Spoken language identification based on optimised genetic algorithm–extreme learning machine approach

The determination and classification of a recognized spoken language based on certain contents and datasets is known as the process of language identification (LID). The common process in carrying out LID entails the mandatory processing of data which enables the extraction of the necessary features...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of speech technology Vol. 22; no. 3; pp. 711 - 727
Main Authors Albadr, Musatafa Abbas Abbood, Tiun, Sabrina, Ayob, Masri, AL-Dhief, Fahad Taha
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1381-2416
1572-8110
DOI10.1007/s10772-019-09621-w

Cover

Abstract The determination and classification of a recognized spoken language based on certain contents and datasets is known as the process of language identification (LID). The common process in carrying out LID entails the mandatory processing of data which enables the extraction of the necessary features for the process. The extraction involves a mature process whereby the development of the standard LID features have been conducted much earlier by means of a mel-frequency cepstral coefficients, shifted delta cepstral, Gaussian mixture model and i-vector-based framework. Despite that, improvement or rather optimisation still needs to be done on the learning process based on the extracted features so as to obtain all the knowledge embedded within them. The classification and regression analysis can benefit tremendously from the use of the extreme learning machine (ELM) which is a particularly effective and useful learning model for training a single-hidden layer neural network. However, owing to the randomly selected weights embedded in the input’s hidden layers, the model’s learning process is rendered to be ineffective or not optimised in its entirety. In this study, the ELM is employed as the learning model for LID due to the standard feature extraction. In addition, this study proposes a new optimised genetic algorithm (OGA) with three different selection criteria (i.e., roulette wheel, K-tournament and random) to select the appropriate initial weights and biases of the input hidden layer of the ELM, thereby minimising the classification error and improving the general performance of the ELM for LID. Results show the excellent performance of the proposed OGA–ELM with three different selection criteria, namely, roulette wheel, K-tournament and random, with the highest accuracies of 99.50%, 100% and 99.38%, respectively.
AbstractList The determination and classification of a recognized spoken language based on certain contents and datasets is known as the process of language identification (LID). The common process in carrying out LID entails the mandatory processing of data which enables the extraction of the necessary features for the process. The extraction involves a mature process whereby the development of the standard LID features have been conducted much earlier by means of a mel-frequency cepstral coefficients, shifted delta cepstral, Gaussian mixture model and i-vector-based framework. Despite that, improvement or rather optimisation still needs to be done on the learning process based on the extracted features so as to obtain all the knowledge embedded within them. The classification and regression analysis can benefit tremendously from the use of the extreme learning machine (ELM) which is a particularly effective and useful learning model for training a single-hidden layer neural network. However, owing to the randomly selected weights embedded in the input’s hidden layers, the model’s learning process is rendered to be ineffective or not optimised in its entirety. In this study, the ELM is employed as the learning model for LID due to the standard feature extraction. In addition, this study proposes a new optimised genetic algorithm (OGA) with three different selection criteria (i.e., roulette wheel, K-tournament and random) to select the appropriate initial weights and biases of the input hidden layer of the ELM, thereby minimising the classification error and improving the general performance of the ELM for LID. Results show the excellent performance of the proposed OGA–ELM with three different selection criteria, namely, roulette wheel, K-tournament and random, with the highest accuracies of 99.50%, 100% and 99.38%, respectively.
