Estimation of solar radiation using neighboring stations through hybrid support vector regression boosted by Krill Herd algorithm

Solar radiation is a basic input in many fields of studies and models. However, the low density of solar network stations; the improper distribution of these stations; high cost of purchasing, maintaining, and calibrating solar radiation measurement instruments; and frequent errors in the available...

Full description

Saved in:
Bibliographic Details
Published inArabian journal of geosciences Vol. 13; no. 10
Main Authors Mohammadi, Babak, Aghashariatmadari, Zahra
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.05.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1866-7511
1866-7538
DOI10.1007/s12517-020-05355-1

Cover

Abstract Solar radiation is a basic input in many fields of studies and models. However, the low density of solar network stations; the improper distribution of these stations; high cost of purchasing, maintaining, and calibrating solar radiation measurement instruments; and frequent errors in the available data are the most important deficiencies in this regard. Thus, researchers are seeking for new and practical methods to estimate solar radiation accurately. The present study aimed to estimate the solar radiation values based on a new hybrid support vector regression model. To this aim, the solar radiation values of all eight target synoptic stations during 1974–2014 were estimated by using Krill-Herd hybrid algorithm (SVR-KHA) method based on support vector regression and implementing neighboring station data. Results indicated that the testing performance of SVR-KHA has a more precision and lower error for all target stations, compared with classical SVR. In addition, the best results were obtained for SVR-KHA3 hybrid model (Isfahan station). Further, the RMSE, MAPE, and R 2 values for this model were 1.98 MJ/m 2 /day, 7.4%, and 0.93, respectively. In accordance with the results, Krill-Herd algorithm method coupled with support vector regression had a high performance and capability for solar radiation estimation in Iran. In other words, the hybrid SVR-KHA model is more flexible and has less error in modeling the nonlinear and complex systems. Finally, the new method of using neighboring stations can be regarded as an appropriate method for estimating nonlinear phenomenon such as solar radiation.
AbstractList Solar radiation is a basic input in many fields of studies and models. However, the low density of solar network stations; the improper distribution of these stations; high cost of purchasing, maintaining, and calibrating solar radiation measurement instruments; and frequent errors in the available data are the most important deficiencies in this regard. Thus, researchers are seeking for new and practical methods to estimate solar radiation accurately. The present study aimed to estimate the solar radiation values based on a new hybrid support vector regression model. To this aim, the solar radiation values of all eight target synoptic stations during 1974–2014 were estimated by using Krill-Herd hybrid algorithm (SVR-KHA) method based on support vector regression and implementing neighboring station data. Results indicated that the testing performance of SVR-KHA has a more precision and lower error for all target stations, compared with classical SVR. In addition, the best results were obtained for SVR-KHA3 hybrid model (Isfahan station). Further, the RMSE, MAPE, and R 2 values for this model were 1.98 MJ/m 2 /day, 7.4%, and 0.93, respectively. In accordance with the results, Krill-Herd algorithm method coupled with support vector regression had a high performance and capability for solar radiation estimation in Iran. In other words, the hybrid SVR-KHA model is more flexible and has less error in modeling the nonlinear and complex systems. Finally, the new method of using neighboring stations can be regarded as an appropriate method for estimating nonlinear phenomenon such as solar radiation.
Solar radiation is a basic input in many fields of studies and models. However, the low density of solar network stations; the improper distribution of these stations; high cost of purchasing, maintaining, and calibrating solar radiation measurement instruments; and frequent errors in the available data are the most important deficiencies in this regard. Thus, researchers are seeking for new and practical methods to estimate solar radiation accurately. The present study aimed to estimate the solar radiation values based on a new hybrid support vector regression model. To this aim, the solar radiation values of all eight target synoptic stations during 1974–2014 were estimated by using Krill-Herd hybrid algorithm (SVR-KHA) method based on support vector regression and implementing neighboring station data. Results indicated that the testing performance of SVR-KHA has a more precision and lower error for all target stations, compared with classical SVR. In addition, the best results were obtained for SVR-KHA3 hybrid model (Isfahan station). Further, the RMSE, MAPE, and R2 values for this model were 1.98 MJ/m2/day, 7.4%, and 0.93, respectively. In accordance with the results, Krill-Herd algorithm method coupled with support vector regression had a high performance and capability for solar radiation estimation in Iran. In other words, the hybrid SVR-KHA model is more flexible and has less error in modeling the nonlinear and complex systems. Finally, the new method of using neighboring stations can be regarded as an appropriate method for estimating nonlinear phenomenon such as solar radiation.
ArticleNumber 363
Author Aghashariatmadari, Zahra
Mohammadi, Babak
Author_xml – sequence: 1
  givenname: Babak
  surname: Mohammadi
  fullname: Mohammadi, Babak
  organization: College of Hydrology and Water Resources, Hohai University
– sequence: 2
  givenname: Zahra
  surname: Aghashariatmadari
  fullname: Aghashariatmadari, Zahra
  email: zagha@ut.ac.ir
  organization: Irrigation and Reclamation Engineering Department, University College of Agriculture and Natural Resources, University of Tehran
