Applying ANN – PSO algorithm to maximize the compressive strength and split tensile strength of blended self curing concrete on the impact of supplementary cementitious materials
This study was intended to get the optimized Compressive strength and split tensile strength of Blended Self CuringConcrete(BSCC) on the impact of Supplementary Cementitious Materials (SCM’s). The experiments were conducted by varying the quantity of Cement, Flyash, Ground Granulated Blast Furnace S...
Saved in:
| Published in | International journal on interactive design and manufacturing Vol. 18; no. 4; pp. 1997 - 2006 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Paris
Springer Paris
01.05.2024
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1955-2513 1955-2505 |
| DOI | 10.1007/s12008-022-00907-z |
Cover
| Abstract | This study was intended to get the optimized Compressive strength and split tensile strength of Blended Self CuringConcrete(BSCC) on the impact of Supplementary Cementitious Materials (SCM’s). The experiments were conducted by varying the quantity of Cement, Flyash, Ground Granulated Blast Furnace Slag (GGBFS), Silica Fume and Slump with fixed quantity of Fine aggregate, Coarse aggregate, S.P and Water. Totally 13 different mix proportions were prepared and tested for Compressive Strength (CS) and Split Tensile Strength (STS). Both strengths were calculated for 7, 14 and 28 days. To optimize the compressive strength and split tensile strength, a feed forward Artificial Neural Network (ANN) model was developed, and Particle Swarm Optimization (PSO) algorithm was used by optimizing the weighing factors of the network in the neural power software. Finally, with a root mean square error of 0.008223, 0.006559, and 0.009743 for CS and 0.008905, 0.006999, and 0.008745 for STS, the model was obtained for 7, 14, and 28 days. The percentage contribution of input parameters is also discussed separately for compressive strength and split tensile strength of 7, 14 and 28 days of curing. Finally, the optimized compressive strength and split tensile strength were found to be 42.3552 N/mm
2
and 4.3113 N/mm
2
respectively for 28 days.
. |
|---|---|
| AbstractList | This study was intended to get the optimized Compressive strength and split tensile strength of Blended Self CuringConcrete(BSCC) on the impact of Supplementary Cementitious Materials (SCM’s). The experiments were conducted by varying the quantity of Cement, Flyash, Ground Granulated Blast Furnace Slag (GGBFS), Silica Fume and Slump with fixed quantity of Fine aggregate, Coarse aggregate, S.P and Water. Totally 13 different mix proportions were prepared and tested for Compressive Strength (CS) and Split Tensile Strength (STS). Both strengths were calculated for 7, 14 and 28 days. To optimize the compressive strength and split tensile strength, a feed forward Artificial Neural Network (ANN) model was developed, and Particle Swarm Optimization (PSO) algorithm was used by optimizing the weighing factors of the network in the neural power software. Finally, with a root mean square error of 0.008223, 0.006559, and 0.009743 for CS and 0.008905, 0.006999, and 0.008745 for STS, the model was obtained for 7, 14, and 28 days. The percentage contribution of input parameters is also discussed separately for compressive strength and split tensile strength of 7, 14 and 28 days of curing. Finally, the optimized compressive strength and split tensile strength were found to be 42.3552 N/mm
2
and 4.3113 N/mm
2
respectively for 28 days.
