Spoken language identification based on optimised genetic algorithm–extreme learning machine approach
The determination and classification of a recognized spoken language based on certain contents and datasets is known as the process of language identification (LID). The common process in carrying out LID entails the mandatory processing of data which enables the extraction of the necessary features...
Saved in:
Published in | International journal of speech technology Vol. 22; no. 3; pp. 711 - 727 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.09.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1381-2416 1572-8110 |
DOI | 10.1007/s10772-019-09621-w |
Cover
Abstract | The determination and classification of a recognized spoken language based on certain contents and datasets is known as the process of language identification (LID). The common process in carrying out LID entails the mandatory processing of data which enables the extraction of the necessary features for the process. The extraction involves a mature process whereby the development of the standard LID features have been conducted much earlier by means of a mel-frequency cepstral coefficients, shifted delta cepstral, Gaussian mixture model and i-vector-based framework. Despite that, improvement or rather optimisation still needs to be done on the learning process based on the extracted features so as to obtain all the knowledge embedded within them. The classification and regression analysis can benefit tremendously from the use of the extreme learning machine (ELM) which is a particularly effective and useful learning model for training a single-hidden layer neural network. However, owing to the randomly selected weights embedded in the input’s hidden layers, the model’s learning process is rendered to be ineffective or not optimised in its entirety. In this study, the ELM is employed as the learning model for LID due to the standard feature extraction. In addition, this study proposes a new optimised genetic algorithm (OGA) with three different selection criteria (i.e., roulette wheel, K-tournament and random) to select the appropriate initial weights and biases of the input hidden layer of the ELM, thereby minimising the classification error and improving the general performance of the ELM for LID. Results show the excellent performance of the proposed OGA–ELM with three different selection criteria, namely, roulette wheel, K-tournament and random, with the highest accuracies of 99.50%, 100% and 99.38%, respectively. |
---|---|
AbstractList | The determination and classification of a recognized spoken language based on certain contents and datasets is known as the process of language identification (LID). The common process in carrying out LID entails the mandatory processing of data which enables the extraction of the necessary features for the process. The extraction involves a mature process whereby the development of the standard LID features have been conducted much earlier by means of a mel-frequency cepstral coefficients, shifted delta cepstral, Gaussian mixture model and i-vector-based framework. Despite that, improvement or rather optimisation still needs to be done on the learning process based on the extracted features so as to obtain all the knowledge embedded within them. The classification and regression analysis can benefit tremendously from the use of the extreme learning machine (ELM) which is a particularly effective and useful learning model for