Rapid identification of Salmonella serovars Enteritidis and Typhimurium using whole cell matrix assisted laser desorption ionization – Time of flight mass spectrometry (MALDI-TOF MS) coupled with multivariate analysis and artificial intelligence

Salmonella is a common food-borne pathogen with Enteritidis and Typhimurium being among the most important serovars causing numerous outbreaks. A rapid method was investigated to identify these serovars using whole-cell MALDI-TOF MS coupled with multivariate analysis and artificial intelligence and...

Full description

Saved in:
Bibliographic Details
Published inJournal of microbiological methods Vol. 213; p. 106827
Main Authors Gao, Anli, Fischer-Jenssen, Jennifer, Slavic, Durda, Rutherford, Kimani, Lippert, Sarah, Wilson, Emily, Chen, Shu, Leon-Velarde, Carlos G., Martos, Perry
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2023
Subjects
Online AccessGet full text
ISSN0167-7012
1872-8359
1872-8359
DOI10.1016/j.mimet.2023.106827

Cover

Abstract Salmonella is a common food-borne pathogen with Enteritidis and Typhimurium being among the most important serovars causing numerous outbreaks. A rapid method was investigated to identify these serovars using whole-cell MALDI-TOF MS coupled with multivariate analysis and artificial intelligence and 113 Salmonella strains, including 38 Enteritidis (SE), 38 Typhimurium (ST) and 37 strains from 32 other Salmonella serovars (SG). Datasets of ions (presence/absence) with high discriminative power were created using newly developed criteria and subject to multivariate analyses and eight artificial intelligence (AI) tools. Principal Component Analysis based on 55 or 88 selected ions separated SE, ST and SG without overlap on the first three principal components. Datasets were partitioned using five partitioning methods with 70% of samples for AI model training and 30% for validation. Of the eight AI models evaluated, high performance (HP) SVM and HP Neural were the top performers, identified three serovar groups 97% correctly on average (range 82%–100%) according to the validation results. Selection of serovar specific ions facilitated differentiation of serotypes using unsupervised model PCA and improved the accuracy of classification using AI significantly (p < 0.01). MALDI-TOF MS incorporated with advanced data processing and classification tools is a promising method to allow rapid identification of Salmonella serovars of concern in routine diagnostic laboratories. •Rapid identification of Salmonella Enteritidis and Typhimurium using MALDI-TOF MS•Selection of specific ions for subtyping using unsupervised models•Optimized protocols from MALDI-TOF raw data to identification of ion peaks•The best performers of artificial intelligence models for classification•Perspective of onsite identification of zoonotic pathogens in routine test
AbstractList Salmonella is a common food-borne pathogen with Enteritidis and Typhimurium being among the most important serovars causing numerous outbreaks. A rapid method was investigated to identify these serovars using whole-cell MALDI-TOF MS coupled with multivariate analysis and artificial intelligence and 113 Salmonella strains, including 38 Enteritidis (SE), 38 Typhimurium (ST) and 37 strains from 32 other Salmonella serovars (SG). Datasets of ions (presence/absence) with high discriminative power were created using newly developed criteria and subject to multivariate analyses and eight artificial intelligence (AI) tools. Principal Component Analysis based on 55 or 88 selected ions separated SE, ST and SG without overlap on the first three principal components. Datasets were partitioned using five partitioning methods with 70% of samples for AI model training and 30% for validation. Of the eight AI models evaluated, high performance (HP) SVM and HP Neural were the top performers, identified three serovar groups 97% correctly on average (range 82%–100%) according to the validation results. Selection of serovar specific ions facilitated differentiation of serotypes using unsupervised model PCA and improved the accuracy of classification using AI significantly (p < 0.01). MALDI-TOF MS incorporated with advanced data processing and classification tools is a promising method to allow rapid identification of Salmonella serovars of concern in routine diagnostic laboratories. •Rapid identification of Salmonella Enteritidis and Typhimurium using MALDI-TOF MS•Selection of specific ions for subtyping using unsupervised models•Optimized protocols from MALDI-TOF raw data to identification of ion peaks•The best performers of artificial intelligence models for classification•Perspective of onsite identification of zoonotic pathogens in routine test
