Estimation of solar radiation using neighboring stations through hybrid support vector regression boosted by Krill Herd algorithm
Solar radiation is a basic input in many fields of studies and models. However, the low density of solar network stations; the improper distribution of these stations; high cost of purchasing, maintaining, and calibrating solar radiation measurement instruments; and frequent errors in the available...
Saved in:
| Published in | Arabian journal of geosciences Vol. 13; no. 10 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Cham
Springer International Publishing
01.05.2020
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1866-7511 1866-7538 |
| DOI | 10.1007/s12517-020-05355-1 |
Cover
| Abstract | Solar radiation is a basic input in many fields of studies and models. However, the low density of solar network stations; the improper distribution of these stations; high cost of purchasing, maintaining, and calibrating solar radiation measurement instruments; and frequent errors in the available data are the most important deficiencies in this regard. Thus, researchers are seeking for new and practical methods to estimate solar radiation accurately. The present study aimed to estimate the solar radiation values based on a new hybrid support vector regression model. To this aim, the solar radiation values of all eight target synoptic stations during 1974–2014 were estimated by using Krill-Herd hybrid algorithm (SVR-KHA) method based on support vector regression and implementing neighboring station data. Results indicated that the testing performance of SVR-KHA has a more precision and lower error for all target stations, compared with classical SVR. In addition, the best results were obtained for SVR-KHA3 hybrid model (Isfahan station). Further, the RMSE, MAPE, and
R
2
values for this model were 1.98 MJ/m
2
/day, 7.4%, and 0.93, respectively. In accordance with the results, Krill-Herd algorithm method coupled with support vector regression had a high performance and capability for solar radiation estimation in Iran. In other words, the hybrid SVR-KHA model is more flexible and has less error in modeling the nonlinear and complex systems. Finally, the new method of using neighboring stations can be regarded as an appropriate method for estimating nonlinear phenomenon such as solar radiation. |
|---|---|
| AbstractList | Solar radiation is a basic input in many fields of studies and models. However, the low density of solar network stations; the improper distribution of these stations; high cost of purchasing, maintaining, and calibrating solar radiation measurement instruments; and frequent errors in the available data are the most important deficiencies in this regard. Thus, researchers are seeking for new and practical methods to estimate solar radiation accurately. The present study aimed to estimate the solar radiation values based on a new hybrid support vector regression model. To this aim, the solar radiation values of all eight target synoptic stations during 1974–2014 were estimated by using Krill-Herd hybrid algorithm (SVR-KHA) method based on support vector regression and implementing neighboring station data. Results indicated that the testing performance of SVR-KHA has a more precision and lower error for all target stations, compared with classical SVR. In addition, the best results were obtained for SVR-KHA3 hybrid model (Isfahan station). Further, the RMSE, MAPE, and
R
2
values for this model were 1.98 MJ/m
2
/day, 7.4%, and 0.93, respectively. In accordance with the results, Krill-Herd algorithm method coupled with support vector regression had a high performance and capability for solar radiation estimation in Iran. In other words, the hybrid SVR-KHA model is more flexible and has less error in modeling the nonlinear and complex systems. Finally, the new method of using neighboring stations can be regarded as an appropriate method for estimating nonlinear phenomenon such as solar radiation. Solar radiation is a basic input in many fields of studies and models. However, the low density of solar network stations; the improper distribution of these stations; high cost of purchasing, maintaining, and calibrating solar radiation measurement instruments; and frequent errors in the available data are the most important deficiencies in this regard. Thus, researchers are seeking for new and practical methods to estimate solar radiation accurately. The present study aimed to estimate the solar radiation values based on a new hybrid support vector regression model. To this aim, the solar radiation values of all eight target synoptic stations during 1974–2014 were estimated by using Krill-Herd hybrid algorithm (SVR-KHA) method based on support vector regression and implementing neighboring station data. Results indicated that the testing performance of SVR-KHA has a more precision and lower error for all target stations, compared with classical SVR. In addition, the best results were obtained for SVR-KHA3 hybrid model (Isfahan station). Further, the RMSE, MAPE, and R2 values for this model were 1.98 MJ/m2/day, 7.4%, and 0.93, respectively. In accordance with the results, Krill-Herd algorithm method coupled with support vector regression had a high performance and capability for solar radiation estimation in Iran. In other words, the hybrid SVR-KHA model is more flexible and has less error in modeling the nonlinear and complex systems. Finally, the new method of using neighboring stations can be regarded as an appropriate method for estimating nonlinear phenomenon such as solar radiation. |
| ArticleNumber | 363 |
| Author | Aghashariatmadari, Zahra Mohammadi, Babak |
| Author_xml | – sequence: 1 givenname: Babak surname: Mohammadi fullname: Mohammadi, Babak organization: College of Hydrology and Water Resources, Hohai University – sequence: 2 givenname: Zahra surname: Aghashariatmadari fullname: Aghashariatmadari, Zahra email: zagha@ut.ac.ir organization: Irrigation and Reclamation Engineering Department, University College of Agriculture and Natural Resources, University of Tehran |