Author Ayob, Masri
Tiun, Sabrina
AL-Dhief, Fahad Taha
Albadr, Musatafa Abbas Abbood
Author_xml – sequence: 1
  givenname: Musatafa Abbas Abbood
  surname: Albadr
  fullname: Albadr, Musatafa Abbas Abbood
  email: mustafa_abbas1988@yahoo.com
  organization: CAIT, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia
– sequence: 2
  givenname: Sabrina
  surname: Tiun
  fullname: Tiun, Sabrina
  organization: CAIT, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia
– sequence: 3
  givenname: Masri
  surname: Ayob
  fullname: Ayob, Masri
  organization: CAIT, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia
– sequence: 4
  givenname: Fahad Taha
  surname: AL-Dhief
  fullname: AL-Dhief, Fahad Taha
  organization: Department of Communication Engineering, School of Electrical Engineering, Universiti Teknologi Malaysia (UTM)
BookMark eNp9kE1OwzAQhS0EEqVwAVaRWAfGThrbS1TxJyGxANaWcSapS-IE21Vhxx24ISfBpUhILFjNm9H7Zux3QHbd4JCQYwqnFICfBQqcsxyozEFWjObrHTKhszQSlMJu0oWgOStptU8OQlgCgOSSTUh7Pw7P6LJOu3alW8xsjS7axhod7eCyJx2wzpIYxmh7u2ladBityXTXDt7GRf_5_oGv0WOPWYfaO-varNdmYR1mehz9kPQh2Wt0F_Dop07J4-XFw_w6v727upmf3-amoDLmtZQcGTeVAFaWoAVH0KxgglMOtUAJJTW8pqlrpKnLupJS1mnYFFqi4cWUnGz3prMvKwxRLYeVd-mkYkwIAaWYVcklti7jhxA8NsrY-P3h6LXtFAW1iVVtY1UpVvUdq1onlP1BR2977d_-h4otFJLZteh_X_UP9QXkqY9n
CitedBy_id crossref_primary_10_1109_ACCESS_2021_3091729
crossref_primary_10_5937_JEMC2401003A
crossref_primary_10_32628_CSEIT2390556
crossref_primary_10_1016_j_eswa_2020_114416
crossref_primary_10_1109_ACCESS_2022_3170038
crossref_primary_10_2174_0118722121268858231111180830
crossref_primary_10_1111_exsy_13532
crossref_primary_10_1016_j_compeleceng_2022_108549
crossref_primary_10_56294_saludcyt2024797
crossref_primary_10_1007_s11042_024_20108_y
crossref_primary_10_1016_j_ifacol_2021_08_165
crossref_primary_10_1007_s11042_022_13054_0
crossref_primary_10_1016_j_specom_2024_103100
crossref_primary_10_1186_s40537_024_00887_9
crossref_primary_10_1007_s00521_024_09617_x
crossref_primary_10_1371_journal_pone_0242899
crossref_primary_10_3389_fpubh_2022_925901
crossref_primary_10_1371_journal_pone_0298373
crossref_primary_10_1007_s10772_019_09639_0
crossref_primary_10_1109_ACCESS_2021_3082565
crossref_primary_10_3390_sym12111758
crossref_primary_10_1155_2022_7281892
crossref_primary_10_3389_fonc_2023_1150840
crossref_primary_10_1007_s10115_023_01972_w
crossref_primary_10_1007_s11042_022_12747_w
crossref_primary_10_1016_j_apacoust_2021_108274
crossref_primary_10_1007_s12559_022_10063_x
crossref_primary_10_1109_ACCESS_2020_3047933
crossref_primary_10_3390_sci6010002
crossref_primary_10_1007_s00034_020_01388_9
crossref_primary_10_1109_ACCESS_2024_3424791
crossref_primary_10_1142_S0219649222500575
crossref_primary_10_1016_j_specom_2024_103092
crossref_primary_10_1007_s00500_022_07202_9
crossref_primary_10_1109_ACCESS_2021_3081629
crossref_primary_10_32628_CSEIT22839
crossref_primary_10_1007_s11042_024_19788_3
crossref_primary_10_1007_s11042_023_14473_3
crossref_primary_10_1016_j_neucom_2024_129062
crossref_primary_10_1007_s11042_024_19515_y
crossref_primary_10_1142_S2717554524500036
Cites_doi 10.1007/BF03024314
10.1186/s13636-015-0066-5
10.1007/s11432-014-5269-3
10.1109/TNN.2006.880583
10.1007/s00530-012-0266-0
10.1109/TCYB.2014.2307349
10.1371/journal.pone.0100795
10.1371/journal.pone.0137724
10.1016/j.neucom.2010.11.030
10.1007/s00521-012-0946-x
10.1371/journal.pone.0194770