Salmonella is a common food-borne pathogen with Enteritidis and Typhimurium being among the most important serovars causing numerous outbreaks. A rapid method was investigated to identify these serovars using whole-cell MALDI-TOF MS coupled with multivariate analysis and artificial intelligence and 113 Salmonella strains, including 38 Enteritidis (SE), 38 Typhimurium (ST) and 37 strains from 32 other Salmonella serovars (SG). Datasets of ions (presence/absence) with high discriminative power were created using newly developed criteria and subject to multivariate analyses and eight artificial intelligence (AI) tools. Principal Component Analysis based on 55 or 88 selected ions separated SE, ST and SG without overlap on the first three principal components. Datasets were partitioned using five partitioning methods with 70% of samples for AI model training and 30% for validation. Of the eight AI models evaluated, high performance (HP) SVM and HP Neural were the top performers, identified three serovar groups 97% correctly on average (range 82%-100%) according to the validation results. Selection of serovar specific ions facilitated differentiation of serotypes using unsupervised model PCA and improved the accuracy of classification using AI significantly (p < 0.01). MALDI-TOF MS incorporated with advanced data processing and classification tools is a promising method to allow rapid identification of Salmonella serovars of concern in routine diagnostic laboratories.Salmonella is a common food-borne pathogen with Enteritidis and Typhimurium being among the most important serovars causing numerous outbreaks. A rapid method was investigated to identify these serovars using whole-cell MALDI-TOF MS coupled with multivariate analysis and artificial intelligence and 113 Salmonella strains, including 38 Enteritidis (SE), 38 Typhimurium (ST) and 37 strains from 32 other Salmonella serovars (SG). Datasets of ions (presence/absence) with high discriminative power were created using newly developed criteria and subject to multivariate analyses and eight artificial intelligence (AI) tools. Principal Component Analysis based on 55 or 88 selected ions separated SE, ST and SG without overlap on the first three principal components. Datasets were partitioned using five partitioning methods with 70% of samples for AI model training and 30% for validation. Of the eight AI models evaluated, high performance (HP) SVM and HP Neural were the top performers, identified three serovar groups 97% correctly on average (range 82%-100%) according to the validation results. Selection of serovar specific ions facilitated differentiation of serotypes using unsupervised model PCA and improved the accuracy of classification using AI significantly (p < 0.01). MALDI-TOF MS incorporated with advanced data processing and classification tools is a promising method to allow rapid identification of Salmonella serovars of concern in routine diagnostic laboratories.
Salmonella is a common food-borne pathogen with Enteritidis and Typhimurium being among the most important serovars causing numerous outbreaks. A rapid method was investigated to identify these serovars using whole-cell MALDI-TOF MS coupled with multivariate analysis and artificial intelligence and 113 Salmonella strains, including 38 Enteritidis (SE), 38 Typhimurium (ST) and 37 strains from 32 other Salmonella serovars (SG). Datasets of ions (presence/absence) with high discriminative power were created using newly developed criteria and subject to multivariate analyses and eight artificial intelligence (AI) tools. Principal Component Analysis based on 55 or 88 selected ions separated SE, ST and SG without overlap on the first three principal components. Datasets were partitioned using five partitioning methods with 70% of samples for AI model training and 30% for validation. Of the eight AI models evaluated, high performance (HP) SVM and HP Neural were the top performers, identified three serovar groups 97% correctly on average (range 82%–100%) according to the validation results. Selection of serovar specific ions facilitated differentiation of serotypes using unsupervised model PCA and improved the accuracy of classification using AI significantly (p < 0.01). MALDI-TOF MS incorporated with advanced data processing and classification tools is a promising method to allow rapid identification of Salmonella serovars of concern in routine diagnostic laboratories.
ArticleNumber 106827
Author Gao, Anli
Fischer-Jenssen, Jennifer
Rutherford, Kimani
Slavic, Durda
Wilson, Emily
Chen, Shu
Lippert, Sarah
Martos, Perry
Leon-Velarde, Carlos G.
Author_xml – sequence: 1
  givenname: Anli
  surname: Gao
  fullname: Gao, Anli
  email: agao@uoguelph.ca
  organization: Agriculture and Food Laboratory, Laboratory Services Division, University of Guelph, Guelph, ON, Canada
– sequence: 2
  givenname: Jennifer
  surname: Fischer-Jenssen
  fullname: Fischer-Jenssen, Jennifer
  organization: Agriculture and Food Laboratory, Laboratory Services Division, University of Guelph, Guelph, ON, Canada
– sequence: 3
  givenname: Durda
  surname: Slavic
  fullname: Slavic, Durda
  organization: Animal Health Laboratory, Laboratory Services Division, University of Guelph, Guelph, ON, Canada
– sequence: 4
  givenname: Kimani
  surname: Rutherford
  fullname: Rutherford, Kimani
  organization: Animal Health Laboratory, Laboratory Services Division, University of Guelph, Guelph, ON, Canada
– sequence: 5
  givenname: Sarah
  surname: Lippert
  fullname: Lippert, Sarah
  organization: Animal Health Laboratory, Laboratory Services Division, University of Guelph, Guelph, ON, Canada
– sequence: 6
  givenname: Emily
  surname: Wilson
  fullname: Wilson, Emily
  organization: Agriculture and Food Laboratory, Laboratory Services Division, University of Guelph, Guelph, ON, Canada
– sequence: 7
  givenname: Shu
  surname: Chen
  fullname: Chen, Shu
  organization: Agriculture and Food Laboratory, Laboratory Services Division, University of Guelph, Guelph, ON, Canada
– sequence: 8
  givenname: Carlos G.
  surname: Leon-Velarde
  fullname: Leon-Velarde, Carlos G.
