Enhancing surface quality of metal parts manufactured via LPBF: ANN classifier and bayesian learning approach

One of the metal additive manufacturing techniques, Laser Powder Bed Fusion (LPBF), is utilised to fabricate several metal composites, including S30 and AlSi10Mg, which are extensively utilised in the automotive and aerospace sectors. The main objective of this manufacturing is to achieve high surfa...

Full description

Saved in:
Bibliographic Details
Published inInternational journal on interactive design and manufacturing Vol. 18; no. 6; pp. 4093 - 4101
Main Authors Arunadevi, M., Veeresha, G., Kharche, Anil W., Suryawanshi, Vinayak P., Sollapur, Shrishail B., Mhatre, Mitali S., Kapadani, Kaustubh R., Nalawade, Dattatraya
Format Journal Article
LanguageEnglish
Published Paris Springer Paris 01.08.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1955-2513
1955-2505
DOI10.1007/s12008-024-01942-8

Cover

Abstract One of the metal additive manufacturing techniques, Laser Powder Bed Fusion (LPBF), is utilised to fabricate several metal composites, including S30 and AlSi10Mg, which are extensively utilised in the automotive and aerospace sectors. The main objective of this manufacturing is to achieve high surface quality for the complex dimensional parts specially heat exchangers and turbomachinery components. In this research, the 30 datasets of S30 alloy cube samples are collected from literature for analysis. The supervised classification algorithm (Bayesian learning) is used for the analysis and surface roughness prediction in term of current, Line offset and scans speed. The manual calculations of Bayesian leaning are performed to obtain the probability prediction for the objective function. Then the same input and output parameters are trained and modelled by ANN classifier using sklearn library from python. The performance metrics for classifier such as sensitivity, specificity, precision and accuracy are calculated for Bayesian learning and compared with ANN classifier. ANN classifier Prediction of performance characteristic gave accurate results which plays very important role in LPBF method because of high experimentation cost.
AbstractList One of the metal additive manufacturing techniques, Laser Powder Bed Fusion (LPBF), is utilised to fabricate several metal composites, including S30 and AlSi10Mg, which are extensively utilised in the automotive and aerospace sectors. The main objective of this manufacturing is to achieve high surface quality for the complex dimensional parts specially heat exchangers and turbomachinery components. In this research, the 30 datasets of S30 alloy cube samples are collected from literature for analysis. The supervised classification algorithm (Bayesian learning) is used for the analysis and surface roughness prediction in term of current, Line offset and scans speed. The manual calculations of Bayesian leaning are performed to obtain the probability prediction for the objective function. Then the same input and output parameters are trained and modelled by ANN classifier using sklearn library from python. The performance metrics for classifier such as sensitivity, specificity, precision and accuracy are calculated for Bayesian learning and compared with ANN classifier. ANN classifier Prediction of performance characteristic gave accurate results which plays very important role in LPBF method because of high experimentation cost.
Author Suryawanshi, Vinayak P.
Kharche, Anil W.
Kapadani, Kaustubh R.
Mhatre, Mitali S.
Arunadevi, M.
Sollapur, Shrishail B.
Nalawade, Dattatraya
Veeresha, G.
Author_xml – sequence: 1
  givenname: M.
  surname: Arunadevi
  fullname: Arunadevi, M.
  organization: Department of Mechanical Engineering, Dayananda Sagar College of Engineering
– sequence: 2
  givenname: G.
  surname: Veeresha
  fullname: Veeresha, G.
  email: veermech87@gmail.com
  organization: Department of Mechanical Engineering, New Horizon College of Engineering
– sequence: 3
  givenname: Anil W.
  surname: Kharche
  fullname: Kharche, Anil W.
  organization: Department of Civil Engineering, Padm. Dr. V. B. Kolte College of Engineering
– sequence: 4
  givenname: Vinayak P.
  surname: Suryawanshi
  fullname: Suryawanshi, Vinayak P.
  organization: Department of Mechanical Engineering, Pillai College of Engineering
– sequence: 5
  givenname: Shrishail B.