training a single-hidden layer neural network. However, owing to the randomly selected weights embedded in the input’s hidden layers, the model’s learning process is rendered to be ineffective or not optimised in its entirety. In this study, the ELM is employed as the learning model for LID due to the standard feature extraction. In addition, this study proposes a new optimised genetic algorithm (OGA) with three different selection criteria (i.e., roulette wheel, K-tournament and random) to select the appropriate initial weights and biases of the input hidden layer of the ELM, thereby minimising the classification error and improving the general performance of the ELM for LID. Results show the excellent performance of the proposed OGA–ELM with three different selection criteria, namely, roulette wheel, K-tournament and random, with the highest accuracies of 99.50%, 100% and 99.38%, respectively. |
Author | Ayob, Masri Tiun, Sabrina AL-Dhief, Fahad Taha Albadr, Musatafa Abbas Abbood |
Author_xml | – sequence: 1 givenname: Musatafa Abbas Abbood surname: Albadr fullname: Albadr, Musatafa Abbas Abbood email: mustafa_abbas1988@yahoo.com organization: CAIT, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia – sequence: 2 givenname: Sabrina surname: Tiun fullname: Tiun, Sabrina organization: CAIT, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia – sequence: 3 givenname: Masri surname: Ayob fullname: Ayob, Masri organization: CAIT, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia – sequence: 4 givenname: Fahad Taha surname: AL-Dhief fullname: AL-Dhief, Fahad Taha organization: Department of Communication Engineering, School of Electrical Engineering, Universiti Teknologi Malaysia (UTM) |
BookMark | eNp9kE1OwzAQhS0EEqVwAVaRWAfGThrbS1TxJyGxANaWcSapS-IE21Vhxx24ISfBpUhILFjNm9H7Zux3QHbd4JCQYwqnFICfBQqcsxyozEFWjObrHTKhszQSlMJu0oWgOStptU8OQlgCgOSSTUh7Pw7P6LJOu3alW8xsjS7axhod7eCyJx2wzpIYxmh7u2ladBityXTXDt7GRf_5_oGv0WOPWYfaO-varNdmYR1mehz9kPQh2Wt0F_Dop07J4-XFw_w6v727upmf3-amoDLmtZQcGTeVAFaWoAVH0KxgglMOtUAJJTW8pqlrpKnLupJS1mnYFFqi4cWUnGz3prMvKwxRLYeVd-mkYkwIAaWYVcklti7jhxA8NsrY-P3h6LXtFAW1iVVtY1UpVvUdq1onlP1BR2977d_-h4otFJLZteh_X_UP9QXkqY9n |
CitedBy_id | crossref_primary_10_1109_ACCESS_2021_3091729 crossref_primary_10_5937_JEMC2401003A crossref_primary_10_32628_CSEIT2390556 crossref_primary_10_1016_j_eswa_2020_114416 crossref_primary_10_1109_ACCESS_2022_3170038 crossref_primary_10_2174_0118722121268858231111180830 crossref_primary_10_1111_exsy_13532 crossref_primary_10_1016_j_compeleceng_2022_108549 crossref_primary_10_56294_saludcyt2024797 crossref_primary_10_1007_s11042_024_20108_y crossref_primary_10_1016_j_ifacol_2021_08_165 crossref_primary_10_1007_s11042_022_13054_0 crossref_primary_10_1016_j_specom_2024_103100 crossref_primary_10_1186_s40537_024_00887_9 crossref_primary_10_1007_s00521_024_09617_x crossref_primary_10_1371_journal_pone_0242899 crossref_primary_10_3389_fpubh_2022_925901 crossref_primary_10_1371_journal_pone_0298373 crossref_primary_10_1007_s10772_019_09639_0 crossref_primary_10_1109_ACCESS_2021_3082565 crossref_primary_10_3390_sym12111758 crossref_primary_10_1155_2022_7281892 crossref_primary_10_3389_fonc_2023_1150840 crossref_primary_10_1007_s10115_023_01972_w crossref_primary_10_1007_s11042_022_12747_w crossref_primary_10_1016_j_apacoust_2021_108274 crossref_primary_10_1007_s12559_022_10063_x crossref_primary_10_1109_ACCESS_2020_3047933 crossref_primary_10_3390_sci6010002 crossref_primary_10_1007_s00034_020_01388_9 crossref_primary_10_1109_ACCESS_2024_3424791 crossref_primary_10_1142_S0219649222500575 crossref_primary_10_1016_j_specom_2024_103092 crossref_primary_10_1007_s00500_022_07202_9 crossref_primary_10_1109_ACCESS_2021_3081629 crossref_primary_10_32628_CSEIT22839 crossref_primary_10_1007_s11042_024_19788_3 crossref_primary_10_1007_s11042_023_14473_3 crossref_primary_10_1016_j_neucom_2024_129062 crossref_primary_10_1007_s11042_024_19515_y crossref_primary_10_1142_S2717554524500036 |