  organization: Agriculture and Food Laboratory, Laboratory Services Division, University of Guelph, Guelph, ON, Canada
– sequence: 9
  givenname: Perry
  surname: Martos
  fullname: Martos, Perry
  organization: Agriculture and Food Laboratory, Laboratory Services Division, University of Guelph, Guelph, ON, Canada
BookMark eNqFUs1u1DAQtlCR2BaegIuP5ZAldtZxcuBQlRYqbVWJLmfLGzvdWTlx8Dgty4l34A15Ca44m57hYFkafX8z-k7JSe97S8hbli9Zzsr3-2UHnY1LnvMiTcqKyxdkwSrJs6oQ9QlZJJTMZM74K3KKuM9zJopVtSB_vugBDAVj-wgtNDqC76lv6b12XTJxTlO0wT_qgPSqjzZABANIdW_o5jDsoBsDjB0dEfoH-rTzztIm0WinY4DvVCMCRmuo00mHGos-DEeT9ODH7Pf75y-6SRtMxq2Dh11MdESKg21i8Gm1cKDntxfrjzfZ5u6a3t6_o40fB5d0nyDuaDe6CCkj6GhTNO0O-JxRh-NeoB2FFN8ldds39jV52WqH9s3zf0a-Xl9tLj9n67tPN5cX66wpWB0zI0VtCsnLkgljmGyY0Ua3eVtJY7eWF2xbWSPNigkuK8bLra5YvRW1nIZCFmfkfNYdgv82WoyqA5zuo3vrR1QFEytWCiHq_0J5VdaccymqBC1maBM8YrCtGgJ0OhwUy9XUCLVXx0aoqRFqbkRifZhZNi38CDYobGA6hoGQ7qyMh3_y_wJgacnK
Cites_doi 10.3390/foods10050933
10.1128/JCM.00626-12
10.1128/AEM.02418-10
10.1128/AEM.01402-08
10.1016/j.resmic.2009.10.002
10.1016/j.jasms.2004.12.004
10.1016/j.cmi.2020.03.014
10.1016/j.ab.2020.113582
10.1016/S1044-0305(03)00065-5
10.1177/1469066717699216
10.3389/fmicb.2017.00420
10.3390/microorganisms10040688
10.3390/cimb43020054
10.3389/fmicb.2019.02554
10.1007/s42979-021-00592-x
10.1136/jcp.33.6.595
10.1038/s41598-020-61254-1
10.1016/j.foodcont.2020.107188
10.1016/j.nmni.2016.07.016
10.1046/j.1472-765X.2003.01436.x
10.1007/s10618-019-00619-1
10.1371/journal.pone.0101924
10.1590/S1517-83822013005000002
10.1016/j.syapm.2010.11.003
10.1371/journal.pone.0040004
10.1186/s12859-015-0752-4
10.3389/fmicb.2015.00791
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright © 2023 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2023 Elsevier B.V.
– notice: Copyright © 2023 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.mimet.2023.106827
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1872-8359
ExternalDocumentID 10_1016_j_mimet_2023_106827
S0167701223001616
GroupedDBID ---
--K
--M
-~X
.1-
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29L
3O-
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AAAJQ
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARKO
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFCTW
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJUYK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CJTIS
CNWQP
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMG
HVGLF
HZ~
IHE
J1W
KOM
LUGTX
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SIN
SPCBC
SSI
SSU
SSZ
T5K
WH7
WUQ
Y6R
Z5R
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7X8
ACLOT
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c319t-d759d3726615dd17c1dadaf0f87debe231b8ed7d415278126ba819b597d7d4573
IEDL.DBID .~1
ISSN 0167-7012
1872-8359
IngestDate Sat Sep 27 19:35:03 EDT 2025
Sun Sep 28 03:22:33 EDT 2025
Tue Jul 01 02:55:05 EDT 2025
Fri Feb 23 02:35:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Salmonella
MALDI-TOF MS
Typhimurium
Serovar identification
Classification
Enteritidis
Multivariate analysis
Artificial intelligence
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-d759d3726615dd17c1dadaf0f87debe231b8ed7d415278126ba819b597d7d4573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2869222758
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3154165559
proquest_miscellaneous_2869222758
crossref_primary_10_1016_j_mimet_2023_106827
elsevier_sciencedirect_doi_10_1016_j_mimet_2023_106827
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2023
2023-10-00
20231001
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: October 2023
PublicationDecade 2020
PublicationTitle Journal of microbiological methods