  orcidid: 0000-0002-3994-4610
  surname: Sollapur
  fullname: Sollapur, Shrishail B.
  email: shrishail.sollapur@gmail.com
  organization: Department of IIAEM, Faculty of Engineering and Technology, JAIN (Deemed -to- be University)
– sequence: 6
  givenname: Mitali S.
  surname: Mhatre
  fullname: Mhatre, Mitali S.
  organization: Department of Mechanical Engineering, Saraswati College of Engineering Kharghar
– sequence: 7
  givenname: Kaustubh R.
  surname: Kapadani
  fullname: Kapadani, Kaustubh R.
  organization: Department of Mechanical Engineering, PES Modern COE
– sequence: 8
  givenname: Dattatraya
  surname: Nalawade
  fullname: Nalawade, Dattatraya
  organization: Department of Mechanical Engineering, Vishwakarma Institute of Information Technology
BookMark eNp9kM1LAzEQxYMoqNV_wFPA8-ok2Y_EWxW_oKgHPYdpmrSRbbZNskL_e7dWFDx4moF5v_eGd0z2QxcsIWcMLhhAc5kYB5AF8LIApkpeyD1yxFRVFbyCav9nZ-KQHKf0DlBLkHBElrdhgcH4MKepjw6NpeseW583tHN0aTO2dIUxJ7rE0A_33Ec7ox8e6eTl-u6Kjp-eqGkxJe-8jRTDjE5xY5PHQFuLMWytcbWKHZrFCTlw2CZ7-j1H5O3u9vXmoZg83z_ejCeFEUzlYtaIUk7rqUNe1-AajkJIYMI0qFDWpnI1SGcNcFBOCcmFY8425aySZgo1EyNyvvMdYte9TVm_d30MQ6QWoJQqSyXqQcV3KhO7lKJ1ehX9EuNGM9DbWvWuVj3Uqr9q1XKA5B_I-IzZdyFH9O3_qNihacgJcxt_v_qH-gQAIo5q
CitedBy_id crossref_primary_10_1007_s40033_024_00840_3
crossref_primary_10_1007_s40033_024_00854_x
Cites_doi 10.1016/j.addma.2020.101499
10.1016/j.addma.2019.100901
10.1109/ESCI50559.2021.9396857
10.1007/978-981-16-4321-7_29
10.1016/j.matpr.2023.09.115
10.1016/j.addma.2021.102463
10.1109/ICOSEC49089.2020.9215277
10.1016/j.addma.2020.101619
10.1016/j.addma.2021.102229
10.1016/j.addma.2021.102018
10.1016/j.matpr.2020.12.830
10.1016/j.addma.2021.102450
10.1007/s40033-024-00693-w
10.1016/j.jmrt.2022.04.055
10.1016/j.matpr.2023.09.111
10.1016/j.addma.2022.102736
10.1016/j.addma.2020.101093
10.1016/j.addma.2020.101375
10.1016/j.addma.2021.102264
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s12008-024-01942-8
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
ProQuest One Business
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList
ProQuest One Business
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1955-2505
EndPage 4101
ExternalDocumentID 10_1007_s12008_024_01942_8
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
203
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
875
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
M7S
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9P
PF0
PQBIZ
PQBZA
PT4
PTHSS
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
DWQXO
L6V
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-d7348b6bfa2660f72a338013c7a9a86c5f608fec0209f93823f1fe74d58cb0613
IEDL.DBID BENPR
ISSN 1955-2513
IngestDate Sat Aug 23 14:28:26 EDT 2025
Wed Oct 01 00:33:32 EDT 2025
Thu Apr 24 23:09:46 EDT 2025
Fri Feb 21 02:39:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Turbo machinery
LPBF
Metal additive manufacturing
Machine learning
Bayesian learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-d7348b6bfa2660f72a338013c7a9a86c5f608fec0209f93823f1fe74d58cb0613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3994-4610
PQID 3099944936
PQPubID 2044253
PageCount 9
ParticipantIDs proquest_journals_3099944936
crossref_primary_10_1007_s12008_024_01942_8
crossref_citationtrail_10_1007_s12008_024_01942_8
springer_journals_10_1007_s12008_024_01942_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240800
2024-08-00