BookMark eNp9kMFO3TAQRS1EJeDRH2BlqetQTxwnzrJCFFCR2MDaSmI7MQpxmHEqvSV_Th6pWqkLVjPy-Fx7zhk7nuLkGLsAcQlCVN8JcgVVJnKRCSWVyuCInYIuy6xSUh__7QFO2BnRsxClFpU-ZW_XlMJLk0KcePSc4tggx8aG7WihMPV8cqEf2oiHntLHhHgaMC79wId9i8FyWuY5YuK_XZfiGuF6dESHjDZGSs7yds9_YRhHfuvQ8mbs18A0vJyzL74ZyX39U3fs6ef149Vtdv9wc3f14z7rJNQps7UVtfdVV7Y6115WvvWgdadL5UBZkN66ohVCV1JAp3zpvSyErZsSiqJ2Wu7Yty13xvi6OErmOS44rU-avBBSgoK17JjebnUYidB504Vt44RNGA0IcxBuNuFmFW4-hBtY0fw_dMZVLe4_h-QG0XzQ6_Dfrz6h3gFEL5hN
CitedBy_id crossref_primary_10_1016_j_asej_2024_103034
crossref_primary_10_1007_s00704_020_03283_4
crossref_primary_10_1016_j_egyr_2021_10_117
crossref_primary_10_1007_s11269_020_02619_z
crossref_primary_10_1140_epjp_s13360_022_02666_y
crossref_primary_10_1007_s40808_021_01232_2
crossref_primary_10_3390_ijgi9120701
crossref_primary_10_1007_s12517_021_06603_8
crossref_primary_10_1007_s12517_021_07596_0
crossref_primary_10_1016_j_aej_2022_03_078
crossref_primary_10_1016_j_enconman_2021_113960
crossref_primary_10_1016_j_jclepro_2021_129010
crossref_primary_10_1016_j_rser_2021_111559
crossref_primary_10_1016_j_ijpharm_2024_124001
crossref_primary_10_1007_s11227_021_04244_y
crossref_primary_10_1016_j_agwat_2020_106622
crossref_primary_10_1016_j_segan_2023_101271
crossref_primary_10_5194_hess_28_1147_2024
crossref_primary_10_1007_s00500_020_05058_5
crossref_primary_10_1007_s12517_022_09575_5
crossref_primary_10_1016_j_heliyon_2023_e13167
crossref_primary_10_1007_s12145_021_00723_1
crossref_primary_10_1007_s12517_021_08006_1
crossref_primary_10_1007_s40866_022_00128_z
crossref_primary_10_1007_s00477_021_02011_2
crossref_primary_10_1016_j_cscm_2023_e02464
crossref_primary_10_1016_j_jksuci_2020_11_005
crossref_primary_10_1002_ep_14276
crossref_primary_10_1016_j_asej_2020_09_011
crossref_primary_10_1038_s41598_023_49278_9
crossref_primary_10_3390_atmos12030389
crossref_primary_10_1007_s11356_021_16760_8
crossref_primary_10_3390_w12113015
crossref_primary_10_1016_j_asoc_2024_112295
crossref_primary_10_1016_j_asej_2021_06_022
crossref_primary_10_1007_s00477_020_01898_7
crossref_primary_10_1016_j_jclepro_2020_124267
crossref_primary_10_3390_su15139962
crossref_primary_10_1016_j_measurement_2020_108127
crossref_primary_10_1002_er_7341
crossref_primary_10_1007_s12517_021_07999_z
crossref_primary_10_1007_s10098_022_02434_7
crossref_primary_10_1016_j_ecolind_2020_106990
crossref_primary_10_1016_j_asej_2021_05_012
crossref_primary_10_1109_TII_2024_3396271
crossref_primary_10_1016_j_catena_2020_105024
crossref_primary_10_1007_s13201_022_01815_z
Cites_doi 10.1016/j.enconman.2016.04.101
10.1016/j.geoderma.2019.06.028
10.1016/j.enconman.2016.05.005
10.1016/j.solener.2014.04.009
10.1016/j.energy.2018.01.177
10.1016/j.enconman.2017.10.043
10.1016/j.energy.2015.10.054
10.1016/j.energy.2014.03.096
10.1016/j.enconman.2010.08.027
10.1016/j.neucom.2014.01.023
10.1016/j.atmosres.2016.10.004
10.1016/j.rser.2017.01.124
10.1016/j.enconman.2007.09.021
10.1016/j.enconman.2018.03.037
10.1590/0102-77863230008
10.1016/j.enconman.2015.09.059
10.1016/j.enconman.2015.05.028
10.1016/j.rser.2015.12.111
10.1016/j.jastp.2017.02.002
10.1016/j.solener.2015.03.015
10.1007/s00704-015-1482-2
10.1007/s11356-020-07868-4
10.1016/j.enconman.2017.02.006
10.1007/s11356-019-04368-y
10.1016/j.ecolind.2019.105664
10.1016/j.energy.2017.06.155
10.1016/0168-1923(84)90017-0
10.1007/s00521-015-2135-1
10.1016/j.ecolind.2019.02.013
10.1016/j.enconman.2015.07.083
10.1016/j.ref.2019.03.003
10.1016/j.enconman.2010.05.020
10.1002/hyp.6323
10.1016/0034-4257(94)00069-Y
10.1016/j.enconman.2016.03.082
10.1029/92WR00772
10.1016/0038-092X(79)90123-3
10.1016/j.energy.2020.117239
10.1016/j.enconman.2016.01.074
10.1016/j.enconman.2013.01.004
10.1016/j.jclepro.2017.12.065
10.1002/qj.49705021008
10.1007/s00521-012-1304-8
10.1007/s00704-018-2666-3
10.1016/j.jher.2017.10.005
10.1016/j.renene.2018.05.069
10.1007/s00704-013-1070-2
10.1016/j.solener.2004.09.007
10.1016/j.asoc.2015.09.049
10.1016/j.enconman.2012.03.025
10.1016/j.enconman.2015.10.033
10.1016/j.asoc.2017.06.059
10.1016/j.renene.2011.03.019
10.1016/S0038-092X(02)00010-5
10.1016/j.energy.2009.05.009
10.1007/s00521-013-1485-9
10.1016/j.compstruc.2017.09.002
10.1016/j.jastp.2016.10.008
10.1016/j.rser.2017.01.114
10.1016/j.ecolind.2019.04.055
10.1016/j.jhydrol.2016.04.041
10.1016/j.cnsns.2012.05.010
10.1016/S0960-1481(98)00068-8
10.1016/j.enconman.2014.10.004
10.1016/B978-0-12-398364-0.00001-2
ContentType Journal Article
Copyright Saudi Society for Geosciences 2020
Saudi Society for Geosciences 2020.
Copyright_xml – notice: Saudi Society for Geosciences 2020
– notice: Saudi Society for Geosciences 2020.
DBID AAYXX
CITATION
7UA
C1K
F1W
H96
L.G
DOI 10.1007/s12517-020-05355-1
DatabaseName CrossRef
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1866-7538
ExternalDocumentID 10_1007_s12517_020_05355_1
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
06D
0R~
0VY
1N0
203
23M
2JN
2JY
2KG
2VQ
30V
4.4
406
408
409
40D
40E
5VS
67M
67Z
6NX
8TC
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ASPBG
AUKKA
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
IZIGR
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
PT4
QOS
R89
RLLFE
ROL
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
TSK
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7Y
Z7Z
Z81
Z85
ZMTXR
~02
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
7UA
C1K
F1W
H96
L.G
ID FETCH-LOGICAL-c319t-d9d09ff7c6b828f37fbf188c865e15d13fde4b0087301c5f6ff340d9a61449e83
IEDL.DBID U2A
ISSN 1866-7511
IngestDate Wed Sep 17 23:55:21 EDT 2025
Thu Apr 24 23:00:01 EDT 2025
Wed Oct 01 02:28:18 EDT 2025
Fri Feb 21 02:33:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Support vector regression
Hybrid method
Solar radiation
Meteorology
Krill-Herd algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-d9d09ff7c6b828f37fbf188c865e15d13fde4b0087301c5f6ff340d9a61449e83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2403315140
PQPubID 2044009
ParticipantIDs proquest_journals_2403315140
crossref_citationtrail_10_1007_s12517_020_05355_1
crossref_primary_10_1007_s12517_020_05355_1
springer_journals_10_1007_s12517_020_05355_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200500
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 5
  year: 2020
  text: 20200500
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Arabian journal of geosciences
PublicationTitleAbbrev Arab J Geosci
PublicationYear 2020
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Yao, Zhang, Hao, Wang, Li (CR72) 2018; 128
