709-016-0363-9
– ident: 907_CR31
– volume: 27
  start-page: 404
  issue: 1
  year: 2012
  ident: 907_CR8
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2011.07.028
– year: 2020
  ident: 907_CR14
  publication-title: Adv. Mater. Process. Technol.
  doi: 10.1080/2374068X.2020.1793267
– volume: 18
  start-page: 1
  issue: 1
  year: 2016
  ident: 907_CR11
  publication-title: Comput. Concr.
  doi: 10.12989/cac.2016.18.1.001
– volume: 11
  start-page: 1906
  issue: 11
  year: 2014
  ident: 907_CR19
  publication-title: Lat. Am. J. Solids Struct.
  doi: 10.1590/S1679-78252014001100002
– volume: 11
  start-page: 966
  issue: 6
  year: 2014
  ident: 907_CR23
  publication-title: Lat. Am. J. Solids Struct.
  doi: 10.1590/S1679-78252014000600004
– volume: 29
  start-page: 3829
  issue: 9s
  year: 2020
  ident: 907_CR3
  publication-title: Int. J. Adv. Sci. Technol.
– ident: 907_CR26
– volume: 29
  start-page: 487
  issue: 6
  year: 2015
  ident: 907_CR28
  publication-title: J. Adhes. Sci. Technol.
  doi: 10.1080/01694243.2014.995343
– volume: 13
  start-page: 621
  issue: 5
  year: 2014
  ident: 907_CR10
  publication-title: Comput. Concr.
  doi: 10.12989/cac.2014.13.5.621
– year: 2016
  ident: 907_CR18
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.05.034
– ident: 907_CR20
– volume: 5
  year: 2019
  ident: 907_CR21
  publication-title: Heliyon.
  doi: 10.1016/j.heliyon.2018.e01115
– volume: 54
  start-page: 445
  year: 2011
  ident: 907_CR22
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-010-2958-y
– ident: 907_CR12
– year: 2021
  ident: 907_CR2
  publication-title: Cleaner Eng. Technol.
  doi: 10.1016/j.clet.2021.100250
– year: 2020
  ident: 907_CR25
  publication-title: Mater. Today
  doi: 10.1016/j.matpr.2020.02.591
– volume: 9
  start-page: 264
  issue: 6
  year: 2012
  ident: 907_CR29
  publication-title: Int. J. Comput. Sci.
– volume: 6
  start-page: 741
  year: 2014
  ident: 907_CR27
  publication-title: Mater. Sci.
  doi: 10.1016/j.mspro.2014.07.090
– ident: 907_CR32
– volume: 24
  start-page: 709
  issue: 5
  year: 2010
  ident: 907_CR6
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2009.10.037
– volume: 45
  start-page: 688
  issue: 1
  year: 2013
  ident: 907_CR9
  publication-title: Compos. Part B Eng.
  doi: 10.1016/j.compositesb.2012.05.054
– volume: 7
  start-page: 367
  issue: 3
  year: 2017
  ident: 907_CR4
  publication-title: Int. J. Optim. Civil Eng.