20240801
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 8
  year: 2024
  text: 20240800
PublicationDecade 2020
PublicationPlace Paris
PublicationPlace_xml – name: Paris
– name: Heidelberg
PublicationTitle International journal on interactive design and manufacturing
PublicationTitleAbbrev Int J Interact Des Manuf
PublicationYear 2024
Publisher Springer Paris
Springer Nature B.V
Publisher_xml – name: Springer Paris
– name: Springer Nature B.V
References ArunadeviMShreeramPBThanoj KumarKUdayMGowdaPerformance enhancement of CNC Milling Process using different machine learning techniquesJ. Mines Met. Fuels2023712149156
Lv Zhaoa, J.G.S., Macíasb, A., Dolimontc, A., Simarb, E., Rivière-Lorphèvrec: Comparison of residual stresses obtained by the crack compliance method for parts produced by different metal additive manufacturing techniques and after friction stir processing, Additive Manufacturing 36 101499 (2020)
Hung Dang NguyenAPramanikAKBasakYDongCPrakashSDebnathSShankarISJawahirSaurav Dixit, Dharam Buddhi, a critical review on additive manufacturing of Ti-6Al-4V alloy: Microstructure and mechanical propertiesJ. Mater. Res. Technol.2022184641466110.1016/j.jmrt.2022.04.055
Yunwei GuiKAoyagiHBianAChibaDetection, classification and prediction of internal defects from surface morphology data of metal parts fabricated by powder bed fusion type additive manufacturing using an electron beamAdditive Manuf.20225410273610.1016/j.addma.2022.102736
L, Y., Arunadevi, M., Prakash, C.P.S.: Predicton of MRR & Surface Roughness in Wire EDM Machining using Decision Tree and Naive Bayes Algorithm, 2021 International Conference on Emerging Smart Computing and Informatics (ESCI), Pune, India, pp. 527–532, doi: 10.1109/ESCI50559.2021.9396857.ons. Advances in Sustainability Science and Technology. Springer, Singapore. (2021). https://doi.org/10.1007/978-981-16-4321-7_29
Hassena, A.A., Noakesa, M., Nandwanaa, P.,b, Kima, S., Kunca, V., Vaidyac, U., Lovea, L., Nycza, A.: Scaling Up metal additive manufacturing process to fabricate molds for composite manufacturing, Additive Manufacturing 32 101093 (2020)
GhamarianIBallSGhayoorMPasebaniSTabeiAStatistical analysis of spatial distribution of pores in metal additive manufacturingAdditive Manuf.20214710226410.1016/j.addma.2021.102264
ZhangBSeedeRXueLAtliKCZhangCWhittAKaramanIArroyaveRElwanyAAn efficient framework for printability assessment in laser powder Bed Fusion metal additive manufacturingAdditive Manuf.20214610201810.1016/j.addma.2021.102018
EthanMParsonsSZShaikAdditive manufacturing of aluminum metal matrix composites: Mechanical alloying of composite powders and single track consolidation with laser powder bed fusionAdditive Manuf.20225010245010.1016/j.addma.2021.102450
ArunadeviMKoppalYHVasistaPMKollurSPatilSLakshminarayanaCHameedAElimination of Experimentation cost and time by data Analysis in Mechanical Property Prediction of Aluminum Alloys2023Materials TodayProceedi ngs10.1016/j.matpr.2023.09.115
Arunadevi, Y.L.M., Prakash, C.P.S., International Conference on Emerging Smart, Computing, Informatics: Predicton of MRR & Surface Roughness in Wire EDM Machining using Decision Tree and Naive Bayes Algorithm, (ESCI), Pune, India, 2021, pp. 527–532, (2021). https://doi.org/10.1109/ESCI50559.2021.9396857
Arunadevi, M., Prakash, C.P.S.: Predictive analysis and multi objective optimization of wire-EDM process using ANN, Materials Today: Proceedings, Volume 46, Part 13, Pages 6012–6016. (2021)