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Khot, Couturier, Wilson, Croft, Fisher (bb0070) 2012; 50
Fardsanei, Nikkhahi, Bakhshi, Salehi, Tamai, Dallal (bb0040) 2016; 14
Shipp, Rowe (bb0115) 1980; 33
Dieckmann, Helmuth, Erhard, Malorny (bb0025) 2008; 74
Fawaz, Forestier, Weber, Idoumghar, Muller (bb0045) 2019; 33
Paião, Arisitides, Murate, Vilas-Bôas, Vilas-Boas, Shimokomaki (bb0095) 2013; 44
Yan, Qian, Ge, Ye, Zhou, Zhang (bb0145) 2020; 592
Persad, Fahmy, Anderson, Cui, Topalcengiz, Jeamsripong, Spanninger, Buchanan, Kniel, Jay-Russell, Danyluk, Rajashekara, LeJeune (bb0100) 2022; 10
Christner, Trusch, Rohde, Kwiatkowski, Schlüter, Wolters, Aepfelbacher, Hentschke (bb0010) 2014; 9
Kang, Li, Li, Zhou, Gao, Gao, Xin, Wang (bb0065) 2017; 23
Williams, Andrzejewski, Lay, Musser (bb0130) 2003; 14
Singhal, Kumar, Kanaujia, Virdi (bb0120) 2015; 6
Weis, Jutzeler, Borgwardt (bb0125) 2020; 26
Kuhns, Zautner, Rabsch, Zimmermann, Weig, Bader, Groß (bb0075) 2012; 7
Rychert (bb0105) 2019; 2
Mangmee, Reamtonga, Kalambahetib, Roytrakulc, Sonthayanona (bb0090) 2020; 113
López-Fernández, Santos, Capelo, Fdez-Riverola, Glez-Peña, Reboiro-Jato (bb0085) 2015; 16
Leuschner, Beresford-Jones, Robinson (bb0080) 2003; 38
Guibourdenche, Roggentin, Mikoleit, Fields, Bockemühl, Grimont, Weill (bb0055) 2009; 161
Huber, Reed, Paterson (bb0060) 2021; 43
Xiong, Song, Tao, Zheng, Zhou, Geng, Pan, Jiao (bb0140) 2017; 8
De Bruyne, Slabbinck, Waegeman, Vauterin, De Baets, Vandamme (bb0015) 2011; 34
Wunschel, Jarman, Petersen, Balentine, Wahl, Schauki, Jackman, Nelson, White (bb0135) 2005; 16
Grimont, Weill (bb0050) 2007
Sarker (bb0110) 2021; 2
Banerji, Simon, Tille, Fruth, Flieger (bb0005) 2020; 10
Diep, Barretto, Portmann, Fournier, Karczmarek, Voets, Li, Deng, Klijn (bb0030) 2019; 10
Yang, Kim, Kim, Baek, Yoon, Kim (bb0150) 2021; 10
Ewing (bb0035) 1986
Dieckmann, Malorny (bb0020) 2011; 77
Weis (10.1016/j.mimet.2023.106827_bb0125) 2020; 26
Singhal (10.1016/j.mimet.2023.106827_bb0120) 2015; 6
Banerji (10.1016/j.mimet.2023.106827_bb0005) 2020; 10
Huber (10.1016/j.mimet.2023.106827_bb0060) 2021; 43
Persad (10.1016/j.mimet.2023.106827_bb0100) 2022; 10
Fardsanei (10.1016/j.mimet.2023.106827_bb0040) 2016; 14
Guibourdenche (10.1016/j.mimet.2023.106827_bb0055) 2009; 161
Shipp (10.1016/j.mimet.2023.106827_bb0115) 1980; 33
De Bruyne (10.1016/j.mimet.2023.106827_bb0015) 2011; 34
Khot (10.1016/j.mimet.2023.106827_bb0070) 2012; 50
Paião (10.1016/j.mimet.2023.106827_bb0095) 2013; 44
Leuschner (10.1016/j.mimet.2023.106827_bb0080) 2003; 38
Grimont (10.1016/j.mimet.2023.106827_bb0050) 2007
Mangmee (10.1016/j.mimet.2023.106827_bb0090) 2020; 113
Dieckmann (10.1016/j.mimet.2023.106827_bb0020) 2011; 77
Diep (10.1016/j.mimet.2023.106827_bb0030) 2019; 10
Rychert (10.1016/j.mimet.2023.106827_bb0105) 2019; 2
Fawaz (10.1016/j.mimet.2023.106827_bb0045) 2019; 33
López-Fernández (10.1016/j.mimet.2023.106827_bb0085) 2015; 16
Dieckmann (10.1016/j.mimet.2023.106827_bb0025) 2008; 74
Kang (10.1016/j.mimet.2023.106827_bb0065) 2017; 23
Wunschel (10.1016/j.mimet.2023.106827_bb0135) 2005; 16
Sarker (10.1016/j.mimet.2023.106827_bb0110) 2021; 2
Ewing (10.1016/j.mimet.2023.106827_bb0035) 1986
Williams (10.1016/j.mimet.2023.106827_bb0130) 2003; 14
Kuhns (10.1016/j.mimet.2023.106827_bb0075) 2012; 7
Xiong (10.1016/j.mimet.2023.106827_bb0140) 2017; 8
Christner (10.1016/j.mimet.2023.106827_bb0010) 2014; 9
Yan (10.1016/j.mimet.2023.106827_bb0145) 2020; 592
Yang (10.1016/j.mimet.2023.106827_bb0150) 2021; 10
References_xml – volume: 2
  start-page: 1
  year: 2019
  end-page: 5
  ident: bb0105
  article-title: Benefits and limitations of MALDI-TOF mass spectrometry for the identification of microorganisms
  publication-title: J. Inf. Secur.
