Enhancing Power Grid Data Analysis with Fusion Algorithms for Efficient Association Rule Mining in Large-Scale Datasets

Against the backdrop of the rapid development of information technology, the total amount of data has exploded, and efficient association rule mining methods for large-scale datasets have been studied. Conventional rule mining algorithms are subject to electrical constraints when working, and their...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of computers, communications & control Vol. 19; no. 3
Main Author Sun, Qiongqiong
Format Journal Article
LanguageEnglish
Published Oradea Agora University of Oradea 01.06.2024
Subjects
Online AccessGet full text
ISSN1841-9836
1841-9844
1841-9844
DOI10.15837/ijccc.2024.3.6232

Cover

Abstract Against the backdrop of the rapid development of information technology, the total amount of data has exploded, and efficient association rule mining methods for large-scale datasets have been studied. Conventional rule mining algorithms are subject to electrical constraints when working, and their convergence speed and data noise are currently the main problems they face. In order to accelerate the working process of the algorithm, this study introduces a data warehouse into the K-Means algorithm, and connects the time series and voltage interaction functions with the long-and-short-term memory network for efficient information analysis of power grid data, generating fusion algorithms. The study conducted experiments on the Netloss dataset and simultaneously conducted experiments on three models, including long-and-short-term memory networks, to verify the superiority of the fusion algorithm. Under the same experimental voltage, the circuit power flows of the four models were 0.37, 0.64, 0.79, and 0.82A, respectively, indicating that the algorithm effectively controlled the electrical dataset. Its measurement accuracy was the highest among the four models, at 91.7%. The experimental results show that the fusion algorithm proposed in the study has precise control ability in power grid datasets, and can effectively mine association rules on large-scale datasets.
AbstractList Against the backdrop of the rapid development of information technology, the total amount of data has exploded, and efficient association rule mining methods for large-scale datasets have been studied. Conventional rule mining algorithms are subject to electrical constraints when working, and their convergence speed and data noise are currently the main problems they face. In order to accelerate the working process of the algorithm, this study introduces a data warehouse into the K-Means algorithm, and connects the time series and voltage interaction functions with the long-and-short-term memory network for efficient information analysis of power grid data, generating fusion algorithms. The study conducted experiments on the Netloss dataset and simultaneously conducted experiments on three models, including long-and-short-term memory networks, to verify the superiority of the fusion algorithm. Under the same experimental voltage, the circuit power flows of the four models were 0.37, 0.64, 0.79, and 0.82A, respectively, indicating that the algorithm effectively controlled the electrical dataset. Its measurement accuracy was the highest among the four models, at 91.7%. The experimental results show that the fusion algorithm proposed in the study has precise control ability in power grid datasets, and can effectively mine association rules on large-scale datasets.