Cites_doi | 10.1007/BF03024314 10.1186/s13636-015-0066-5 10.1007/s11432-014-5269-3 10.1109/TNN.2006.880583 10.1007/s00530-012-0266-0 10.1109/TCYB.2014.2307349 10.1371/journal.pone.0100795 10.1371/journal.pone.0137724 10.1016/j.neucom.2010.11.030 10.1007/s00521-012-0946-x 10.1371/journal.pone.0194770 10.1109/TSMCB.2011.2168604 10.1109/TNN.2006.875977 10.1007/s12559-014-9255-2 10.1109/TCYB.2015.2401973 10.1007/s00521-014-1777-8 10.1016/j.neucom.2011.04.009 10.1016/j.neucom.2005.12.126 10.1007/s11063-016-9496-z 10.1016/j.neucom.2010.01.023 10.1002/sec.1711 10.1080/2150704X.2013.805279 10.1007/s00521-015-2010-0 10.1007/s11571-015-9358-9 10.1371/journal.pone.0146917 10.1023/A:1022602019183 10.5220/0005675004780483 10.1155/2015/394083 10.21437/Interspeech.2014-57 10.1007/s11042-019-7243-y 10.1109/IWAIT.2018.8369725 10.1109/ASRU.2015.7404793 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 Copyright Springer Nature B.V. 2019 |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: Copyright Springer Nature B.V. 2019 |
DBID | AAYXX CITATION 7T9 |
DOI | 10.1007/s10772-019-09621-w |
DatabaseName | CrossRef Linguistics and Language Behavior Abstracts (LLBA) |
DatabaseTitle | CrossRef Linguistics and Language Behavior Abstracts (LLBA) |
DatabaseTitleList | Linguistics and Language Behavior Abstracts (LLBA) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Languages & Literatures Engineering Anatomy & Physiology |
EISSN | 1572-8110 |
EndPage | 727 |
ExternalDocumentID | 10_1007_s10772_019_09621_w |
GrantInformation_xml | – fundername: Universiti Kebangsaan Malaysia grantid: DIP-2016-033 funderid: http://dx.doi.org/10.13039/501100004515 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29J 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AERSA AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS ECE EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IN- ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9P PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7U Z7X Z83 Z88 Z8M Z8W Z92 ZMTXR _50 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 7T9 ABRTQ |
ID | FETCH-LOGICAL-c319t-d997e27c6802440a87e0a23287170d8e9041c7d1170f9cd4d6999d041f3a9ec73 |
IEDL.DBID | AGYKE |
ISSN | 1381-2416 |
IngestDate | Fri Jul 25 04:36:10 EDT 2025 Thu Apr 24 23:04:18 EDT 2025 Tue Jul 01 02:38:41 EDT 2025 Fri Feb 21 02:37:28 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Extreme learning machine Optimised genetic algorithm Language identification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-d997e27c6802440a87e0a23287170d8e9041c7d1170f9cd4d6999d041f3a9ec73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2288804856 |
PQPubID | 2043857 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2288804856 crossref_citationtrail_10_1007_s10772_019_09621_w crossref_primary_10_1007_s10772_019_09621_w springer_journals_10_1007_s10772_019_09621_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-01 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationTitle | International journal of speech technology |