| BookMark | eNp9kMFO3TAQRS1EJeDRH2BlqetQTxwnzrJCFFCR2MDaSmI7MQpxmHEqvSV_Th6pWqkLVjPy-Fx7zhk7nuLkGLsAcQlCVN8JcgVVJnKRCSWVyuCInYIuy6xSUh__7QFO2BnRsxClFpU-ZW_XlMJLk0KcePSc4tggx8aG7WihMPV8cqEf2oiHntLHhHgaMC79wId9i8FyWuY5YuK_XZfiGuF6dESHjDZGSs7yds9_YRhHfuvQ8mbs18A0vJyzL74ZyX39U3fs6ef149Vtdv9wc3f14z7rJNQps7UVtfdVV7Y6115WvvWgdadL5UBZkN66ohVCV1JAp3zpvSyErZsSiqJ2Wu7Yty13xvi6OErmOS44rU-avBBSgoK17JjebnUYidB504Vt44RNGA0IcxBuNuFmFW4-hBtY0fw_dMZVLe4_h-QG0XzQ6_Dfrz6h3gFEL5hN |
| CitedBy_id | crossref_primary_10_1016_j_asej_2024_103034 crossref_primary_10_1007_s00704_020_03283_4 crossref_primary_10_1016_j_egyr_2021_10_117 crossref_primary_10_1007_s11269_020_02619_z crossref_primary_10_1140_epjp_s13360_022_02666_y crossref_primary_10_1007_s40808_021_01232_2 crossref_primary_10_3390_ijgi9120701 crossref_primary_10_1007_s12517_021_06603_8 crossref_primary_10_1007_s12517_021_07596_0 crossref_primary_10_1016_j_aej_2022_03_078 crossref_primary_10_1016_j_enconman_2021_113960 crossref_primary_10_1016_j_jclepro_2021_129010 crossref_primary_10_1016_j_rser_2021_111559 crossref_primary_10_1016_j_ijpharm_2024_124001 crossref_primary_10_1007_s11227_021_04244_y crossref_primary_10_1016_j_agwat_2020_106622 crossref_primary_10_1016_j_segan_2023_101271 crossref_primary_10_5194_hess_28_1147_2024 crossref_primary_10_1007_s00500_020_05058_5 crossref_primary_10_1007_s12517_022_09575_5 crossref_primary_10_1016_j_heliyon_2023_e13167 crossref_primary_10_1007_s12145_021_00723_1 crossref_primary_10_1007_s12517_021_08006_1 crossref_primary_10_1007_s40866_022_00128_z crossref_primary_10_1007_s00477_021_02011_2 crossref_primary_10_1016_j_cscm_2023_e02464 crossref_primary_10_1016_j_jksuci_2020_11_005 crossref_primary_10_1002_ep_14276 crossref_primary_10_1016_j_asej_2020_09_011 crossref_primary_10_1038_s41598_023_49278_9 crossref_primary_10_3390_atmos12030389 crossref_primary_10_1007_s11356_021_16760_8 crossref_primary_10_3390_w12113015 crossref_primary_10_1016_j_asoc_2024_112295 crossref_primary_10_1016_j_asej_2021_06_022 crossref_primary_10_1007_s00477_020_01898_7 crossref_primary_10_1016_j_jclepro_2020_124267 crossref_primary_10_3390_su15139962 crossref_primary_10_1016_j_measurement_2020_108127 crossref_primary_10_1002_er_7341 crossref_primary_10_1007_s12517_021_07999_z crossref_primary_10_1007_s10098_022_02434_7 crossref_primary_10_1016_j_ecolind_2020_106990 crossref_primary_10_1016_j_asej_2021_05_012 crossref_primary_10_1109_TII_2024_3396271 crossref_primary_10_1016_j_catena_2020_105024 crossref_primary_10_1007_s13201_022_01815_z |
| Cites_doi | 10.1016/j.enconman.2016.04.101 10.1016/j.geoderma.2019.06.028 10.1016/j.enconman.2016.05.005 10.1016/j.solener.2014.04.009 10.1016/j.energy.2018.01.177 10.1016/j.enconman.2017.10.043 10.1016/j.energy.2015.10.054 10.1016/j.energy.2014.03.096 10.1016/j.enconman.2010.08.027 10.1016/j.neucom.2014.01.023 10.1016/j.atmosres.2016.10.004 10.1016/j.rser.2017.01.124 10.1016/j.enconman.2007.09.021 10.1016/j.enconman.2018.03.037 10.1590/0102-77863230008 10.1016/j.enconman.2015.09.059 10.1016/j.enconman.2015.05.028 10.1016/j.rser.2015.12.111 10.1016/j.jastp.2017.02.002 10.1016/j.solener.2015.03.015 10.1007/s00704-015-1482-2 10.1007/s11356-020-07868-4 10.1016/j.enconman.2017.02.006 10.1007/s11356-019-04368-y 10.1016/j.ecolind.2019.105664 10.1016/j.energy.2017.06.155 10.1016/0168-1923(84)90017-0 10.1007/s00521-015-2135-1 10.1016/j.ecolind.2019.02.013 10.1016/j.enconman.2015.07.083 10.1016/j.ref.2019.03.003 10.1016/j.enconman.2010.05.020 10.1002/hyp.6323 10.1016/0034-4257(94)00069-Y 10.1016/j.enconman.2016.03.082 10.1029/92WR00772 10.1016/0038-092X(79)90123-3 10.1016/j.energy.2020.117239 10.1016/j.enconman.2016.01.074 10.1016/j.enconman.2013.01.004 10.1016/j.jclepro.2017.12.065 10.1002/qj.49705021008 10.1007/s00521-012-1304-8 10.1007/s00704-018-2666-3 10.1016/j.jher.2017.10.005 10.1016/j.renene.2018.05.069 10.1007/s00704-013-1070-2 10.1016/j.solener.2004.09.007 10.1016/j.asoc.2015.09.049 10.1016/j.enconman.2012.03.025 10.1016/j.enconman.2015.10.033 10.1016/j.asoc.2017.06.059 10.1016/j.renene.2011.03.019 10.1016/S0038-092X(02)00010-5 10.1016/j.energy.2009.05.009 10.1007/s00521-013-1485-9 10.1016/j.compstruc.2017.09.002 10.1016/j.jastp.2016.10.008 10.1016/j.rser.2017.01.114 10.1016/j.ecolind.2019.04.055 10.1016/j.jhydrol.2016.04.041 10.1016/j.cnsns.2012.05.010 10.1016/S0960-1481(98)00068-8 10.1016/j.enconman.2014.10.004 10.1016/B978-0-12-398364-0.00001-2 |
| ContentType | Journal Article |
| Copyright | Saudi Society for Geosciences 2020 Saudi Society for Geosciences 2020. |
| Copyright_xml | – notice: Saudi Society for Geosciences 2020 – notice: Saudi Society for Geosciences 2020. |
| DBID | AAYXX CITATION 7UA C1K F1W H96 L.G |
| DOI | 10.1007/s12517-020-05355-1 |
| DatabaseName | CrossRef Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 1866-7538 |
| ExternalDocumentID | 10_1007_s12517_020_05355_1 |
| GroupedDBID | -5A -5G -BR -EM -Y2 -~C 06D 0R~ 0VY 1N0 203 23M 2JN 2JY 2KG 2VQ 30V 4.4 406 408 409 40D 40E 5VS 67M 67Z 6NX 8TC 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ASPBG AUKKA AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG6 HLICF HMJXF HQYDN HRMNR HZ~ I0C IKXTQ IWAJR IXD IZIGR I~X J-C J0Z JBSCW JCJTX JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P PT4 QOS R89 RLLFE ROL RSV S16 S1Z S27 S3B SAP SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG TSK U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z5O Z7R Z7Y Z7Z Z81 Z85 ZMTXR ~02 ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 7UA C1K F1W H96 L.G |
| ID | FETCH-LOGICAL-c319t-d9d09ff7c6b828f37fbf188c865e15d13fde4b0087301c5f6ff340d9a61449e83 |
| IEDL.DBID | U2A |
| ISSN | 1866-7511 |
| IngestDate | Wed Sep 17 23:55:21 EDT 2025 Thu Apr 24 23:00:01 EDT 2025 Wed Oct 01 02:28:18 EDT 2025 Fri Feb 21 02:33:01 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | Support vector regression Hybrid method Solar radiation Meteorology Krill-Herd algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-d9d09ff7c6b828f37fbf188c865e15d13fde4b0087301c5f6ff340d9a61449e83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2403315140 |
| PQPubID | 2044009 |
| ParticipantIDs | proquest_journals_2403315140 crossref_citationtrail_10_1007_s12517_020_05355_1 crossref_primary_10_1007_s12517_020_05355_1 springer_journals_10_1007_s12517_020_05355_1 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20200500 |
