Rapid identification of Salmonella serovars Enteritidis and Typhimurium using whole cell matrix assisted laser desorption ionization – Time of flight mass spectrometry (MALDI-TOF MS) coupled with multivariate analysis and artificial intelligence
Salmonella is a common food-borne pathogen with Enteritidis and Typhimurium being among the most important serovars causing numerous outbreaks. A rapid method was investigated to identify these serovars using whole-cell MALDI-TOF MS coupled with multivariate analysis and artificial intelligence and...
Saved in:
Published in | Journal of microbiological methods Vol. 213; p. 106827 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.10.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0167-7012 1872-8359 1872-8359 |
DOI | 10.1016/j.mimet.2023.106827 |
Cover
Abstract | Salmonella is a common food-borne pathogen with Enteritidis and Typhimurium being among the most important serovars causing numerous outbreaks. A rapid method was investigated to identify these serovars using whole-cell MALDI-TOF MS coupled with multivariate analysis and artificial intelligence and 113 Salmonella strains, including 38 Enteritidis (SE), 38 Typhimurium (ST) and 37 strains from 32 other Salmonella serovars (SG). Datasets of ions (presence/absence) with high discriminative power were created using newly developed criteria and subject to multivariate analyses and eight artificial intelligence (AI) tools. Principal Component Analysis based on 55 or 88 selected ions separated SE, ST and SG without overlap on the first three principal components. Datasets were partitioned using five partitioning methods with 70% of samples for AI model training and 30% for validation. Of the eight AI models evaluated, high performance (HP) SVM and HP Neural were the top performers, identified three serovar groups 97% correctly on average (range 82%–100%) according to the validation results. Selection of serovar specific ions facilitated differentiation of serotypes using unsupervised model PCA and improved the accuracy of classification using AI significantly (p < 0.01). MALDI-TOF MS incorporated with advanced data processing and classification tools is a promising method to allow rapid identification of Salmonella serovars of concern in routine diagnostic laboratories.
•Rapid identification of Salmonella Enteritidis and Typhimurium using MALDI-TOF MS•Selection of specific ions for subtyping using unsupervised models•Optimized protocols from MALDI-TOF raw data to identification of ion peaks•The best performers of artificial intelligence models for classification•Perspective of onsite identification of zoonotic pathogens in routine test |
---|---|
AbstractList | Salmonella is a common food-borne pathogen with Enteritidis and Typhimurium being among the most important serovars causing numerous outbreaks. A rapid method was investigated to identify these serovars using whole-cell MALDI-TOF MS coupled with multivariate analysis and artificial intelligence and 113 Salmonella strains, including 38 Enteritidis (SE), 38 Typhimurium (ST) and 37 strains from 32 other Salmonella serovars (SG). Datasets of ions (presence/absence) with high discriminative power were created using newly developed criteria and subject to multivariate analyses and eight artificial intelligence (AI) tools. Principal Component Analysis based on 55 or 88 selected ions separated SE, ST and SG without overlap on the first three principal components. Datasets were partitioned using five partitioning methods with 70% of samples for AI model training and 30% for validation. Of the eight AI models evaluated, high performance (HP) SVM and HP Neural were the top performers, identified three serovar groups 97% correctly on average (range 82%–100%) according to the validation results. Selection of serovar specific ions facilitated differentiation of serotypes using unsupervised model PCA and improved the accuracy of classification using AI significantly (p < 0.01). MALDI-TOF MS incorporated with advanced data processing and classification tools is a promising method to allow rapid identification of Salmonella serovars of concern in routine diagnostic laboratories.
