Enhancing Power Grid Data Analysis with Fusion Algorithms for Efficient Association Rule Mining in Large-Scale Datasets
Against the backdrop of the rapid development of information technology, the total amount of data has exploded, and efficient association rule mining methods for large-scale datasets have been studied. Conventional rule mining algorithms are subject to electrical constraints when working, and their...
Saved in:
| Published in | International journal of computers, communications & control Vol. 19; no. 3 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Oradea
Agora University of Oradea
01.06.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1841-9836 1841-9844 1841-9844 |
| DOI | 10.15837/ijccc.2024.3.6232 |
Cover
| Abstract | Against the backdrop of the rapid development of information technology, the total amount of data has exploded, and efficient association rule mining methods for large-scale datasets have been studied. Conventional rule mining algorithms are subject to electrical constraints when working, and their convergence speed and data noise are currently the main problems they face. In order to accelerate the working process of the algorithm, this study introduces a data warehouse into the K-Means algorithm, and connects the time series and voltage interaction functions with the long-and-short-term memory network for efficient information analysis of power grid data, generating fusion algorithms. The study conducted experiments on the Netloss dataset and simultaneously conducted experiments on three models, including long-and-short-term memory networks, to verify the superiority of the fusion algorithm. Under the same experimental voltage, the circuit power flows of the four models were 0.37, 0.64, 0.79, and 0.82A, respectively, indicating that the algorithm effectively controlled the electrical dataset. Its measurement accuracy was the highest among the four models, at 91.7%. The experimental results show that the fusion algorithm proposed in the study has precise control ability in power grid datasets, and can effectively mine association rules on large-scale datasets. |
|---|---|
| AbstractList | Against the backdrop of the rapid development of information technology, the total amount of data has exploded, and efficient association rule mining methods for large-scale datasets have been studied. Conventional rule mining algorithms are subject to electrical constraints when working, and their convergence speed and data noise are currently the main problems they face. In order to accelerate the working process of the algorithm, this study introduces a data warehouse into the K-Means algorithm, and connects the time series and voltage interaction functions with the long-and-short-term memory network for efficient information analysis of power grid data, generating fusion algorithms. The study conducted experiments on the Netloss dataset and simultaneously conducted experiments on three models, including long-and-short-term memory networks, to verify the superiority of the fusion algorithm. Under the same experimental voltage, the circuit power flows of the four models were 0.37, 0.64, 0.79, and 0.82A, respectively, indicating that the algorithm effectively controlled the electrical dataset. Its measurement accuracy was the highest among the four models, at 91.7%. The experimental results show that the fusion algorithm proposed in the study has precise control ability in power grid datasets, and can effectively mine association rules on large-scale datasets. |
| Author | Sun, Qiongqiong |