. This study was intended to get the optimized Compressive strength and split tensile strength of Blended Self CuringConcrete(BSCC) on the impact of Supplementary Cementitious Materials (SCM’s). The experiments were conducted by varying the quantity of Cement, Flyash, Ground Granulated Blast Furnace Slag (GGBFS), Silica Fume and Slump with fixed quantity of Fine aggregate, Coarse aggregate, S.P and Water. Totally 13 different mix proportions were prepared and tested for Compressive Strength (CS) and Split Tensile Strength (STS). Both strengths were calculated for 7, 14 and 28 days. To optimize the compressive strength and split tensile strength, a feed forward Artificial Neural Network (ANN) model was developed, and Particle Swarm Optimization (PSO) algorithm was used by optimizing the weighing factors of the network in the neural power software. Finally, with a root mean square error of 0.008223, 0.006559, and 0.009743 for CS and 0.008905, 0.006999, and 0.008745 for STS, the model was obtained for 7, 14, and 28 days. The percentage contribution of input parameters is also discussed separately for compressive strength and split tensile strength of 7, 14 and 28 days of curing. Finally, the optimized compressive strength and split tensile strength were found to be 42.3552 N/mm2 and 4.3113 N/mm2 respectively for 28 days.. |
| Author | Kumar, C. Vivek Vasa, J. S. S. K. Sargunan, K. Jesuraj, V. Praveen Karthikeyan, R. Punitha, A. |
| Author_xml | – sequence: 1 givenname: C. Vivek orcidid: 0000-0002-0194-0999 surname: Kumar fullname: Kumar, C. Vivek email: vivekkumarcr@gmail.com organization: Civil Engineering, Gokaraju Rangaraju Institute of Engineering and Technology – sequence: 2 givenname: K. surname: Sargunan fullname: Sargunan, K. organization: Civil Engineering, Malla Reddy Engineering College – sequence: 3 givenname: J. S. S. K. surname: Vasa fullname: Vasa, J. S. S. K. organization: Civil Engineering, Malla Reddy Engineering College – sequence: 4 givenname: V. Praveen surname: Jesuraj fullname: Jesuraj, V. Praveen organization: Civil Engineering, SSM Institute of Engineering and Technology – sequence: 5 givenname: A. surname: Punitha fullname: Punitha, A. organization: Computer Science & Engineering, Annamalai University – sequence: 6 givenname: R. surname: Karthikeyan fullname: Karthikeyan, R. organization: Mechanical Engineering, Gokaraju Rangaraju Institute of Engineering and Technology |
| BookMark | eNp9UUtOHDEQtSIiBQgXyMpS1k3Kdn-XIxQgEoJIgbVl7OoZo267Y7ujMCvuwFU4ESeJZyZKEAtWVap6r-pVvQOy57xDQj4xOGYAzZfIOEBbAOcFQAdNsX5H9llXVQWvoNr7lzPxgRzEeAdQt9DCPnlaTNNwb92SLi4v6fPDI_3-44qqYemDTauRJk9H9duOdo00rZBqP04BY7S_kMYU0C3TiipnaJwGm2hCF-3wouV7ejugM5gROPRUz2GzTHunAyak3m3H2nFSOm3Qcc6CcESXVLinepvZZP0cs5CEwaohfiTv-xzw6G88JDenX69PzouLq7NvJ4uLQgvWpcLc5nv70hjFmakb7MBg2apGlKprVMlqwbFua1W2JpcV57plpemVyJWOl0Ycks-7uVPwP2eMSd75Obi8UgqoWSWaumMZ1e5QOvgYA_ZS26SyZJeCsoNkIDceyZ1HMnsktx7JdabyV9Qp2DEf_jZJ7Ehx2vwSw39Vb7D-AAs7rFQ |
| CitedBy_id | crossref_primary_10_1088_1742_6596_2837_1_012015 crossref_primary_10_1007_s12008_023_01386_6 crossref_primary_10_1007_s42107_023_00886_w crossref_primary_10_1007_s00500_023_09414_z |