•Rapid identification of Salmonella Enteritidis and Typhimurium using MALDI-TOF MS•Selection of specific ions for subtyping using unsupervised models•Optimized protocols from MALDI-TOF raw data to identification of ion peaks•The best performers of artificial intelligence models for classification•Perspective of onsite identification of zoonotic pathogens in routine test Salmonella is a common food-borne pathogen with Enteritidis and Typhimurium being among the most important serovars causing numerous outbreaks. A rapid method was investigated to identify these serovars using whole-cell MALDI-TOF MS coupled with multivariate analysis and artificial intelligence and 113 Salmonella strains, including 38 Enteritidis (SE), 38 Typhimurium (ST) and 37 strains from 32 other Salmonella serovars (SG). Datasets of ions (presence/absence) with high discriminative power were created using newly developed criteria and subject to multivariate analyses and eight artificial intelligence (AI) tools. Principal Component Analysis based on 55 or 88 selected ions separated SE, ST and SG without overlap on the first three principal components. Datasets were partitioned using five partitioning methods with 70% of samples for AI model training and 30% for validation. Of the eight AI models evaluated, high performance (HP) SVM and HP Neural were the top performers, identified three serovar groups 97% correctly on average (range 82%-100%) according to the validation results. Selection of serovar specific ions facilitated differentiation of serotypes using unsupervised model PCA and improved the accuracy of classification using AI significantly (p < 0.01). MALDI-TOF MS incorporated with advanced data processing and classification tools is a promising method to allow rapid identification of Salmonella serovars of concern in routine diagnostic laboratories.Salmonella is a common food-borne pathogen with Enteritidis and Typhimurium being among the most important serovars causing numerous outbreaks. A rapid method was investigated to identify these serovars using whole-cell MALDI-TOF MS coupled with multivariate analysis and artificial intelligence and 113 Salmonella strains, including 38 Enteritidis (SE), 38 Typhimurium (ST) and 37 strains from 32 other Salmonella serovars (SG). Datasets of ions (presence/absence) with high discriminative power were created using newly developed criteria and subject to multivariate analyses and eight artificial intelligence (AI) tools. Principal Component Analysis based on 55 or 88 selected ions separated SE, ST and SG without overlap on the first three principal components. Datasets were partitioned using five partitioning methods with 70% of samples for AI model training and 30% for validation. Of the eight AI models evaluated, high performance (HP) SVM and HP Neural were the top performers, identified three serovar groups 97% correctly on average (range 82%-100%) according to the validation results. Selection of serovar specific ions facilitated differentiation of serotypes using unsupervised model PCA and improved the accuracy of classification using AI significantly (p < 0.01). MALDI-TOF MS incorporated with advanced data processing and classification tools is a promising method to allow rapid identification of Salmonella serovars of concern in routine diagnostic laboratories. Salmonella is a common food-borne pathogen with Enteritidis and Typhimurium being among the most important serovars causing numerous outbreaks. A rapid method was investigated to identify these serovars using whole-cell MALDI-TOF MS coupled with multivariate analysis and artificial intelligence and 113 Salmonella strains, including 38 Enteritidis (SE), 38 Typhimurium (ST) and 37 strains from 32 other Salmonella serovars (SG). Datasets of ions (presence/absence) with high discriminative power were created using newly developed criteria and subject to multivariate analyses and eight artificial intelligence (AI) tools. Principal Component Analysis based on 55 or 88 selected ions separated SE, ST and SG without overlap on the first three principal components. Datasets were partitioned using five partitioning methods with 70% of samples for AI model training and 30% for validation. Of the eight AI models evaluated, high performance (HP) SVM and HP Neural were the top performers, identified three serovar groups 97% correctly on average (range 82%–100%) according to the validation results. Selection of serovar specific ions facilitated differentiation of serotypes using unsupervised model PCA and improved the accuracy of classification using AI significantly (p < 0.01). MALDI-TOF MS incorporated with advanced data processing and classification tools is a promising method to allow rapid identification of Salmonella serovars of concern in routine diagnostic laboratories. |