– volume: 8
  start-page: 1
  year: 2017
  end-page: 9
  ident: bb0140
  article-title: An efficient multiplex PCR-based assay as a novel tool for accurate inter-serovar discrimination of
  publication-title: Front. Microbiol.
– volume: 10
  start-page: 688
  year: 2022
  ident: bb0100
  article-title: Identification and subtyping of
  publication-title: Microorganisms
– volume: 16
  start-page: 318
  year: 2015
  ident: bb0085
  article-title: Mass-up: an all-in-one open software application for MALDI-TOF mass spectrometry knowledge discovery
  publication-title: BMC Bioinform.
– volume: 10
  start-page: 4333
  year: 2020
  ident: bb0005
  article-title: Genome-based Salmonella serotyping as the new gold standard
  publication-title: Sci. Rep.
– year: 1986
  ident: bb0035
  article-title: Serologic identification of
  publication-title: Edwards and Ewing’s identification of Enterobacteriaceae
– volume: 7
  year: 2012
  ident: bb0075
  article-title: Rapid discrimination of
  publication-title: PLoS One
– volume: 6
  start-page: 791
  year: 2015
  ident: bb0120
  article-title: MAKDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis
  publication-title: Front. Microbiol.
– volume: 10
  start-page: 1
  year: 2019
  end-page: 8
  ident: bb0030
  article-title: serotyping; comparison of the traditional methods to a microarray-based method and an
  publication-title: Front. Microbiol.
– volume: 74
  start-page: 7767
  year: 2008
  end-page: 7778
  ident: bb0025
  article-title: Rapid classification and identification of salmonellae at the species and subspecies levels by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry
  publication-title: Appl. Environ. Microbiol.
– volume: 26
  start-page: 1310
  year: 2020
  end-page: 1317
  ident: bb0125
  article-title: Machine learning for microbial identification and antimicrobial susceptibility testing on MALDI-TOF mass spectra: a systematic review
  publication-title: Clin. Microbiol. Infect.
– volume: 9
  year: 2014
  ident: bb0010
  article-title: Rapid MALDI-TOF mass spectrometry strain typing during a large outbreak of Shiga-toxigenic
  publication-title: PLoS One
– volume: 161
  start-page: 26
  year: 2009
  end-page: 29
  ident: bb0055
  article-title: Supplement 2003-2007 (no. 47) to the White-Kauffmann-Le minor scheme
  publication-title: Res. Microbiol.
– volume: 16
  start-page: 456
  year: 2005
  end-page: 462
  ident: bb0135
  article-title: Bacterial analysis by MALDI-TOF mass spectrometry: an inter-laboratory comparison
  publication-title: J. Am. Soc. Mass Spectrum.
– volume: 38
  start-page: 24
  year: 2003
  end-page: 31
  ident: bb0080
  article-title: Difference and consensus of whole cell
  publication-title: Lett. Appl. Microbiol.
– volume: 592
  start-page: 113582
  year: 2020
  ident: bb0145
  article-title: Principal component analysis of MALDI-TOF MS of whole-cell foodborne pathogenic bacteria
  publication-title: Anal. Biochem.
– year: 2007
  ident: bb0050
  article-title: Antigenic formulae of the
  publication-title: WHO collaborating Centre for Reference and Research on
– volume: 113
  start-page: 107188
  year: 2020
  ident: bb0090
  article-title: MALDI-TOF mass spectrometry typing for predominant serovars of nontyphoidal
  publication-title: Food Control
– volume: 10
  start-page: 933
  year: 2021
  ident: bb0150
  article-title: Rapid detection of
  publication-title: Foods
– volume: 33
  start-page: 917
  year: 2019
  end-page: 963
  ident: bb0045
  article-title: Deep learning for time series classification: a review
  publication-title: Data Min. Knowl. Disc.
– volume: 2
  start-page: 160
  year: 2021
  ident: bb0110
  article-title: Machine learning: algorithms, real-world applications and research directions
  publication-title: SN Comput. Sci.
– volume: 33
  start-page: 595
  year: 1980
  end-page: 597
  ident: bb0115
  article-title: A mechanised microtechnique for
  publication-title: J. Clin. Pathol.
– volume: 34
  start-page: 20
  year: 2011
  end-page: 29
  ident: bb0015
  article-title: Bacterial species identification from MALDI-TOF mass spectra through data analysis and machine learning
  publication-title: Syst. Appl. Microbiol.
– volume: 44
  start-page: 37
  year: 2013
  end-page: 41
  ident: bb0095
  article-title: Detection of
  publication-title: Braz. J. Microbiol.
– volume: 77
  start-page: 4136
  year: 2011
  end-page: 4146
  ident: bb0020
  article-title: Rapid screening of epidemiologically important
  publication-title: Appl. Environ. Microbiol.
– volume: 14
  start-page: 24
  year: 2016
  end-page: 30
  ident: bb0040
  article-title: Molecular characterization of
  publication-title: New Microb. New Infect.