10.1109/TSMCB.2011.2168604
10.1109/TNN.2006.875977
10.1007/s12559-014-9255-2
10.1109/TCYB.2015.2401973
10.1007/s00521-014-1777-8
10.1016/j.neucom.2011.04.009
10.1016/j.neucom.2005.12.126
10.1007/s11063-016-9496-z
10.1016/j.neucom.2010.01.023
10.1002/sec.1711
10.1080/2150704X.2013.805279
10.1007/s00521-015-2010-0
10.1007/s11571-015-9358-9
10.1371/journal.pone.0146917
10.1023/A:1022602019183
10.5220/0005675004780483
10.1155/2015/394083
10.21437/Interspeech.2014-57
10.1007/s11042-019-7243-y
10.1109/IWAIT.2018.8369725
10.1109/ASRU.2015.7404793
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
7T9
DOI 10.1007/s10772-019-09621-w
DatabaseName CrossRef
Linguistics and Language Behavior Abstracts (LLBA)
DatabaseTitle CrossRef
Linguistics and Language Behavior Abstracts (LLBA)
DatabaseTitleList Linguistics and Language Behavior Abstracts (LLBA)

DeliveryMethod fulltext_linktorsrc
Discipline Languages & Literatures
Engineering
Anatomy & Physiology
EISSN 1572-8110
EndPage 727
ExternalDocumentID 10_1007_s10772_019_09621_w
GrantInformation_xml – fundername: Universiti Kebangsaan Malaysia
  grantid: DIP-2016-033
  funderid: http://dx.doi.org/10.13039/501100004515
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29J
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AERSA
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
ECE
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IN-
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9P
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7U
Z7X
Z83
Z88
Z8M
Z8W
Z92
ZMTXR
_50
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
7T9
ABRTQ
ID FETCH-LOGICAL-c319t-d997e27c6802440a87e0a23287170d8e9041c7d1170f9cd4d6999d041f3a9ec73
IEDL.DBID AGYKE
ISSN 1381-2416
IngestDate Fri Jul 25 04:36:10 EDT 2025
Thu Apr 24 23:04:18 EDT 2025
Tue Jul 01 02:38:41 EDT 2025
Fri Feb 21 02:37:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Extreme learning machine
Optimised genetic algorithm
Language identification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-d997e27c6802440a87e0a23287170d8e9041c7d1170f9cd4d6999d041f3a9ec73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2288804856
PQPubID 2043857
PageCount 17
ParticipantIDs proquest_journals_2288804856
crossref_citationtrail_10_1007_s10772_019_09621_w
crossref_primary_10_1007_s10772_019_09621_w
springer_journals_10_1007_s10772_019_09621_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle International journal of speech technology
PublicationTitleAbbrev Int J Speech Technol
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Iosifidis, Tefas, Pitas (CR19) 2016; 46
Pal, Maxwell, Warner (CR32) 2013; 4
Hafen, Henry (CR11) 2012; 18
Huang (CR18) 2014; 44
Albadra, Tiuna (CR2) 2017; 12
Huang (CR14) 2014; 6
CR37
Yang, Zhang, Zhang (CR40) 2016; 10
Deng (CR8) 2015; 58
Huang (CR17) 2012; 42
Xu (CR38) 2015; 2015
CR12
CR34
CR33
Huang, Zhu, Siew (CR16) 2006; 70
CR31
Wang, Cao, Yuan (CR36) 2011; 74
Niu (CR30) 2016; 44
Jiang (CR20) 2014; 9
Albadr (CR1) 2018; 13
Contreras-Bolton, Parada (CR7) 2015; 10
Liu (CR26) 2016; 27
Bi (CR6) 2010; 73
Holland (CR13) 1975
Atee (CR5) 2016; 9
Goldberg, Holland (CR10) 1988; 3
Zazo (CR41) 2016; 11
CR4
Yaacob, Muthusamy, Polat (CR39) 2015
CR24
CR23
Mohamed (CR28) 2011; 74
Lan (CR21) 2013; 22
Garg, Gupta, Jindal (CR9) 2014; 6
Michalewicz, Hartley (CR27) 1996; 18
Nayak (CR29) 2016; 27
Liang (CR25) 2006; 17
Huang, Chen, Siew (CR15) 2006; 17