| Cites_doi | 10.1016/j.conbuildmat.2011.07.028 10.1007/s00170-010-2958-y 10.1155/2015/849126 10.1080/01694243.2014.995343 10.1590/S1679-78252014001100002 10.1016/j.heliyon.2018.e01115 10.12989/cac.2016.18.1.001 10.1016/j.conbuildmat.2007.01.002 10.1016/j.indcrop.2014.03.016 10.1016/j.mspro.2014.07.090 10.1016/j.clet.2021.100250 10.1007/s11709-016-0363-9 10.1080/2374068X.2020.1793267 10.1016/j.matpr.2020.02.591 10.1016/j.conbuildmat.2016.05.034 10.1016/j.compositesb.2012.05.054 10.1007/s12046-017-0667-z 10.1016/j.conbuildmat.2009.10.037 10.12989/cac.2014.13.5.621 10.1590/S1679-78252014000600004 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature 2022. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature 2022. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s12008-022-00907-z |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central (New) Technology Collection ProQuest One ProQuest Central Korea ProQuest SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef ProQuest One Business Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
| DatabaseTitleList | ProQuest One Business |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1955-2505 |
| EndPage | 2006 |
| ExternalDocumentID | 10_1007_s12008_022_00907_z |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 203 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 875 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AYJHY B-. BA0 BDATZ BENPR BGLVJ BGNMA CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KOV LLZTM M4Y M7S MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P9P PF0 PQBIZ PQBZA PT4 PTHSS QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 8FE 8FG DWQXO L6V PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-db513f4dda21d67e90de48a734a97a41632e686a48d48aa22c814dfa3a48924d3 |
| IEDL.DBID | BENPR |
| ISSN | 1955-2513 |
| IngestDate | Fri Jul 25 10:47:52 EDT 2025 Wed Oct 01 00:33:21 EDT 2025 Thu Apr 24 22:52:55 EDT 2025 Fri Feb 21 02:41:22 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | ANN PSO Cementitious materials Blended self curing concrete |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-db513f4dda21d67e90de48a734a97a41632e686a48d48aa22c814dfa3a48924d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0194-0999 |
| PQID | 3061537691 |
| PQPubID | 2044253 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_3061537691 crossref_citationtrail_10_1007_s12008_022_00907_z crossref_primary_10_1007_s12008_022_00907_z springer_journals_10_1007_s12008_022_00907_z |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20240500 2024-05-00 20240501 |
| PublicationDateYYYYMMDD | 2024-05-01 |
| PublicationDate_xml | – month: 5 year: 2024 text: 20240500 |
| PublicationDecade | 2020 |
| PublicationPlace | Paris |
| PublicationPlace_xml | – name: Paris – name: Heidelberg |
| PublicationTitle | International journal on interactive design and manufacturing |
| PublicationTitleAbbrev | Int J Interact Des Manuf |
| PublicationYear | 2024 |
| Publisher | Springer Paris Springer Nature B.V |
| Publisher_xml | – name: Springer Paris – name: Springer Nature B.V |