| PublicationDateYYYYMMDD | 2020-05-01 |
| PublicationDate_xml | – month: 5 year: 2020 text: 20200500 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Heidelberg |
| PublicationTitle | Arabian journal of geosciences |
| PublicationTitleAbbrev | Arab J Geosci |
| PublicationYear | 2020 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | Yao, Zhang, Hao, Wang, Li (CR72) 2018; 128 Gizaw, Gan (CR30) 2016; 538 Ramli, Twaha, Al-Turki (CR60) 2015; 105 Ayodele, Ogunjuyigbe, Amedu, Munda (CR11) 2019; 29 Quej, Almorox, Arnaldo, Saito (CR59) 2017; 155 Liu, Mei, Li, Porter, Wang, Zhang (CR44) 2010; 51 Mohammadi (CR50) 2019; 26 Medeiros, Silva, Bezerra (CR47) 2017; 32 Mohammadi (CR51) 2019; 107 Aladenola, Madramootoo (CR5) 2014; 118 Alizamir, Kim, Kisi, Zounemat-kermani (CR7) 2020; 197 Benajes, Martín, García, Villalta, Warey (CR14) 2015; 106 Qing, Niu (CR58) 2018; 148 Abualigah, Khader, Hanandeh, Gandomi (CR1) 2017; 60 Cheng, Lu (CR19) 2018; 194 Alsina, Bortolini, Gamberi, Regattieri (CR8) 2016; 120 Hay (CR32) 1979; 23 Angstrom (CR9) 1924; 50 Deo, Şahin (CR23) 2017; 72 Kosmopoulos, Kazadzis, Lagouvardos, Kotroni, Bais (CR40) 2015; 93 Jahani, Dinpashoh, Nafchi (CR36) 2017; 73 Samadianfard, Ghorbani, Mohammadi (CR62) 2018; 5 Belaid, Mellit (CR13) 2016; 118 Burari, Sambo (CR16) 2001; 91 Demirhan, Menteş, Atilla (CR21) 2013; 68 Jahani, Mohammadi (CR37) 2018; 137 Pinker, Frouin, Li (CR56) 1995; 51 Hontoria, Aguilera, Zufiria (CR33) 2002; 72 Ahmed, Ulfat (CR3) 2004; 28 Gairaa, Khellaf, Messlem, Chellali (CR29) 2016; 57 Yu, Zhang, Qin (CR73) 2018; 18 Martí, Gasque (CR46) 2011; 52 Jiang (CR38) 2009; 34 Bristow, Campbell (CR15) 1984; 31 Ibrahim, Khatib (CR35) 2017; 138 Al-Alawi, Al-Hinai (CR6) 1998; 14 Lam, Wan, Yang (CR42) 2008; 49 Chen, Li, Xiao, Wen, Lv, Chen, Jiang, Wang, Wu (CR17) 2015; 89 Mohammadi (CR52) 2019; 101 Moazenzadeh, Mohammadi, Shamshirband, Chau (CR49) 2018; 12 Feng, Wang, Deb, Lu, Zhao (CR26) 2017; 28 Wang, Gandomi, Alavi, Hao (CR69) 2014; 25 Vaheddoost, Guan, Mohammadi (CR67) 2020; 27 Wang, Guo, Wang, Duan, Liu, Li (CR70) 2014; 24 Salcedo-Sanz, Casanova-Mateo, Pastor-Sánchez, Sánchez-Girón (CR63) 2014; 105 Shamshirband, Mohammadi, Tong, Zamani, Motamedi, Ch (CR64) 2016; 125 Moazenzadeh, Mohammadi (CR48) 2019; 353 Landeras, López, Kisi, Shiri (CR41) 2012; 62 Yao, Zhang, Wang, Zhang, Li, Di (CR71) 2018; 164 Baziar, Kavousi-Fard (CR12) 2015; 4 Hosseini, Mahjouri (CR34) 2016; 38 Gandomi, Alavi (CR27) 2012; 17 Akpabio, Udo, Etuk (CR4) 2004; 28 Prescott (CR57) 1940; 64 Vapnik, Chervonenkis (CR68) 1974 El Mghouchi, Chham, Krikiz, Ajzoul, El Bouardi (CR25) 2016; 120 Liu, Zhou, Wang, Wang, Li, Zhu (CR45) 2017; 154 Deo, Kisi, Singh (CR22) 2017; 184 CR28 Cheng, Yu, Lin (CR20) 2014; 70 Khosravi, Koury, Machado, Pabon (CR39) 2018; 176 Olatomiwa, Mekhilef, Shamshirband, Mohammadi, Petković, Sudheer (CR54) 2015; 115 Achour, Bouharkat, Assas, Behar (CR2) 2017; 135 Dubayah (CR24) 1992; 28 Chen, Xia, Liu, Li, Liu (CR18) 2016; 114 Renno, Petito, Gatto (CR61) 2015; 106 Antonanzas, Urraca, Martinez-de-Pison, Antonanzas-Torres (CR10) 2015; 100 Guo, Wang, Gandomi, Alavi, Duan (CR31) 2014; 138 Tymvios, Jacovides, Michaelides, Scouteli (CR66) 2005; 78 Pai, Hong (CR55) 2007; 21 Mohammadi (CR53) 2019; 103 Li, Ma, Lian, Wang, Zhao (CR43) 2011; 36 Sharifi, Rezaverdinejad, Nourani (CR65) 2016; 149 FJ Medeiros (5355_CR47) 2017; 32 J Antonanzas (5355_CR10) 2015; 100 X Qing (5355_CR58) 2018; 148 RT Pinker (5355_CR56) 1995; 51 JE Hay (5355_CR32) 1979; 23 MA Ramli (5355_CR60) 2015; 105 K Gairaa (5355_CR29) 2016; 57 SS Sharifi (5355_CR65) 2016; 149 IA Ibrahim (5355_CR35) 2017; 138 JC Lam (5355_CR42) 2008; 49 L Olatomiwa (5355_CR54) 2015; 115 JA Prescott (5355_CR57) 1940; 64 A Khosravi (5355_CR39) 2018; 176 B Mohammadi (5355_CR52) 2019; 101 RC Deo (5355_CR23) 2017; 72 L Guo (5355_CR31) 2014; 138 F Ahmed (5355_CR3) 2004; 28 JL Chen (5355_CR17) 2015; 89 LE Akpabio (5355_CR4) 2004; 28 L Hontoria (5355_CR33) 2002; 72 S Samadianfard (5355_CR62) 2018; 5 FW Burari (5355_CR16) 2001; 91 H Li (5355_CR43) 2011; 36 R Moazenzadeh (5355_CR48) 2019; 353 PF Pai (5355_CR55) 2007; 21 KL Bristow (5355_CR15) 1984; 31 K Cheng (5355_CR19) 2018; 194 VH Quej (5355_CR59) 2017; 155 5355_CR28 G Wang (5355_CR69) 2014; 25 SM Hosseini (5355_CR34) 2016; 38 B Vaheddoost (5355_CR67) 2020; 27 B Mohammadi (5355_CR51) 2019; 107 S Shamshirband (5355_CR64) 2016; 125 FS Tymvios (5355_CR66) 2005; 78 J Benajes (5355_CR14) 2015; 106 MS Gizaw (5355_CR30) 2016; 538 W Yao (5355_CR71) 2018; 164 VN Vapnik (5355_CR68) 1974 G Landeras (5355_CR41) 2012; 62 C Renno (5355_CR61) 2015; 106 X Yu (5355_CR73) 2018; 18 TR Ayodele (5355_CR11) 2019; 29 P Martí (5355_CR46) 2011; 52 AH Gandomi (5355_CR27) 2012; 17 H Demirhan (5355_CR21) 2013; 68 A Angstrom (5355_CR9) 1924; 50 B Mohammadi (5355_CR50) 2019; 26 B Mohammadi (5355_CR53) 2019; 103 Y Feng (5355_CR26) 2017; 28 X Chen (5355_CR18) 2016; 114 Y Liu (5355_CR45) 2017; 154 PG Kosmopoulos (5355_CR40) 2015; 93 HY Cheng (5355_CR20) 2014; 70 RC Deo (5355_CR22) 2017; 184 W Yao (5355_CR72) 2018; 128 SM Al-Alawi (5355_CR6) 1998; 14 EF Alsina (5355_CR8) 2016; 120 LM Abualigah (5355_CR1) 2017; 60 S Salcedo-Sanz (5355_CR63) 2014; 105 Y Jiang (5355_CR38) 2009; 34 S Belaid (5355_CR13) 2016; 118 M Alizamir (5355_CR7) 2020; 197 B Jahani (5355_CR37) 2018; 137 G Wang (5355_CR70) 2014; 24 OO Aladenola (5355_CR5) 2014; 118 R Dubayah (5355_CR24) 1992; 28 L Achour (5355_CR2) 2017; 135 R Moazenzadeh (5355_CR49) 2018; 12 X Liu (5355_CR44) 2010; 51 A Baziar (5355_CR12) 2015; 4 Y El Mghouchi (5355_CR25) 2016; 120 B Jahani (5355_CR36) 2017; 73 |