Author Sun, Qiongqiong
Author_xml – sequence: 1
  givenname: Qiongqiong
  surname: Sun
  fullname: Sun, Qiongqiong
BookMark eNqNkElOwzAYhS0EEmW4AFvWKZ7iOEsEZZCKQAxry3Wc1lWwi-2o6gU4R86Sk-GmiAULhDe2_vfe_6zvCOxbZzUAZwiOUc5JcWGWSqkxhpiOyZhhgvfACHGKspJTuv_zJuwQnIawhOkQzGGRj8DnxC6kVcbO--7JrbXvu1tvqr67llH23aWVzSaY0HdrExd9d9MG42yaN3Pn0-Q9KbVLoUldG2W0jUkLwSkj42B8bhvddw_GDg0mTabSz3X2ouRW2LYEHcMJOKhlE_Tp930M3m4mr1d32fTx9v7qcpopgsqYVaWWqkAQYwphxRjlNWKqwFUxk5jWGus8x5VmJVOcaw5neSERoVDPSs6KXJFjQHZ7W7uSm7VsGrHy5l36jUBQDDTFQFNsaQoitjRT6nyXWnn30eoQxdK1PqEJgsCc0JKVeZFcfOdS3oXgdS2UiQOG6KVp_i7Av6L_-NUXwXSohw
CitedBy_id crossref_primary_10_1186_s42162_024_00392_6
ContentType Journal Article
Copyright 2024. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.15837/ijccc.2024.3.6232
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1841-9844
ExternalDocumentID 10.15837/ijccc.2024.3.6232
10_15837_ijccc_2024_3_6232
GroupedDBID .4S
.DC
29J
2WC
5GY
AAKPC
AAYXX
ACIPV
ADBBV
AENEX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
E3Z
EDO
EOJEC
GROUPED_DOAJ
HCIFZ
ITG
ITH
K7-
MK~
ML~
M~E
OBODZ
OK1
OVT
PHGZM
PHGZT
PIMPY
PQGLB
PUEGO
TR2
TUS
8FE
8FG
ABUWG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-c319t-d9eac71022400d6648f16c72d7ba24fe2e552de696c88e80b57a1340eb98675c3
IEDL.DBID BENPR
ISSN 1841-9836
1841-9844
IngestDate Tue Aug 19 18:48:18 EDT 2025
Sat Aug 23 14:32:05 EDT 2025
Thu Apr 24 22:51:07 EDT 2025
Wed Oct 01 02:31:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://creativecommons.org/licenses/by-nc/4.0
cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-d9eac71022400d6648f16c72d7ba24fe2e552de696c88e80b57a1340eb98675c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3053496957?pq-origsite=%requestingapplication%&accountid=15518
PQID 3053496957
PQPubID 5045567
ParticipantIDs unpaywall_primary_10_15837_ijccc_2024_3_6232
proquest_journals_3053496957
crossref_citationtrail_10_15837_ijccc_2024_3_6232
crossref_primary_10_15837_ijccc_2024_3_6232
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Oradea
PublicationPlace_xml – name: Oradea
PublicationTitle International journal of computers, communications & control
PublicationYear 2024
Publisher Agora University of Oradea
Publisher_xml – name: Agora University of Oradea
SSID ssj0000328075
ssib032305687
Score 2.3106036
Snippet Against the backdrop of the rapid development of information technology, the total amount of data has exploded, and efficient association rule mining methods...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
SubjectTerms Algorithms
Data analysis
Data mining
Datasets
Electric potential
Information management
Power flow
Voltage
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLXQdAEbSimIaUs1C3bUQx624ywrmGmFaFVRRiqryK8pQ9O0mklUlQ_gO_wt_rJeJ54-EEJll_ipXF_73uvY5yD0Ljc0YTKXWKdaYCLYFMt8GuFY5wbcZy2U8heFDw7Z_oR8PqEnASbH34W5__-eQvD0YfZTKQ81mJBhOgRbDcvtCqPgd_fQyuTwaPe7j6g4iXHOWz7A8ExIuCHz90YeWqE71_JpU12K6ytRlveszHi1oytatOCE_nDJ2bCp5VD9-gO68XEf8AI9D87mYLfTjjX0xFQv0eqSyGEQ5vU6-j2qfnjcjerU2SNPm-bs3nymnf0kauHsErjEWb9r6-y48VtskF6eXswh5RxywPd1dtTiUYAZg7y7YXf2a1MaZw9aLgpnZ5DyxR9Ax8egIKbrZWHqxSs0GY--fdzHgaABK5i5NYbxFCprQemiSDNG-DRmKkt0JkVCpiYxlCbasJwpzg2PJM1EnJLIyJxDoKLS16hXXVTmDRpoKCyIgLqJBB-JChlBS9oQzgzjke6jeDlghQro5Z5Eoyx8FOMFXbSCLrygi7Twgu6j97d1Ljvsjn-W3lrqQRHm8aKA1dAj6uc066OdW914RGsb_1d8Ez3zb90ZtC3Uq-eNeQveTi23g5rfAMhSBqw
  priority: 102
  providerName: Unpaywall