– volume: 22
  start-page: 456
  issue: 4
  year: 2008
  ident: 907_CR1
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2007.01.002
SSID ssj0068080
Score 2.328789
Snippet This study was intended to get the optimized Compressive strength and split tensile strength of Blended Self CuringConcrete(BSCC) on the impact of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1997
SubjectTerms Algorithms
Artificial neural networks
CAE) and Design
Cement
Composite materials
Compressive strength
Computer-Aided Engineering (CAD
Concrete curing
Concrete mixing
Curing
Electronics and Microelectronics
Engineering
Engineering Design
Fly ash
GGBS
Hydration
Industrial Design
Instrumentation
Investigations
Mechanical Engineering
Neural networks
Original Paper
Particle swarm optimization
Polyethylene glycol
Silica fume
Tensile strength
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-LnoQn7i-mIM3DfSRvo6LuCyCq6AL3krSpKvQbcVW0T35H_wr_iJ_iZO0dVVU8FaS6VA6ycw3yTwI2Q-D1A0i4VNEB4xqi09RB0bUSlRou8wS0hSrPh34_SE7ufKumqSwso12b68kjaaeJrvVV_XoPCEusAI6mSXzni7nhat46HRb_at7SZg0yMjzKFpvt0mV-ZnHV3M0xZjfrkWNtektk6UGJkK3lusKmVH5Kln8VDxwjbxqAKmTlKA7GMDb8wucX5wBz0YF-vvXY6gKGPPHm_HNRAGiPNDB4ybo9UGBzhDJR9U18FxCiTi0AhPJnn2aKlIQmTkgh1JlKZhz-RGyyRFoVgqK3LCt0yw1dakbhNbB6HdPkJgnHRB2X-KHVPVKXyfD3vHlUZ82PRhogpuzolLgH0yZlNyxpR-oyJKKhTxwGY8CrmXrKD_0OQslDnPHSUKbyZS7OIKunXQ3yFxe5GqTALMSEQorUhJ9GC5UFAgv9RPFuZBWmqgOsVtRxElToFz3ycjiaWnlummm48RGfPGkQw4-3rmty3P8Sb3TSjhutmoZuxrUoZqN7A45bKU-nf6d29b_yLfJgoOAqA6W3CFz1d292kVAU4k9s37fAYQ68aQ
  priority: 102
  providerName: Springer Nature
Title Applying ANN – PSO algorithm to maximize the compressive strength and split tensile strength of blended self curing concrete on the impact of supplementary cementitious materials
URI https://link.springer.com/article/10.1007/s12008-022-00907-z
https://www.proquest.com/docview/3061537691
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1955-2505
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0068080
  issn: 1955-2513
  databaseCode: AFBBN
  dateStart: 20070401
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1955-2505
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0068080
  issn: 1955-2513
  databaseCode: BENPR
  dateStart: 20070401
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1955-2505
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0068080
  issn: 1955-2513
  databaseCode: AGYKE
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1955-2505
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0068080
  issn: 1955-2513
  databaseCode: U2A
  dateStart: 20070425