Filippo ZaniniMSorgatoESavioSCarmignatoDimensional verification of metal additively manufactured lattice structures by X-ray computed tomography: Use of a newly developed calibrated artefact to achieve metrological traceabilityAdditive Manuf.20214710222910.1016/j.addma.2021.102229
LeiYChenlYLiouFAdditive manufacturing of functionally graded metallic materials using laser metal depositionAdditive Manuf.20203110090110.1016/j.addma.2019.100901
ArunadeviMPatilCKapadaniKROptimization process to develop Tungsten Carbide Reinforced with Aluminium MMCs using surface plots and ANNJ. Inst. Eng. India Ser. D202410.1007/s40033-024-00693-w
Devi, M.A., Prakash, C.P.S., Chinnannavar, R.P., Joshi, V.P., Palada, R.S., Dixit, R.: An InformaticApproach to Predict the Mechanical Properties of Aluminum Alloys using Machine Learning Techniques, 2020 International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, pp. 536–541, (2020). https://doi.org/10.1109/ICOSEC49089.2020.9215277
Erfan MalekiSBBandiniMGuaglianoMSurface post-treatments for metal additive manufacturing: Progress, challenges, and opportunitiesAdditive Manuf.20213710161910.1016/j.addma.2020.101619
VermaSYangC-KLinC-HJengJYAdditive manufacturing of lattice structures for high strength mechanical interlocking of metal and resin during injection moldingAdditive Manuf.20224910246310.1016/j.addma.2021.102463
Guangchao LiuJXiongLTangMicrostructure and mechanical properties of 2219 aluminum alloy fabricated by double-electrode gas metal arc additive manufacturingAdditive Manuf.20203510137510.1016/j.addma.2020.101375
Yunwei Gui, K., Aoyagi, H., Bian, A., Chiba: Detection, classification and prediction of internal defects from surface morphology data of metal parts fabricated by powder bed fusion type additive manufacturing using an electron beam. Additive Manuf., 54, (2022)
Arunadevi, M., Rani, M., Sibinraj, R., Chandru, M.K., Durga Prasad, C.: Comparison of k-nearest Neighbor & Artificial Neural Network prediction in the mechanical properties of aluminum alloys, Materials Today: Proceedings, ISSN 2214–7853. (2023)
I Ghamarian (1942_CR12) 2021; 47
1942_CR15
M Ethan (1942_CR3) 2022; 50
1942_CR16
1942_CR17
B Zhang (1942_CR5) 2021; 46
M Arunadevi (1942_CR19) 2023
A Hung Dang Nguyen (1942_CR13) 2022; 18
1942_CR14
M Filippo Zanini (1942_CR8) 2021; 47
1942_CR7
1942_CR21
1942_CR1
S Verma (1942_CR4) 2022; 49
K Yunwei Gui (1942_CR6) 2022; 54
1942_CR9
J Guangchao Liu (1942_CR10) 2020; 35
Y Lei (1942_CR11) 2020; 31
M Arunadevi (1942_CR18) 2024
M Arunadevi (1942_CR20) 2023; 71
SB Erfan Maleki (1942_CR2) 2021; 37
References_xml – reference: Arunadevi, M., Prakash, C.P.S.: Predictive analysis and multi objective optimization of wire-EDM process using ANN, Materials Today: Proceedings, Volume 46, Part 13, Pages 6012–6016. (2021)
– reference: Guangchao LiuJXiongLTangMicrostructure and mechanical properties of 2219 aluminum alloy fabricated by double-electrode gas metal arc additive manufacturingAdditive Manuf.20203510137510.1016/j.addma.2020.101375
– reference: Erfan MalekiSBBandiniMGuaglianoMSurface post-treatments for metal additive manufacturing: Progress, challenges, and opportunitiesAdditive Manuf.20213710161910.1016/j.addma.2020.101619