| References_xml | – volume: 120 start-page: 320 year: 2016 end-page: 329 ident: CR8 article-title: Artificial neural network optimisation for monthly average daily global solar radiation prediction publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2016.04.101 – volume: 353 start-page: 152 year: 2019 end-page: 171 ident: CR48 article-title: Assessment of bio-inspired metaheuristic optimisation algorithms for estimating soil temperature publication-title: Geoderma doi: 10.1016/j.geoderma.2019.06.028 – volume: 5 start-page: 465 issue: 4 year: 2018 end-page: 476 ident: CR62 article-title: Forecasting soil temperature at multiple-depth with a hybrid artificial neural network model coupled-hybrid firefly optimizer algorithm publication-title: Inform Process Agric – volume: 64 start-page: 114 issue: 1 year: 1940 end-page: 118 ident: CR57 article-title: Evaporation from a water surface in relation to solar radiation publication-title: Trans R Soc S Aust – volume: 120 start-page: 397 year: 2016 end-page: 411 ident: CR25 article-title: On the prediction of the daily global solar radiation intensity on south-facing plane surfaces inclined at varying angles publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2016.05.005 – volume: 105 start-page: 91 year: 2014 end-page: 98 ident: CR63 article-title: Daily global solar radiation prediction based on a hybrid Coral Reefs Optimization–Extreme Learning Machine approach publication-title: Sol Energy doi: 10.1016/j.solener.2014.04.009 – volume: 148 start-page: 461 year: 2018 end-page: 468 ident: CR58 article-title: Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM publication-title: Energy doi: 10.1016/j.energy.2018.01.177 – volume: 28 start-page: 205 issue: 3 year: 2004 end-page: 212 ident: CR4 article-title: Empirical correlations of global solar radiation with meteorological data for Onne, Nigeria publication-title: Turk J Phys – volume: 154 start-page: 168 year: 2017 end-page: 179 ident: CR45 article-title: Classification of solar radiation zones and general models for estimating the daily global solar radiation on horizontal surfaces in China publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2017.10.043 – volume: 93 start-page: 1918 year: 2015 end-page: 1930 ident: CR40 article-title: Solar energy prediction and verification using operational model forecasts and ground-based solar measurements publication-title: Energy doi: 10.1016/j.energy.2015.10.054 – volume: 70 start-page: 121 year: 2014 end-page: 127 ident: CR20 article-title: Bi-model short-term solar irradiance prediction using support vector regressors publication-title: Energy doi: 10.1016/j.energy.2014.03.096 – volume: 52 start-page: 990 issue: 2 year: 2011 end-page: 1003 ident: CR46 article-title: Improvement of temperature-based ANN models for solar radiation estimation through exogenous data assistance publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2010.08.027 – volume: 28 start-page: 301 issue: 5 year: 2004 end-page: 307 ident: CR3 article-title: Empirical models for the correlation of monthly average daily global solar radiation with hours of sunshine on a horizontal surface at Karachi, Pakistan publication-title: Turk J Phys – volume: 138 start-page: 392 year: 2014 end-page: 402 ident: CR31 article-title: A new improved krill herd algorithm for global numerical optimization publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.01.023 – volume: 184 start-page: 149 year: 2017 end-page: 175 ident: CR22 article-title: Drought forecasting in eastern Australia using multivariate adaptive regression spline, least square support vector machine and M5Tree model publication-title: Atmos Res doi: 10.1016/j.atmosres.2016.10.004 – volume: 73 start-page: 878 year: 2017 end-page: 891 ident: CR36 article-title: Evaluation and development of empirical models for estimating daily solar radiation publication-title: Renew Sust Energ Rev doi: 10.1016/j.rser.2017.01.124 – volume: 49 start-page: 1080 issue: 5 year: 2008 end-page: 1090 ident: CR42 article-title: Solar radiation modelling using ANNs for different climates in China publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2007.09.021 – volume: 164 start-page: 579 year: 2018 end-page: 587 ident: CR71 article-title: A new correlation between global solar radiation and the quality of sunshine duration in China publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2018.03.037 – volume: 32 start-page: 409 issue: 3 year: 2017 end-page: 416 ident: CR47 article-title: Calibration of Ångström-Prescott equation to estimate daily solar radiation on Rio Grande do Norte State, Brazil publication-title: Revista Brasileira de Meteorologia doi: 10.1590/0102-77863230008 – volume: 106 start-page: 414 year: 2015 end-page: 427 ident: CR14 article-title: In-cylinder soot radiation heat transfer in direct-injection diesel engines publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2015.09.059 – volume: 100 start-page: 380 year: 2015 end-page: 390 ident: CR10 article-title: Solar irradiation mapping with exogenous data from support vector regression machines estimations publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2015.05.028 – volume: 57 start-page: 238 year: 2016 end-page: 249 ident: CR29 article-title: Estimation of the daily global solar radiation based on Box–Jenkins and ANN models: a combined approach publication-title: Renew Sust Energ Rev doi: 10.1016/j.rser.2015.12.111 – volume: 155 start-page: 62 year: 2017 end-page: 70 ident: CR59 article-title: ANFIS, SVM and ANN soft-computing techniques to estimate daily global solar radiation in a warm sub-humid environment publication-title: J Atmos Sol Terr Phys doi: 10.1016/j.jastp.2017.02.002 – volume: 115 start-page: 632 year: 2015 end-page: 644 ident: CR54 article-title: A support vector machine–firefly algorithm-based model for global solar radiation prediction publication-title: Sol Energy doi: 10.1016/j.solener.2015.03.015 – volume: 125 start-page: 53 issue: 1-2 year: 2016 end-page: 65 ident: CR64 article-title: A hybrid SVM-FFA method for prediction of monthly mean global solar radiation publication-title: Theor Appl Climatol doi: 10.1007/s00704-015-1482-2 – volume: 27 start-page: 1 year: 2020 end-page: 11 ident: CR67 article-title: Application of hybrid ANN-whale optimization model in evaluation of the field capacity and the permanent wilting point of the soils publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-020-07868-4 – volume: 138 start-page: 413 year: 2017 end-page: 425 ident: CR35 article-title: A novel hybrid model for hourly global solar radiation prediction using random forests technique and firefly algorithm publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2017.02.006 – volume: 26 start-page: 10439 issue: 10 year: 2019 end-page: 10440 ident: CR50 article-title: Letter to the editor “Estimation of sodium adsorption ratio indicator using data mining methods: a case study in Urmia Lake basin, Iran” by Mohammad Taghi Sattari, Arya Farkhondeh, and John Patrick Abraham publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-019-04368-y – year: 1974 ident: CR68 publication-title: Theory of pattern recognition – volume: 107 start-page: 105664 year: 2019 ident: CR51 article-title: Letter to the editor “Predicting total phosphorus levels as indicators for shallow lake management” publication-title: Ecol Indic doi: 10.1016/j.ecolind.2019.105664 – volume: 135 start-page: 526 year: 2017 end-page: 539 ident: CR2 article-title: Hybrid model for estimating monthly global solar radiation for the Southern of Algeria: (case study: Tamanrasset, Algeria) publication-title: Energy doi: 10.1016/j.energy.2017.06.155 – volume: 31 start-page: 159 issue: 2 year: 1984 end-page: 166 ident: CR15 article-title: On the relationship between incoming solar radiation and daily maximum and minimum temperature publication-title: Agric For Meteorol doi: 10.1016/0168-1923(84)90017-0 – volume: 28 start-page: 1619 issue: 7 year: 2017 end-page: 1634 ident: CR26 article-title: Solving 0–1 knapsack problem by a novel binary monarch butterfly optimization publication-title: Neural Comput & Applic doi: 10.1007/s00521-015-2135-1 – volume: 101 start-page: 973 year: 2019 end-page: 974 ident: CR52 article-title: “Prediction of effective climate change indicators using statistical downscaling approach and impact assessment on pearl millet (Pennisetum glaucum L.) yield through genetic algorithm in Punjab, Pakistan” by Asmat Ullah, Nasrin Salehnia, Sohrab Kolsoumi, Ashfaq Ahmad, Tasneem Khaliq publication-title: Ecol Indic doi: 10.1016/j.ecolind.2019.02.013 – volume: 105 start-page: 442 year: 2015 end-page: 452 ident: CR60 article-title: Investigating the performance of support vector machine and artificial neural networks in predicting solar radiation on a tilted surface: Saudi Arabia case study publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2015.07.083 – volume: 29 start-page: 78 year: 2019 end-page: 93 ident: CR11 article-title: Prediction of global solar irradiation using hybridized k-means and support vector regression algorithms publication-title: Renewable Energy Focus doi: 10.1016/j.ref.2019.03.003 – volume: 51 start-page: 2565 issue: 12 year: 2010 end-page: 2574 ident: CR44 article-title: Choice of the Ångström–Prescott coefficients: are time-dependent ones better than fixed ones in modeling global solar irradiance? publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2010.05.020 – volume: 21 start-page: 819 issue: 6 year: 2007 end-page: 827 ident: CR55 article-title: A recurrent support vector regression model in rainfall forecasting publication-title: Hydrol Process doi: 10.1002/hyp.6323 – volume: 51 start-page: 108 issue: 1 year: 1995 end-page: 124 ident: CR56 article-title: A review of satellite methods to derive surface shortwave irradiance publication-title: Remote Sens Environ doi: 10.1016/0034-4257(94)00069-Y – volume: 118 start-page: 105 year: 2016 end-page: 118 ident: CR13 article-title: Prediction of daily and mean monthly global solar radiation using support vector machine in an arid climate publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2016.03.082 – volume: 12 start-page: 584 issue: 1 year: 2018 end-page: 597 ident: CR49 article-title: Coupling a firefly algorithm with support vector regression to predict evaporation in northern Iran publication-title: Eng Appl Comp Fluid Mech – volume: 28 start-page: 2469 issue: 9 year: 1992 end-page: 2484 ident: CR24 article-title: Estimating net solar radiation using Landsat Thematic Mapper and digital elevation data publication-title: Water Resour Res doi: 10.1029/92WR00772 – volume: 23 start-page: 301 issue: 4 year: 1979 end-page: 307 ident: CR32 article-title: Calculation of monthly mean solar radiation for horizontal and inclined surfaces publication-title: Sol Energy doi: 10.1016/0038-092X(79)90123-3 – volume: 197 start-page: 117239 year: 2020 ident: CR7 article-title: A comparative study of several machine learning based non-linear regression methods in estimating solar radiation: case studies of the USA and Turkey regions publication-title: Energy doi: 10.1016/j.energy.2020.117239 – volume: 114 start-page: 20 year: 2016 end-page: 27 ident: CR18 article-title: Heat transfer analysis of a volumetric solar receiver by coupling the solar radiation transport and internal heat transfer publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2016.01.074 – volume: 68 start-page: 141 year: 2013 end-page: 148 ident: CR21 article-title: Statistical comparison of global solar radiation estimation models over Turkey publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2013.01.004 – volume: 176 start-page: 63 year: 2018 end-page: 75 ident: CR39 article-title: Prediction of hourly solar radiation in Abu Musa Island using machine learning algorithms publication-title: J Clean Prod doi: 10.1016/j.jclepro.2017.12.065 – volume: 50 start-page: 121 issue: 210 year: 1924 end-page: 126 ident: CR9 article-title: Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar and atmospheric radiation publication-title: Q J R Meteorol Soc doi: 10.1002/qj.49705021008 – volume: 24 start-page: 853 issue: 3-4 year: 2014 end-page: 871 ident: CR70 article-title: Incorporating mutation scheme into krill herd algorithm for global numerical optimization publication-title: Neural Comput & Applic doi: 10.1007/s00521-012-1304-8 – volume: 137 start-page: 1257 issue: 1-2 year: 2018 end-page: 1269 ident: CR37 article-title: A comparison between the application of empirical and ANN methods for estimation of daily global solar radiation in Iran publication-title: Theor Appl Climatol doi: 10.1007/s00704-018-2666-3 – volume: 18 start-page: 12 year: 2018 end-page: 24 ident: CR73 article-title: A data-driven model based on Fourier transform and support vector regression for monthly reservoir inflow forecasting