| References | Boğa, Öztürk, Topcu (CR9) 2013; 45 Karthikeyan, Senthil Kumar, Punitha, Chavan (CR14) 2020 Uysal, Tanyildizi (CR8) 2012; 27 Bharathi Raja, Baskar (CR22) 2011; 54 CR15 Awolusi, Oke, Akinkurolere (CR21) 2019; 5 CR13 Ebrahimpour, Abd, Chng (CR17) 2008; 8 Mashhadban, Kutanaei, Sayarinejad (CR18) 2016 CR12 CR32 Nikoo, Torabian Moghadam, Sadowski (CR7) 2015 Das, Kumar, Barman, Sahoo (CR27) 2014; 6 CR31 Khademi, Akbari, Jamal, Nikoo (CR5) 2017 Kutanaei, Choobbasti (CR28) 2015; 29 Yazıcı (CR1) 2008; 22 Tavakoli, Omran, Shiade, Kutanaei (CR19) 2014; 11 Gulbandilar, Kocak (CR11) 2016; 18 Pilkington, Prestonb, Gomesa (CR16) 2014; 58 Samad, Shah, Limbachiya (CR30) 2017; 42 Athiyamaan (CR2) 2021 Sobhani, Najimi, Pourkhorshidi, Parhizkar (CR6) 2010; 24 CR26 Lingam, Karthikeya (CR10) 2014; 13 Yan, Zhang, Luo, Li, Chen, Liu (CR29) 2012; 9 CR20 Suryawanshi, Thakare, Jain (CR3) 2020; 29 Singh, Singhal, Kumar (CR25) 2020 Tavakoli, Omran, Kutanaei, Shiade (CR23) 2014; 11 Muthupriya, Subramanian, Vishnuram (CR24) 2011; 1 Feizbakhsh, Khatibinia (CR4) 2017; 7 P Muthupriya (907_CR24) 2011; 1 HR Tavakoli (907_CR19) 2014; 11 X Yan (907_CR29) 2012; 9 JL Pilkington (907_CR16) 2014; 58 A Feizbakhsh (907_CR4) 2017; 7 A Lingam (907_CR10) 2014; 13 907_CR20 907_CR26 M Nikoo (907_CR7) 2015 NT Suryawanshi (907_CR3) 2020; 29 R Karthikeyan (907_CR14) 2020 S Bharathi Raja (907_CR22) 2011; 54 J Sobhani (907_CR6) 2010; 24 H Mashhadban (907_CR18) 2016 K Das (907_CR27) 2014; 6 S Samad (907_CR30) 2017; 42 907_CR12 AK Singh (907_CR25) 2020 SS Kutanaei (907_CR28) 2015; 29 907_CR32 TF Awolusi (907_CR21) 2019; 5 907_CR31 M Uysal (907_CR8) 2012; 27 907_CR15 F Khademi (907_CR5) 2017 907_CR13 V Athiyamaan (907_CR2) 2021 H Yazıcı (907_CR1) 2008; 22 HR Tavakoli (907_CR23) 2014; 11 A Ebrahimpour (907_CR17) 2008; 8 AR Boğa (907_CR9) 2013; 45 E Gulbandilar (907_CR11) 2016; 18 |
| References_xml | – volume: 27 start-page: 404 issue: 1 year: 2012 end-page: 414 ident: CR8 article-title: Estimation of compressive strength of self compacting concrete containing polypropylene fiber and mineral additives exposed to high temperature using artificial neural network publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2011.07.028 – volume: 54 start-page: 445 year: 2011 end-page: 463 ident: CR22 article-title: Particle swarm optimization technique for determining optimalmachining parameters of different work piece materials in turning operation publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-010-2958-y – year: 2015 ident: CR7 article-title: Prediction of concrete compressive strength by evolutionary artificial neural networks publication-title: Adv. Mater. Sci. Eng. doi: 10.1155/2015/849126 – volume: 29 start-page: 487 issue: 6 year: 2015 end-page: 501 ident: CR28 article-title: Prediction of combined effects of fibers and cement on the mechanical properties of sand using particle swarm optimization algorithm publication-title: J. Adhes. Sci. Technol. doi: 10.1080/01694243.2014.995343 – ident: CR12 – volume: 11 start-page: 1906 issue: 11 year: 2014 end-page: 1923 ident: CR19 article-title: Prediction of combined effects of fibers and nano-silica on the mechanical properties of selfcompacting concrete using artificial neural network publication-title: Lat. Am. J. Solids Struct. doi: 10.1590/S1679-78252014001100002 – volume: 5 year: 2019 ident: CR21 article-title: Performance comparison of neural networktraining algorithms in the modeling properties of steel fiber reinforced concrete publication-title: Heliyon. doi: 10.1016/j.heliyon.2018.e01115 – volume: 18 start-page: 1 issue: 1 year: 2016 end-page: 16 ident: CR11 article-title: Application of expert systems in prediction of flexural strength of cement mortars publication-title: Comput. Concr. doi: 10.12989/cac.2016.18.1.001 – volume: 22 start-page: 456 issue: 4 year: 2008 end-page: 462 ident: CR1 article-title: The effect of silica fume and high-volume Class C fly ash on mechanical properties, chloride penetration and freeze–thaw resistance of self-compacting concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2007.01.002 – volume: 58 start-page: 15 year: 2014 end-page: 24 ident: CR16 article-title: Comparison of response surface methodology (RSM) and artificial neural networks (ANN) towards efficient extraction of artemisinin from Artemisia annual publication-title: Ind. Crop. Prod. doi: 10.1016/j.indcrop.2014.03.016 – volume: 7 start-page: 367 issue: 3 year: 2017 end-page: 382 ident: CR4 article-title: A comparative study of Traditional and Intelligence Soft Computing methods for predicting Compressive strength of Self Compacting concretes publication-title: Int. J. Optim. Civil Eng. – volume: 6 start-page: 741 year: 2014 end-page: 751 ident: CR27 article-title: Application of artificial bee colony algorithm for optimization of MRR and surface roughness in EDM of EN31 tool steel, Procedia publication-title: Mater. Sci. doi: 10.1016/j.mspro.2014.07.090 – year: 2021 ident: CR2 article-title: Admixture-based self-compacted concrete with self-curing concrete techniques a state of art of review publication-title: Cleaner Eng. Technol. doi: 10.1016/j.clet.2021.100250 – year: 2017 ident: CR5 article-title: Multiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concrete publication-title: Front. Struct. Civil Eng. doi: 10.1007/s11709-016-0363-9 – year: 2020 ident: CR14 article-title: An integrated ANN - GA approach to maximize the material removal rate and to minimize the surface roughness of wire cut EDM on Titanium alloy publication-title: Adv. Mater. Process. Technol. doi: 10.1080/2374068X.2020.1793267 – year: 2020 ident: CR25 article-title: Machining of aluminum 7075 alloy using EDM process: an ANN validation publication-title: Mater. Today doi: 10.1016/j.matpr.2020.02.591 – ident: CR15 – volume: 29 start-page: 3829 issue: 9s year: 2020 end-page: 3835 ident: CR3 article-title: Self-curing possibilities of blended concrete using water soluble polymer publication-title: Int. J. Adv. Sci. Technol. – year: 2016 ident: CR18 article-title: Prediction and modeling of mechanical properties in fiber reinforced self-compacting concrete using particle swarm optimization algorithm and artificial neural network publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2016.05.034 – volume: 45 start-page: 688 issue: 1 year: 2013 end-page: 696 ident: CR9 article-title: Using ANN and ANFIS to predict the mechanical and chloride permeability properties of concrete containing GGBFS and CNI publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2012.05.054 – volume: 8 start-page: 96 year: 2008 ident: CR17 article-title: A modeling study by response surfacemethodologyandartificial neural network on culture parameters optimization for thermostable lipase production from a newly isolated thermophilic Geobacillus sp. Strain ARM publication-title: BioMedCentral – ident: CR31 – ident: CR13 – volume: 42 start-page: 1203 year: 2017 end-page: 1213 ident: CR30 article-title: Strength development characteristics of concrete produced with blended cement using ground granulated