ArticleNumber | 106827 |
Author | Gao, Anli Fischer-Jenssen, Jennifer Rutherford, Kimani Slavic, Durda Wilson, Emily Chen, Shu Lippert, Sarah Martos, Perry Leon-Velarde, Carlos G. |
Author_xml | – sequence: 1 givenname: Anli surname: Gao fullname: Gao, Anli email: agao@uoguelph.ca organization: Agriculture and Food Laboratory, Laboratory Services Division, University of Guelph, Guelph, ON, Canada – sequence: 2 givenname: Jennifer surname: Fischer-Jenssen fullname: Fischer-Jenssen, Jennifer organization: Agriculture and Food Laboratory, Laboratory Services Division, University of Guelph, Guelph, ON, Canada – sequence: 3 givenname: Durda surname: Slavic fullname: Slavic, Durda organization: Animal Health Laboratory, Laboratory Services Division, University of Guelph, Guelph, ON, Canada – sequence: 4 givenname: Kimani surname: Rutherford fullname: Rutherford, Kimani organization: Animal Health Laboratory, Laboratory Services Division, University of Guelph, Guelph, ON, Canada – sequence: 5 givenname: Sarah surname: Lippert fullname: Lippert, Sarah organization: Animal Health Laboratory, Laboratory Services Division, University of Guelph, Guelph, ON, Canada – sequence: 6 givenname: Emily surname: Wilson fullname: Wilson, Emily organization: Agriculture and Food Laboratory, Laboratory Services Division, University of Guelph, Guelph, ON, Canada – sequence: 7 givenname: Shu surname: Chen fullname: Chen, Shu organization: Agriculture and Food Laboratory, Laboratory Services Division, University of Guelph, Guelph, ON, Canada – sequence: 8 givenname: Carlos G. surname: Leon-Velarde fullname: Leon-Velarde, Carlos G. organization: Agriculture and Food Laboratory, Laboratory Services Division, University of Guelph, Guelph, ON, Canada – sequence: 9 givenname: Perry surname: Martos fullname: Martos, Perry organization: Agriculture and Food Laboratory, Laboratory Services Division, University of Guelph, Guelph, ON, Canada |
BookMark | eNqFUs1u1DAQtlCR2BaegIuP5ZAldtZxcuBQlRYqbVWJLmfLGzvdWTlx8Dgty4l34A15Ca44m57hYFkafX8z-k7JSe97S8hbli9Zzsr3-2UHnY1LnvMiTcqKyxdkwSrJs6oQ9QlZJJTMZM74K3KKuM9zJopVtSB_vugBDAVj-wgtNDqC76lv6b12XTJxTlO0wT_qgPSqjzZABANIdW_o5jDsoBsDjB0dEfoH-rTzztIm0WinY4DvVCMCRmuo00mHGos-DEeT9ODH7Pf75y-6SRtMxq2Dh11MdESKg21i8Gm1cKDntxfrjzfZ5u6a3t6_o40fB5d0nyDuaDe6CCkj6GhTNO0O-JxRh-NeoB2FFN8ldds39jV52WqH9s3zf0a-Xl9tLj9n67tPN5cX66wpWB0zI0VtCsnLkgljmGyY0Ua3eVtJY7eWF2xbWSPNigkuK8bLra5YvRW1nIZCFmfkfNYdgv82WoyqA5zuo3vrR1QFEytWCiHq_0J5VdaccymqBC1maBM8YrCtGgJ0OhwUy9XUCLVXx0aoqRFqbkRifZhZNi38CDYobGA6hoGQ7qyMh3_y_wJgacnK |
Cites_doi | 10.3390/foods10050933 10.1128/JCM.00626-12 10.1128/AEM.02418-10 10.1128/AEM.01402-08 10.1016/j.resmic.2009.10.002 10.1016/j.jasms.2004.12.004 10.1016/j.cmi.2020.03.014 10.1016/j.ab.2020.113582 10.1016/S1044-0305(03)00065-5 10.1177/1469066717699216 10.3389/fmicb.2017.00420 10.3390/microorganisms10040688 10.3390/cimb43020054 10.3389/fmicb.2019.02554 10.1007/s42979-021-00592-x 10.1136/jcp.33.6.595 10.1038/s41598-020-61254-1 10.1016/j.foodcont.2020.107188 10.1016/j.nmni.2016.07.016 10.1046/j.1472-765X.2003.01436.x 10.1007/s10618-019-00619-1 10.1371/journal.pone.0101924 10.1590/S1517-83822013005000002 10.1016/j.syapm.2010.11.003 10.1371/journal.pone.0040004 10.1186/s12859-015-0752-4 10.3389/fmicb.2015.00791 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. Copyright © 2023 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2023 Elsevier B.V. – notice: Copyright © 2023 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.mimet.2023.106827 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1872-8359 |
ExternalDocumentID | 10_1016_j_mimet_2023_106827 S0167701223001616 |