PublicationTitleAbbrev | Int J Speech Technol |
PublicationYear | 2019 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Iosifidis, Tefas, Pitas (CR19) 2016; 46 Pal, Maxwell, Warner (CR32) 2013; 4 Hafen, Henry (CR11) 2012; 18 Huang (CR18) 2014; 44 Albadra, Tiuna (CR2) 2017; 12 Huang (CR14) 2014; 6 CR37 Yang, Zhang, Zhang (CR40) 2016; 10 Deng (CR8) 2015; 58 Huang (CR17) 2012; 42 Xu (CR38) 2015; 2015 CR12 CR34 CR33 Huang, Zhu, Siew (CR16) 2006; 70 CR31 Wang, Cao, Yuan (CR36) 2011; 74 Niu (CR30) 2016; 44 Jiang (CR20) 2014; 9 Albadr (CR1) 2018; 13 Contreras-Bolton, Parada (CR7) 2015; 10 Liu (CR26) 2016; 27 Bi (CR6) 2010; 73 Holland (CR13) 1975 Atee (CR5) 2016; 9 Goldberg, Holland (CR10) 1988; 3 Zazo (CR41) 2016; 11 CR4 Yaacob, Muthusamy, Polat (CR39) 2015 CR24 CR23 Mohamed (CR28) 2011; 74 Lan (CR21) 2013; 22 Garg, Gupta, Jindal (CR9) 2014; 6 Michalewicz, Hartley (CR27) 1996; 18 Nayak (CR29) 2016; 27 Liang (CR25) 2006; 17 Huang, Chen, Siew (CR15) 2006; 17 R Zazo (9621_CR41) 2016; 11 S Yaacob (9621_CR39) 2015 RP Hafen (9621_CR11) 2012; 18 P Nayak (9621_CR29) 2016; 27 G-B Huang (9621_CR16) 2006; 70 Z Yang (9621_CR40) 2016; 10 C Bi (9621_CR6) 2010; 73 G-B Huang (9621_CR17) 2012; 42 C Contreras-Bolton (9621_CR7) 2015; 10 9621_CR23 N-Y Liang (9621_CR25) 2006; 17 Z Michalewicz (9621_CR27) 1996; 18 G-B Huang (9621_CR15) 2006; 17 J Xu (9621_CR38) 2015; 2015 Y Lan (9621_CR21) 2013; 22 9621_CR24 DE Goldberg (9621_CR10) 1988; 3 B Jiang (9621_CR20) 2014; 9 B Liu (9621_CR26) 2016; 27 P Niu (9621_CR30) 2016; 44 9621_CR4 A Garg (9621_CR9) 2014; 6 G Huang (9621_CR18) 2014; 44 C Deng (9621_CR8) 2015; 58 A Iosifidis (9621_CR19) 2016; 46 MAA Albadra (9621_CR2) 2017; 12 JH Holland (9621_CR13) 1975 M Pal (9621_CR32) 2013; 4 9621_CR12 G-B Huang (9621_CR14) 2014; 6 9621_CR34 9621_CR33 Y Wang (9621_CR36) 2011; 74 HA Atee (9621_CR5) 2016; 9 9621_CR31 MH Mohamed (9621_CR28) 2011; 74 9621_CR37 MAA Albadr (9621_CR1) 2018; 13 |
References_xml | – volume: 18 start-page: 71 issue: 3 year: 1996 ident: CR27 article-title: Genetic algorithms + data structures = evolution programs publication-title: Mathematical Intelligencer doi: 10.1007/BF03024314 – volume: 2015 start-page: 22 issue: 1 year: 2015 ident: CR38 article-title: Regularized minimum class variance extreme learning machine for language recognition publication-title: EURASIP Journal on Audio, Speech, and Music Processing doi: 10.1186/s13636-015-0066-5 – volume: 58 start-page: 1 issue: 2 year: 2015 end-page: 16 ident: CR8 article-title: Extreme learning machines: New trends and applications publication-title: Science China Information Sciences doi: 10.1007/s11432-014-5269-3 – volume: 17 start-page: 1411 issue: 6 year: 2006 end-page: 1423 ident: CR25 article-title: A fast and accurate online sequential learning algorithm for feedforward networks publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2006.880583 – volume: 18 start-page: 499 issue: 6 year: 2012 end-page: 518 ident: CR11 article-title: Speech information retrieval: A review publication-title: Multimedia Systems doi: 10.1007/s00530-012-0266-0 – year: 1975 ident: CR13 publication-title: Adaption in natural and artificial systems. An introductory analysis with application to biology, control and artificial intelligence – volume: 44 start-page: 2405 issue: 12 year: 2014 end-page: 2417 ident: CR18 article-title: Semi-supervised and unsupervised extreme learning machines publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2014.2307349 – ident: CR4 – volume: 9 start-page: e100795 issue: 7 year: 2014 ident: CR20 article-title: Deep bottleneck features for spoken language identification publication-title: PLoS ONE doi: 10.1371/journal.pone.0100795 – volume: 10 start-page: e0137724 issue: 9 year: 2015 ident: CR7 article-title: Automatic combination of operators in a genetic algorithm to solve the traveling salesman problem publication-title: PLoS ONE doi: 10.1371/journal.pone.0137724 – ident: CR37 – volume: 12 start-page: 4610 issue: 14 year: 2017 end-page: 4623 ident: CR2 article-title: Extreme learning machine: A review publication-title: International Journal of Applied Engineering Research – ident: CR12 – volume: 74 start-page: 2483 issue: 16 year: 2011 end-page: 2490 ident: CR36 article-title: A study on effectiveness of extreme learning machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.11.030 – ident: CR33 – volume: 22 start-page: 417 issue: 3–4 year: 2013 end-page: 425 ident: CR21 article-title: An extreme learning machine approach for speaker recognition publication-title: Neural Computing and Applications doi: 10.1007/s00521-012-0946-x – volume: 13 start-page: e0194770 issue: 4 year: 2018 ident: CR1 article-title: Spoken language identification based on the enhanced self-adjusting extreme learning machine approach publication-title: PLoS ONE doi: 10.1371/journal.pone.0194770 – volume: 42 start-page: 513 issue: 2 year: 2012 end-page: 529 ident: CR17 article-title: Extreme learning machine for regression and multiclass classification publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) doi: 10.1109/TSMCB.2011.2168604 – volume: 17 start-page: 879 issue: 4 year: 2006 end-page: 892 ident: CR15 article-title: Universal approximation using incremental constructive feedforward networks with random hidden nodes publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2006.875977 – volume: 6 start-page: 376 issue: 3 year: 2014 end-page: 390 ident: CR14 article-title: An insight into extreme learning machines: Random neurons, random features and kernels publication-title: Cognitive Computation doi: 10.1007/s12559-014-9255-2 – volume: 46 start-page: 311 issue: 1 year: 2016 end-page: 324 ident: CR19 article-title: Graph embedded extreme learning machine publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2015.2401973 – ident: CR23 – volume: 27 start-page: 255 issue: 2 year: 2016 end-page: 269 ident: CR26 article-title: Manifold regularized extreme learning machine publication-title: Neural Computing and Applications doi: 10.1007/s00521-014-1777-8 – volume: 74 start-page: 3180 issue: 17 year: 2011 end-page: 3192 ident: CR28 article-title: Rules extraction from constructively trained neural networks based on genetic algorithms publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.04.009 – volume: 70 start-page: 489 issue: 1 year: 2006 end-page: 501 ident: CR16 article-title: Extreme learning machine: Theory and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – volume: 44 start-page: 813 issue: 3 year: 2016 end-page: 830 ident: CR30 article-title: A kind of parameters self-adjusting extreme learning machine publication-title: Neural Processing Letters doi: 10.1007/s11063-016-9496-z – year: 2015 ident: CR39 article-title: Improved emotion recognition using gaussian mixture model and extreme learning machine in speech and glottal signals publication-title: Mathematical Problems in Engineering – volume: 6 start-page: 388 issue: 4 year: 2014 end-page: 400 ident: CR9 article-title: A survey of language identification techniques and applications publication-title: Journal of Emerging Technologies in Web Intelligence – ident: CR31 – volume: 73 start-page: 2394 issue: 13–15 year: 2010 end-page: 2406 ident: CR6 article-title: Deterministic local alignment methods improved by a simple genetic algorithm publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.01.023 – volume: 9 start-page: 5472 issue: 18 year: 2016 end-page: 5489 ident: CR5 article-title: A novel extreme learning machine-based cryptography system publication-title: Security and Communication Networks doi: 10.1002/sec.1711 – volume: 4 start-page: 853 issue: 9 year: 2013 end-page: 862 ident: CR32 article-title: Kernel-based extreme learning machine for remote-sensing image classification publication-title: Remote Sensing Letters doi: 10.1080/2150704X.2013.805279 – ident: CR34 – volume: 27 start-page: 2107 issue: 7 year: 2016 end-page: 2122 ident: CR29 article-title: Comparison of modified teaching–learning-based optimization and extreme learning machine for classification of multiple power signal disturbances publication-title: Neural Computing and Applications doi: 10.1007/s00521-015-2010-0 – ident: CR24 – volume: 10 start-page: 73 issue: 1 year: 2016 end-page: 83 ident: CR40 article-title: A novel algorithm with differential evolution and coral reef optimization for extreme learning machine training publication-title: Cognitive Neurodynamics doi: 10.1007/s11571-015-9358-9 – volume: 11 start-page: e0146917 issue: 1 year: 2016 ident: CR41 article-title: Language identification in short utterances using long short-term memory (LSTM) recurrent neural networks publication-title: PLoS ONE doi: 10.1371/journal.pone.0146917 – volume: 3 start-page: 95 issue: 2 year: 1988 end-page: 99 ident: CR10 article-title: Genetic algorithms and machine learning publication-title: Machine Learning doi: 10.1023/A:1022602019183 – volume: 2015 start-page: 22 issue: 1 year: 2015 ident: 9621_CR38 publication-title: EURASIP Journal on Audio, Speech, and Music Processing doi: 10.1186/s13636-015-0066-5 – volume: 70 start-page: 489 issue: 1 year: 2006 ident: 9621_CR16 publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – volume: 9 start-page: e100795 issue: 7 year: 2014 ident: 9621_CR20 publication-title: PLoS ONE doi: 10.1371/journal.pone.0100795 – volume: 3 start-page: 95 issue: 2 year: 1988 ident: 9621_CR10 publication-title: Machine Learning doi: 10.1023/A:1022602019183 – volume: 46 start-page: 311 issue: 1 year: 2016 ident: 9621_CR19 publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2015.2401973 – ident: 9621_CR23 doi: 10.5220/0005675004780483 – volume: 22 start-page: 417 issue: 3–4 year: 2013 ident: 9621_CR21 publication-title: Neural Computing and Applications doi: 10.1007/s00521-012-0946-x – volume: 18 start-page: 71 issue: 3 year: 1996 ident: 9621_CR27 publication-title: Mathematical Intelligencer doi: 10.1007/BF03024314 – year: 2015 ident: 9621_CR39 publication-title: Mathematical Problems in Engineering doi: 10.1155/2015/394083 – ident: 9621_CR12 doi: 10.21437/Interspeech.2014-57 – ident: 9621_CR31 doi: 10.1007/s11042-019-7243-y – volume: 9 start-page: 5472 issue: 18 year: 2016 ident: 9621_CR5 publication-title: Security and Communication Networks doi: 10.1002/sec.1711 – volume: 27 start-page: 2107 issue: 7 year: 2016 ident: 9621_CR29 publication-title: Neural Computing and Applications doi: 10.1007/s00521-015-2010-0 – volume: 4 start-page: 853 