Gizaw, Gan (CR30) 2016; 538
Ramli, Twaha, Al-Turki (CR60) 2015; 105
Ayodele, Ogunjuyigbe, Amedu, Munda (CR11) 2019; 29
Quej, Almorox, Arnaldo, Saito (CR59) 2017; 155
Liu, Mei, Li, Porter, Wang, Zhang (CR44) 2010; 51
Mohammadi (CR50) 2019; 26
Medeiros, Silva, Bezerra (CR47) 2017; 32
Mohammadi (CR51) 2019; 107
Aladenola, Madramootoo (CR5) 2014; 118
Alizamir, Kim, Kisi, Zounemat-kermani (CR7) 2020; 197
Benajes, Martín, García, Villalta, Warey (CR14) 2015; 106
Qing, Niu (CR58) 2018; 148
Abualigah, Khader, Hanandeh, Gandomi (CR1) 2017; 60
Cheng, Lu (CR19) 2018; 194
Alsina, Bortolini, Gamberi, Regattieri (CR8) 2016; 120
Hay (CR32) 1979; 23
Angstrom (CR9) 1924; 50
Deo, Şahin (CR23) 2017; 72
Kosmopoulos, Kazadzis, Lagouvardos, Kotroni, Bais (CR40) 2015; 93
Jahani, Dinpashoh, Nafchi (CR36) 2017; 73
Samadianfard, Ghorbani, Mohammadi (CR62) 2018; 5
Belaid, Mellit (CR13) 2016; 118
Burari, Sambo (CR16) 2001; 91
Demirhan, Menteş, Atilla (CR21) 2013; 68
Jahani, Mohammadi (CR37) 2018; 137
Pinker, Frouin, Li (CR56) 1995; 51
Hontoria, Aguilera, Zufiria (CR33) 2002; 72
Ahmed, Ulfat (CR3) 2004; 28
Gairaa, Khellaf, Messlem, Chellali (CR29) 2016; 57
Yu, Zhang, Qin (CR73) 2018; 18
Martí, Gasque (CR46) 2011; 52
Jiang (CR38) 2009; 34
Bristow, Campbell (CR15) 1984; 31
Ibrahim, Khatib (CR35) 2017; 138
Al-Alawi, Al-Hinai (CR6) 1998; 14
Lam, Wan, Yang (CR42) 2008; 49
Chen, Li, Xiao, Wen, Lv, Chen, Jiang, Wang, Wu (CR17) 2015; 89
Mohammadi (CR52) 2019; 101
Moazenzadeh, Mohammadi, Shamshirband, Chau (CR49) 2018; 12
Feng, Wang, Deb, Lu, Zhao (CR26) 2017; 28
Wang, Gandomi, Alavi, Hao (CR69) 2014; 25
Vaheddoost, Guan, Mohammadi (CR67) 2020; 27
Wang, Guo, Wang, Duan, Liu, Li (CR70) 2014; 24
Salcedo-Sanz, Casanova-Mateo, Pastor-Sánchez, Sánchez-Girón (CR63) 2014; 105
Shamshirband, Mohammadi, Tong, Zamani, Motamedi, Ch (CR64) 2016; 125
Moazenzadeh, Mohammadi (CR48) 2019; 353
Landeras, López, Kisi, Shiri (CR41) 2012; 62
Yao, Zhang, Wang, Zhang, Li, Di (CR71) 2018; 164
Baziar, Kavousi-Fard (CR12) 2015; 4
Hosseini, Mahjouri (CR34) 2016; 38
Gandomi, Alavi (CR27) 2012; 17
Akpabio, Udo, Etuk (CR4) 2004; 28
Prescott (CR57) 1940; 64
Vapnik, Chervonenkis (CR68) 1974
El Mghouchi, Chham, Krikiz, Ajzoul, El Bouardi (CR25) 2016; 120
Liu, Zhou, Wang, Wang, Li, Zhu (CR45) 2017; 154
Deo, Kisi, Singh (CR22) 2017; 184
CR28
Cheng, Yu, Lin (CR20) 2014; 70
Khosravi, Koury, Machado, Pabon (CR39) 2018; 176
Olatomiwa, Mekhilef, Shamshirband, Mohammadi, Petković, Sudheer (CR54) 2015; 115
Achour, Bouharkat, Assas, Behar (CR2) 2017; 135
Dubayah (CR24) 1992; 28
Chen, Xia, Liu, Li, Liu (CR18) 2016; 114
Renno, Petito, Gatto (CR61) 2015; 106
Antonanzas, Urraca, Martinez-de-Pison, Antonanzas-Torres (CR10) 2015; 100
Guo, Wang, Gandomi, Alavi, Duan (CR31) 2014; 138
Tymvios, Jacovides, Michaelides, Scouteli (CR66) 2005; 78
Pai, Hong (CR55) 2007; 21
Mohammadi (CR53) 2019; 103
Li, Ma, Lian, Wang, Zhao (CR43) 2011; 36
Sharifi, Rezaverdinejad, Nourani (CR65) 2016; 149
FJ Medeiros (5355_CR47) 2017; 32
J Antonanzas (5355_CR10) 2015; 100
X Qing (5355_CR58) 2018; 148
RT Pinker (5355_CR56) 1995; 51
JE Hay (5355_CR32) 1979; 23
MA Ramli (5355_CR60) 2015; 105
K Gairaa (5355_CR29) 2016; 57
SS Sharifi (5355_CR65) 2016; 149
IA Ibrahim (5355_CR35) 2017; 138
JC Lam (5355_CR42) 2008; 49
L Olatomiwa (5355_CR54) 2015; 115
JA Prescott (5355_CR57) 1940; 64
A Khosravi (5355_CR39) 2018; 176
B Mohammadi (5355_CR52) 2019; 101
RC Deo (5355_CR23) 2017; 72
L Guo (5355_CR31) 2014; 138
F Ahmed (5355_CR3) 2004; 28
JL Chen (5355_CR17) 2015; 89
LE Akpabio (5355_CR4) 2004; 28
L Hontoria (5355_CR33) 2002; 72
S Samadianfard (5355_CR62) 2018; 5
FW Burari (5355_CR16) 2001; 91
H Li (5355_CR43) 2011; 36
R Moazenzadeh (5355_CR48) 2019; 353
PF Pai (5355_CR55) 2007; 21
KL Bristow (5355_CR15) 1984; 31
K Cheng (5355_CR19) 2018; 194
VH Quej (5355_CR59) 2017; 155
5355_CR28
G Wang (5355_CR69) 2014; 25
SM Hosseini (5355_CR34) 2016; 38
B Vaheddoost (5355_CR67) 2020; 27
B Mohammadi (5355_CR51) 2019; 107
S Shamshirband (5355_CR64) 2016; 125
FS Tymvios (5355_CR66) 2005; 78
J Benajes (5355_CR14) 2015; 106
MS Gizaw (5355_CR30) 2016; 538
W Yao (5355_CR71) 2018; 164
VN Vapnik (5355_CR68) 1974
G Landeras (5355_CR41) 2012; 62
C Renno (5355_CR61) 2015; 106
X Yu (5355_CR73) 2018; 18
TR Ayodele (5355_CR11) 2019; 29
P Martí (5355_CR46) 2011; 52
AH Gandomi (5355_CR27) 2012; 17
H Demirhan (5355_CR21) 2013; 68
A Angstrom (5355_CR9) 1924; 50
B Mohammadi (5355_CR50) 2019; 26
B Mohammadi (5355_CR53) 2019; 103
Y Feng (5355_CR26) 2017; 28
X Chen (5355_CR18) 2016; 114
Y Liu (5355_CR45) 2017; 154
PG Kosmopoulos (5355_CR40) 2015; 93
HY Cheng (5355_CR20) 2014; 70
RC Deo (5355_CR22) 2017; 184
W Yao (5355_CR72) 2018; 128
SM Al-Alawi (5355_CR6) 1998; 14
EF Alsina (5355_CR8) 2016; 120
LM Abualigah (5355_CR1) 2017; 60
S Salcedo-Sanz (5355_CR63) 2014; 105
Y Jiang (5355_CR38) 2009; 34
S Belaid (5355_CR13) 2016; 118
M Alizamir (5355_CR7) 2020; 197
B Jahani (5355_CR37) 2018; 137
G Wang (5355_CR70) 2014; 24
OO Aladenola (5355_CR5) 2014; 118
R Dubayah (5355_CR24) 1992; 28
L Achour (5355_CR2) 2017; 135
R Moazenzadeh (5355_CR49) 2018; 12
X Liu (5355_CR44) 2010; 51
A Baziar (5355_CR12) 2015; 4
Y El Mghouchi (5355_CR25) 2016; 120
B Jahani (5355_CR36) 2017; 73
References_xml – volume: 120
  start-page: 320
  year: 2016
  end-page: 329
  ident: CR8
  article-title: Artificial neural network optimisation for monthly average daily global solar radiation prediction
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2016.04.101
– volume: 353
  start-page: 152
  year: 2019
  end-page: 171
  ident: CR48
  article-title: Assessment of bio-inspired metaheuristic optimisation algorithms for estimating soil temperature
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.06.028
– volume: 5
  start-page: 465
  issue: 4
  year: 2018
  end-page: 476
  ident: CR62
  article-title: Forecasting soil temperature at multiple-depth with a hybrid artificial neural network model coupled-hybrid firefly optimizer algorithm
  publication-title: Inform Process Agric
– volume: 64
  start-page: 114
  issue: 1
  year: 1940
  end-page: 118
  ident: CR57
  article-title: Evaporation from a water surface in relation to solar radiation
  publication-title: Trans R Soc S Aust
– volume: 120
  start-page: 397
  year: 2016
  end-page: 411
  ident: CR25