GroupedDBID | --- --K --M -~X .1- .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29L 3O- 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AAAJQ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AAXUO ABFNM ABFRF ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFCTW AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJUYK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CJTIS CNWQP CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMG HVGLF HZ~ IHE J1W KOM LUGTX M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SDP SES SEW SIN SPCBC SSI SSU SSZ T5K WH7 WUQ Y6R Z5R ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7X8 ACLOT EFKBS ~HD 7S9 L.6 |
ID | FETCH-LOGICAL-c319t-d759d3726615dd17c1dadaf0f87debe231b8ed7d415278126ba819b597d7d4573 |
IEDL.DBID | .~1 |
ISSN | 0167-7012 1872-8359 |
IngestDate | Sat Sep 27 19:35:03 EDT 2025 Sun Sep 28 03:22:33 EDT 2025 Tue Jul 01 02:55:05 EDT 2025 Fri Feb 23 02:35:29 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Salmonella MALDI-TOF MS Typhimurium Serovar identification Classification Enteritidis Multivariate analysis Artificial intelligence |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-d759d3726615dd17c1dadaf0f87debe231b8ed7d415278126ba819b597d7d4573 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2869222758 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3154165559 proquest_miscellaneous_2869222758 crossref_primary_10_1016_j_mimet_2023_106827 elsevier_sciencedirect_doi_10_1016_j_mimet_2023_106827 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2023 2023-10-00 20231001 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: October 2023 |
PublicationDecade | 2020 |
PublicationTitle | Journal of microbiological methods |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Khot, Couturier, Wilson, Croft, Fisher (bb0070) 2012; 50 Fardsanei, Nikkhahi, Bakhshi, Salehi, Tamai, Dallal (bb0040) 2016; 14 Shipp, Rowe (bb0115) 1980; 33 Dieckmann, Helmuth, Erhard, Malorny (bb0025) 2008; 74 Fawaz, Forestier, Weber, Idoumghar, Muller (bb0045) 2019; 33 Paião, Arisitides, Murate, Vilas-Bôas, Vilas-Boas, Shimokomaki (bb0095) 2013; 44 Yan, Qian, Ge, Ye, Zhou, Zhang (bb0145) 2020; 592 Persad, Fahmy, Anderson, Cui, Topalcengiz, Jeamsripong, Spanninger, Buchanan, Kniel, Jay-Russell, Danyluk, Rajashekara, LeJeune (bb0100) 2022; 10 Christner, Trusch, Rohde, Kwiatkowski, Schlüter, Wolters, Aepfelbacher, Hentschke (bb0010) 2014; 9 Kang, Li, Li, Zhou, Gao, Gao, Xin, Wang (bb0065) 2017; 23 Williams, Andrzejewski, Lay, Musser (bb0130) 2003; 14 Singhal, Kumar, Kanaujia, Virdi (bb0120) 2015; 6 Weis, Jutzeler, Borgwardt (bb0125) 2020; 26 Kuhns, Zautner, Rabsch, Zimmermann, Weig, Bader, Groß (bb0075) 2012; 7 Rychert (bb0105) 2019; 2 Mangmee, Reamtonga, Kalambahetib, Roytrakulc, Sonthayanona (bb0090) 2020; 113 López-Fernández, Santos, Capelo, Fdez-Riverola, Glez-Peña, Reboiro-Jato (bb0085) 2015; 16 Leuschner, Beresford-Jones, Robinson (bb0080) 2003; 38 Guibourdenche, Roggentin, Mikoleit, Fields, Bockemühl, Grimont, Weill (bb0055) 2009; 161 Huber, Reed, Paterson (bb0060) 2021; 43 Xiong, Song, Tao, Zheng, Zhou, Geng, Pan, Jiao (bb0140) 2017; 8 De Bruyne, Slabbinck, Waegeman, Vauterin, De Baets, Vandamme (bb0015) 2011; 34 Wunschel, Jarman, Petersen, Balentine, Wahl, Schauki, Jackman, Nelson, White (bb0135) 2005; 16 Grimont, Weill (bb0050) 2007 Sarker (bb0110) 2021; 2 Banerji, Simon, Tille, Fruth, Flieger (bb0005) 2020; 10 Diep, Barretto, Portmann, Fournier, Karczmarek, Voets, Li, Deng, Klijn (bb0030) 2019; 10 Yang, Kim, Kim, Baek, Yoon, Kim (bb0150) 2021; 10 Ewing (bb0035) 1986 Dieckmann, Malorny (bb0020) 2011; 77 Weis (10.1016/j.mimet.2023.106827_bb0125) 2020; 26 Singhal (10.1016/j.mimet.2023.106827_bb0120) 2015; 6 Banerji (10.1016/j.mimet.2023.106827_bb0005) 2020; 10 Huber (10.1016/j.mimet.2023.106827_bb0060) 2021; 43 Persad (10.1016/j.mimet.2023.106827_bb0100) 2022; 10 Fardsanei (10.1016/j.mimet.2023.106827_bb0040) 2016; 14 Guibourdenche (10.1016/j.mimet.2023.106827_bb0055) 2009; 161 Shipp (10.1016/j.mimet.2023.106827_bb0115) 1980; 33 De Bruyne (10.1016/j.mimet.2023.106827_bb0015) 2011; 34 Khot (10.1016/j.mimet.2023.106827_bb0070) 2012; 50 Paião (10.1016/j.mimet.2023.106827_bb0095) 2013; 44 Leuschner (10.1016/j.mimet.2023.106827_bb0080) 2003; 38 Grimont (10.1016/j.mimet.2023.106827_bb0050) 2007 Mangmee (10.1016/j.mimet.2023.106827_bb0090) 2020; 113 Dieckmann (10.1016/j.mimet.2023.106827_bb0020) 2011; 77 Diep (10.1016/j.mimet.2023.106827_bb0030) 2019; 10 Rychert (10.1016/j.mimet.2023.106827_bb0105) 2019; 2 Fawaz (10.1016/j.mimet.2023.106827_bb0045) 2019; 33 López-Fernández (10.1016/j.mimet.2023.106827_bb0085) 2015; 16 Dieckmann (10.1016/j.mimet.2023.106827_bb0025) 2008; 74 Kang (10.1016/j.mimet.2023.106827_bb0065) 2017; 23 Wunschel (10.1016/j.mimet.2023.106827_bb0135) 2005; 16 Sarker (10.1016/j.mimet.2023.106827_bb0110) 2021; 2 Ewing (10.1016/j.mimet.2023.106827_bb0035) 1986 Williams (10.1016/j.mimet.2023.106827_bb0130) 2003; 14 Kuhns (10.1016/j.mimet.2023.106827_bb0075) 2012; 7 Xiong (10.1016/j.mimet.2023.106827_bb0140) 2017; 8 Christner (10.1016/j.mimet.2023.106827_bb0010) 2014; 9 Yan (10.1016/j.mimet.2023.106827_bb0145) 2020; 592 Yang (10.1016/j.mimet.2023.106827_bb0150) 2021; 10 |