issue: 9 year: 2013 ident: 9621_CR32 publication-title: Remote Sensing Letters doi: 10.1080/2150704X.2013.805279 – volume: 10 start-page: 73 issue: 1 year: 2016 ident: 9621_CR40 publication-title: Cognitive Neurodynamics doi: 10.1007/s11571-015-9358-9 – volume: 73 start-page: 2394 issue: 13–15 year: 2010 ident: 9621_CR6 publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.01.023 – ident: 9621_CR4 – ident: 9621_CR33 doi: 10.1109/IWAIT.2018.8369725 – volume-title: Adaption in natural and artificial systems. An introductory analysis with application to biology, control and artificial intelligence year: 1975 ident: 9621_CR13 – volume: 44 start-page: 2405 issue: 12 year: 2014 ident: 9621_CR18 publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2014.2307349 – ident: 9621_CR34 – volume: 6 start-page: 376 issue: 3 year: 2014 ident: 9621_CR14 publication-title: Cognitive Computation doi: 10.1007/s12559-014-9255-2 – volume: 17 start-page: 879 issue: 4 year: 2006 ident: 9621_CR15 publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2006.875977 – volume: 74 start-page: 2483 issue: 16 year: 2011 ident: 9621_CR36 publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.11.030 – volume: 42 start-page: 513 issue: 2 year: 2012 ident: 9621_CR17 publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) doi: 10.1109/TSMCB.2011.2168604 – volume: 12 start-page: 4610 issue: 14 year: 2017 ident: 9621_CR2 publication-title: International Journal of Applied Engineering Research – ident: 9621_CR24 doi: 10.1109/ASRU.2015.7404793 – volume: 74 start-page: 3180 issue: 17 year: 2011 ident: 9621_CR28 publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.04.009 – volume: 18 start-page: 499 issue: 6 year: 2012 ident: 9621_CR11 publication-title: Multimedia Systems doi: 10.1007/s00530-012-0266-0 – volume: 17 start-page: 1411 issue: 6 year: 2006 ident: 9621_CR25 publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2006.880583 – ident: 9621_CR37 – volume: 58 start-page: 1 issue: 2 year: 2015 ident: 9621_CR8 publication-title: Science China Information Sciences doi: 10.1007/s11432-014-5269-3 – volume: 13 start-page: e0194770 issue: 4 year: 2018 ident: 9621_CR1 publication-title: PLoS ONE doi: 10.1371/journal.pone.0194770 – volume: 6 start-page: 388 issue: 4 year: 2014 ident: 9621_CR9 publication-title: Journal of Emerging Technologies in Web Intelligence – volume: 27 start-page: 255 issue: 2 year: 2016 ident: 9621_CR26 publication-title: Neural Computing and Applications doi: 10.1007/s00521-014-1777-8 – volume: 10 start-page: e0137724 issue: 9 year: 2015 ident: 9621_CR7 publication-title: PLoS ONE doi: 10.1371/journal.pone.0137724 – volume: 11 start-page: e0146917 issue: 1 year: 2016 ident: 9621_CR41 publication-title: PLoS ONE doi: 10.1371/journal.pone.0146917 – volume: 44 start-page: 813 issue: 3 year: 2016 ident: 9621_CR30 publication-title: Neural Processing Letters doi: 10.1007/s11063-016-9496-z |
SSID | ssj0009792 |
Score | 2.331732 |
Snippet | The determination and classification of a recognized spoken language based on certain contents and datasets is known as the process of language identification... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 711 |
SubjectTerms | Algorithms Artificial Intelligence Artificial neural networks Classification Engineering Feature extraction Genetic algorithms Language identification Machine learning Neural networks Optimization Probabilistic models Regression analysis Signal,Image and Speech Processing Social Sciences Spoken language |