– reference: Yunwei GuiKAoyagiHBianAChibaDetection, classification and prediction of internal defects from surface morphology data of metal parts fabricated by powder bed fusion type additive manufacturing using an electron beamAdditive Manuf.20225410273610.1016/j.addma.2022.102736
– reference: Devi, M.A., Prakash, C.P.S., Chinnannavar, R.P., Joshi, V.P., Palada, R.S., Dixit, R.: An InformaticApproach to Predict the Mechanical Properties of Aluminum Alloys using Machine Learning Techniques, 2020 International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, pp. 536–541, (2020). https://doi.org/10.1109/ICOSEC49089.2020.9215277
– reference: Filippo ZaniniMSorgatoESavioSCarmignatoDimensional verification of metal additively manufactured lattice structures by X-ray computed tomography: Use of a newly developed calibrated artefact to achieve metrological traceabilityAdditive Manuf.20214710222910.1016/j.addma.2021.102229
– reference: LeiYChenlYLiouFAdditive manufacturing of functionally graded metallic materials using laser metal depositionAdditive Manuf.20203110090110.1016/j.addma.2019.100901
– reference: GhamarianIBallSGhayoorMPasebaniSTabeiAStatistical analysis of spatial distribution of pores in metal additive manufacturingAdditive Manuf.20214710226410.1016/j.addma.2021.102264
– reference: Hassena, A.A., Noakesa, M., Nandwanaa, P.,b, Kima, S., Kunca, V., Vaidyac, U., Lovea, L., Nycza, A.: Scaling Up metal additive manufacturing process to fabricate molds for composite manufacturing, Additive Manufacturing 32 101093 (2020)
– reference: Lv Zhaoa, J.G.S., Macíasb, A., Dolimontc, A., Simarb, E., Rivière-Lorphèvrec: Comparison of residual stresses obtained by the crack compliance method for parts produced by different metal additive manufacturing techniques and after friction stir processing, Additive Manufacturing 36 101499 (2020)
– reference: ArunadeviMShreeramPBThanoj KumarKUdayMGowdaPerformance enhancement of CNC Milling Process using different machine learning techniquesJ. Mines Met. Fuels2023712149156
– reference: Yunwei Gui, K., Aoyagi, H., Bian, A., Chiba: Detection, classification and prediction of internal defects from surface morphology data of metal parts fabricated by powder bed fusion type additive manufacturing using an electron beam. Additive Manuf., 54, (2022)
– reference: EthanMParsonsSZShaikAdditive manufacturing of aluminum metal matrix composites: Mechanical alloying of composite powders and single track consolidation with laser powder bed fusionAdditive Manuf.20225010245010.1016/j.addma.2021.102450
– reference: Hung Dang NguyenAPramanikAKBasakYDongCPrakashSDebnathSShankarISJawahirSaurav Dixit, Dharam Buddhi, a critical review on additive manufacturing of Ti-6Al-4V alloy: Microstructure and mechanical propertiesJ. Mater. Res. Technol.2022184641466110.1016/j.jmrt.2022.04.055
– reference: Arunadevi, Y.L.M., Prakash, C.P.S., International Conference on Emerging Smart, Computing, Informatics: Predicton of MRR & Surface Roughness in Wire EDM Machining using Decision Tree and Naive Bayes Algorithm, (ESCI), Pune, India, 2021, pp. 527–532, (2021). https://doi.org/10.1109/ESCI50559.2021.9396857
– reference: ZhangBSeedeRXueLAtliKCZhangCWhittAKaramanIArroyaveRElwanyAAn efficient framework for printability assessment in laser powder Bed Fusion metal additive manufacturingAdditive Manuf.20214610201810.1016/j.addma.2021.102018
– reference: ArunadeviMPatilCKapadaniKROptimization process to develop Tungsten Carbide Reinforced with Aluminium MMCs using surface plots and ANNJ. Inst. Eng. India Ser. D202410.1007/s40033-024-00693-w