publication-title: J Hydro Environ Res doi: 10.1016/j.jher.2017.10.005 – volume: 128 start-page: 155 year: 2018 end-page: 162 ident: CR72 article-title: A support vector machine approach to estimate global solar radiation with the influence of fog and haze publication-title: Renew Energy doi: 10.1016/j.renene.2018.05.069 – volume: 118 start-page: 377 issue: 3 year: 2014 end-page: 385 ident: CR5 article-title: Evaluation of solar radiation estimation methods for reference evapotranspiration estimation in Canada publication-title: Theor Appl Climatol doi: 10.1007/s00704-013-1070-2 – volume: 78 start-page: 752 issue: 6 year: 2005 end-page: 762 ident: CR66 article-title: Comparative study of Ångström’s and artificial neural networks’ methodologies in estimating global solar radiation publication-title: Sol Energy doi: 10.1016/j.solener.2004.09.007 – volume: 38 start-page: 329 year: 2016 end-page: 345 ident: CR34 article-title: Integrating support vector regression and a geomorphologic artificial neural network for daily rainfall-runoff modeling publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.09.049 – volume: 62 start-page: 1 year: 2012 end-page: 3 ident: CR41 article-title: Comparison of Gene Expression Programming with neuro-fuzzy and neural network computing techniques in estimating daily incoming solar radiation in the Basque Country (Northern Spain) publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2012.03.025 – volume: 106 start-page: 999 year: 2015 end-page: 1012 ident: CR61 article-title: Artificial neural network models for predicting the solar radiation as input of a concentrating photovoltaic system publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2015.10.033 – volume: 60 start-page: 423 year: 2017 end-page: 435 ident: CR1 article-title: A novel hybridization strategy for krill herd algorithm applied to clustering techniques publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.06.059 – volume: 36 start-page: 3141 issue: 11 year: 2011 end-page: 3145 ident: CR43 article-title: Global solar radiation estimation with sunshine duration in Tibet, China publication-title: Renew Energy doi: 10.1016/j.renene.2011.03.019 – volume: 72 start-page: 441 issue: 5 year: 2002 end-page: 446 ident: CR33 article-title: Generation of hourly irradiation synthetic series using the neural network multilayer perceptron publication-title: Sol Energy doi: 10.1016/S0038-092X(02)00010-5 – volume: 34 start-page: 1276 issue: 9 year: 2009 end-page: 1283 ident: CR38 article-title: Computation of monthly mean daily global solar radiation in China using artificial neural networks and comparison with other empirical models publication-title: Energy doi: 10.1016/j.energy.2009.05.009 – volume: 25 start-page: 297 issue: 2 year: 2014 end-page: 308 ident: CR69 article-title: Hybrid krill herd algorithm with differential evolution for global numerical optimization publication-title: Neural Comput & Applic doi: 10.1007/s00521-013-1485-9 – volume: 194 start-page: 86 year: 2018 end-page: 96 ident: CR19 article-title: Adaptive sparse polynomial chaos expansions for global sensitivity analysis based on support vector regression publication-title: Comput Struct doi: 10.1016/j.compstruc.2017.09.002 – volume: 149 start-page: 131 year: 2016 end-page: 145 ident: CR65 article-title: Estimation of daily global solar radiation using wavelet regression, ANN, GEP and empirical models: a comparative study of selected temperature-based approaches publication-title: J Atmos Sol Terr Phys doi: 10.1016/j.jastp.2016.10.008 – volume: 72 start-page: 828 year: 2017 end-page: 848 ident: CR23 article-title: Forecasting long-term global solar radiation with an ANN algorithm coupled with satellite-derived (MODIS) land surface temperature (LST) for regional locations in Queensland publication-title: Renew Sust Energ Rev doi: 10.1016/j.rser.2017.01.114 – volume: 103 start-page: 493 year: 2019 ident: CR53 article-title: Letter to the editor “Design of an integrated climatic assessment indicator (ICAI) for wheat production: a case study in Jiangsu Province, China” by Xiangying Xu, Ping Gao, Xinkai Zhu, Wenshan Guo, Jinfeng Ding, Chunyan Li, Min Zhu, Xuanwei Wu publication-title: Ecol Indic doi: 10.1016/j.ecolind.2019.04.055 – volume: 91 start-page: 30 year: 2001 end-page: 33 ident: CR16 article-title: Model for the prediction of global solar radiation for Bauchi using meteorological data publication-title: Nigeria J Renew Energy – volume: 4 start-page: 189 issue: 5 year: 2015 end-page: 195 ident: CR12 article-title: Short term load forecasting using a hybrid model based on support vector regression publication-title: Int J Sci Technol Res – volume: 538 start-page: 387 year: 2016 end-page: 398 ident: CR30 article-title: Regional flood frequency analysis using support vector regression under historical and future climate publication-title: J Hydrol doi: 10.1016/j.jhydrol.2016.04.041 – ident: CR28 – volume: 17 start-page: 4831 issue: 12 year: 2012 end-page: 4845 ident: CR27 article-title: Krill herd: a new bio-inspired optimization algorithm publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2012.05.010 – volume: 14 start-page: 199 issue: 1-4 year: 1998 end-page: 204 ident: CR6 article-title: An ANN-based approach for predicting global radiation in locations with no direct measurement instrumentation publication-title: Renew Energy doi: 10.1016/S0960-1481(98)00068-8 – volume: 89 start-page: 318 year: 2015 end-page: 329 ident: CR17 article-title: Assessing the transferability of support vector machine model for estimation of global solar radiation from air temperature publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2014.10.004 – volume: 28 start-page: 301 issue: 5 year: 2004 ident: 5355_CR3 publication-title: Turk J Phys – volume: 120 start-page: 397 year: 2016 ident: 5355_CR25 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2016.05.005 – volume: 14 start-page: 199 issue: 1-4 year: 1998 ident: 5355_CR6 publication-title: Renew Energy doi: 10.1016/S0960-1481(98)00068-8 – volume: 114 start-page: 20 year: 2016 ident: 5355_CR18 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2016.01.074 – volume: 72 