blast furnace slag (GGBS) under various curing conditions publication-title: Sādhanā doi: 10.1007/s12046-017-0667-z – ident: CR32 – volume: 24 start-page: 709 issue: 5 year: 2010 end-page: 718 ident: CR6 article-title: Prediction of the compressive strength of no-slump concrete: a comparative study of regression, neural network and ANFIS models publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2009.10.037 – volume: 13 start-page: 621 issue: 5 year: 2014 end-page: 632 ident: CR10 article-title: Prediction of compressive strength for HPC mixes containing different blends using ANN publication-title: Comput. Concr. doi: 10.12989/cac.2014.13.5.621 – volume: 9 start-page: 264 issue: 6 year: 2012 ident: CR29 article-title: Solve traveling salesman problem using particle swarm optimization algorithm publication-title: Int. J. Comput. Sci. – volume: 1 start-page: 189 year: 2011 end-page: 209 ident: CR24 article-title: Prediction of compressive strength and durability of high performance concrete by artificial neural networks publication-title: Int. J. Optim. Civil Eng. – volume: 11 start-page: 966 issue: 6 year: 2014 end-page: 979 ident: CR23 article-title: Prediction of energy absorption capability in fiber reinforced self-compacting concrete containing nano-silica particles using artificial neural network publication-title: Lat. Am. J. Solids Struct. doi: 10.1590/S1679-78252014000600004 – ident: CR26 – ident: CR20 – ident: 907_CR15 – volume: 8 start-page: 96 year: 2008 ident: 907_CR17 publication-title: BioMedCentral – ident: 907_CR13 – volume: 42 start-page: 1203 year: 2017 ident: 907_CR30 publication-title: Sādhanā doi: 10.1007/s12046-017-0667-z – year: 2015 ident: 907_CR7 publication-title: Adv. Mater. Sci. Eng. doi: 10.1155/2015/849126 – volume: 58 start-page: 15 year: 2014 ident: 907_CR16 publication-title: Ind. Crop. Prod. doi: 10.1016/j.indcrop.2014.03.016 – volume: 1 start-page: 189 year: 2011 ident: 907_CR24 publication-title: Int. J. Optim. Civil Eng. – year: 2017 ident: 907_CR5 publication-title: Front. Struct. Civil Eng. doi: 10.1007/s11709-016-0363-9 – ident: 907_CR31 – volume: 27 start-page: 404 issue: 1 year: 2012 ident: 907_CR8 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2011.07.028 – year: 2020 ident: 907_CR14 publication-title: Adv. Mater. Process. Technol. doi: 10.1080/2374068X.2020.1793267 – volume: 18 start-page: 1 issue: 1 year: 2016 ident: 907_CR11 publication-title: Comput. Concr. doi: 10.12989/cac.2016.18.1.001 – volume: 11 start-page: 1906 issue: 11 year: 2014 ident: 907_CR19 publication-title: Lat. Am. J. Solids Struct. doi: 10.1590/S1679-78252014001100002 – volume: 11 start-page: 966 issue: 6 year: 2014 ident: 907_CR23 publication-title: Lat. Am. J. Solids Struct. doi: 10.1590/S1679-78252014000600004 – volume: 29 start-page: 3829 issue: 9s year: 2020 ident: 907_CR3 publication-title: Int. J. Adv. Sci. Technol. – ident: 907_CR26 – volume: 29 start-page: 487 issue: 6 year: 2015 ident: 907_CR28 publication-title: J. Adhes. Sci. Technol. doi: 10.1080/01694243.2014.995343 – volume: 13 start-page: 621 issue: 5 year: 2014 ident: 907_CR10 publication-title: Comput. Concr. doi: 10.12989/cac.2014.13.5.621 – year: 2016 ident: 907_CR18 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2016.05.034 – ident: 907_CR20 – volume: 5 year: 2019 ident: 907_CR21 