R Zazo (9621_CR41) 2016; 11
S Yaacob (9621_CR39) 2015
RP Hafen (9621_CR11) 2012; 18
P Nayak (9621_CR29) 2016; 27
G-B Huang (9621_CR16) 2006; 70
Z Yang (9621_CR40) 2016; 10
C Bi (9621_CR6) 2010; 73
G-B Huang (9621_CR17) 2012; 42
C Contreras-Bolton (9621_CR7) 2015; 10
9621_CR23
N-Y Liang (9621_CR25) 2006; 17
Z Michalewicz (9621_CR27) 1996; 18
G-B Huang (9621_CR15) 2006; 17
J Xu (9621_CR38) 2015; 2015
Y Lan (9621_CR21) 2013; 22
9621_CR24
DE Goldberg (9621_CR10) 1988; 3
B Jiang (9621_CR20) 2014; 9
B Liu (9621_CR26) 2016; 27
P Niu (9621_CR30) 2016; 44
9621_CR4
A Garg (9621_CR9) 2014; 6
G Huang (9621_CR18) 2014; 44
C Deng (9621_CR8) 2015; 58
A Iosifidis (9621_CR19) 2016; 46
MAA Albadra (9621_CR2) 2017; 12
JH Holland (9621_CR13) 1975
M Pal (9621_CR32) 2013; 4
9621_CR12
G-B Huang (9621_CR14) 2014; 6
9621_CR34
9621_CR33
Y Wang (9621_CR36) 2011; 74
HA Atee (9621_CR5) 2016; 9
9621_CR31
MH Mohamed (9621_CR28) 2011; 74
9621_CR37
MAA Albadr (9621_CR1) 2018; 13
References_xml – volume: 18
  start-page: 71
  issue: 3
  year: 1996
  ident: CR27
  article-title: Genetic algorithms + data structures = evolution programs
  publication-title: Mathematical Intelligencer
  doi: 10.1007/BF03024314
– volume: 2015
  start-page: 22
  issue: 1
  year: 2015
  ident: CR38
  article-title: Regularized minimum class variance extreme learning machine for language recognition
  publication-title: EURASIP Journal on Audio, Speech, and Music Processing
  doi: 10.1186/s13636-015-0066-5
– volume: 58
  start-page: 1
  issue: 2
  year: 2015
  end-page: 16
  ident: CR8
  article-title: Extreme learning machines: New trends and applications
  publication-title: Science China Information Sciences
  doi: 10.1007/s11432-014-5269-3
– volume: 17
  start-page: 1411
  issue: 6
  year: 2006
  end-page: 1423
  ident: CR25
  article-title: A fast and accurate online sequential learning algorithm for feedforward networks
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2006.880583
– volume: 18
  start-page: 499
  issue: 6
  year: 2012
  end-page: 518
  ident: CR11
  article-title: Speech information retrieval: A review
  publication-title: Multimedia Systems
  doi: 10.1007/s00530-012-0266-0
– year: 1975
  ident: CR13
  publication-title: Adaption in natural and artificial systems. An introductory analysis with application to biology, control and artificial intelligence
– volume: 44
  start-page: 2405
  issue: 12
  year: 2014
  end-page: 2417
  ident: CR18
  article-title: Semi-supervised and unsupervised extreme learning machines
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2014.2307349
– ident: CR4
– volume: 9
  start-page: e100795
  issue: 7
  year: 2014
  ident: CR20
  article-title: Deep bottleneck features for spoken language identification
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0100795
– volume: 10
  start-page: e0137724
  issue: 9
  year: 2015
  ident: CR7
  article-title: Automatic combination of operators in a genetic algorithm to solve the traveling salesman problem
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0137724
– ident: CR37
– volume: 12
  start-page: 4610
  issue: 14
  year: 2017
  end-page: 4623
  ident: CR2
  article-title: Extreme learning machine: A review
  publication-title: International Journal of Applied Engineering Research
– ident: CR12
– volume: 74
  start-page: 2483
  issue: 16
  year: 2011
  end-page: 2490