– volume: 23
  start-page: 70
  year: 2017
  end-page: 82
  ident: bb0065
  article-title: MALDI-TOF mass spectrometry provides high accuracy in identification of
  publication-title: Eur. J. Mass Spectrum.
– volume: 50
  start-page: 3845
  year: 2012
  end-page: 3852
  ident: bb0070
  article-title: Optimization of matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis for bacterial identification
  publication-title: J. Clin. Microbiol.
– volume: 43
  start-page: 749
  year: 2021
  end-page: 757
  ident: bb0060
  article-title: Bacterial sub-species typing using matrix-assisted laser desorption/ionization time of flight mass spectrometry: what is promising?
  publication-title: Curr. Issues Mol. Biol.
– volume: 14
  start-page: 342
  year: 2003
  end-page: 351
  ident: bb0130
  article-title: Experimental factors affecting the quality and reproducibility of MALDI TOF mass spectra obtained from whole bacteria cells
  publication-title: J. Am. Soc. Mass Spectrum.
– volume: 10
  start-page: 933
  year: 2021
  ident: 10.1016/j.mimet.2023.106827_bb0150
  article-title: Rapid detection of Salmonella Enteritidis, typhimurium, and thompson by specific peak analysis using matrix-assisted laser desorption time-of-flight mass spectrometry
  publication-title: Foods
  doi: 10.3390/foods10050933
– volume: 50
  start-page: 3845
  year: 2012
  ident: 10.1016/j.mimet.2023.106827_bb0070
  article-title: Optimization of matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis for bacterial identification
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.00626-12
– volume: 77
  start-page: 4136
  year: 2011
  ident: 10.1016/j.mimet.2023.106827_bb0020
  article-title: Rapid screening of epidemiologically important Salmonella enterica subsp. enterica serovars by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02418-10
– volume: 74
  start-page: 7767
  year: 2008
  ident: 10.1016/j.mimet.2023.106827_bb0025
  article-title: Rapid classification and identification of salmonellae at the species and subspecies levels by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01402-08
– volume: 161
  start-page: 26
  year: 2009
  ident: 10.1016/j.mimet.2023.106827_bb0055
  article-title: Supplement 2003-2007 (no. 47) to the White-Kauffmann-Le minor scheme
  publication-title: Res. Microbiol.
  doi: 10.1016/j.resmic.2009.10.002
– volume: 16
  start-page: 456
  year: 2005
  ident: 10.1016/j.mimet.2023.106827_bb0135
  article-title: Bacterial analysis by MALDI-TOF mass spectrometry: an inter-laboratory comparison
  publication-title: J. Am. Soc. Mass Spectrum.
  doi: 10.1016/j.jasms.2004.12.004
– volume: 26
  start-page: 1310
  year: 2020
  ident: 10.1016/j.mimet.2023.106827_bb0125
  article-title: Machine learning for microbial identification and antimicrobial susceptibility testing on MALDI-TOF mass spectra: a systematic review
  publication-title: Clin. Microbiol. Infect.
  doi: 10.1016/j.cmi.2020.03.014
– volume: 592
  start-page: 113582
  year: 2020
  ident: 10.1016/j.mimet.2023.106827_bb0145
  article-title: Principal component analysis of MALDI-TOF MS of whole-cell foodborne pathogenic bacteria
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2020.113582
– volume: 14
  start-page: 342
  year: 2003
  ident: 10.1016/j.mimet.2023.106827_bb0130
  article-title: Experimental factors affecting the quality and reproducibility of MALDI TOF mass spectra obtained from whole bacteria cells
  publication-title: J. Am. Soc. Mass Spectrum.
  doi: 10.1016/S1044-0305(03)00065-5
– volume: 23
  start-page: 70
  year: 2017
  ident: 10.1016/j.mimet.2023.106827_bb0065
  article-title: MALDI-TOF mass spectrometry provides high accuracy in identification of Salmonella at species level but is limited to type or subtype Salmonella serovars
  publication-title: Eur. J. Mass Spectrum.
  doi: 10.1177/1469066717699216
– volume: 8
  start-page: 1
  year: 2017
  ident: 10.1016/j.mimet.2023.106827_bb0140
  article-title: An efficient multiplex PCR-based assay as a novel tool for accurate inter-serovar discrimination of Salmonella Enteritidis, S. Pullorum/Gallinarum and S. Dublin
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.00420
– volume: 10
  start-page: 688
  year: 2022
  ident: 10.1016/j.mimet.2023.106827_bb0100
  article-title: Identification and subtyping of Salmonella isolates using matrix-assisted laser desorption–ionization time-of-flight mass spectrometry (MALDI-TOF)
  publication-title: Microorganisms
  doi: 10.3390/microorganisms10040688
– volume: 43
  start-page: 749
  year: 2021
  ident: 10.1016/j.mimet.2023.106827_bb0060
  article-title: Bacterial sub-species typing using matrix-assisted laser desorption/ionization time of flight mass spectrometry: what is promising?