  article-title: On the prediction of the daily global solar radiation intensity on south-facing plane surfaces inclined at varying angles
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2016.05.005
– volume: 105
  start-page: 91
  year: 2014
  end-page: 98
  ident: CR63
  article-title: Daily global solar radiation prediction based on a hybrid Coral Reefs Optimization–Extreme Learning Machine approach
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2014.04.009
– volume: 148
  start-page: 461
  year: 2018
  end-page: 468
  ident: CR58
  article-title: Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM
  publication-title: Energy
  doi: 10.1016/j.energy.2018.01.177
– volume: 28
  start-page: 205
  issue: 3
  year: 2004
  end-page: 212
  ident: CR4
  article-title: Empirical correlations of global solar radiation with meteorological data for Onne, Nigeria
  publication-title: Turk J Phys
– volume: 154
  start-page: 168
  year: 2017
  end-page: 179
  ident: CR45
  article-title: Classification of solar radiation zones and general models for estimating the daily global solar radiation on horizontal surfaces in China
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2017.10.043
– volume: 93
  start-page: 1918
  year: 2015
  end-page: 1930
  ident: CR40
  article-title: Solar energy prediction and verification using operational model forecasts and ground-based solar measurements
  publication-title: Energy
  doi: 10.1016/j.energy.2015.10.054
– volume: 70
  start-page: 121
  year: 2014
  end-page: 127
  ident: CR20
  article-title: Bi-model short-term solar irradiance prediction using support vector regressors
  publication-title: Energy
  doi: 10.1016/j.energy.2014.03.096
– volume: 52
  start-page: 990
  issue: 2
  year: 2011
  end-page: 1003
  ident: CR46
  article-title: Improvement of temperature-based ANN models for solar radiation estimation through exogenous data assistance
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2010.08.027
– volume: 28
  start-page: 301
  issue: 5
  year: 2004
  end-page: 307
  ident: CR3
  article-title: Empirical models for the correlation of monthly average daily global solar radiation with hours of sunshine on a horizontal surface at Karachi, Pakistan
  publication-title: Turk J Phys
– volume: 138
  start-page: 392
  year: 2014
  end-page: 402
  ident: CR31
  article-title: A new improved krill herd algorithm for global numerical optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.01.023
– volume: 184
  start-page: 149
  year: 2017
  end-page: 175
  ident: CR22
  article-title: Drought forecasting in eastern Australia using multivariate adaptive regression spline, least square support vector machine and M5Tree model
  publication-title: Atmos Res
  doi: 10.1016/j.atmosres.2016.10.004
– volume: 73
  start-page: 878
  year: 2017
  end-page: 891
  ident: CR36
  article-title: Evaluation and development of empirical models for estimating daily solar radiation
  publication-title: Renew Sust Energ Rev
  doi: 10.1016/j.rser.2017.01.124
– volume: 49
  start-page: 1080
  issue: 5
  year: 2008
  end-page: 1090
  ident: CR42
  article-title: Solar radiation modelling using ANNs for different climates in China
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2007.09.021
– volume: 164
  start-page: 579
  year: 2018
  end-page: 587
  ident: CR71
  article-title: A new correlation between global solar radiation and the quality of sunshine duration in China
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2018.03.037
– volume: 32
  start-page: 409
  issue: 3
  year: 2017
  end-page: 416
  ident: CR47
  article-title: Calibration of Ångström-Prescott equation to estimate daily solar radiation on Rio Grande do Norte State, Brazil
  publication-title: Revista Brasileira de Meteorologia
  doi: 10.1590/0102-77863230008
– volume: 106
  start-page: 414
  year: 2015
  end-page: 427
  ident: CR14
  article-title: In-cylinder soot radiation heat transfer in direct-injection diesel engines
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2015.09.059
– volume: 100
  start-page: 380
  year: 2015
  end-page: 390
  ident: CR10
  article-title: Solar irradiation mapping with exogenous data from support vector regression machines estimations
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2015.05.028
– volume: 57
  start-page: 238
  year: 2016
  end-page: 249
  ident: CR29
  article-title: Estimation of the daily global solar radiation based on Box–Jenkins and ANN models: a combined approach
  publication-title: Renew Sust Energ Rev
  doi: 10.1016/j.rser.2015.12.111
– volume: 155
  start-page: 62
  year: 2017
  end-page: 70
  ident: CR59
  article-title: ANFIS, SVM and ANN soft-computing techniques to estimate daily global solar radiation in a warm sub-humid environment
  publication-title: J Atmos Sol Terr Phys
  doi: 10.1016/j.jastp.2017.02.002
– volume: 115
  start-page: 632
  year: 2015
  end-page: 644
  ident: CR54
  article-title: A support vector machine–firefly algorithm-based model for global solar radiation prediction
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2015.03.015
– volume: 125
  start-page: 53
  issue: 1-2
  year: 2016
  end-page: 65
  ident: CR64
  article-title: A hybrid SVM-FFA method for prediction of monthly mean global solar radiation
  publication-title: Theor Appl Climatol
  doi: 10.1007/s00704-015-1482-2
– volume: 27
  start-page: 1
  year: 2020
  end-page: 11
  ident: CR67
  article-title: Application of hybrid ANN-whale optimization model in evaluation of the field capacity and the permanent wilting point of the soils
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-020-07868-4
– volume: 138
  start-page: 413
  year: 2017
  end-page: 425
  ident: CR35
  article-title: A novel hybrid model for hourly global solar radiation prediction using random forests technique and firefly algorithm
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2017.02.006
– volume: 26
  start-page: 10439
  issue: 10
  year: 2019
  end-page: 10440
  ident: CR50
  article-title: Letter to the editor “Estimation of sodium adsorption ratio indicator using data mining methods: a case study in Urmia Lake basin, Iran” by Mohammad Taghi Sattari, Arya Farkhondeh, and John Patrick Abraham
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-019-04368-y
– year: 1974
  ident: CR68
  publication-title: Theory of pattern recognition