  ident: CR36
  article-title: A study on effectiveness of extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.11.030
– ident: CR33
– volume: 22
  start-page: 417
  issue: 3–4
  year: 2013
  end-page: 425
  ident: CR21
  article-title: An extreme learning machine approach for speaker recognition
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-012-0946-x
– volume: 13
  start-page: e0194770
  issue: 4
  year: 2018
  ident: CR1
  article-title: Spoken language identification based on the enhanced self-adjusting extreme learning machine approach
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0194770
– volume: 42
  start-page: 513
  issue: 2
  year: 2012
  end-page: 529
  ident: CR17
  article-title: Extreme learning machine for regression and multiclass classification
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
  doi: 10.1109/TSMCB.2011.2168604
– volume: 17
  start-page: 879
  issue: 4
  year: 2006
  end-page: 892
  ident: CR15
  article-title: Universal approximation using incremental constructive feedforward networks with random hidden nodes
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2006.875977
– volume: 6
  start-page: 376
  issue: 3
  year: 2014
  end-page: 390
  ident: CR14
  article-title: An insight into extreme learning machines: Random neurons, random features and kernels
  publication-title: Cognitive Computation
  doi: 10.1007/s12559-014-9255-2
– volume: 46
  start-page: 311
  issue: 1
  year: 2016
  end-page: 324
  ident: CR19
  article-title: Graph embedded extreme learning machine
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2015.2401973
– ident: CR23
– volume: 27
  start-page: 255
  issue: 2
  year: 2016
  end-page: 269
  ident: CR26
  article-title: Manifold regularized extreme learning machine
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-014-1777-8
– volume: 74
  start-page: 3180
  issue: 17
  year: 2011
  end-page: 3192
  ident: CR28
  article-title: Rules extraction from constructively trained neural networks based on genetic algorithms
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.04.009
– volume: 70
  start-page: 489
  issue: 1
  year: 2006
  end-page: 501
  ident: CR16
  article-title: Extreme learning machine: Theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 44
  start-page: 813
  issue: 3
  year: 2016
  end-page: 830
  ident: CR30
  article-title: A kind of parameters self-adjusting extreme learning machine
  publication-title: Neural Processing Letters
  doi: 10.1007/s11063-016-9496-z
– year: 2015
  ident: CR39
  article-title: Improved emotion recognition using gaussian mixture model and extreme learning machine in speech and glottal signals
  publication-title: Mathematical Problems in Engineering
– volume: 6
  start-page: 388
  issue: 4
  year: 2014
  end-page: 400
  ident: CR9
  article-title: A survey of language identification techniques and applications
  publication-title: Journal of Emerging Technologies in Web Intelligence
– ident: CR31
– volume: 73
  start-page: 2394
  issue: 13–15
  year: 2010
  end-page: 2406
  ident: CR6
  article-title: Deterministic local alignment methods improved by a simple genetic algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.01.023
– volume: 9
  start-page: 5472
  issue: 18
  year: 2016
  end-page: 5489
  ident: CR5
  article-title: A novel extreme learning machine-based cryptography system