start-page: 441 issue: 5 year: 2002 ident: 5355_CR33 publication-title: Sol Energy doi: 10.1016/S0038-092X(02)00010-5 – volume: 64 start-page: 114 issue: 1 year: 1940 ident: 5355_CR57 publication-title: Trans R Soc S Aust – volume: 57 start-page: 238 year: 2016 ident: 5355_CR29 publication-title: Renew Sust Energ Rev doi: 10.1016/j.rser.2015.12.111 – volume: 105 start-page: 91 year: 2014 ident: 5355_CR63 publication-title: Sol Energy doi: 10.1016/j.solener.2014.04.009 – volume: 155 start-page: 62 year: 2017 ident: 5355_CR59 publication-title: J Atmos Sol Terr Phys doi: 10.1016/j.jastp.2017.02.002 – volume: 32 start-page: 409 issue: 3 year: 2017 ident: 5355_CR47 publication-title: Revista Brasileira de Meteorologia doi: 10.1590/0102-77863230008 – volume: 18 start-page: 12 year: 2018 ident: 5355_CR73 publication-title: J Hydro Environ Res doi: 10.1016/j.jher.2017.10.005 – volume: 49 start-page: 1080 issue: 5 year: 2008 ident: 5355_CR42 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2007.09.021 – volume: 73 start-page: 878 year: 2017 ident: 5355_CR36 publication-title: Renew Sust Energ Rev doi: 10.1016/j.rser.2017.01.124 – volume: 103 start-page: 493 year: 2019 ident: 5355_CR53 publication-title: Ecol Indic doi: 10.1016/j.ecolind.2019.04.055 – volume: 31 start-page: 159 issue: 2 year: 1984 ident: 5355_CR15 publication-title: Agric For Meteorol doi: 10.1016/0168-1923(84)90017-0 – volume: 25 start-page: 297 issue: 2 year: 2014 ident: 5355_CR69 publication-title: Neural Comput & Applic doi: 10.1007/s00521-013-1485-9 – ident: 5355_CR28 doi: 10.1016/B978-0-12-398364-0.00001-2 – volume: 29 start-page: 78 year: 2019 ident: 5355_CR11 publication-title: Renewable Energy Focus doi: 10.1016/j.ref.2019.03.003 – volume: 51 start-page: 2565 issue: 12 year: 2010 ident: 5355_CR44 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2010.05.020 – volume: 105 start-page: 442 year: 2015 ident: 5355_CR60 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2015.07.083 – volume: 138 start-page: 392 year: 2014 ident: 5355_CR31 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.01.023 – volume: 106 start-page: 999 year: 2015 ident: 5355_CR61 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2015.10.033 – volume: 197 start-page: 117239 year: 2020 ident: 5355_CR7 publication-title: Energy doi: 10.1016/j.energy.2020.117239 – volume: 27 start-page: 1 year: 2020 ident: 5355_CR67 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-020-07868-4 – volume: 184 start-page: 149 year: 2017 ident: 5355_CR22 publication-title: Atmos Res doi: 10.1016/j.atmosres.2016.10.004 – volume: 78 start-page: 752 issue: 6 year: 2005 ident: 5355_CR66 publication-title: Sol Energy doi: 10.1016/j.solener.2004.09.007 – volume: 21 start-page: 819 issue: 6 year: 2007 ident: 5355_CR55 publication-title: Hydrol Process doi: 10.1002/hyp.6323 – volume: 101 start-page: 973 year: 2019 ident: 5355_CR52 publication-title: Ecol Indic doi: 10.1016/j.ecolind.2019.02.013 – volume: 107 start-page: 105664 year: 2019 ident: 5355_CR51 publication-title: Ecol Indic doi: 10.1016/j.ecolind.2019.105664 – volume: 125 start-page: 53 issue: 1-2 year: 2016 ident: 5355_CR64 publication-title: Theor Appl Climatol doi: 10.1007/s00704-015-1482-2 – volume: 93 start-page: 1918 year: 2015 ident: 5355_CR40 publication-title: Energy doi: 10.1016/j.energy.2015.10.054 – volume: 28 start-page: 2469 issue: 9 year: 1992 ident: 5355_CR24 publication-title: Water Resour Res doi: 10.1029/92WR00772 – volume: 72 start-page: 828 year: 2017 ident: 5355_CR23 publication-title: Renew Sust Energ Rev doi: 10.1016/j.rser.2017.01.114 – volume: 149 start-page: 131 year: 2016 ident: 5355_CR65 publication-title: J Atmos Sol Terr Phys doi: 10.1016/j.jastp.2016.10.008 – volume: 106 start-page: 414 year: 2015 ident: 5355_CR14 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2015.09.059 – volume: 176 start-page: 63 year: 2018 ident: 5355_CR39 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2017.12.065 – volume: 154 start-page: 168 year: 2017 ident: 5355_CR45 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2017.10.043 – volume: 148 start-page: 461 year: 2018 ident: 5355_CR58 publication-title: Energy doi: 10.1016/j.energy.2018.01.177 – volume: 38 start-page: 329 year: 2016 ident: 5355_CR34 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.09.049 – volume: 89 start-page: 318 year: 2015 ident: 5355_CR17 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2014.10.004 – volume: 62 start-page: 1 year: 2012 ident: 5355_CR41 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2012.03.025 – volume: 5 start-page: 465 issue: 4 year: 2018 ident: 5355_CR62 publication-title: Inform Process Agric – volume: 24 start-page: 853 issue: 3-4 year: 2014 ident: 5355_CR70 publication-title: Neural Comput & Applic doi: 10.1007/s00521-012-1304-8 – volume: 115 start-page: 632 year: 2015 ident: 5355_CR54 publication-title: Sol Energy doi: 10.1016/j.solener.2015.03.015 – volume: 17 start-page: 4831 issue: 12 year: 2012 ident: 5355_CR27 publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2012.05.010 – volume: 60 start-page: 423 year: 2017 ident: 5355_CR1 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.06.059 – volume: 68 start-page: 141 year: 2013 ident: 5355_CR21 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2013.01.004 – volume: 28 start-page: 205 issue: 3 year: 2004 ident: 5355_CR4 publication-title: Turk J Phys – volume: 538 start-page: 387 year: 2016 ident: 5355_CR30 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2016.04.041 – volume: 120 start-page: 320 year: 2016 ident: 5355_CR8 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2016.04.101 – volume: 164 start-page: 579 year: 2018 ident: 5355_CR71 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2018.03.037 – volume: 194 start-page: 86 year: 2018 ident: 5355_CR19 publication-title: Comput Struct doi: 10.1016/j.compstruc.2017.09.002 – volume: 28 start-page: 1619 issue: 7 year: 2017 ident: 5355_CR26 publication-title: Neural Comput & Applic doi: 10.1007/s00521-015-2135-1 – volume: 70 start-page: 121 year: 2014 ident: 5355_CR20 publication-title: Energy doi: 10.1016/j.energy.2014.03.096 – volume: 4 start-page: 189 issue: 