– volume: 107
  start-page: 105664
  year: 2019
  ident: CR51
  article-title: Letter to the editor “Predicting total phosphorus levels as indicators for shallow lake management”
  publication-title: Ecol Indic
  doi: 10.1016/j.ecolind.2019.105664
– volume: 135
  start-page: 526
  year: 2017
  end-page: 539
  ident: CR2
  article-title: Hybrid model for estimating monthly global solar radiation for the Southern of Algeria: (case study: Tamanrasset, Algeria)
  publication-title: Energy
  doi: 10.1016/j.energy.2017.06.155
– volume: 31
  start-page: 159
  issue: 2
  year: 1984
  end-page: 166
  ident: CR15
  article-title: On the relationship between incoming solar radiation and daily maximum and minimum temperature
  publication-title: Agric For Meteorol
  doi: 10.1016/0168-1923(84)90017-0
– volume: 28
  start-page: 1619
  issue: 7
  year: 2017
  end-page: 1634
  ident: CR26
  article-title: Solving 0–1 knapsack problem by a novel binary monarch butterfly optimization
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-015-2135-1
– volume: 101
  start-page: 973
  year: 2019
  end-page: 974
  ident: CR52
  article-title: “Prediction of effective climate change indicators using statistical downscaling approach and impact assessment on pearl millet (Pennisetum glaucum L.) yield through genetic algorithm in Punjab, Pakistan” by Asmat Ullah, Nasrin Salehnia, Sohrab Kolsoumi, Ashfaq Ahmad, Tasneem Khaliq
  publication-title: Ecol Indic
  doi: 10.1016/j.ecolind.2019.02.013
– volume: 105
  start-page: 442
  year: 2015
  end-page: 452
  ident: CR60
  article-title: Investigating the performance of support vector machine and artificial neural networks in predicting solar radiation on a tilted surface: Saudi Arabia case study
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2015.07.083
– volume: 29
  start-page: 78
  year: 2019
  end-page: 93
  ident: CR11
  article-title: Prediction of global solar irradiation using hybridized k-means and support vector regression algorithms
  publication-title: Renewable Energy Focus
  doi: 10.1016/j.ref.2019.03.003
– volume: 51
  start-page: 2565
  issue: 12
  year: 2010
  end-page: 2574
  ident: CR44
  article-title: Choice of the Ångström–Prescott coefficients: are time-dependent ones better than fixed ones in modeling global solar irradiance?
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2010.05.020
– volume: 21
  start-page: 819
  issue: 6
  year: 2007
  end-page: 827
  ident: CR55
  article-title: A recurrent support vector regression model in rainfall forecasting
  publication-title: Hydrol Process
  doi: 10.1002/hyp.6323
– volume: 51
  start-page: 108
  issue: 1
  year: 1995
  end-page: 124
  ident: CR56
  article-title: A review of satellite methods to derive surface shortwave irradiance
  publication-title: Remote Sens Environ
  doi: 10.1016/0034-4257(94)00069-Y
– volume: 118
  start-page: 105
  year: 2016
  end-page: 118
  ident: CR13
  article-title: Prediction of daily and mean monthly global solar radiation using support vector machine in an arid climate
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2016.03.082
– volume: 12
  start-page: 584
  issue: 1
  year: 2018
  end-page: 597
  ident: CR49
  article-title: Coupling a firefly algorithm with support vector regression to predict evaporation in northern Iran
  publication-title: Eng Appl Comp Fluid Mech
– volume: 28
  start-page: 2469
  issue: 9
  year: 1992
  end-page: 2484
  ident: CR24
  article-title: Estimating net solar radiation using Landsat Thematic Mapper and digital elevation data
  publication-title: Water Resour Res
  doi: 10.1029/92WR00772
– volume: 23
  start-page: 301
  issue: 4
  year: 1979
  end-page: 307
  ident: CR32
  article-title: Calculation of monthly mean solar radiation for horizontal and inclined surfaces
  publication-title: Sol Energy
  doi: 10.1016/0038-092X(79)90123-3
– volume: 197
  start-page: 117239
  year: 2020
  ident: CR7
  article-title: A comparative study of several machine learning based non-linear regression methods in estimating solar radiation: case studies of the USA and Turkey regions
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117239
– volume: 114
  start-page: 20
  year: 2016
  end-page: 27
  ident: CR18
  article-title: Heat transfer analysis of a volumetric solar receiver by coupling the solar radiation transport and internal heat transfer
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2016.01.074
– volume: 68
  start-page: 141
  year: 2013
  end-page: 148
  ident: CR21
  article-title: Statistical comparison of global solar radiation estimation models over Turkey
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2013.01.004
– volume: 176
  start-page: 63
  year: 2018
  end-page: 75
  ident: CR39
  article-title: Prediction of hourly solar radiation in Abu Musa Island using machine learning algorithms
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2017.12.065
– volume: 50
  start-page: 121
  issue: 210
  year: 1924
  end-page: 126
  ident: CR9
  article-title: Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar and atmospheric radiation
  publication-title: Q J R Meteorol Soc
  doi: 10.1002/qj.49705021008
– volume: 24
  start-page: 853
  issue: 3-4
  year: 2014
  end-page: 871
  ident: CR70
  article-title: Incorporating mutation scheme into krill herd algorithm for global numerical optimization
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-012-1304-8
– volume: 137
  start-page: 1257
  issue: 1-2
  year: 2018
  end-page: 1269
  ident: CR37
  article-title: A comparison between the application of empirical and ANN methods for estimation of daily global solar radiation in Iran
  publication-title: Theor Appl Climatol
  doi: 10.1007/s00704-018-2666-3
– volume: 18
  start-page: 12
  year: 2018
  end-page: 24
  ident: CR73
  article-title: A data-driven model based on Fourier transform and support vector regression for monthly reservoir inflow forecasting
  publication-title: J Hydro Environ Res
  doi: 10.1016/j.jher.2017.10.005
– volume: 128
  start-page: 155
  year: 2018
  end-page: 162
  ident: CR72
  article-title: A support vector machine approach to estimate global solar radiation with the influence of fog and haze
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2018.05.069
– volume: 118
  start-page: 377