References_xml | – volume: 2 start-page: 1 year: 2019 end-page: 5 ident: bb0105 article-title: Benefits and limitations of MALDI-TOF mass spectrometry for the identification of microorganisms publication-title: J. Inf. Secur. – volume: 8 start-page: 1 year: 2017 end-page: 9 ident: bb0140 article-title: An efficient multiplex PCR-based assay as a novel tool for accurate inter-serovar discrimination of publication-title: Front. Microbiol. – volume: 10 start-page: 688 year: 2022 ident: bb0100 article-title: Identification and subtyping of publication-title: Microorganisms – volume: 16 start-page: 318 year: 2015 ident: bb0085 article-title: Mass-up: an all-in-one open software application for MALDI-TOF mass spectrometry knowledge discovery publication-title: BMC Bioinform. – volume: 10 start-page: 4333 year: 2020 ident: bb0005 article-title: Genome-based Salmonella serotyping as the new gold standard publication-title: Sci. Rep. – year: 1986 ident: bb0035 article-title: Serologic identification of publication-title: Edwards and Ewing’s identification of Enterobacteriaceae – volume: 7 year: 2012 ident: bb0075 article-title: Rapid discrimination of publication-title: PLoS One – volume: 6 start-page: 791 year: 2015 ident: bb0120 article-title: MAKDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis publication-title: Front. Microbiol. – volume: 10 start-page: 1 year: 2019 end-page: 8 ident: bb0030 article-title: serotyping; comparison of the traditional methods to a microarray-based method and an publication-title: Front. Microbiol. – volume: 74 start-page: 7767 year: 2008 end-page: 7778 ident: bb0025 article-title: Rapid classification and identification of salmonellae at the species and subspecies levels by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry publication-title: Appl. Environ. Microbiol. – volume: 26 start-page: 1310 year: 2020 end-page: 1317 ident: bb0125 article-title: Machine learning for microbial identification and antimicrobial susceptibility testing on MALDI-TOF mass spectra: a systematic review publication-title: Clin. Microbiol. Infect. – volume: 9 year: 2014 ident: bb0010 article-title: Rapid MALDI-TOF mass spectrometry strain typing during a large outbreak of Shiga-toxigenic publication-title: PLoS One – volume: 161 start-page: 26 year: 2009 end-page: 29 ident: bb0055 article-title: Supplement 2003-2007 (no. 47) to the White-Kauffmann-Le minor scheme publication-title: Res. Microbiol. – volume: 16 start-page: 456 year: 2005 end-page: 462 ident: bb0135 article-title: Bacterial analysis by MALDI-TOF mass spectrometry: an inter-laboratory comparison publication-title: J. Am. Soc. Mass Spectrum. – volume: 38 start-page: 24 year: 2003 end-page: 31 ident: bb0080 article-title: Difference and consensus of whole cell publication-title: Lett. Appl. Microbiol. – volume: 592 start-page: 113582 year: 2020 ident: bb0145 article-title: Principal component analysis of MALDI-TOF MS of whole-cell foodborne pathogenic bacteria publication-title: Anal. Biochem. – year: 2007 ident: bb0050 article-title: Antigenic formulae of the publication-title: WHO collaborating Centre for Reference and Research on – volume: 113 start-page: 107188 year: 2020 ident: bb0090 article-title: MALDI-TOF mass spectrometry typing for predominant serovars of nontyphoidal publication-title: Food Control – volume: 10 start-page: 933 year: 2021 ident: bb0150 article-title: Rapid detection of publication-title: Foods – volume: 33 start-page: 917 year: 2019 end-page: 963 ident: bb0045 article-title: Deep learning for time series classification: a review publication-title: Data Min. Knowl. Disc. – volume: 2 start-page: 160 year: 2021 ident: bb0110 article-title: Machine learning: algorithms, real-world applications and research