| Author_xml | – sequence: 1 givenname: Qiongqiong surname: Sun fullname: Sun, Qiongqiong |
| BookMark | eNqNkElOwzAYhS0EEmW4AFvWKZ7iOEsEZZCKQAxry3Wc1lWwi-2o6gU4R86Sk-GmiAULhDe2_vfe_6zvCOxbZzUAZwiOUc5JcWGWSqkxhpiOyZhhgvfACHGKspJTuv_zJuwQnIawhOkQzGGRj8DnxC6kVcbO--7JrbXvu1tvqr67llH23aWVzSaY0HdrExd9d9MG42yaN3Pn0-Q9KbVLoUldG2W0jUkLwSkj42B8bhvddw_GDg0mTabSz3X2ouRW2LYEHcMJOKhlE_Tp930M3m4mr1d32fTx9v7qcpopgsqYVaWWqkAQYwphxRjlNWKqwFUxk5jWGus8x5VmJVOcaw5neSERoVDPSs6KXJFjQHZ7W7uSm7VsGrHy5l36jUBQDDTFQFNsaQoitjRT6nyXWnn30eoQxdK1PqEJgsCc0JKVeZFcfOdS3oXgdS2UiQOG6KVp_i7Av6L_-NUXwXSohw |
| CitedBy_id | crossref_primary_10_1186_s42162_024_00392_6 |
| ContentType | Journal Article |
| Copyright | 2024. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTOC UNPAY |
| DOI | 10.15837/ijccc.2024.3.6232 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1841-9844 |
| ExternalDocumentID | 10.15837/ijccc.2024.3.6232 10_15837_ijccc_2024_3_6232 |
| GroupedDBID | .4S .DC 29J 2WC 5GY AAKPC AAYXX ACIPV ADBBV AENEX AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BCNDV BENPR BGLVJ CCPQU CITATION E3Z EDO EOJEC GROUPED_DOAJ HCIFZ ITG ITH K7- MK~ ML~ M~E OBODZ OK1 OVT PHGZM PHGZT PIMPY PQGLB PUEGO TR2 TUS 8FE 8FG ABUWG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY |
| ID | FETCH-LOGICAL-c319t-d9eac71022400d6648f16c72d7ba24fe2e552de696c88e80b57a1340eb98675c3 |
| IEDL.DBID | BENPR |
| ISSN | 1841-9836 1841-9844 |
| IngestDate | Tue Aug 19 18:48:18 EDT 2025 Sat Aug 23 14:32:05 EDT 2025 Thu Apr 24 22:51:07 EDT 2025 Wed Oct 01 02:31:45 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | http://creativecommons.org/licenses/by-nc/4.0 cc-by-nc |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-d9eac71022400d6648f16c72d7ba24fe2e552de696c88e80b57a1340eb98675c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/3053496957?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 3053496957 |
| PQPubID | 5045567 |
| ParticipantIDs | unpaywall_primary_10_15837_ijccc_2024_3_6232 proquest_journals_3053496957 crossref_citationtrail_10_15837_ijccc_2024_3_6232 crossref_primary_10_15837_ijccc_2024_3_6232 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-01 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Oradea |
| PublicationPlace_xml | – name: Oradea |
| PublicationTitle | International journal of computers, communications & control |
| PublicationYear | 2024 |
| Publisher | Agora University of Oradea |
| Publisher_xml | – name: Agora University of Oradea |
| SSID | ssj0000328075 ssib032305687 |
| Score | 2.3106036 |
| Snippet | Against the backdrop of the rapid development of information technology, the total amount of data has exploded, and efficient association rule mining methods... |
| SourceID | unpaywall proquest crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| SubjectTerms | Algorithms Data analysis Data mining Datasets Electric potential Information management Power flow Voltage |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLXQdAEbSimIaUs1C3bUQx624ywrmGmFaFVRRiqryK8pQ9O0mklUlQ_gO_wt_rJeJ54-EEJll_ipXF_73uvY5yD0Ljc0YTKXWKdaYCLYFMt8GuFY5wbcZy2U8heFDw7Z_oR8PqEnASbH34W5__-eQvD0YfZTKQ81mJBhOgRbDcvtCqPgd_fQyuTwaPe7j6g4iXHOWz7A8ExIuCHz90YeWqE71_JpU12K6ytRlveszHi1oytatOCE_nDJ2bCp5VD9-gO68XEf8AI9D87mYLfTjjX0xFQv0eqSyGEQ5vU6-j2qfnjcjerU2SNPm-bs3nymnf0kauHsErjEWb9r6-y48VtskF6eXswh5RxywPd1dtTiUYAZg7y7YXf2a1MaZw9aLgpnZ5DyxR9Ax8egIKbrZWHqxSs0GY--fdzHgaABK5i5NYbxFCprQemiSDNG-DRmKkt0JkVCpiYxlCbasJwpzg2PJM1EnJLIyJxDoKLS16hXXVTmDRpoKCyIgLqJBB-JChlBS9oQzgzjke6jeDlghQro5Z5Eoyx8FOMFXbSCLrygi7Twgu6j97d1Ljvsjn-W3lrqQRHm8aKA1dAj6uc066OdW914RGsb_1d8Ez3zb90ZtC3Uq-eNeQveTi23g5rfAMhSBqw priority: 102 providerName: Unpaywall |
