Design of Network Medical Image Information Feature Diagnosis Method Based on Big Data
In the context of "smart healthcare", due to the substantial increase in medical data and patient diagnostic needs, conventional diagnostic methods are gradually unable to meet the current diagnostic requirements. Therefore, a network medical image information feature diagnosis method base...
Saved in:
| Published in | Mobile networks and applications Vol. 28; no. 5; pp. 1751 - 1761 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.10.2023
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1383-469X 1572-8153 |
| DOI | 10.1007/s11036-023-02237-0 |
Cover
| Abstract | In the context of "smart healthcare", due to the substantial increase in medical data and patient diagnostic needs, conventional diagnostic methods are gradually unable to meet the current diagnostic requirements. Therefore, a network medical image information feature diagnosis method based on big data is designed to improve the effect of disease diagnosis. The convolutional deep belief network is used to extract the information features of the network medical image in the network medical image. The t-SNE algorithm is used to select the more valuable network medical image information features in the extracted features. Using stacking to integrate AdaBoost and Bagging algorithm, the disease diagnosis results are obtained. The artificial bee colony algorithm is used to optimize the weights of the multi-level ensemble learning algorithm to improve the accuracy of disease diagnosis. In the multi-level ensemble learning algorithm after weight optimization, the selected network medical image information features are input and the disease diagnosis results are output. Experiments show that this method can effectively extract the information features of network medical images and accurately diagnose diseases. At different spatial resolutions of network medical images, the Kappa values of disease diagnosis of this method are high, and the lowest Kappa value is about 0.875, which means that this method has high disease diagnosis performance. |
|---|---|
| AbstractList | In the context of "smart healthcare", due to the substantial increase in medical data and patient diagnostic needs, conventional diagnostic methods are gradually unable to meet the current diagnostic requirements. Therefore, a network medical image information feature diagnosis method based on big data is designed to improve the effect of disease diagnosis. The convolutional deep belief network is used to extract the information features of the network medical image in the network medical image. The t-SNE algorithm is used to select the more valuable network medical image information features in the extracted features. Using stacking to integrate AdaBoost and Bagging algorithm, the disease diagnosis results are obtained. The artificial bee colony algorithm is used to optimize the weights of the multi-level ensemble learning algorithm to improve the accuracy of disease diagnosis. In the multi-level ensemble learning algorithm after weight optimization, the selected network medical image information features are input and the disease diagnosis results are output. Experiments show that this method can effectively extract the information features of network medical images and accurately diagnose diseases. At different spatial resolutions of network medical images, the Kappa values of disease diagnosis of this method are high, and the lowest Kappa value is about 0.875, which means that this method has high disease diagnosis performance. |
| Author | Li, Wei Liu, Hui |
| Author_xml | – sequence: 1 givenname: Wei surname: Li fullname: Li, Wei organization: Medical Library, Peking University – sequence: 2 givenname: Hui surname: Liu fullname: Liu, Hui email: liuhui@pumc.edu.cn organization: Institute of Medical Information, Chinese Academy of Medical Sciences & Peking Union Medical College |