– reference: ArunadeviMKoppalYHVasistaPMKollurSPatilSLakshminarayanaCHameedAElimination of Experimentation cost and time by data Analysis in Mechanical Property Prediction of Aluminum Alloys2023Materials TodayProceedi ngs10.1016/j.matpr.2023.09.115
– reference: Arunadevi, M., Rani, M., Sibinraj, R., Chandru, M.K., Durga Prasad, C.: Comparison of k-nearest Neighbor & Artificial Neural Network prediction in the mechanical properties of aluminum alloys, Materials Today: Proceedings, ISSN 2214–7853. (2023)
– reference: L, Y., Arunadevi, M., Prakash, C.P.S.: Predicton of MRR & Surface Roughness in Wire EDM Machining using Decision Tree and Naive Bayes Algorithm, 2021 International Conference on Emerging Smart Computing and Informatics (ESCI), Pune, India, pp. 527–532, doi: 10.1109/ESCI50559.2021.9396857.ons. Advances in Sustainability Science and Technology. Springer, Singapore. (2021). https://doi.org/10.1007/978-981-16-4321-7_29
– reference: VermaSYangC-KLinC-HJengJYAdditive manufacturing of lattice structures for high strength mechanical interlocking of metal and resin during injection moldingAdditive Manuf.20224910246310.1016/j.addma.2021.102463
– ident: 1942_CR9
  doi: 10.1016/j.addma.2020.101499
– volume: 31
  start-page: 100901
  year: 2020
  ident: 1942_CR11
  publication-title: Additive Manuf.
  doi: 10.1016/j.addma.2019.100901
– ident: 1942_CR17
  doi: 10.1109/ESCI50559.2021.9396857
– ident: 1942_CR1
  doi: 10.1007/978-981-16-4321-7_29
– volume: 71
  start-page: 149
  issue: 2
  year: 2023
  ident: 1942_CR20
  publication-title: J. Mines Met. Fuels
– volume-title: Elimination of Experimentation cost and time by data Analysis in Mechanical Property Prediction of Aluminum Alloys
  year: 2023
  ident: 1942_CR19
  doi: 10.1016/j.matpr.2023.09.115
– volume: 49
  start-page: 102463
  year: 2022
  ident: 1942_CR4
  publication-title: Additive Manuf.
  doi: 10.1016/j.addma.2021.102463
– ident: 1942_CR15
  doi: 10.1109/ICOSEC49089.2020.9215277
– volume: 37
  start-page: 101619
  year: 2021
  ident: 1942_CR2
  publication-title: Additive Manuf.
  doi: 10.1016/j.addma.2020.101619
– volume: 47
  start-page: 102229
  year: 2021
  ident: 1942_CR8
  publication-title: Additive Manuf.
  doi: 10.1016/j.addma.2021.102229
– volume: 46
  start-page: 102018
  year: 2021
  ident: 1942_CR5
  publication-title: Additive Manuf.
  doi: 10.1016/j.addma.2021.102018
– ident: 1942_CR16
  doi: 10.1016/j.matpr.2020.12.830
– volume: 50
  start-page: 102450
  year: 2022
  ident: 1942_CR3
  publication-title: Additive Manuf.
  doi: 10.1016/j.addma.2021.102450
– year: 2024
  ident: 1942_CR18
  publication-title: J. Inst. Eng. India Ser. D
  doi: 10.1007/s40033-024-00693-w
– volume: 18
  start-page: 4641
  year: 2022
  ident: 1942_CR13
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2022.04.055
– ident: 1942_CR14
  doi: 10.1016/j.matpr.2023.09.111
– volume: 54
  start-page: 102736
  year: 2022
  ident: 1942_CR6
  publication-title: Additive Manuf.
  doi: 10.1016/j.addma.2022.102736
– ident: 1942_CR21
  doi: 10.1016/j.addma.2022.102736
– ident: 1942_CR7
  doi: 10.1016/j.addma.2020.101093
– volume: 35
  start-page: 101375
  year: 2020
  ident: 1942_CR10
  publication-title: Additive Manuf.
  doi: 10.1016/j.addma.2020.101375
– volume: 47
  start-page: 102264
  year: 2021
  ident: 1942_CR12
  publication-title: Additive Manuf.