  issue: 3
  year: 2014
  end-page: 385
  ident: CR5
  article-title: Evaluation of solar radiation estimation methods for reference evapotranspiration estimation in Canada
  publication-title: Theor Appl Climatol
  doi: 10.1007/s00704-013-1070-2
– volume: 78
  start-page: 752
  issue: 6
  year: 2005
  end-page: 762
  ident: CR66
  article-title: Comparative study of Ångström’s and artificial neural networks’ methodologies in estimating global solar radiation
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2004.09.007
– volume: 38
  start-page: 329
  year: 2016
  end-page: 345
  ident: CR34
  article-title: Integrating support vector regression and a geomorphologic artificial neural network for daily rainfall-runoff modeling
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.09.049
– volume: 62
  start-page: 1
  year: 2012
  end-page: 3
  ident: CR41
  article-title: Comparison of Gene Expression Programming with neuro-fuzzy and neural network computing techniques in estimating daily incoming solar radiation in the Basque Country (Northern Spain)
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2012.03.025
– volume: 106
  start-page: 999
  year: 2015
  end-page: 1012
  ident: CR61
  article-title: Artificial neural network models for predicting the solar radiation as input of a concentrating photovoltaic system
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2015.10.033
– volume: 60
  start-page: 423
  year: 2017
  end-page: 435
  ident: CR1
  article-title: A novel hybridization strategy for krill herd algorithm applied to clustering techniques
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.06.059
– volume: 36
  start-page: 3141
  issue: 11
  year: 2011
  end-page: 3145
  ident: CR43
  article-title: Global solar radiation estimation with sunshine duration in Tibet, China
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2011.03.019
– volume: 72
  start-page: 441
  issue: 5
  year: 2002
  end-page: 446
  ident: CR33
  article-title: Generation of hourly irradiation synthetic series using the neural network multilayer perceptron
  publication-title: Sol Energy
  doi: 10.1016/S0038-092X(02)00010-5
– volume: 34
  start-page: 1276
  issue: 9
  year: 2009
  end-page: 1283
  ident: CR38
  article-title: Computation of monthly mean daily global solar radiation in China using artificial neural networks and comparison with other empirical models
  publication-title: Energy
  doi: 10.1016/j.energy.2009.05.009
– volume: 25
  start-page: 297
  issue: 2
  year: 2014
  end-page: 308
  ident: CR69
  article-title: Hybrid krill herd algorithm with differential evolution for global numerical optimization
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-013-1485-9
– volume: 194
  start-page: 86
  year: 2018
  end-page: 96
  ident: CR19
  article-title: Adaptive sparse polynomial chaos expansions for global sensitivity analysis based on support vector regression
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2017.09.002
– volume: 149
  start-page: 131
  year: 2016
  end-page: 145
  ident: CR65
  article-title: Estimation of daily global solar radiation using wavelet regression, ANN, GEP and empirical models: a comparative study of selected temperature-based approaches
  publication-title: J Atmos Sol Terr Phys
  doi: 10.1016/j.jastp.2016.10.008
– volume: 72
  start-page: 828
  year: 2017
  end-page: 848
  ident: CR23
  article-title: Forecasting long-term global solar radiation with an ANN algorithm coupled with satellite-derived (MODIS) land surface temperature (LST) for regional locations in Queensland
  publication-title: Renew Sust Energ Rev
  doi: 10.1016/j.rser.2017.01.114
– volume: 103
  start-page: 493
  year: 2019
  ident: CR53
  article-title: Letter to the editor “Design of an integrated climatic assessment indicator (ICAI) for wheat production: a case study in Jiangsu Province, China” by Xiangying Xu, Ping Gao, Xinkai Zhu, Wenshan Guo, Jinfeng Ding, Chunyan Li, Min Zhu, Xuanwei Wu
  publication-title: Ecol Indic
  doi: 10.1016/j.ecolind.2019.04.055
– volume: 91
  start-page: 30
  year: 2001
  end-page: 33
  ident: CR16
  article-title: Model for the prediction of global solar radiation for Bauchi using meteorological data
  publication-title: Nigeria J Renew Energy
– volume: 4
  start-page: 189
  issue: 5
  year: 2015
  end-page: 195
  ident: CR12
  article-title: Short term load forecasting using a hybrid model based on support vector regression
  publication-title: Int J Sci Technol Res
– volume: 538
  start-page: 387
  year: 2016
  end-page: 398
  ident: CR30
  article-title: Regional flood frequency analysis using support vector regression under historical and future climate
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2016.04.041
– ident: CR28
– volume: 17
  start-page: 4831
  issue: 12
  year: 2012
  end-page: 4845
  ident: CR27
  article-title: Krill herd: a new bio-inspired optimization algorithm
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2012.05.010
– volume: 14
  start-page: 199
  issue: 1-4
  year: 1998
  end-page: 204
  ident: CR6
  article-title: An ANN-based approach for predicting global radiation in locations with no direct measurement instrumentation
  publication-title: Renew Energy
  doi: 10.1016/S0960-1481(98)00068-8
– volume: 89
  start-page: 318
  year: 2015
  end-page: 329
  ident: CR17
  article-title: Assessing the transferability of support vector machine model for estimation of global solar radiation from air temperature
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2014.10.004
– volume: 28
  start-page: 301
  issue: 5
  year: 2004
  ident: 5355_CR3
  publication-title: Turk J Phys
– volume: 120
  start-page: 397
  year: 2016
  ident: 5355_CR25
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2016.05.005
– volume: 14
  start-page: 199
  issue: 1-4
  year: 1998
  ident: 5355_CR6
  publication-title: Renew Energy
  doi: 10.1016/S0960-1481(98)00068-8
– volume: 114
  start-page: 20
  year: 2016
  ident: 5355_CR18
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2016.01.074
– volume: 72
  start-page: 441
  issue: 5
  year: 2002
  ident: 5355_CR33
  publication-title: Sol Energy
  doi: 10.1016/S0038-092X(02)00010-5
– volume: 64
  start-page: 114
  issue: 1
  year: 1940
  ident: 5355_CR57
  publication-title: Trans R Soc S Aust