| BookMark | eNp9kMtOAyEUQImpiW31B1yRuB69DPOApW2tNvGxUeOOIDAjtR0q0Bj_XuyYmLjogsDiHO7NGaFB5zqD0CmBcwJQXwRCgFYZ5DSdnNYZHKAhKes8Y6Skg_SmjGZFxV-O0CiEJQCUJSuG6Hlmgm077Bp8b-Kn8-_4zmir5Aov1rI1eNE1zq9ltK7DcyPj1hs8s7LtXLAhsfHNaTyRwWiciIlt8UxGeYwOG7kK5uT3HqOn-dXj9Ca7fbheTC9vM0UJj5muNCsMQK5ykpdKVbVWijItDWNFXROtDAfa8KIpKXmVjayrxBDJQDYF14SO0Vn_78a7j60JUSzd1ndppKDAOS94ATRReU8p70LwphEbb9fSfwkC4qef6PuJ1E_s-glIEvsnKRt3HaKXdrVfpb0a0pyuNf5vqz3WN-__hcM |
| CitedBy_id | crossref_primary_10_1007_s11036_024_02292_1 |
| Cites_doi | 10.1097/SCS.0000000000007369 10.1016/j.ophtha.2021.01.019 10.1049/ipr2.12358 10.1109/TII.2021.3098010 10.1109/TMI.2021.3057496 10.1016/j.inffus.2023.02.005 10.1016/j.knosys.2022.108292 10.1149/10701.16785ecst 10.1053/j.gastro.2021.02.052 10.1149/10701.7589ecst 10.1007/s10462-020-09949-9 10.1038/s41467-021-26114-0 10.1109/TMI.2021.3060497 10.1049/sil2.12018 10.1016/j.compbiomed.2022.106338 10.4018/JITR.2021040103 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 3V. 7SC 7SP 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.1007/s11036-023-02237-0 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1572-8153 |
| EndPage | 1761 |
| ExternalDocumentID | 10_1007_s11036_023_02237_0 |
| GroupedDBID | -59 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 85S 8AO 8FE 8FG 8FL 8FW 8TC 8UJ 8US 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACM ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADL ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCEE ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HGAVV HMJXF HQYDN HRMNR HVGLF HZ~ I-F I07 I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCO SCV SDH SDM SHX SISQX SJN SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W7O WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR _50 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AETEA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7SP 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c319t-d6d84e002c2125cc67dcc38dae884771dce903f94f531bafa76c671a80af49d13 |
| IEDL.DBID | AGYKE |
| ISSN | 1383-469X |
| IngestDate | Tue Sep 30 07:16:58 EDT 2025 Thu Apr 24 22:58:16 EDT 2025 Wed Oct 01 02:45:42 EDT 2025 Fri Feb 21 02:39:06 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Network medical image Information feature Big data Deep belief network Disease diagnosis t-SNE algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-d6d84e002c2125cc67dcc38dae884771dce903f94f531bafa76c671a80af49d13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3099949403 |
| PQPubID | 26070 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_3099949403 crossref_primary_10_1007_s11036_023_02237_0 crossref_citationtrail_10_1007_s11036_023_02237_0 springer_journals_10_1007_s11036_023_02237_0 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20231000 2023-10-00 20231001 |
| PublicationDateYYYYMMDD | 2023-10-01 |
| PublicationDate_xml | – month: 10 year: 2023 text: 20231000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | The Journal of SPECIAL ISSUES on Mobility of Systems, Users, Data and Computing |
| PublicationTitle | Mobile networks and applications |
| PublicationTitleAbbrev | Mobile Netw Appl |
| PublicationYear | 2023 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Nezu, Usui, Saito (CR9) 2021; 128 Thamsen, Yevtushenko, Gundelwein (CR12) 2021; 40 Kugunavar, Prabhakar (CR4) 2021; 14 Rüdiger, Madesta, Nielsen (CR18) 2021; 70 Collins, Yi, Dayuha (CR2) 2021; 160 Tiwari, Saha, Bhattacharyya (CR6) 2022; 242 Wen, Liu, Liu (CR5) 2023; 153 Liu, Hou, Liu (CR14) 2023; 35 Karthik, Ramkumar (CR19) 2022; 107 Geisler, Agarwal, Hallac (CR7) 2021; 32 Tapas, Péricles, Galdino (CR11) 2021; 54 Liu, Huang, Wang (CR13) 2023; 96 Sharma, Xu (CR10) 2021; 45 Lali, Chong, Omidi (CR8) 2021; 12 Li, Meng, Ma (CR1) 2022; 18 Pei, Fan, Tang (CR3) 2021; 15 Girum, Créhange, Lalande (CR17) 2021; 40 Zhao, Wang, Yang (CR20) 2022; 39 Siar, Teshnehlab (CR15) 2022; 16 Beram, Pallathadka, Patra (CR16) 2022; 107 C Wen (2237_CR5) 2023; 153 B Thamsen (2237_CR12) 2021; 40 B Karthik (2237_CR19) 2022; 107 KB Girum (2237_CR17) 2021; 40 S Liu (2237_CR13) 2023; 96 S Tapas (2237_CR11) 2021; 54 X Liu (2237_CR14) 2023; 35 GW Zhao (2237_CR20) 2022; 39 S Kugunavar (2237_CR4) 2021; 14 A Tiwari (2237_CR6) 2022; 242 X Pei (2237_CR3) 2021; 15 M Siar (2237_CR15) 2022; 16 CJ Collins (2237_CR2) 2021; 160 R Lali (2237_CR8) 2021; 12 S Rüdiger (2237_CR18) 2021; 70 N Nezu (2237_CR9) 2021; 128 EL Geisler (2237_CR7) 2021; 32 J Li (2237_CR1) 2022; 18 D Sharma (2237_CR10) 2021; 45 SM Beram (2237_CR16) 2022; 107 |