  doi: 10.1016/j.addma.2021.102264
SSID ssj0068080
Score 2.3252501
Snippet One of the metal additive manufacturing techniques, Laser Powder Bed Fusion (LPBF), is utilised to fabricate several metal composites, including S30 and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4093
SubjectTerms Additive manufacturing
Aeronautics
Algorithms
Artificial neural networks
Bayesian analysis
Business metrics
CAE) and Design
Composite materials
Computer-Aided Engineering (CAD
Cost analysis
Cost control
Efficiency
Electronics and Microelectronics
Engineering
Engineering Design
Friction stir welding
Heat exchangers
Industrial Design
Instrumentation
Lasers
Machine learning
Manufacturing
Mechanical Engineering
Mechanical properties
Metal fatigue
Original Article
Parameter sensitivity
Performance measurement
Performance prediction
Powder beds
Python
Residual stress
Surface properties
Surface roughness
Turbomachinery
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF20XvQgfmK1yhy8aaDZbLYbb1VaimjxYKG3sNns1oJNS9MI_ffu5MOoqOA5myXszOy8MPPeEHKpXR1HNlMi7YM5zHjaEbESjvQ018Y6gYmQKPw45IMRux_745IUllbd7lVJMr-pa7JbUaqn2DURMBvHm2TLRzkv68Uj2q3uX5wlkdMgA99-ge96JVXm5z2-pqMaY34ri-bZpr9HdkuYCN3CrvtkQycHZOeTeOAhmfWSFxTLSCaQZksjlYaCIbmGuYGZtqgaFtYxUpjJJEMCQ7bUMbxNJTw83fZvoDscgkLwPDU2N4JMYojkWiOrEsphEhOoNMePyKjfe74bOOXwBEfZqFo5McrWRDwy0qbgtulQaX9GLd5THRlIwZVveFsYrSxcDEyA1UDjGt1hsS9UhEn-mDSSeaJPCFDaNtzjQjCFA8vcwKJytHysJVM0ok3iVmcYqlJZHAdcvIa1JnIx7ZKyMD_3UDTJ1cc7i0JX48_Vrco0YRljaeghuGUs8HiTXFfmqh__vtvp_5afkW2aewx2_bVIY7XM9LlFIqvoIne8d40t01c
  priority: 102
  providerName: Springer Nature
Title Enhancing surface quality of metal parts manufactured via LPBF: ANN classifier and bayesian learning approach
URI https://link.springer.com/article/10.1007/s12008-024-01942-8
https://www.proquest.com/docview/3099944936
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1955-2505
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0068080
  issn: 1955-2513
  databaseCode: AFBBN
  dateStart: 20070401
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1955-2505
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0068080
  issn: 1955-2513
  databaseCode: BENPR
  dateStart: 20070401
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1955-2505
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0068080
  issn: 1955-2513
  databaseCode: AGYKE
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1955-2505
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0068080
  issn: 1955-2513
  databaseCode: U2A
  dateStart: 20070425