directions publication-title: SN Comput. Sci. – volume: 33 start-page: 595 year: 1980 end-page: 597 ident: bb0115 article-title: A mechanised microtechnique for publication-title: J. Clin. Pathol. – volume: 34 start-page: 20 year: 2011 end-page: 29 ident: bb0015 article-title: Bacterial species identification from MALDI-TOF mass spectra through data analysis and machine learning publication-title: Syst. Appl. Microbiol. – volume: 44 start-page: 37 year: 2013 end-page: 41 ident: bb0095 article-title: Detection of publication-title: Braz. J. Microbiol. – volume: 77 start-page: 4136 year: 2011 end-page: 4146 ident: bb0020 article-title: Rapid screening of epidemiologically important publication-title: Appl. Environ. Microbiol. – volume: 14 start-page: 24 year: 2016 end-page: 30 ident: bb0040 article-title: Molecular characterization of publication-title: New Microb. New Infect. – volume: 23 start-page: 70 year: 2017 end-page: 82 ident: bb0065 article-title: MALDI-TOF mass spectrometry provides high accuracy in identification of publication-title: Eur. J. Mass Spectrum. – volume: 50 start-page: 3845 year: 2012 end-page: 3852 ident: bb0070 article-title: Optimization of matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis for bacterial identification publication-title: J. Clin. Microbiol. – volume: 43 start-page: 749 year: 2021 end-page: 757 ident: bb0060 article-title: Bacterial sub-species typing using matrix-assisted laser desorption/ionization time of flight mass spectrometry: what is promising? publication-title: Curr. Issues Mol. Biol. – volume: 14 start-page: 342 year: 2003 end-page: 351 ident: bb0130 article-title: Experimental factors affecting the quality and reproducibility of MALDI TOF mass spectra obtained from whole bacteria cells publication-title: J. Am. Soc. Mass Spectrum. – volume: 10 start-page: 933 year: 2021 ident: 10.1016/j.mimet.2023.106827_bb0150 article-title: Rapid detection of Salmonella Enteritidis, typhimurium, and thompson by specific peak analysis using matrix-assisted laser desorption time-of-flight mass spectrometry publication-title: Foods doi: 10.3390/foods10050933 – volume: 50 start-page: 3845 year: 2012 ident: 10.1016/j.mimet.2023.106827_bb0070 article-title: Optimization of matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis for bacterial identification publication-title: J. Clin. Microbiol. doi: 10.1128/JCM.00626-12 – volume: 77 start-page: 4136 year: 2011 ident: 10.1016/j.mimet.2023.106827_bb0020 article-title: Rapid screening of epidemiologically important Salmonella enterica subsp. enterica serovars by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02418-10 – volume: 74 start-page: 7767 year: 2008 ident: 10.1016/j.mimet.2023.106827_bb0025 article-title: Rapid classification and identification of salmonellae at the species and subspecies levels by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01402-08 – volume: 161 start-page: 26 year: 2009 ident: 10.1016/j.mimet.2023.106827_bb0055 article-title: Supplement 2003-2007 (no. 47) to the White-Kauffmann-Le minor scheme publication-title: Res. Microbiol. doi: 10.1016/j.resmic.2009.10.002 – volume: 16 start-page: 456 year: 2005 ident: 10.1016/j.mimet.2023.106827_bb0135 article-title: Bacterial analysis by MALDI-TOF mass spectrometry: an inter-laboratory comparison publication-title: J. Am. Soc. Mass Spectrum. doi: 10.1016/j.jasms.2004.12.004 – volume: 26 start-page: 1310 year: 2020 ident: 10.1016/j.mimet.2023.106827_bb0125 article-title: Machine learning for microbial identification and antimicrobial susceptibility testing on MALDI-TOF mass spectra: a systematic review publication-title: Clin. Microbiol. Infect. doi: 10.1016/j.cmi.2020.03.014 – volume: 592 start-page: 113582 year: 2020 ident: 10.1016/j.mimet.2023.106827_bb0145 article-title: Principal component analysis of MALDI-TOF MS of whole-cell foodborne pathogenic bacteria publication-title: Anal. Biochem. doi: 10.1016/j.ab.2020.113582 – volume: 14 start-page: 342 year: 2003 ident: 10.1016/j.mimet.2023.106827_bb0130 article-title: Experimental factors affecting the quality and reproducibility of MALDI TOF mass spectra obtained from whole bacteria cells publication-title: J. Am. Soc. Mass Spectrum. doi: 10.1016/S1044-0305(03)00065-5 – volume: 23 start-page: 70 year: 2017 ident: 10.1016/j.mimet.2023.106827_bb0065 article-title: MALDI-TOF