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB61uxc4IJ5i27KaAzewyMObx6FCu2i3FYhQASuVU2THzrZSNilNimBP_Af-Cr-IX8LYSdiCRE-JbGeUZDwzn-15ADyNwtwPYxkwQgecGYvPSAfGzMl05Prckcomq36bBMdL_vp0croDSR8LY9wqe51oFbWqMrNH_sI3tpekIXZfXnxmpmqUOV3tS2iIrrSCOrQpxnZh6JnMWAMYzubJyfteN5s6EzZEMp5MGFl2vwujaYPpWlcAWpwR7nBCtvnbVG3x5z9HptYSLe7CnQ5C4rTl-T3Y0eV9uH0tseAD-GnApQlgwmmS4K_vP_DkwzsUxYq-qDlbY1PhWnw9X59vNBICRONYbh1iv2g00SPlqjlDUSqsCaM2aL3ci2tdVY6ysJvnWOsiR7tnvyIyJYHQRmNVWrJtCKYZXZvioa2j-uU3zOydcRa7qulFmlYKHsJyMf_46ph19RlYRoLbMCXpD-ZcKeG5Kgh17CjNIxH6XMShMHz3dBAFgkeKmoXnZZHLVS58aqFln_IfwaCsSv0YkDuZjKQTa0XrGyF1HMpJHmRaCKmcPNMjcHtWpFmXvNzU0CjSbdrltqCm56WWfelmBM_-PHPRpu64cfRBz-G0E-M63U66ETzvub7t_j-1vZup7cMtj8BR6zh5AIPm8ko_IXDTyDHsRoujMQyni9ksMdejT2_m424eU-_Sm_4GWOz_pQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKewAOiKdYKDAHOIFFHs7DhwoVaLWlbaiglXpL7djZVsompUmB7on_wF_hzI_hlzC2E7Yg0VtvkeOMrMx45ht7HoQ8TZMyTLiMKaIDRo3Fp6gDOfUKnfoh86Syxaq3s3i8x97tR_sL5OeQC2PCKgedaBW1agpzRv4yNLYXdwP3Xx1_oqZrlLldHVpoiL61glqxJcb6xI5NffYFXbh2ZeMt8vtZEKyv7b4Z077LAC1Q_DqqZOSHJVNKBL6KE809pVkqkpAJngiz-kDHaSxYqnBYBEGR-kyVIsQRdF5UiHSvkCUWMo7O39LrtWznw2ALTF8Lm5LJo4gikgj7tB2XvOdCD9AZRJzjJXT2t2mc491_rmit5Vu_SW70kBVWnYzdIgu6vk2unytkeIf8MGDWJEzBapbBr2_fYefjexDVBP9gdziFroGp-Ho0PZppQMQJJpDdBuB-1mCyVepJdwiiVtAiJu7ARtVX5141JcjKHtZDq6sS7B3BBMnUCHo7DU1tybqUTzO7Nc1KXWD8yRkU9skEp522uJDO7bq7ZO9SOHWPLNZNre8TYF4hU-lxrdCfElLzREZlXGghpPLKQo-IP7AiL_pi6aZnR5XPyzy7Bp5BkFv25bMRef7nm2NXKuTC2csDh_NebbT5XMhH5MXA9fnr_1N7cDG1J-TqeHd7K9_ayDYfkmsBAjMXtLlMFruTU_0IgVUnH_fSC-TgsjfMb5-cN5M
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JbtswECXaFAiSQ9EtiNO0nUNvKREttJaj0cRINydAYiA3gRQpO4AsBRYdJD71H_or_aJ-SYekVLtFWqA3gaQGgobkvCHnzRDyNomLME5FRBEdMGosPsU9MKVerhI_ZJ6QNln1l1F0MmYfL_uXayx-G-3eXUk6ToPJ0lTpw2tZHK6Ib-7aHh0pxAheTJcPySNmEiXgjB4Hg24vNnUlLCUy7fcpWvKwpc3cL-N307TCm39ckVrLM3xCHreQEQZOx0_JA1U9I9triQSfk-8GTBrCEgxGI_jx9RucnZ8CLyc1-v7TGegaZvz2ana1VICID0wguQ2AvVFg2CLVRE-BVxIaxKQabFR7udZVFyBKe1gOjSoLsGf0ExRTIejUCurKinWUSzO6McVCXWD6_A5y-2SCwxYNfoh2s_4FGQ-PL96f0LYeA81xoWoqBf7BgknJA19GsUo9qVjC45DxNOZGz4GKkoizRGIzD4I88ZkseIgt6ObJcIdsVHWldgkwLxeJ8FIl0Z_hQqWx6BdRrjgX0ity1SN-p4osb5OVm5oZZbZKs-wKaAZBZtWXLXvk4Nc71y5Vxz9H73caztpl22ShAXi45aZ-j7zrtL7q_ru0vf8b_oZsnh0Ns88fRp9ekq0AcZKLodwnG3q-UK8Q52jx2k7ln7TV-Mw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applying+ANN+%E2%80%93+PSO+algorithm+to+maximize+the+compressive+strength+and+split+tensile+strength+of+blended+self+curing+concrete+on+the+impact+of+supplementary+cementitious+materials&rft.jtitle=International+journal+on+interactive+design+and+manufacturing&rft.au=Kumar%2C+C.+Vivek&rft.au=Sargunan%2C+K&rft.au=Vasa%2C+J.+S.+S.+K&rft.au=Jesuraj%2C+V.+Praveen&rft.date=2024-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1955-2513&rft.eissn=1955-2505&rft.volume=18&rft.issue=4&rft.spage=1997&rft.epage=2006&rft_id=info:doi/10.1007%2Fs12008-022-00907-z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1955-2513&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1955-2513&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1955-2513&client=summon