  publication-title: Security and Communication Networks
  doi: 10.1002/sec.1711
– volume: 4
  start-page: 853
  issue: 9
  year: 2013
  end-page: 862
  ident: CR32
  article-title: Kernel-based extreme learning machine for remote-sensing image classification
  publication-title: Remote Sensing Letters
  doi: 10.1080/2150704X.2013.805279
– ident: CR34
– volume: 27
  start-page: 2107
  issue: 7
  year: 2016
  end-page: 2122
  ident: CR29
  article-title: Comparison of modified teaching–learning-based optimization and extreme learning machine for classification of multiple power signal disturbances
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-015-2010-0
– ident: CR24
– volume: 10
  start-page: 73
  issue: 1
  year: 2016
  end-page: 83
  ident: CR40
  article-title: A novel algorithm with differential evolution and coral reef optimization for extreme learning machine training
  publication-title: Cognitive Neurodynamics
  doi: 10.1007/s11571-015-9358-9
– volume: 11
  start-page: e0146917
  issue: 1
  year: 2016
  ident: CR41
  article-title: Language identification in short utterances using long short-term memory (LSTM) recurrent neural networks
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0146917
– volume: 3
  start-page: 95
  issue: 2
  year: 1988
  end-page: 99
  ident: CR10
  article-title: Genetic algorithms and machine learning
  publication-title: Machine Learning
  doi: 10.1023/A:1022602019183
– volume: 2015
  start-page: 22
  issue: 1
  year: 2015
  ident: 9621_CR38
  publication-title: EURASIP Journal on Audio, Speech, and Music Processing
  doi: 10.1186/s13636-015-0066-5
– volume: 70
  start-page: 489
  issue: 1
  year: 2006
  ident: 9621_CR16
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 9
  start-page: e100795
  issue: 7
  year: 2014
  ident: 9621_CR20
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0100795
– volume: 3
  start-page: 95
  issue: 2
  year: 1988
  ident: 9621_CR10
  publication-title: Machine Learning
  doi: 10.1023/A:1022602019183
– volume: 46
  start-page: 311
  issue: 1
  year: 2016
  ident: 9621_CR19
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2015.2401973
– ident: 9621_CR23
  doi: 10.5220/0005675004780483
– volume: 22
  start-page: 417
  issue: 3–4
  year: 2013
  ident: 9621_CR21
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-012-0946-x
– volume: 18
  start-page: 71
  issue: 3
  year: 1996
  ident: 9621_CR27
  publication-title: Mathematical Intelligencer
  doi: 10.1007/BF03024314
– year: 2015
  ident: 9621_CR39
  publication-title: Mathematical Problems in Engineering
  doi: 10.1155/2015/394083
– ident: 9621_CR12
  doi: 10.21437/Interspeech.2014-57
– ident: 9621_CR31
  doi: 10.1007/s11042-019-7243-y
– volume: 9
  start-page: 5472
  issue: 18
  year: 2016
  ident: 9621_CR5
  publication-title: Security and Communication Networks
  doi: 10.1002/sec.1711
– volume: 27
  start-page: 2107
  issue: 7
  year: 2016
  ident: 9621_CR29
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-015-2010-0
– volume: 4
  start-page: 853
  issue: 9
  year: 2013
  ident: 9621_CR32
  publication-title: Remote Sensing Letters
  doi: 10.1080/2150704X.2013.805279
– volume: 10
  start-page: 73
  issue: 1
  year: 2016
  ident: 9621_CR40
  publication-title: Cognitive Neurodynamics
  doi: 10.1007/s11571-015-9358-9
– volume: 73
  start-page: 2394
  issue: 13–15
  year: 2010