mass spectrometry provides high accuracy in identification of Salmonella at species level but is limited to type or subtype Salmonella serovars publication-title: Eur. J. Mass Spectrum. doi: 10.1177/1469066717699216 – volume: 8 start-page: 1 year: 2017 ident: 10.1016/j.mimet.2023.106827_bb0140 article-title: An efficient multiplex PCR-based assay as a novel tool for accurate inter-serovar discrimination of Salmonella Enteritidis, S. Pullorum/Gallinarum and S. Dublin publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.00420 – volume: 10 start-page: 688 year: 2022 ident: 10.1016/j.mimet.2023.106827_bb0100 article-title: Identification and subtyping of Salmonella isolates using matrix-assisted laser desorption–ionization time-of-flight mass spectrometry (MALDI-TOF) publication-title: Microorganisms doi: 10.3390/microorganisms10040688 – volume: 43 start-page: 749 year: 2021 ident: 10.1016/j.mimet.2023.106827_bb0060 article-title: Bacterial sub-species typing using matrix-assisted laser desorption/ionization time of flight mass spectrometry: what is promising? publication-title: Curr. Issues Mol. Biol. doi: 10.3390/cimb43020054 – volume: 10 start-page: 1 year: 2019 ident: 10.1016/j.mimet.2023.106827_bb0030 article-title: Salmonella serotyping; comparison of the traditional methods to a microarray-based method and an in silico platform using whole genome sequencing data publication-title: Front. Microbiol. doi: 10.3389/fmicb.2019.02554 – volume: 2 start-page: 160 year: 2021 ident: 10.1016/j.mimet.2023.106827_bb0110 article-title: Machine learning: algorithms, real-world applications and research directions publication-title: SN Comput. Sci. doi: 10.1007/s42979-021-00592-x – volume: 33 start-page: 595 year: 1980 ident: 10.1016/j.mimet.2023.106827_bb0115 article-title: A mechanised microtechnique for Salmonella serotyping publication-title: J. Clin. Pathol. doi: 10.1136/jcp.33.6.595 – volume: 10 start-page: 4333 year: 2020 ident: 10.1016/j.mimet.2023.106827_bb0005 article-title: Genome-based Salmonella serotyping as the new gold standard publication-title: Sci. Rep. doi: 10.1038/s41598-020-61254-1 – year: 1986 ident: 10.1016/j.mimet.2023.106827_bb0035 article-title: Serologic identification of Salmonella – volume: 113 start-page: 107188 year: 2020 ident: 10.1016/j.mimet.2023.106827_bb0090 article-title: MALDI-TOF mass spectrometry typing for predominant serovars of nontyphoidal Salmonella in a Thai broiler industry publication-title: Food Control doi: 10.1016/j.foodcont.2020.107188 – volume: 14 start-page: 24 year: 2016 ident: 10.1016/j.mimet.2023.106827_bb0040 article-title: Molecular characterization of Salmonella enterica serotype Enteritidis isolates from food and human samples by serotyping, antimicrobial resistance, plasmid profiling, (GTG)5-PCR and ERIC-PCR publication-title: New Microb. New Infect. doi: 10.1016/j.nmni.2016.07.016 – volume: 2 start-page: 1 year: 2019 ident: 10.1016/j.mimet.2023.106827_bb0105 article-title: Benefits and limitations of MALDI-TOF mass spectrometry for the identification of microorganisms publication-title: J. Inf. Secur. – volume: 38 start-page: 24 year: 2003 ident: 10.1016/j.mimet.2023.106827_bb0080 article-title: Difference and consensus of whole cell Salmonella enterica subsp. enterica serovars matrix-assisted laser desorption/ionization time-of-flight mass spectrometry spectra publication-title: Lett. Appl. Microbiol. doi: 10.1046/j.1472-765X.2003.01436.x – volume: 33 start-page: 917 year: 2019 ident: 10.1016/j.mimet.2023.106827_bb0045 article-title: Deep learning for time series classification: a review publication-title: Data Min. Knowl. Disc. doi: 10.1007/s10618-019-00619-1 – volume: 9 year: 2014 ident: 10.1016/j.mimet.2023.106827_bb0010 article-title: Rapid MALDI-TOF mass spectrometry strain typing during a large outbreak of Shiga-toxigenic Escherichia coli publication-title: PLoS One doi: 10.1371/journal.pone.0101924 – volume: 44 start-page: 37 year: 2013 ident: 10.1016/j.mimet.2023.106827_bb0095 article-title: Detection of Salmonella spp, Salmonella Enteritidis and typhimurium in naturally infected broiler chickens by a multiplex PCR-based assay publication-title: Braz. J. Microbiol. doi: 10.1590/S1517-83822013005000002 – volume: 34 start-page: 20 year: 2011 ident: 10.1016/j.mimet.2023.106827_bb0015 article-title: Bacterial species identification