Title Enhancing Power Grid Data Analysis with Fusion Algorithms for Efficient Association Rule Mining in Large-Scale Datasets
URI https://www.proquest.com/docview/3053496957
https://doi.org/10.15837/ijccc.2024.3.6232
UnpaywallVersion publishedVersion
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1841-9844
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000328075
  issn: 1841-9844
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1841-9844
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000328075
  issn: 1841-9844
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1841-9844
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000328075
  issn: 1841-9844
  databaseCode: BENPR
  dateStart: 20060301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NAEB216QEufCNSSrQHbrCtvbbX9gGhAEkrRKOoEKmcrP1KG2TctHFU8e-Z2azbcqk4WlrPYd_s7pv9eA_gbekyIXWpuU2s4qmSc67LecRjWzqkz1YZQw-FjyfyaJZ-Pc1Ot2DSvYWha5XdnOgnanthaI_8APOStM3LLP-4vOTkGkWnq52FhgrWCvaDlxjbhh1Bylg92Pk0mkxPugxLBDHmQEj8XJ2IoMaLlU7My4LOMv3Lmgwrt4PFL2NI51Ck-8k-EgXx7-p1S0kfrJul-nOt6vrO6jR-Ao8CrWTDTR48hS3XPIPHnWUDCyP4OVyPmnNS2GjO2JT80djh1cKyL6pVrJMnYbQ1y8Zr2kZjw_oMO6E9_71iyG7ZyAtO4DrF7sDKTta1Y8feaYItGvaNLpfz7wi-85FXrl29gNl49OPzEQ_eC9zgoGw5QqVM7vXmoshKmRbzWJpc2Fwrkc6dcFkmrJOlNEXhikhnuYqTNHK6LLAGMclL6DUXjXsFzGJjlSr8V2ikP5nSEUayLi2kk0Vk-xB3fVqZIExO_hh1RQUK4VB5HCrCoUoqwqEP727-WW5kOe5tvddBVYUhuqpuE6oP72_g-49ou_dHew0PqfHmOtke9NqrtXuDxKXVA9guxoeDkJMDX_7j12wyHf78C4LY7ns
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwELUoHOiFfqvb0taH9tQaEsdxkgOqaNntUnZXiILELfXXwqI0bElWK_4cv42ZrAP0gnrhbo8sz8v4jeN5Q8jHzMVc6kwzG1nFhJJjprNxwEKbOaDPVhmDhcLDkewfiZ_H8fESuWprYfBZZRsTm0Btzw3ekW8CLlHbPIuTr9O_DLtG4d_VtoWG8q0V7FYjMeYLO_bc5RxSuGprdwf8_YnzXvfwe5_5LgPMAPxqBotSJmmU1YLASinScShNwm2iFRdjx10cc-tkJk2aujTQcaLCSAROZymwbROB3UdkRcDqIPlb-dYd7R-0iI44MnRPgJqzIeJe_Rcyq5BlKf47bSp5YsgUNydnxqCuIhcb0QYQE_7vaXlLgVdn5VRdzlVR3DkNe0_JmqexdHuBu2dkyZXPyZO2RQT1EeMFmXfLU1T0KE_oPvZjoz8uJpbuqFrRVg6F4lUw7c3w2o5uFyew6fXpn4oCm6bdRuACzkV6B0b0YFY4Omw6W9BJSQf4mJ39ArC5xnLl6uolOXoQL7wiy-V56V4TamGwEgrmcg10K1Y6AEvWiVQ6mQa2Q8J2T3PjhdCxH0eRY0KEfsgbP-TohzzK0Q8d8vlmznQhA3Lv6PXWVbkPCVV-C-AO-XLjvv-w9uZ-ax_Iav9wOMgHu6O9t-QxTlw8ZVsny_XFzL0D0lTr9x6ZlPx-6I_hGloYJxM
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLXQdAEbSimIaUs1C3bUQx624ywrmGmFaFVRRiqryK8pQ9O0mklUlQ_gO_wt_rJeJ54-EEJll_ipXF_73uvY5yD0Ljc0YTKXWKdaYCLYFMt8GuFY5wbcZy2U8heFDw7Z_oR8PqEnASbH34W5__-eQvD0YfZTKQ81mJBhOgRbDcvtCqPgd_fQyuTwaPe7j6g4iXHOWz7A8ExIuCHz90YeWqE71_JpU12K6ytRlveszHi1oytatOCE_nDJ2bCp5VD9-gO68XEf8AI9D87mYLfTjjX0xFQv0eqSyGEQ5vU6-j2qfnjcjerU2SNPm-bs3nymnf0kauHsErjEWb9r6-y48VtskF6eXswh5RxywPd1dtTiUYAZg7y7YXf2a1MaZw9aLgpnZ5DyxR9Ax8egIKbrZWHqxSs0GY--fdzHgaABK5i5NYbxFCprQemiSDNG-DRmKkt0JkVCpiYxlCbasJwpzg2PJM1EnJLIyJxDoKLS16hXXVTmDRpoKCyIgLqJBB-JChlBS9oQzgzjke6jeDlghQro5Z5Eoyx8FOMFXbSCLrygi7Twgu6j97d1Ljvsjn-W3lrqQRHm8aKA1dAj6uc066OdW914RGsb_1d8Ez3zb90ZtC3Uq-eNeQveTi23g5rfAMhSBqw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Power+Grid+Data+Analysis+with+Fusion+Algorithms+for+Efficient+Association+Rule+Mining+in+Large-Scale+Datasets&rft.jtitle=International+journal+of+computers%2C+communications+%26+control&rft.au=Sun%2C+Qiongqiong&rft.date=2024-06-01&rft.pub=Agora+University+of+Oradea&rft.issn=1841-9836&rft.eissn=1841-9844&rft.volume=19&rft.issue=3&rft_id=info:doi/10.15837%2Fijccc.2024.3.6232
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1841-9836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1841-9836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1841-9836&client=summon