Title | Spoken language identification based on optimised genetic algorithm–extreme learning machine approach |
URI | https://link.springer.com/article/10.1007/s10772-019-09621-w https://www.proquest.com/docview/2288804856 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1572-8110 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009792 issn: 1381-2416 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1572-8110 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009792 issn: 1381-2416 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1572-8110 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009792 issn: 1381-2416 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BucCBpWyFgnxAXMCoSV0nOVaIRWwXqASnyFsKok0rGlTBiX_gD_kSxqlDAQESUg5ZHCuxnz3P41kAtkRSF0koPYpcOqEs9BQVWgqqpcKDM1WX1t_5_IIft9jJdePaOYUNCmv3Yksyn6k_ObshE8SlrzXx4b5Hh5Mw1bALlBJMNY9uTg_GwXaDPBmyh9KIooTizlnm51q-CqQxy_y2MZrLm8M5aBVfOjIzud97zOSeev4WxPG_vzIPs46AkuYIMQswYdIyLDZTXHx3n8g2yU1Cc117GWY-RSssw8qZ020OsNjZRzjmwSK0L_u9e5OSQvlJ7rQzQsr7nVhRqQme9HCCQmDhBeLWuk8S0Wn3Hu6y2-7byyvKCautJC6TRZt0c0tPQ4rA50vQOjy42j-mLoMDVTi0M6qjKDB-oHiIVIDVRBiYmkAOh6u0oKZDE9WYpwJts98kkdJMc-SrGm8igiKjgvoylNJealaBCNVIIqk5go4z5Dgi0FrKhIWJYnXFowp4RTfGyoU3t1k2OvE4MLNt9RhbPc5bPR5WYOfjnf4ouMefpasFOmI30Aex74c4A7KwwSuwW3T2-PHvta39r_g6TPsjvCBsqlDKHh7NBtKhTG469G_CZMtvvgMbiwWX |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTuMwFL1iyoKZxQBlYMpj8AKxYVw1qes4ywq1dKCwgUqwivxKqUpTRIPQsOIf-EO-hJvUoYCYkZCyyMOxEvvY9_j6PgB2ZFyXsVAeRS4dUyY8TaVRkhql8eBM11Xm73x8wjs9dnjeOHdOYZPC2r3Yksxn6lfObsgEcembmfhw36N3X2CeeUKwEsw3Dy6OWrNgu0GeDNlDaURRQnHnLPNxLW8F0oxlvtsYzeVNexF6xZdOzUyG1dtUVfX9uyCOn_2VJfjuCChpThGzDHM2KcNKM8HF9-gv2SW5SWiuay_Dt1fRCsuw1nW6zQkW676EY56sQP_0ejy0CSmUn2RgnBFS3u8kE5WG4MkYJygEFl4gbjP3SSKv-uObQXo5enp4RDmRaSuJy2TRJ6Pc0tOSIvD5D-i1W2f7HeoyOFCNQzulJgwD6weaC6QCrCZFYGsSORyu0oKaETasMU8HJst-E4faMMORrxq8iQgKrQ7qq1BKxon9CUTqRhwqwxF0nCHHkYExSsVMxJrVNQ8r4BXdGGkX3jzLsnEVzQIzZ60eYatHeatHdxXYe3nnehrc47-lNwt0RG6gTyLfFzgDMtHgFfhddPbs8b9rW_9c8W1Y6Jwdd6Pun5OjDfjqT7GDENqEUnpza7eQGqXqlxsJz2oKB58 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60guhBtL6qVfcgXnRpk243ybGopWoVQQvewmZ3U0WbFhsRb_4H_6G_xNltYquoIOSQx2YP-SY738zOA2BXxDUR-5FDkUvHlPmOpEJFgqpI4sGZrEUm3_n8grc67PSmfjORxW-j3fMtyVFOg6nSlKSVgYorE4lvyArRDDbhPtx16PM0zDDU1cb86riNcdldz7ZFdlAvUdRVPEub-XmOr6ppzDe_bZFazdNchIWMMpLGCOMlmNJJEZYbCZrLvReyR2wQp_WOF2F-or5gEdbamTdyiMPanwWUh8vQvRr073VCcncluVNZ2JBFihjlpgie9HFJQVHAC5Q0k_BIxEO3_3iX3vbeX99wZTf-RZL1nuiSno3N1CQvVb4Cnebx9WGLZj0XqMSfMaUqCDztepL7qLxZVfiergpkXWhXeVXl66DKHOkp068mDqRiiiPDVHgTMQ-09GqrUEj6iV4HImQ9DiLFUUw4Q1YiPKWiKGZ-LFlN8qAETv65Q5kVJDd9MR7CcSllA1GIEIUWovC5BPuf7wxG5Tj-HF3OUQyzX3MYui4a_bhu1XkJDnJkx49_n23jf8N3YPbyqBm2Ty7ONmHOHckZilsZCunjk95CLpNG21ZcPwDNBe6Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spoken+language+identification+based+on+optimised+genetic+algorithm%E2%80%93extreme+learning+machine+approach&rft.jtitle=International+journal+of+speech+technology&rft.au=Albadr%2C+Musatafa+Abbas+Abbood&rft.au=Tiun%2C+Sabrina&rft.au=Ayob%2C+Masri&rft.au=AL-Dhief%2C+Fahad+Taha&rft.date=2019-09-01&rft.pub=Springer+US&rft.issn=1381-2416&rft.eissn=1572-8110&rft.volume=22&rft.issue=3&rft.spage=711&rft.epage=727&rft_id=info:doi/10.1007%2Fs10772-019-09621-w&rft.externalDocID=10_1007_s10772_019_09621_w |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1381-2416&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1381-2416&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1381-2416&client=summon |