from MALDI-TOF mass spectra through data analysis and machine learning publication-title: Syst. Appl. Microbiol. doi: 10.1016/j.syapm.2010.11.003 – volume: 7 year: 2012 ident: 10.1016/j.mimet.2023.106827_bb0075 article-title: Rapid discrimination of Salmonella enterica serovar Typhi from other serovars by MALDI-TOF mass spectrometry publication-title: PLoS One doi: 10.1371/journal.pone.0040004 – volume: 16 start-page: 318 year: 2015 ident: 10.1016/j.mimet.2023.106827_bb0085 article-title: Mass-up: an all-in-one open software application for MALDI-TOF mass spectrometry knowledge discovery publication-title: BMC Bioinform. doi: 10.1186/s12859-015-0752-4 – volume: 6 start-page: 791 year: 2015 ident: 10.1016/j.mimet.2023.106827_bb0120 article-title: MAKDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis publication-title: Front. Microbiol. doi: 10.3389/fmicb.2015.00791 – year: 2007 ident: 10.1016/j.mimet.2023.106827_bb0050 article-title: Antigenic formulae of the Salmonella Serovars |
SSID | ssj0015348 |
Score | 2.4195578 |
Snippet | Salmonella is a common food-borne pathogen with Enteritidis and Typhimurium being among the most important serovars causing numerous outbreaks. A rapid method... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 106827 |
SubjectTerms | Artificial intelligence Classification data collection desorption Enteritidis food pathogens ionization MALDI-TOF MS mass spectrometry Multivariate analysis principal component analysis rapid methods Salmonella serotypes Serovar identification Typhimurium |
Title | Rapid identification of Salmonella serovars Enteritidis and Typhimurium using whole cell matrix assisted laser desorption ionization – Time of flight mass spectrometry (MALDI-TOF MS) coupled with multivariate analysis and artificial intelligence |
URI | https://dx.doi.org/10.1016/j.mimet.2023.106827 https://www.proquest.com/docview/2869222758 https://www.proquest.com/docview/3154165559 |
Volume | 213 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIiQuiKcolGqQOIBE2M3m4eS4alltgS0S20q9RU7GAaPNZpVHoRfEf-Af9k_02hknQYCAA8f15jHyjO1vnG8-C_EUWTVcx76jlQwc30u1o1yFNOIp3aAFP3NT3tBfHIXzE__1aXC6JfaHWhimVfZzfzen29m6bxn1vTnaGDNaMoFe8pchz-IWlt32fcmx_vLrD5oHDWh7gpbV9-arB-Uhy_EqTKGZUDnxqCWM-GiZP69Ov83TdvGZ3RI3e9QI086w22JLr--I6905kud3xeV7tTEIBnvqj-1tKHNYqhWFGROcgEKtPKMsFiwNwDQGTQ1qjUCZ6EdTtJVpC2AW_Af4zGfmAm_pQ8EK_l-AEDaHAwJhbV0B6rqs7FwDvJ3bVXLCxbfvwBUl_OJ8xUk_3V7XYIs5WRWhqc7h2WL69uDQOX43g8XyOWRlu1nRc3k7GCy5kWykaNFkWqeWYm1kj3RSF2B-0hC9J05mr473505_ooOT0VBvHJRBjJ5kUBAgujJzUaHKx3kkkaKJsGYaaZTIqEIS9AhTRYglpaSHGwPp3Rfba-q2BwKCcYa556vJWCHLmCk_zlMZqyCVkdJxviNeDJ5MNp1wRzIw2j4l1vEJOz7pHL8jwsHbyS_xl9DS8u8bnwyxQX_W7Bu11mVbJ5MojLnSOIj-fo1HCNYNA0rrHv6vAY_EDf7VEQx3xXZTtfoxAaUm3bMjYU9cmx6-mR9dAcSfGok |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9NADB4tixBcEE_t8jQSB5AIbZrHJMfVQtWFdpFoV9pbNIknMKhpqjyAvSD-A_-QP8EVe5IgQMCB6-RljT2ez5PPthAPkauG69h3tJKB43updpSrkFY8hRu04Wduygf6i-NwduK_OA1Od8ThkAvDtMre93c-3XrrfmTUz-Zoa8xoyQR6yX-GPItbwnPivM9tDsion376wfOgFW1baNkC33z7UHrIkrwKU2hmVE48Ggkj7i3z5-3pN0dtd5_pFXG5h41w0El2VezozTVxoWskeXZdfHuttgbBYM_9sdMNZQ5LtSY7Y4YTkK2V7ymMBcsDMI1BU4PaIFAo-tYUbWXaApgG_wY-cNNc4DN9KLiE_0cgiM32gEBgW1eAui4r62yAz3O7VE74-vkLcEoJfzhfc9RPj9c12GxOLovQVGfwaHEwf3bkrF5NYbF8DFnZbtf0Xj4PBstuJBnJXDSJ1pVLsTKySrpaF2B-KiJ6Q5xMn68OZ07f0sHJaK03DsogRk8yKggQXZm5qFDl4zySSOZEYDONNEpkWCEJe4SpIsiSUtTDg4H0bordDU3bnoBgnGHu-WoyVsh1zJQf56mMVZDKSOk43xdPBk0m265yRzJQ2t4lVvEJKz7pFL8vwkHbyS8GmNDe8u8HHwy2QRdr1o3a6LKtk0kUxpxqHER_v8cjCOuGAcV1t_5XgPvi4my1mCfzo-OXt8UlvtKxDe-I3aZq9V1CTU16z66K7_Q5HBI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+identification+of+Salmonella+serovars+Enteritidis+and+Typhimurium+using+whole+cell+matrix+assisted+laser+desorption+ionization+%E2%80%93+Time+of+flight+mass+spectrometry+%28MALDI-TOF+MS%29+coupled+with+multivariate+analysis+and+artificial+intelligence&rft.jtitle=Journal+of+microbiological+methods&rft.au=Gao%2C+Anli&rft.au=Fischer-Jenssen%2C+Jennifer&rft.au=Slavic%2C+Durda&rft.au=Rutherford%2C+Kimani&rft.date=2023-10-01&rft.issn=0167-7012&rft.volume=213&rft.spage=106827&rft_id=info:doi/10.1016%2Fj.mimet.2023.106827&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mimet_2023_106827 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7012&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7012&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7012&client=summon |