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1dT9swFL0q7Qt7QGwwrQwqP-xti9Y4TupMQqhBTRFsEUKr1D1Fjj8AiaZdPyb13-ObjwWQ4CkPTqzIvr73JPY5B-CLdrXKbKVE2gdzmPG0w5XkjvB0oI0NApMhUfhXElxM2OXUn7YgqbkweKyyzolFolZzif_Iv3sIZRgLveBs8ddB1yjcXa0tNERlraBOC4mxHehQVMZqQycaJdc3dW5Gn4mCIhn69u1816toNCWZrjwKQPFURshsnnheqhr8-WLLtKhE8T7sVRCSDMs5fw8tnX-Ad0-EBQ9gNsrvUEgjvyWrzdIIqUnJntySuSEzbRE3WdigWZGZyDdIbtgstSL_7gX5eR3FP8gwSYhEYH1vbN0kIlckE1uNjEtSGU3cklqP_BAm8ej3-YVTGSs40q64taNQ0iYLMiNsee6bARX2Q9ViQTkQoeCB9E3Q50ZLCyVDE-JOoXGNHjDlc5khAPgI7Xye609AKO2bwAs4ZxLNzNzQInaMCqUFkzSjXXDrMUxlpTqO5hcPaaOXXDphUpYW457yLnz9_8yi1Nx48-7jemrSav2t0iZauvCtnq6m-fXejt7u7TPs0iJC8ATgMbTXy40-sahknfVgh8fjHnSGcRQleB3_uRr1qgC0rRM6fAQzUOH2
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2V9gAcEJ9qaIE5wAks4vXasZEq1EKilKZWhVqpN7Pej1KJOGk-QPlz_DZm7DUBJHrrOc4eZp93Zrzz3gN4aUNrSsqUTPuQgXSRDVKj00BFNrGOQOBKJgof58nwTH46j8834GfLheGxyvZMrA9qM9H8jfxtxKWMlFmUvJ9eBewaxberrYWG8tYKZq-WGPPEjiO7-kEt3Hzv8CPt9yshBv3TD8PAuwwEmuC3CAzru5RJ6RTlqq7rCUVdGxVGuqcylSY6dkk3dVZTXZW5jK_NXOhsT5o41SVnQ1r3FmzJSGbU_G0d9POTz20uYF-LmpKZxRSNOIw8bach7zWjB4KnQDJJ59LfqXFd7_5zRVtnvsF9uOdLVtxvMPYANmz1EO7-IWT4CMb96isLd1QXOF_OnNIWG7bmCicOx5YqfJwSSOc4VtWSyRTLmTX4_VLh6ORg8A738xw1F_KXjvI0qspgqVaWGZ7ojS0usNU_fwxnNxLiJ7BZTSq7DShE1yVRkqZSs3lamFGHwCg0VkktStGBsI1hob3KOZttfCvW-syN86aQRR33Iu3A69__mTYaH9c-vdtuTeHf93mxRmcH3rTbtf75_6s9vX61F3B7eHo8KkaH-dEO3BE1Wnj6cBc2F7OlfUYV0aJ87mGH8OWmkf4LiV0ZNA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA46QfRB_InTqXnwTcvWNM1a36auTJ1lDw72VtI0mQPXja0T9t-b6w87RQWfm4aSu8t95e77DqFLacoo1JkSaB_UoMqShhMJx-CWZFJpJ1AhEIWffdbp08eBPVhh8afd7kVJMuM0gEpTnNSnkaqXxLesbE-gg8KlOqbX0QYFoQTt0X3SKu5imCuRUiJdW3-NbVo5bebnPb6mphJvfiuRppnH20U7OWTErczGe2hNxvtoe0VI8ACN2_ErCGfEQzxfzBQXEmdsySWeKDyWGmHjqXaSOR7zeAFkhsVMRvh9xHG3d-vd4JbvYwFAeqR0nsQ8jnDIlxIYljgfLDHEhf74Iep77Ze7jpEPUjCEjrDEiEDCJmSh4jodN1STcP1jqrGfaHKXO0zYijUcJYWGjq5yoTKoTCWbNLIdEULCP0KVeBLLY4QJaShmMcehAoaXma5G6OAFkeRUkJBUkVmcYSBylXEYdvEWlPrI2eRLQoP03AOniq4-35lmGht_rq4VpgnyeJsHFgBdSl2LVdF1Ya7y8e-7nfxv-QXa7N17QffBfzpFWyR1HmgGrKFKMlvIMw1QkvA89cEPPODafw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+surface+quality+of+metal+parts+manufactured+via+LPBF%3A+ANN+classifier+and+bayesian+learning+approach&rft.jtitle=International+journal+on+interactive+design+and+manufacturing&rft.au=Arunadevi%2C+M.&rft.au=Veeresha%2C+G.&rft.au=Kharche%2C+Anil+W.&rft.au=Suryawanshi%2C+Vinayak+P.&rft.date=2024-08-01&rft.issn=1955-2513&rft.eissn=1955-2505&rft.volume=18&rft.issue=6&rft.spage=4093&rft.epage=4101&rft_id=info:doi/10.1007%2Fs12008-024-01942-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12008_024_01942_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1955-2513&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1955-2513&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1955-2513&client=summon