publication-title: Heliyon. doi: 10.1016/j.heliyon.2018.e01115 – volume: 54 start-page: 445 year: 2011 ident: 907_CR22 publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-010-2958-y – ident: 907_CR12 – year: 2021 ident: 907_CR2 publication-title: Cleaner Eng. Technol. doi: 10.1016/j.clet.2021.100250 – year: 2020 ident: 907_CR25 publication-title: Mater. Today doi: 10.1016/j.matpr.2020.02.591 – volume: 9 start-page: 264 issue: 6 year: 2012 ident: 907_CR29 publication-title: Int. J. Comput. Sci. – volume: 6 start-page: 741 year: 2014 ident: 907_CR27 publication-title: Mater. Sci. doi: 10.1016/j.mspro.2014.07.090 – ident: 907_CR32 – volume: 24 start-page: 709 issue: 5 year: 2010 ident: 907_CR6 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2009.10.037 – volume: 45 start-page: 688 issue: 1 year: 2013 ident: 907_CR9 publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2012.05.054 – volume: 7 start-page: 367 issue: 3 year: 2017 ident: 907_CR4 publication-title: Int. J. Optim. Civil Eng. – volume: 22 start-page: 456 issue: 4 year: 2008 ident: 907_CR1 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2007.01.002 |
| SSID | ssj0068080 |
| Score | 2.328789 |
| Snippet | This study was intended to get the optimized Compressive strength and split tensile strength of Blended Self CuringConcrete(BSCC) on the impact of... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1997 |
| SubjectTerms | Algorithms Artificial neural networks CAE) and Design Cement Composite materials Compressive strength Computer-Aided Engineering (CAD Concrete curing Concrete mixing Curing Electronics and Microelectronics Engineering Engineering Design Fly ash GGBS Hydration Industrial Design Instrumentation Investigations Mechanical Engineering Neural networks Original Paper Particle swarm optimization Polyethylene glycol Silica fume Tensile strength |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-LnoQn7i-mIM3DfSRvo6LuCyCq6AL3krSpKvQbcVW0T35H_wr_iJ_iZO0dVVU8FaS6VA6ycw3yTwI2Q-D1A0i4VNEB4xqi09RB0bUSlRou8wS0hSrPh34_SE7ufKumqSwso12b68kjaaeJrvVV_XoPCEusAI6mSXzni7nhat46HRb_at7SZg0yMjzKFpvt0mV-ZnHV3M0xZjfrkWNtektk6UGJkK3lusKmVH5Kln8VDxwjbxqAKmTlKA7GMDb8wucX5wBz0YF-vvXY6gKGPPHm_HNRAGiPNDB4ybo9UGBzhDJR9U18FxCiTi0AhPJnn2aKlIQmTkgh1JlKZhz-RGyyRFoVgqK3LCt0yw1dakbhNbB6HdPkJgnHRB2X-KHVPVKXyfD3vHlUZ82PRhogpuzolLgH0yZlNyxpR-oyJKKhTxwGY8CrmXrKD_0OQslDnPHSUKbyZS7OIKunXQ3yFxe5GqTALMSEQorUhJ9GC5UFAgv9RPFuZBWmqgOsVtRxElToFz3ycjiaWnlummm48RGfPGkQw4-3rmty3P8Sb3TSjhutmoZuxrUoZqN7A45bKU-nf6d29b_yLfJgoOAqA6W3CFz1d292kVAU4k9s37fAYQ68aQ priority: 102 providerName: Springer Nature |
| Title | Applying ANN – PSO algorithm to maximize the compressive strength and split tensile strength of blended self curing concrete on the impact of supplementary cementitious materials |
| URI | https://link.springer.com/article/10.1007/s12008-022-00907-z https://www.proquest.com/docview/3061537691 |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1955-2505 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0068080 issn: 1955-2513 databaseCode: AFBBN dateStart: 20070401 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1955-2505 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0068080 issn: 1955-2513 databaseCode: BENPR dateStart: 20070401 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1955-2505 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0068080 