– volume: 57
  start-page: 238
  year: 2016
  ident: 5355_CR29
  publication-title: Renew Sust Energ Rev
  doi: 10.1016/j.rser.2015.12.111
– volume: 105
  start-page: 91
  year: 2014
  ident: 5355_CR63
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2014.04.009
– volume: 155
  start-page: 62
  year: 2017
  ident: 5355_CR59
  publication-title: J Atmos Sol Terr Phys
  doi: 10.1016/j.jastp.2017.02.002
– volume: 32
  start-page: 409
  issue: 3
  year: 2017
  ident: 5355_CR47
  publication-title: Revista Brasileira de Meteorologia
  doi: 10.1590/0102-77863230008
– volume: 18
  start-page: 12
  year: 2018
  ident: 5355_CR73
  publication-title: J Hydro Environ Res
  doi: 10.1016/j.jher.2017.10.005
– volume: 49
  start-page: 1080
  issue: 5
  year: 2008
  ident: 5355_CR42
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2007.09.021
– volume: 73
  start-page: 878
  year: 2017
  ident: 5355_CR36
  publication-title: Renew Sust Energ Rev
  doi: 10.1016/j.rser.2017.01.124
– volume: 103
  start-page: 493
  year: 2019
  ident: 5355_CR53
  publication-title: Ecol Indic
  doi: 10.1016/j.ecolind.2019.04.055
– volume: 31
  start-page: 159
  issue: 2
  year: 1984
  ident: 5355_CR15
  publication-title: Agric For Meteorol
  doi: 10.1016/0168-1923(84)90017-0
– volume: 25
  start-page: 297
  issue: 2
  year: 2014
  ident: 5355_CR69
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-013-1485-9
– ident: 5355_CR28
  doi: 10.1016/B978-0-12-398364-0.00001-2
– volume: 29
  start-page: 78
  year: 2019
  ident: 5355_CR11
  publication-title: Renewable Energy Focus
  doi: 10.1016/j.ref.2019.03.003
– volume: 51
  start-page: 2565
  issue: 12
  year: 2010
  ident: 5355_CR44
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2010.05.020
– volume: 105
  start-page: 442
  year: 2015
  ident: 5355_CR60
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2015.07.083
– volume: 138
  start-page: 392
  year: 2014
  ident: 5355_CR31
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.01.023
– volume: 106
  start-page: 999
  year: 2015
  ident: 5355_CR61
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2015.10.033
– volume: 197
  start-page: 117239
  year: 2020
  ident: 5355_CR7
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117239
– volume: 27
  start-page: 1
  year: 2020
  ident: 5355_CR67
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-020-07868-4
– volume: 184
  start-page: 149
  year: 2017
  ident: 5355_CR22
  publication-title: Atmos Res
  doi: 10.1016/j.atmosres.2016.10.004
– volume: 78
  start-page: 752
  issue: 6
  year: 2005
  ident: 5355_CR66
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2004.09.007
– volume: 21
  start-page: 819
  issue: 6
  year: 2007
  ident: 5355_CR55
  publication-title: Hydrol Process
  doi: 10.1002/hyp.6323
– volume: 101
  start-page: 973
  year: 2019
  ident: 5355_CR52
  publication-title: Ecol Indic
  doi: 10.1016/j.ecolind.2019.02.013
– volume: 107
  start-page: 105664
  year: 2019
  ident: 5355_CR51
  publication-title: Ecol Indic
  doi: 10.1016/j.ecolind.2019.105664
– volume: 125
  start-page: 53
  issue: 1-2
  year: 2016
  ident: 5355_CR64
  publication-title: Theor Appl Climatol
  doi: 10.1007/s00704-015-1482-2
– volume: 93
  start-page: 1918
  year: 2015
  ident: 5355_CR40
  publication-title: Energy
  doi: 10.1016/j.energy.2015.10.054
– volume: 28
  start-page: 2469
  issue: 9
  year: 1992
  ident: 5355_CR24
  publication-title: Water Resour Res
  doi: 10.1029/92WR00772
– volume: 72
  start-page: 828
  year: 2017
  ident: 5355_CR23
  publication-title: Renew Sust Energ Rev
  doi: 10.1016/j.rser.2017.01.114
– volume: 149
  start-page: 131
  year: 2016
  ident: 5355_CR65
  publication-title: J Atmos Sol Terr Phys
  doi: 10.1016/j.jastp.2016.10.008
– volume: 106
  start-page: 414
  year: 2015
  ident: 5355_CR14
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2015.09.059
– volume: 176
  start-page: 63
  year: 2018
  ident: 5355_CR39
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2017.12.065
– volume: 154
  start-page: 168
  year: 2017
  ident: 5355_CR45
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2017.10.043
– volume: 148
  start-page: 461
  year: 2018
  ident: 5355_CR58
  publication-title: Energy
  doi: 10.1016/j.energy.2018.01.177
– volume: 38
  start-page: 329
  year: 2016
  ident: 5355_CR34
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.09.049
– volume: 89
  start-page: 318
  year: 2015
  ident: 5355_CR17
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2014.10.004
– volume: 62
  start-page: 1
  year: 2012
  ident: 5355_CR41
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2012.03.025
– volume: 5
  start-page: 465
  issue: 4
  year: 2018
  ident: 5355_CR62
  publication-title: Inform Process Agric
– volume: 24
  start-page: 853
  issue: 3-4
  year: 2014
  ident: 5355_CR70
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-012-1304-8
– volume: 115
  start-page: 632
  year: 2015
  ident: 5355_CR54
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2015.03.015
– volume: 17
  start-page: 4831
  issue: 12
  year: 2012
  ident: 5355_CR27
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2012.05.010
– volume: 60
  start-page: 423
  year: 2017
  ident: 5355_CR1
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.06.059
– volume: 68
  start-page: 141
  year: 2013
  ident: 5355_CR21
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2013.01.004
– volume: 28
  start-page: 205
  issue: 3
  year: 2004
  ident: 5355_CR4
  publication-title: Turk J Phys
– volume: 538
  start-page: 387
  year: 2016
  ident: 5355_CR30
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2016.04.041
– volume: 120
  start-page: 320
  year: 2016
  ident: 5355_CR8
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2016.04.101
– volume: 164
  start-page: 579
  year: 2018
  ident: 5355_CR71
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2018.03.037
– volume: 194
  start-page: 86
  year: 2018
  ident: 5355_CR19
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2017.09.002
– volume: 28
  start-page: 1619
  issue: 7
  year: 2017
  ident: 5355_CR26
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-015-2135-1
– volume: 70
  start-page: 121
  year: 2014
  ident: 5355_CR20
  publication-title: Energy
  doi: 10.1016/j.energy.2014.03.096
– volume: 4
  start-page: 189