  ident: 9621_CR6
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.01.023
– ident: 9621_CR4
– ident: 9621_CR33
  doi: 10.1109/IWAIT.2018.8369725
– volume-title: Adaption in natural and artificial systems. An introductory analysis with application to biology, control and artificial intelligence
  year: 1975
  ident: 9621_CR13
– volume: 44
  start-page: 2405
  issue: 12
  year: 2014
  ident: 9621_CR18
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2014.2307349
– ident: 9621_CR34
– volume: 6
  start-page: 376
  issue: 3
  year: 2014
  ident: 9621_CR14
  publication-title: Cognitive Computation
  doi: 10.1007/s12559-014-9255-2
– volume: 17
  start-page: 879
  issue: 4
  year: 2006
  ident: 9621_CR15
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2006.875977
– volume: 74
  start-page: 2483
  issue: 16
  year: 2011
  ident: 9621_CR36
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.11.030
– volume: 42
  start-page: 513
  issue: 2
  year: 2012
  ident: 9621_CR17
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
  doi: 10.1109/TSMCB.2011.2168604
– volume: 12
  start-page: 4610
  issue: 14
  year: 2017
  ident: 9621_CR2
  publication-title: International Journal of Applied Engineering Research
– ident: 9621_CR24
  doi: 10.1109/ASRU.2015.7404793
– volume: 74
  start-page: 3180
  issue: 17
  year: 2011
  ident: 9621_CR28
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.04.009
– volume: 18
  start-page: 499
  issue: 6
  year: 2012
  ident: 9621_CR11
  publication-title: Multimedia Systems
  doi: 10.1007/s00530-012-0266-0
– volume: 17
  start-page: 1411
  issue: 6
  year: 2006
  ident: 9621_CR25
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2006.880583
– ident: 9621_CR37
– volume: 58
  start-page: 1
  issue: 2
  year: 2015
  ident: 9621_CR8
  publication-title: Science China Information Sciences
  doi: 10.1007/s11432-014-5269-3
– volume: 13
  start-page: e0194770
  issue: 4
  year: 2018
  ident: 9621_CR1
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0194770
– volume: 6
  start-page: 388
  issue: 4
  year: 2014
  ident: 9621_CR9
  publication-title: Journal of Emerging Technologies in Web Intelligence
– volume: 27
  start-page: 255
  issue: 2
  year: 2016
  ident: 9621_CR26
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-014-1777-8
– volume: 10
  start-page: e0137724
  issue: 9
  year: 2015
  ident: 9621_CR7
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0137724
– volume: 11
  start-page: e0146917
  issue: 1
  year: 2016
  ident: 9621_CR41
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0146917
– volume: 44
  start-page: 813
  issue: 3
  year: 2016
  ident: 9621_CR30
  publication-title: Neural Processing Letters
  doi: 10.1007/s11063-016-9496-z
SSID ssj0009792
Score 2.331732
Snippet The determination and classification of a recognized spoken language based on certain contents and datasets is known as the process of language identification...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 711
SubjectTerms Algorithms
Artificial Intelligence
Artificial neural networks
Classification
Engineering
Feature extraction
Genetic algorithms
Language identification
Machine learning
Neural networks
Optimization
Probabilistic models
Regression analysis
Signal,Image and Speech Processing
Social Sciences
Spoken language
Title Spoken language identification based on optimised genetic algorithm–extreme learning machine approach