  publication-title: Curr. Issues Mol. Biol.
  doi: 10.3390/cimb43020054
– volume: 10
  start-page: 1
  year: 2019
  ident: 10.1016/j.mimet.2023.106827_bb0030
  article-title: Salmonella serotyping; comparison of the traditional methods to a microarray-based method and an in silico platform using whole genome sequencing data
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2019.02554
– volume: 2
  start-page: 160
  year: 2021
  ident: 10.1016/j.mimet.2023.106827_bb0110
  article-title: Machine learning: algorithms, real-world applications and research directions
  publication-title: SN Comput. Sci.
  doi: 10.1007/s42979-021-00592-x
– volume: 33
  start-page: 595
  year: 1980
  ident: 10.1016/j.mimet.2023.106827_bb0115
  article-title: A mechanised microtechnique for Salmonella serotyping
  publication-title: J. Clin. Pathol.
  doi: 10.1136/jcp.33.6.595
– volume: 10
  start-page: 4333
  year: 2020
  ident: 10.1016/j.mimet.2023.106827_bb0005
  article-title: Genome-based Salmonella serotyping as the new gold standard
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-61254-1
– year: 1986
  ident: 10.1016/j.mimet.2023.106827_bb0035
  article-title: Serologic identification of Salmonella
– volume: 113
  start-page: 107188
  year: 2020
  ident: 10.1016/j.mimet.2023.106827_bb0090
  article-title: MALDI-TOF mass spectrometry typing for predominant serovars of nontyphoidal Salmonella in a Thai broiler industry
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2020.107188
– volume: 14
  start-page: 24
  year: 2016
  ident: 10.1016/j.mimet.2023.106827_bb0040
  article-title: Molecular characterization of Salmonella enterica serotype Enteritidis isolates from food and human samples by serotyping, antimicrobial resistance, plasmid profiling, (GTG)5-PCR and ERIC-PCR
  publication-title: New Microb. New Infect.
  doi: 10.1016/j.nmni.2016.07.016
– volume: 2
  start-page: 1
  year: 2019
  ident: 10.1016/j.mimet.2023.106827_bb0105
  article-title: Benefits and limitations of MALDI-TOF mass spectrometry for the identification of microorganisms
  publication-title: J. Inf. Secur.
– volume: 38
  start-page: 24
  year: 2003
  ident: 10.1016/j.mimet.2023.106827_bb0080
  article-title: Difference and consensus of whole cell Salmonella enterica subsp. enterica serovars matrix-assisted laser desorption/ionization time-of-flight mass spectrometry spectra
  publication-title: Lett. Appl. Microbiol.
  doi: 10.1046/j.1472-765X.2003.01436.x
– volume: 33
  start-page: 917
  year: 2019
  ident: 10.1016/j.mimet.2023.106827_bb0045
  article-title: Deep learning for time series classification: a review
  publication-title: Data Min. Knowl. Disc.
  doi: 10.1007/s10618-019-00619-1
– volume: 9
  year: 2014
  ident: 10.1016/j.mimet.2023.106827_bb0010
  article-title: Rapid MALDI-TOF mass spectrometry strain typing during a large outbreak of Shiga-toxigenic Escherichia coli
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0101924
– volume: 44
  start-page: 37
  year: 2013
  ident: 10.1016/j.mimet.2023.106827_bb0095
  article-title: Detection of Salmonella spp, Salmonella Enteritidis and typhimurium in naturally infected broiler chickens by a multiplex PCR-based assay
  publication-title: Braz. J. Microbiol.
  doi: 10.1590/S1517-83822013005000002
– volume: 34
  start-page: 20
  year: 2011
  ident: 10.1016/j.mimet.2023.106827_bb0015
  article-title: Bacterial species identification from MALDI-TOF mass spectra through data analysis and machine learning
  publication-title: Syst. Appl. Microbiol.
  doi: 10.1016/j.syapm.2010.11.003
– volume: 7
  year: 2012
  ident: 10.1016/j.mimet.2023.106827_bb0075
  article-title: Rapid discrimination of Salmonella enterica serovar Typhi from other serovars by MALDI-TOF mass spectrometry
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0040004
– volume: 16
  start-page: 318
  year: 2015
  ident: 10.1016/j.mimet.2023.106827_bb0085
  article-title: Mass-up: an all-in-one open software application for MALDI-TOF mass spectrometry knowledge discovery
  publication-title: BMC Bioinform.