issn: 1955-2513 databaseCode: AGYKE dateStart: 20070101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1955-2505 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0068080 issn: 1955-2513 databaseCode: U2A dateStart: 20070425 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB61uxc4IJ5i27KaAzewyMObx6FCu2i3FYhQASuVU2THzrZSNilNimBP_Af-Cr-IX8LYSdiCRE-JbGeUZDwzn-15ADyNwtwPYxkwQgecGYvPSAfGzMl05Prckcomq36bBMdL_vp0croDSR8LY9wqe51oFbWqMrNH_sI3tpekIXZfXnxmpmqUOV3tS2iIrrSCOrQpxnZh6JnMWAMYzubJyfteN5s6EzZEMp5MGFl2vwujaYPpWlcAWpwR7nBCtvnbVG3x5z9HptYSLe7CnQ5C4rTl-T3Y0eV9uH0tseAD-GnApQlgwmmS4K_vP_DkwzsUxYq-qDlbY1PhWnw9X59vNBICRONYbh1iv2g00SPlqjlDUSqsCaM2aL3ci2tdVY6ysJvnWOsiR7tnvyIyJYHQRmNVWrJtCKYZXZvioa2j-uU3zOydcRa7qulFmlYKHsJyMf_46ph19RlYRoLbMCXpD-ZcKeG5Kgh17CjNIxH6XMShMHz3dBAFgkeKmoXnZZHLVS58aqFln_IfwaCsSv0YkDuZjKQTa0XrGyF1HMpJHmRaCKmcPNMjcHtWpFmXvNzU0CjSbdrltqCm56WWfelmBM_-PHPRpu64cfRBz-G0E-M63U66ETzvub7t_j-1vZup7cMtj8BR6zh5AIPm8ko_IXDTyDHsRoujMQyni9ksMdejT2_m424eU-_Sm_4GWOz_pQ |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKewAOiKdYKDAHOIFFHs7DhwoVaLWlbaiglXpL7djZVsompUmB7on_wF_hzI_hlzC2E7Yg0VtvkeOMrMx45ht7HoQ8TZMyTLiMKaIDRo3Fp6gDOfUKnfoh86Syxaq3s3i8x97tR_sL5OeQC2PCKgedaBW1agpzRv4yNLYXdwP3Xx1_oqZrlLldHVpoiL61glqxJcb6xI5NffYFXbh2ZeMt8vtZEKyv7b4Z077LAC1Q_DqqZOSHJVNKBL6KE809pVkqkpAJngiz-kDHaSxYqnBYBEGR-kyVIsQRdF5UiHSvkCUWMo7O39LrtWznw2ALTF8Lm5LJo4gikgj7tB2XvOdCD9AZRJzjJXT2t2mc491_rmit5Vu_SW70kBVWnYzdIgu6vk2unytkeIf8MGDWJEzBapbBr2_fYefjexDVBP9gdziFroGp-Ho0PZppQMQJJpDdBuB-1mCyVepJdwiiVtAiJu7ARtVX5141JcjKHtZDq6sS7B3BBMnUCHo7DU1tybqUTzO7Nc1KXWD8yRkU9skEp522uJDO7bq7ZO9SOHWPLNZNre8TYF4hU-lxrdCfElLzREZlXGghpPLKQo-IP7AiL_pi6aZnR5XPyzy7Bp5BkFv25bMRef7nm2NXKuTC2csDh_NebbT5XMhH5MXA9fnr_1N7cDG1J-TqeHd7K9_ayDYfkmsBAjMXtLlMFruTU_0IgVUnH_fSC-TgsjfMb5-cN5M |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JbtswECXaFAiSQ9EtiNO0nUNvKREttJaj0cRINydAYiA3gRQpO4AsBRYdJD71H_or_aJ-SYekVLtFWqA3gaQGgobkvCHnzRDyNomLME5FRBEdMGosPsU9MKVerhI_ZJ6QNln1l1F0MmYfL_uXayx-G-3eXUk6ToPJ0lTpw2tZHK6Ib-7aHh0pxAheTJcPySNmEiXgjB4Hg24vNnUlLCUy7fcpWvKwpc3cL-N307TCm39ckVrLM3xCHreQEQZOx0_JA1U9I9triQSfk-8GTBrCEgxGI_jx9RucnZ8CLyc1-v7TGegaZvz2ana1VICID0wguQ2AvVFg2CLVRE-BVxIaxKQabFR7udZVFyBKe1gOjSoLsGf0ExRTIejUCurKinWUSzO6McVCXWD6_A5y-2SCwxYNfoh2s_4FGQ-PL96f0LYeA81xoWoqBf7BgknJA19GsUo9qVjC45DxNOZGz4GKkoizRGIzD4I88ZkseIgt6ObJcIdsVHWldgkwLxeJ8FIl0Z_hQqWx6BdRrjgX0ity1SN-p4osb5OVm5oZZbZKs-wKaAZBZtWXLXvk4Nc71y5Vxz9H73caztpl22ShAXi45aZ-j7zrtL7q_ru0vf8b_oZsnh0Ns88fRp9ekq0AcZKLodwnG3q-UK8Q52jx2k7ln7TV-Mw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applying+ANN+%E2%80%93+PSO+algorithm+to+maximize+the+compressive+strength+and+split+tensile+strength+of+blended+self+curing+concrete+on+the+impact+of+supplementary+cementitious+materials&rft.jtitle=International+journal+on+interactive+design+and+manufacturing&rft.au=Kumar%2C+C.+Vivek&rft.au=Sargunan%2C+K&rft.au=Vasa%2C+J.+S.+S.+K&rft.au=Jesuraj%2C+V.+Praveen&rft.date=2024-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1955-2513&rft.eissn=1955-2505&rft.volume=18&rft.issue=4&rft.spage=1997&rft.epage=2006&rft_id=info:doi/10.1007%2Fs12008-022-00907-z |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1955-2513&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1955-2513&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1955-2513&client=summon |