URI https://link.springer.com/article/10.1007/s10772-019-09621-w
https://www.proquest.com/docview/2288804856
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1572-8110
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009792
  issn: 1381-2416
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1572-8110
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009792
  issn: 1381-2416
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1572-8110
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009792
  issn: 1381-2416
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BucCBpWyFgnxAXMCoSV0nOVaIRWwXqASnyFsKok0rGlTBiX_gD_kSxqlDAQESUg5ZHCuxnz3P41kAtkRSF0koPYpcOqEs9BQVWgqqpcKDM1WX1t_5_IIft9jJdePaOYUNCmv3Yksyn6k_ObshE8SlrzXx4b5Hh5Mw1bALlBJMNY9uTg_GwXaDPBmyh9KIooTizlnm51q-CqQxy_y2MZrLm8M5aBVfOjIzud97zOSeev4WxPG_vzIPs46AkuYIMQswYdIyLDZTXHx3n8g2yU1Cc117GWY-RSssw8qZ020OsNjZRzjmwSK0L_u9e5OSQvlJ7rQzQsr7nVhRqQme9HCCQmDhBeLWuk8S0Wn3Hu6y2-7byyvKCautJC6TRZt0c0tPQ4rA50vQOjy42j-mLoMDVTi0M6qjKDB-oHiIVIDVRBiYmkAOh6u0oKZDE9WYpwJts98kkdJMc-SrGm8igiKjgvoylNJealaBCNVIIqk5go4z5Dgi0FrKhIWJYnXFowp4RTfGyoU3t1k2OvE4MLNt9RhbPc5bPR5WYOfjnf4ouMefpasFOmI30Aex74c4A7KwwSuwW3T2-PHvta39r_g6TPsjvCBsqlDKHh7NBtKhTG469G_CZMtvvgMbiwWX
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTuMwFL1iyoKZxQBlYMpj8AKxYVw1qes4ywq1dKCwgUqwivxKqUpTRIPQsOIf-EO-hJvUoYCYkZCyyMOxEvvY9_j6PgB2ZFyXsVAeRS4dUyY8TaVRkhql8eBM11Xm73x8wjs9dnjeOHdOYZPC2r3Yksxn6lfObsgEcembmfhw36N3X2CeeUKwEsw3Dy6OWrNgu0GeDNlDaURRQnHnLPNxLW8F0oxlvtsYzeVNexF6xZdOzUyG1dtUVfX9uyCOn_2VJfjuCChpThGzDHM2KcNKM8HF9-gv2SW5SWiuay_Dt1fRCsuw1nW6zQkW676EY56sQP_0ejy0CSmUn2RgnBFS3u8kE5WG4MkYJygEFl4gbjP3SSKv-uObQXo5enp4RDmRaSuJy2TRJ6Pc0tOSIvD5D-i1W2f7HeoyOFCNQzulJgwD6weaC6QCrCZFYGsSORyu0oKaETasMU8HJst-E4faMMORrxq8iQgKrQ7qq1BKxon9CUTqRhwqwxF0nCHHkYExSsVMxJrVNQ8r4BXdGGkX3jzLsnEVzQIzZ60eYatHeatHdxXYe3nnehrc47-lNwt0RG6gTyLfFzgDMtHgFfhddPbs8b9rW_9c8W1Y6Jwdd6Pun5OjDfjqT7GDENqEUnpza7eQGqXqlxsJz2oKB58
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60guhBtL6qVfcgXnRpk243ybGopWoVQQvewmZ3U0WbFhsRb_4H_6G_xNltYquoIOSQx2YP-SY738zOA2BXxDUR-5FDkUvHlPmOpEJFgqpI4sGZrEUm3_n8grc67PSmfjORxW-j3fMtyVFOg6nSlKSVgYorE4lvyArRDDbhPtx16PM0zDDU1cb86riNcdldz7ZFdlAvUdRVPEub-XmOr6ppzDe_bZFazdNchIWMMpLGCOMlmNJJEZYbCZrLvReyR2wQp_WOF2F-or5gEdbamTdyiMPanwWUh8vQvRr073VCcncluVNZ2JBFihjlpgie9HFJQVHAC5Q0k_BIxEO3_3iX3vbeX99wZTf-RZL1nuiSno3N1CQvVb4Cnebx9WGLZj0XqMSfMaUqCDztepL7qLxZVfiergpkXWhXeVXl66DKHOkp068mDqRiiiPDVHgTMQ-09GqrUEj6iV4HImQ9DiLFUUw4Q1YiPKWiKGZ-LFlN8qAETv65Q5kVJDd9MR7CcSllA1GIEIUWovC5BPuf7wxG5Tj-HF3OUQyzX3MYui4a_bhu1XkJDnJkx49_n23jf8N3YPbyqBm2Ty7ONmHOHckZilsZCunjk95CLpNG21ZcPwDNBe6Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spoken+language+identification+based+on+optimised+genetic+algorithm%E2%80%93extreme+learning+machine+approach&rft.jtitle=International+journal+of+speech+technology&rft.au=Albadr%2C+Musatafa+Abbas+Abbood&rft.au=Tiun%2C+Sabrina&rft.au=Ayob%2C+Masri&rft.au=AL-Dhief%2C+Fahad+Taha&rft.date=2019-09-01&rft.pub=Springer+US&rft.issn=1381-2416&rft.eissn=1572-8110&rft.volume=22&rft.issue=3&rft.spage=711&rft.epage=727&rft_id=info:doi/10.1007%2Fs10772-019-09621-w&rft.externalDocID=10_1007_s10772_019_09621_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1381-2416&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1381-2416&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1381-2416&client=summon