  issue: 5
  year: 2015
  ident: 5355_CR12
  publication-title: Int J Sci Technol Res
– volume: 137
  start-page: 1257
  issue: 1-2
  year: 2018
  ident: 5355_CR37
  publication-title: Theor Appl Climatol
  doi: 10.1007/s00704-018-2666-3
– volume: 26
  start-page: 10439
  issue: 10
  year: 2019
  ident: 5355_CR50
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-019-04368-y
– volume: 91
  start-page: 30
  year: 2001
  ident: 5355_CR16
  publication-title: Nigeria J Renew Energy
– volume: 52
  start-page: 990
  issue: 2
  year: 2011
  ident: 5355_CR46
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2010.08.027
– volume: 118
  start-page: 377
  issue: 3
  year: 2014
  ident: 5355_CR5
  publication-title: Theor Appl Climatol
  doi: 10.1007/s00704-013-1070-2
– volume: 118
  start-page: 105
  year: 2016
  ident: 5355_CR13
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2016.03.082
– volume: 23
  start-page: 301
  issue: 4
  year: 1979
  ident: 5355_CR32
  publication-title: Sol Energy
  doi: 10.1016/0038-092X(79)90123-3
– volume: 128
  start-page: 155
  year: 2018
  ident: 5355_CR72
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2018.05.069
– volume: 34
  start-page: 1276
  issue: 9
  year: 2009
  ident: 5355_CR38
  publication-title: Energy
  doi: 10.1016/j.energy.2009.05.009
– volume: 36
  start-page: 3141
  issue: 11
  year: 2011
  ident: 5355_CR43
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2011.03.019
– volume: 135
  start-page: 526
  year: 2017
  ident: 5355_CR2
  publication-title: Energy
  doi: 10.1016/j.energy.2017.06.155
– volume-title: Theory of pattern recognition
  year: 1974
  ident: 5355_CR68
– volume: 353
  start-page: 152
  year: 2019
  ident: 5355_CR48
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.06.028
– volume: 50
  start-page: 121
  issue: 210
  year: 1924
  ident: 5355_CR9
  publication-title: Q J R Meteorol Soc
  doi: 10.1002/qj.49705021008
– volume: 12
  start-page: 584
  issue: 1
  year: 2018
  ident: 5355_CR49
  publication-title: Eng Appl Comp Fluid Mech
– volume: 138
  start-page: 413
  year: 2017
  ident: 5355_CR35
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2017.02.006
– volume: 100
  start-page: 380
  year: 2015
  ident: 5355_CR10
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2015.05.028
– volume: 51
  start-page: 108
  issue: 1
  year: 1995
  ident: 5355_CR56
  publication-title: Remote Sens Environ
  doi: 10.1016/0034-4257(94)00069-Y
SSID ssj0068078
Score 2.3665922
Snippet Solar radiation is a basic input in many fields of studies and models. However, the low density of solar network stations; the improper distribution of these...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Complex systems
Earth and Environmental Science
Earth science
Earth Sciences
Instruments
Krill
Marine crustaceans
Measuring instruments
Nonlinear phenomena
Nonlinear systems
Original Paper
Radiation measurement
Regression models
Solar radiation
Stations
Support vector machines
Title Estimation of solar radiation using neighboring stations through hybrid support vector regression boosted by Krill Herd algorithm
URI https://link.springer.com/article/10.1007/s12517-020-05355-1
https://www.proquest.com/docview/2403315140
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1866-7538
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0068078
  issn: 1866-7511
  databaseCode: AFBBN
  dateStart: 20080701
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1866-7538
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0068078
  issn: 1866-7511
  databaseCode: AGYKE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1866-7538
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0068078
  issn: 1866-7511
  databaseCode: U2A
  dateStart: 20080701
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-yIXgRP3E6xzt400DbrGl7HLI5FD05mKfSNMl2qN1YN2FH_3Pz0taiqOC1Td-hLy_5va_fI-SKcSXT1JGUM0wz6lRTwQKPRqEvtBAJk3Y24OMTH0_691N_WjWFFXW1e52StCd10-yG7FoU3R3kJPGp8XnaPtJ5mV088Qb1-cuRQR3drJBzGhg8UbXK_Czj63XUYMxvaVF724wOyH4FE2FQ6vWQ7Kj8iOze2TG822PyPjSWWTYdwkJDgf4prJBmwD7CYvYZ5Bj1FLbADooy415ANZcH5lts1YJis0QADm82eA8rNSvrYnMw6BsjoSC2YA6CLIOxWklIspkRuJ6_npDJaPh8O6bVMAWaGitbUxlJB-OzKRfGydIs0EK7YZiG3FeubzSipeoLZKgzJp_6mmvN-o6MEvQYIxWyU9LKF7k6I8CY9JIIieBCxHtGMhdJEGohEy9IHL9D3PqfxmnFNI4DL7K44UhGPcRGD7HVQ-x2yPXnN8uSZ-PP1d1aVXFlc0WMzILMAJi-0yE3tfqa179LO__f8guy55U7iDpul7TWq426NMhkLXqkPbh7eRj27Ib8ACfl3Ro
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG-MxujF-BlR1Hfwpk22lXXbkRgQFThBwm1Z1xYOOAgDE47-5_Z1m0SjJl637h32-trf-_o9Qm4ZVzJNHUk5wzSjTjUVLPBoFPpCC5EwaWcD9vq8M2w8j_xR2RSWV9XuVUrSntSbZjdk16Lo7iAniU-Nz7ODBFbImD_0mtX5y5FBHd2skHMaGDxRtsr8LOPrdbTBmN_Sova2aR-SgxImQrPQ6xHZUtkx2X20Y3jXJ-S9ZSyzaDqEmYYc_VNYIM2AfYTF7GPIMOopbIEd5EXGPYdyLg9M1tiqBflqjgAc3mzwHhZqXNTFZmDQN0ZCQazBHATTKXTUQkIyHRuBy8nrKRm2W4OHDi2HKdDUWNmSykg6GJ9NuTBOlmaBFtoNwzTkvnJ9oxEtVUMgQ50x-dTXXGvWcGSUoMcYqZCdke1slqlzAoxJL4mQCC5EvGckc5EEoRYy8YLE8WvErf5pnJZM4zjwYhpvOJJRD7HRQ2z1ELs1cvf5zbzg2fhzdb1SVVzaXB4jsyAzAKbh1Mh9pb7N69-lXfxv-Q3Z6wx63bj71H-5JPtesZuo49bJ9nKxUlcGpSzFtd2UH7Xe3nI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQCMSCeIpCgRvYwCKJEycZK6CUpxioxBbFsd0OJVRNQOrIP8fnJBQQILEmzg05n_3d6ztCDhlXMsscSTnDNKPONBUs9GgcBUILkTJpZwPe3vFe3796DB4_dfHbavcmJVn1NCBLU16ejKU-mTW-IdMWRdcH-UkCavyfBR-JEsyO7nud5izmyKaOLlfEOQ0NtqjbZn6W8fVqmuHNbylSe_N0V8lKDRmhU-l4jcypfJ0sXtiRvNMN8nZurLRqQIRnDQX6qjBBygH7CAvbB5BjBFTYYjsoqux7AfWMHhhOsW0LipcxgnF4tYF8mKhBVSObg0HiGBUFMQVzKIxG0FMTCeloYASWw6dN0u-eP5z2aD1YgWbG4koqY-lgrDbjwjhcmoVaaDeKsogHyg2MdrRUvkC2OmP-WaC51sx3ZJyi9xiriG2R-fw5V9sEGJNeGiMpXITYz0jmIg0jLWTqhakTtIjb_NMkq1nHcfjFKJnxJaMeEqOHxOohcVvk6OObccW58efqdqOqpLa_IkGWQWbAjO-0yHGjvtnr36Xt_G_5AVm6P-smN5d317tk2as2E3XcNpkvJy9qzwCWUuzbPfkOl0jirg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+solar+radiation+using+neighboring+stations+through+hybrid+support+vector+regression+boosted+by+Krill+Herd+algorithm&rft.jtitle=Arabian+journal+of+geosciences&rft.au=Mohammadi+Babak&rft.au=Aghashariatmadari+Zahra&rft.date=2020-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1866-7511&rft.eissn=1866-7538&rft.volume=13&rft.issue=10&rft_id=info:doi/10.1007%2Fs12517-020-05355-1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-7511&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-7511&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-7511&client=summon