| Title | Enhancing Power Grid Data Analysis with Fusion Algorithms for Efficient Association Rule Mining in Large-Scale Datasets |
| URI | https://www.proquest.com/docview/3053496957 https://doi.org/10.15837/ijccc.2024.3.6232 |
| UnpaywallVersion | publishedVersion |
| Volume | 19 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1841-9844 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000328075 issn: 1841-9844 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1841-9844 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000328075 issn: 1841-9844 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1841-9844 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000328075 issn: 1841-9844 databaseCode: BENPR dateStart: 20060301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NAEB216QEufCNSSrQHbrCtvbbX9gGhAEkrRKOoEKmcrP1KG2TctHFU8e-Z2azbcqk4WlrPYd_s7pv9eA_gbekyIXWpuU2s4qmSc67LecRjWzqkz1YZQw-FjyfyaJZ-Pc1Ot2DSvYWha5XdnOgnanthaI_8APOStM3LLP-4vOTkGkWnq52FhgrWCvaDlxjbhh1Bylg92Pk0mkxPugxLBDHmQEj8XJ2IoMaLlU7My4LOMv3Lmgwrt4PFL2NI51Ck-8k-EgXx7-p1S0kfrJul-nOt6vrO6jR-Ao8CrWTDTR48hS3XPIPHnWUDCyP4OVyPmnNS2GjO2JT80djh1cKyL6pVrJMnYbQ1y8Zr2kZjw_oMO6E9_71iyG7ZyAtO4DrF7sDKTta1Y8feaYItGvaNLpfz7wi-85FXrl29gNl49OPzEQ_eC9zgoGw5QqVM7vXmoshKmRbzWJpc2Fwrkc6dcFkmrJOlNEXhikhnuYqTNHK6LLAGMclL6DUXjXsFzGJjlSr8V2ikP5nSEUayLi2kk0Vk-xB3fVqZIExO_hh1RQUK4VB5HCrCoUoqwqEP727-WW5kOe5tvddBVYUhuqpuE6oP72_g-49ou_dHew0PqfHmOtke9NqrtXuDxKXVA9guxoeDkJMDX_7j12wyHf78C4LY7ns |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwELUoHOiFfqvb0taH9tQaEsdxkgOqaNntUnZXiILELfXXwqI0bElWK_4cv42ZrAP0gnrhbo8sz8v4jeN5Q8jHzMVc6kwzG1nFhJJjprNxwEKbOaDPVhmDhcLDkewfiZ_H8fESuWprYfBZZRsTm0Btzw3ekW8CLlHbPIuTr9O_DLtG4d_VtoWG8q0V7FYjMeYLO_bc5RxSuGprdwf8_YnzXvfwe5_5LgPMAPxqBotSJmmU1YLASinScShNwm2iFRdjx10cc-tkJk2aujTQcaLCSAROZymwbROB3UdkRcDqIPlb-dYd7R-0iI44MnRPgJqzIeJe_Rcyq5BlKf47bSp5YsgUNydnxqCuIhcb0QYQE_7vaXlLgVdn5VRdzlVR3DkNe0_JmqexdHuBu2dkyZXPyZO2RQT1EeMFmXfLU1T0KE_oPvZjoz8uJpbuqFrRVg6F4lUw7c3w2o5uFyew6fXpn4oCm6bdRuACzkV6B0b0YFY4Omw6W9BJSQf4mJ39ArC5xnLl6uolOXoQL7wiy-V56V4TamGwEgrmcg10K1Y6AEvWiVQ6mQa2Q8J2T3PjhdCxH0eRY0KEfsgbP-TohzzK0Q8d8vlmznQhA3Lv6PXWVbkPCVV-C-AO-XLjvv-w9uZ-ax_Iav9wOMgHu6O9t-QxTlw8ZVsny_XFzL0D0lTr9x6ZlPx-6I_hGloYJxM |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLXQdAEbSimIaUs1C3bUQx624ywrmGmFaFVRRiqryK8pQ9O0mklUlQ_gO_wt_rJeJ54-EEJll_ipXF_73uvY5yD0Ljc0YTKXWKdaYCLYFMt8GuFY5wbcZy2U8heFDw7Z_oR8PqEnASbH34W5__-eQvD0YfZTKQ81mJBhOgRbDcvtCqPgd_fQyuTwaPe7j6g4iXHOWz7A8ExIuCHz90YeWqE71_JpU12K6ytRlveszHi1oytatOCE_nDJ2bCp5VD9-gO68XEf8AI9D87mYLfTjjX0xFQv0eqSyGEQ5vU6-j2qfnjcjerU2SNPm-bs3nymnf0kauHsErjEWb9r6-y48VtskF6eXswh5RxywPd1dtTiUYAZg7y7YXf2a1MaZw9aLgpnZ5DyxR9Ax8egIKbrZWHqxSs0GY--fdzHgaABK5i5NYbxFCprQemiSDNG-DRmKkt0JkVCpiYxlCbasJwpzg2PJM1EnJLIyJxDoKLS16hXXVTmDRpoKCyIgLqJBB-JChlBS9oQzgzjke6jeDlghQro5Z5Eoyx8FOMFXbSCLrygi7Twgu6j97d1Ljvsjn-W3lrqQRHm8aKA1dAj6uc066OdW914RGsb_1d8Ez3zb90ZtC3Uq-eNeQveTi23g5rfAMhSBqw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Power+Grid+Data+Analysis+with+Fusion+Algorithms+for+Efficient+Association+Rule+Mining+in+Large-Scale+Datasets&rft.jtitle=International+journal+of+computers%2C+communications+%26+control&rft.au=Sun%2C+Qiongqiong&rft.date=2024-06-01&rft.pub=Agora+University+of+Oradea&rft.issn=1841-9836&rft.eissn=1841-9844&rft.volume=19&rft.issue=3&rft_id=info:doi/10.15837%2Fijccc.2024.3.6232 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1841-9836&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1841-9836&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1841-9836&client=summon |