5 year: 2015 ident: 5355_CR12 publication-title: Int J Sci Technol Res – volume: 137 start-page: 1257 issue: 1-2 year: 2018 ident: 5355_CR37 publication-title: Theor Appl Climatol doi: 10.1007/s00704-018-2666-3 – volume: 26 start-page: 10439 issue: 10 year: 2019 ident: 5355_CR50 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-019-04368-y – volume: 91 start-page: 30 year: 2001 ident: 5355_CR16 publication-title: Nigeria J Renew Energy – volume: 52 start-page: 990 issue: 2 year: 2011 ident: 5355_CR46 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2010.08.027 – volume: 118 start-page: 377 issue: 3 year: 2014 ident: 5355_CR5 publication-title: Theor Appl Climatol doi: 10.1007/s00704-013-1070-2 – volume: 118 start-page: 105 year: 2016 ident: 5355_CR13 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2016.03.082 – volume: 23 start-page: 301 issue: 4 year: 1979 ident: 5355_CR32 publication-title: Sol Energy doi: 10.1016/0038-092X(79)90123-3 – volume: 128 start-page: 155 year: 2018 ident: 5355_CR72 publication-title: Renew Energy doi: 10.1016/j.renene.2018.05.069 – volume: 34 start-page: 1276 issue: 9 year: 2009 ident: 5355_CR38 publication-title: Energy doi: 10.1016/j.energy.2009.05.009 – volume: 36 start-page: 3141 issue: 11 year: 2011 ident: 5355_CR43 publication-title: Renew Energy doi: 10.1016/j.renene.2011.03.019 – volume: 135 start-page: 526 year: 2017 ident: 5355_CR2 publication-title: Energy doi: 10.1016/j.energy.2017.06.155 – volume-title: Theory of pattern recognition year: 1974 ident: 5355_CR68 – volume: 353 start-page: 152 year: 2019 ident: 5355_CR48 publication-title: Geoderma doi: 10.1016/j.geoderma.2019.06.028 – volume: 50 start-page: 121 issue: 210 year: 1924 ident: 5355_CR9 publication-title: Q J R Meteorol Soc doi: 10.1002/qj.49705021008 – volume: 12 start-page: 584 issue: 1 year: 2018 ident: 5355_CR49 publication-title: Eng Appl Comp Fluid Mech – volume: 138 start-page: 413 year: 2017 ident: 5355_CR35 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2017.02.006 – volume: 100 start-page: 380 year: 2015 ident: 5355_CR10 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2015.05.028 – volume: 51 start-page: 108 issue: 1 year: 1995 ident: 5355_CR56 publication-title: Remote Sens Environ doi: 10.1016/0034-4257(94)00069-Y |
| SSID | ssj0068078 |
| Score | 2.3665922 |
| Snippet | Solar radiation is a basic input in many fields of studies and models. However, the low density of solar network stations; the improper distribution of these... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms Complex systems Earth and Environmental Science Earth science Earth Sciences Instruments Krill Marine crustaceans Measuring instruments Nonlinear phenomena Nonlinear systems Original Paper Radiation measurement Regression models Solar radiation Stations Support vector machines |
| Title | Estimation of solar radiation using neighboring stations through hybrid support vector regression boosted by Krill Herd algorithm |
| URI | https://link.springer.com/article/10.1007/s12517-020-05355-1 https://www.proquest.com/docview/2403315140 |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1866-7538 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0068078 issn: 1866-7511 databaseCode: AFBBN dateStart: 20080701 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1866-7538 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0068078 issn: 1866-7511 databaseCode: AGYKE dateStart: 20080101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1866-7538 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0068078 issn: 1866-7511 databaseCode: U2A dateStart: 20080701 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-yIXgRP3E6xzt400DbrGl7HLI5FD05mKfSNMl2qN1YN2FH_3Pz0taiqOC1Td-hLy_5va_fI-SKcSXT1JGUM0wz6lRTwQKPRqEvtBAJk3Y24OMTH0_691N_WjWFFXW1e52StCd10-yG7FoU3R3kJPGp8XnaPtJ5mV088Qb1-cuRQR3drJBzGhg8UbXK_Czj63XUYMxvaVF724wOyH4FE2FQ6vWQ7Kj8iOze2TG822PyPjSWWTYdwkJDgf4prJBmwD7CYvYZ5Bj1FLbADooy415ANZcH5lts1YJis0QADm82eA8rNSvrYnMw6BsjoSC2YA6CLIOxWklIspkRuJ6_npDJaPh8O6bVMAWaGitbUxlJB-OzKRfGydIs0EK7YZiG3FeubzSipeoLZKgzJp_6mmvN-o6MEvQYIxWyU9LKF7k6I8CY9JIIieBCxHtGMhdJEGohEy9IHL9D3PqfxmnFNI4DL7K44UhGPcRGD7HVQ-x2yPXnN8uSZ-PP1d1aVXFlc0WMzILMAJi-0yE3tfqa179LO__f8guy55U7iDpul7TWq426NMhkLXqkPbh7eRj27Ib8ACfl3Ro |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG-MxujF-BlR1Hfwpk22lXXbkRgQFThBwm1Z1xYOOAgDE47-5_Z1m0SjJl637h32-trf-_o9Qm4ZVzJNHUk5wzSjTjUVLPBoFPpCC5EwaWcD9vq8M2w8j_xR2RSWV9XuVUrSntSbZjdk16Lo7iAniU-Nz7ODBFbImD_0mtX5y5FBHd2skHMaGDxRtsr8LOPrdbTBmN_Sova2aR-SgxImQrPQ6xHZUtkx2X20Y3jXJ-S9ZSyzaDqEmYYc_VNYIM2AfYTF7GPIMOopbIEd5EXGPYdyLg9M1tiqBflqjgAc3mzwHhZqXNTFZmDQN0ZCQazBHATTKXTUQkIyHRuBy8nrKRm2W4OHDi2HKdDUWNmSykg6GJ9NuTBOlmaBFtoNwzTkvnJ9oxEtVUMgQ50x-dTXXGvWcGSUoMcYqZCdke1slqlzAoxJL4mQCC5EvGckc5EEoRYy8YLE8WvErf5pnJZM4zjwYhpvOJJRD7HRQ2z1ELs1cvf5zbzg2fhzdb1SVVzaXB4jsyAzAKbh1Mh9pb7N69-lXfxv-Q3Z6wx63bj71H-5JPtesZuo49bJ9nKxUlcGpSzFtd2UH7Xe3nI |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQCMSCeIpCgRvYwCKJEycZK6CUpxioxBbFsd0OJVRNQOrIP8fnJBQQILEmzg05n_3d6ztCDhlXMsscSTnDNKPONBUs9GgcBUILkTJpZwPe3vFe3796DB4_dfHbavcmJVn1NCBLU16ejKU-mTW-IdMWRdcH-UkCavyfBR-JEsyO7nud5izmyKaOLlfEOQ0NtqjbZn6W8fVqmuHNbylSe_N0V8lKDRmhU-l4jcypfJ0sXtiRvNMN8nZurLRqQIRnDQX6qjBBygH7CAvbB5BjBFTYYjsoqux7AfWMHhhOsW0LipcxgnF4tYF8mKhBVSObg0HiGBUFMQVzKIxG0FMTCeloYASWw6dN0u-eP5z2aD1YgWbG4koqY-lgrDbjwjhcmoVaaDeKsogHyg2MdrRUvkC2OmP-WaC51sx3ZJyi9xiriG2R-fw5V9sEGJNeGiMpXITYz0jmIg0jLWTqhakTtIjb_NMkq1nHcfjFKJnxJaMeEqOHxOohcVvk6OObccW58efqdqOqpLa_IkGWQWbAjO-0yHGjvtnr36Xt_G_5AVm6P-smN5d317tk2as2E3XcNpkvJy9qzwCWUuzbPfkOl0jirg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+solar+radiation+using+neighboring+stations+through+hybrid+support+vector+regression+boosted+by+Krill+Herd+algorithm&rft.jtitle=Arabian+journal+of+geosciences&rft.au=Mohammadi+Babak&rft.au=Aghashariatmadari+Zahra&rft.date=2020-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1866-7511&rft.eissn=1866-7538&rft.volume=13&rft.issue=10&rft_id=info:doi/10.1007%2Fs12517-020-05355-1&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-7511&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-7511&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-7511&client=summon |