  doi: 10.1186/s12859-015-0752-4
– volume: 6
  start-page: 791
  year: 2015
  ident: 10.1016/j.mimet.2023.106827_bb0120
  article-title: MAKDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2015.00791
– year: 2007
  ident: 10.1016/j.mimet.2023.106827_bb0050
  article-title: Antigenic formulae of the Salmonella Serovars
SSID ssj0015348
Score 2.4195578
Snippet Salmonella is a common food-borne pathogen with Enteritidis and Typhimurium being among the most important serovars causing numerous outbreaks. A rapid method...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 106827
SubjectTerms Artificial intelligence
Classification
data collection
desorption
Enteritidis
food pathogens
ionization
MALDI-TOF MS
mass spectrometry
Multivariate analysis
principal component analysis
rapid methods
Salmonella
serotypes
Serovar identification
Typhimurium
Title Rapid identification of Salmonella serovars Enteritidis and Typhimurium using whole cell matrix assisted laser desorption ionization – Time of flight mass spectrometry (MALDI-TOF MS) coupled with multivariate analysis and artificial intelligence
URI https://dx.doi.org/10.1016/j.mimet.2023.106827
https://www.proquest.com/docview/2869222758
https://www.proquest.com/docview/3154165559
Volume 213
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIiQuiKcolGqQOIBE2M3m4eS4alltgS0S20q9RU7GAaPNZpVHoRfEf-Af9k_02hknQYCAA8f15jHyjO1vnG8-C_EUWTVcx76jlQwc30u1o1yFNOIp3aAFP3NT3tBfHIXzE__1aXC6JfaHWhimVfZzfzen29m6bxn1vTnaGDNaMoFe8pchz-IWlt32fcmx_vLrD5oHDWh7gpbV9-arB-Uhy_EqTKGZUDnxqCWM-GiZP69Ov83TdvGZ3RI3e9QI086w22JLr--I6905kud3xeV7tTEIBnvqj-1tKHNYqhWFGROcgEKtPKMsFiwNwDQGTQ1qjUCZ6EdTtJVpC2AW_Af4zGfmAm_pQ8EK_l-AEDaHAwJhbV0B6rqs7FwDvJ3bVXLCxbfvwBUl_OJ8xUk_3V7XYIs5WRWhqc7h2WL69uDQOX43g8XyOWRlu1nRc3k7GCy5kWykaNFkWqeWYm1kj3RSF2B-0hC9J05mr473505_ooOT0VBvHJRBjJ5kUBAgujJzUaHKx3kkkaKJsGYaaZTIqEIS9AhTRYglpaSHGwPp3Rfba-q2BwKCcYa556vJWCHLmCk_zlMZqyCVkdJxviNeDJ5MNp1wRzIw2j4l1vEJOz7pHL8jwsHbyS_xl9DS8u8bnwyxQX_W7Bu11mVbJ5MojLnSOIj-fo1HCNYNA0rrHv6vAY_EDf7VEQx3xXZTtfoxAaUm3bMjYU9cmx6-mR9dAcSfGok
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9NADB4tixBcEE_t8jQSB5AIbZrHJMfVQtWFdpFoV9pbNIknMKhpqjyAvSD-A_-QP8EVe5IgQMCB6-RljT2ez5PPthAPkauG69h3tJKB43updpSrkFY8hRu04Wduygf6i-NwduK_OA1Od8ThkAvDtMre93c-3XrrfmTUz-Zoa8xoyQR6yX-GPItbwnPivM9tDsion376wfOgFW1baNkC33z7UHrIkrwKU2hmVE48Ggkj7i3z5-3pN0dtd5_pFXG5h41w0El2VezozTVxoWskeXZdfHuttgbBYM_9sdMNZQ5LtSY7Y4YTkK2V7ymMBcsDMI1BU4PaIFAo-tYUbWXaApgG_wY-cNNc4DN9KLiE_0cgiM32gEBgW1eAui4r62yAz3O7VE74-vkLcEoJfzhfc9RPj9c12GxOLovQVGfwaHEwf3bkrF5NYbF8DFnZbtf0Xj4PBstuJBnJXDSJ1pVLsTKySrpaF2B-KiJ6Q5xMn68OZ07f0sHJaK03DsogRk8yKggQXZm5qFDl4zySSOZEYDONNEpkWCEJe4SpIsiSUtTDg4H0bordDU3bnoBgnGHu-WoyVsh1zJQf56mMVZDKSOk43xdPBk0m265yRzJQ2t4lVvEJKz7pFL8vwkHbyS8GmNDe8u8HHwy2QRdr1o3a6LKtk0kUxpxqHER_v8cjCOuGAcV1t_5XgPvi4my1mCfzo-OXt8UlvtKxDe-I3aZq9V1CTU16z66K7_Q5HBI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+identification+of+Salmonella+serovars+Enteritidis+and+Typhimurium+using+whole+cell+matrix+assisted+laser+desorption+ionization+%E2%80%93+Time+of+flight+mass+spectrometry+%28MALDI-TOF+MS%29+coupled+with+multivariate+analysis+and+artificial+intelligence&rft.jtitle=Journal+of+microbiological+methods&rft.au=Gao%2C+Anli&rft.au=Fischer-Jenssen%2C+Jennifer&rft.au=Slavic%2C+Durda&rft.au=Rutherford%2C+Kimani&rft.date=2023-10-01&rft.issn=0167-7012&rft.volume=213&rft.spage=106827&rft_id=info:doi/10.1016%2Fj.mimet.2023.106827&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mimet_2023_106827
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7012&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7012&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7012&client=summon