| References_xml | – volume: 32 start-page: 967 issue: 3 year: 2021 end-page: 969 ident: CR7 article-title: A role for artificial intelligence in the classification of craniofacial anomalies publication-title: J Craniofacial Surg doi: 10.1097/SCS.0000000000007369 – volume: 128 start-page: 1197 issue: 8 year: 2021 end-page: 1208 ident: CR9 article-title: Machine learning approach for intraocular disease prediction based on aqueous humor immune mediator profiles publication-title: Ophthalmology doi: 10.1016/j.ophtha.2021.01.019 – volume: 16 start-page: 416 issue: 2 year: 2022 end-page: 441 ident: CR15 article-title: A combination of feature extraction methods and deep learning for brain tumour classification publication-title: IET Image Proc doi: 10.1049/ipr2.12358 – volume: 39 start-page: 184 issue: 02 year: 2022 end-page: 190 ident: CR20 article-title: Simulation of Medical Image Segmentation Based on Attention and Pyramid Fusion publication-title: Computer Simulation – volume: 18 start-page: 2021 issue: 3 year: 2022 end-page: 2031 ident: CR1 article-title: A federated learning based privacy-preserving smart healthcare system publication-title: IEEE Trans Industr Inf doi: 10.1109/TII.2021.3098010 – volume: 40 start-page: 1438 issue: 5 year: 2021 end-page: 1449 ident: CR12 article-title: Synthetic database of aortic morphometry and hemodynamics: overcoming medical imaging data availability publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2021.3057496 – volume: 96 start-page: 281 year: 2023 end-page: 296 ident: CR13 article-title: Visual tracking in complex scenes: a location fusion mechanism based on the combination of multiple visual cognition flows publication-title: Information Fusion doi: 10.1016/j.inffus.2023.02.005 – volume: 242 start-page: 108292 year: 2022 ident: CR6 article-title: A knowledge infused context driven dialogue agent for disease diagnosis using hierarchical reinforcement learning publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2022.108292 – volume: 107 start-page: 16785 issue: 1 year: 2022 end-page: 16795 ident: CR19 article-title: Comparison of feature extraction technique for segmentation in human iris recognition under uncontrolled environment using cnn algorithm with SVM classifier publication-title: ECS Trans doi: 10.1149/10701.16785ecst – volume: 160 start-page: 2367 issue: 7 year: 2021 end-page: 2384 ident: CR2 article-title: Direct measurement of ATP7B peptides is highly effective in the diagnosis of Wilson disease publication-title: Gastroenterology doi: 10.1053/j.gastro.2021.02.052 – volume: 107 start-page: 7589 issue: 1 year: 2022 end-page: 7596 ident: CR16 article-title: A machine learning based framework for pre-processing and classification of medical images publication-title: ECS Trans doi: 10.1149/10701.7589ecst – volume: 54 start-page: 4097 issue: 6 year: 2021 end-page: 4135 ident: CR11 article-title: Grammar-based automatic programming for medical data classification: an experimental study publication-title: Artif Intell Rev doi: 10.1007/s10462-020-09949-9 – volume: 70 start-page: 101996 issue: 12 year: 2021 end-page: 102010 ident: CR18 article-title: Multi-scale fully convolutional neural networks for histopathology image segmentation: from nuclear aberrations to the global tissue architecture publication-title: Med Image Anal – volume: 12 start-page: 5852 year: 2021 ident: CR8 article-title: Calibrated rare variant genetic risk scores for complex disease prediction using large exome sequence repositories publication-title: Nat Commun doi: 10.1038/s41467-021-26114-0 – volume: 45 start-page: 788 issue: 7 year: 2021 end-page: 789 ident: CR10 article-title: Longitudinal microbiome and machine learning: a cnn-lstm based neural network model for disease prediction publication-title: Genet Epidemiol – volume: 35 start-page: 183 year: 2023 end-page: 195 ident: CR14 article-title: Attention-based multimodal glioma segmentation with multi-attention layers for small-intensity dissimilarity publication-title: J King Saud Univ - Comput Inf Sci – volume: 40 start-page: 1542 issue: 6 year: 2021 end-page: 1554 ident: CR17 article-title: Learning with context feedback loop for robust medical image segmentation publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2021.3060497 – volume: 15 start-page: 80 issue: 2 year: 2021 end-page: 87 ident: CR3 article-title: Temporal pyramid attention-based spatiotemporal fusion model for parkinson's disease diagnosis from gait data publication-title: IET Signal Proc doi: 10.1049/sil2.12018 – volume: 153 start-page: 106338 year: 2023 ident: CR5 article-title: ACSN: Attention capsule sampling network for diagnosing COVID-19 based on chest CT scans publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.106338 – volume: 14 start-page: 48 issue: 2 year: 2021 end-page: 66 ident: CR4 article-title: Content-based medical image retrieval using delaunay triangulation segmentation technique publication-title: J Inf Technol Res doi: 10.4018/JITR.2021040103 – volume: 107 start-page: 16785 issue: 1 year: 2022 ident: 2237_CR19 publication-title: ECS Trans doi: 10.1149/10701.16785ecst – volume: 40 start-page: 1542 issue: 6 year: 2021 ident: 2237_CR17 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2021.3060497 – volume: 15 start-page: 80 issue: 2 year: 2021 ident: 2237_CR3 publication-title: IET Signal Proc doi: 10.1049/sil2.12018 – volume: 18 start-page: 2021 issue: 3 year: 2022 ident: 2237_CR1 publication-title: IEEE Trans Industr Inf doi: 10.1109/TII.2021.3098010 – volume: 16 start-page: 416 issue: 2 year: 2022 ident: 2237_CR15 publication-title: IET Image Proc doi: 10.1049/ipr2.12358 – volume: 45 start-page: 788 issue: 7 year: 2021 ident: 2237_CR10 publication-title: Genet Epidemiol – volume: 160 start-page: 2367 issue: 7 year: 2021 ident: 2237_CR2 publication-title: Gastroenterology doi: 10.1053/j.gastro.2021.02.052 – volume: 39 start-page: 184 issue: 02 year: 2022 ident: 2237_CR20 publication-title: Computer Simulation – volume: 14 start-page: 48 issue: 2 year: 2021 ident: 2237_CR4 publication-title: J Inf Technol Res doi: 10.4018/JITR.2021040103 – volume: 12 start-page: 5852 year: 2021 ident: 2237_CR8 publication-title: Nat Commun doi: 10.1038/s41467-021-26114-0 – volume: 96 start-page: 281 year: 2023 ident: 2237_CR13 publication-title: Information Fusion doi: 10.1016/j.inffus.2023.02.005 – volume: 242 start-page: 108292 year: 2022 ident: 2237_CR6 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2022.108292 – volume: 35 start-page: 183 year: 2023 ident: 2237_CR14 publication-title: J King Saud Univ - Comput Inf Sci – volume: 70 start-page: 101996 issue: 12 year: 2021 ident: 2237_CR18 publication-title: Med Image Anal – volume: 128 start-page: 1197 issue: 8 year: 2021 ident: 2237_CR9 publication-title: Ophthalmology doi: 10.1016/j.ophtha.2021.01.019 – volume: 40 start-page: 1438 issue: 5 year: 2021 ident: 2237_CR12 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2021.3057496 – volume: 32 start-page: 967 issue: 3 year: 2021 ident: 2237_CR7 publication-title: J Craniofacial Surg doi: 10.1097/SCS.0000000000007369 – volume: 54 start-page: 4097 issue: 6 year: 2021 ident: 2237_CR11 publication-title: Artif Intell Rev doi: 10.1007/s10462-020-09949-9 – volume: 107 start-page: 7589 issue: 1 year: 2022 ident: 2237_CR16 publication-title: ECS Trans doi: 10.1149/10701.7589ecst – volume: 153 start-page: 106338 year: 2023 ident: 2237_CR5 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.106338 |
| SSID | ssj0005584 |
| Score | 2.3802829 |
| Snippet | In the context of "smart healthcare", due to the substantial increase in medical data and patient diagnostic needs, conventional diagnostic methods are... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1751 |
| SubjectTerms | Algorithms Belief networks Big Data Communications Engineering Computer Communication Networks Diagnosis Diagnostic systems Disease Electrical Engineering Engineering Ensemble learning Feature extraction IT in Business Machine learning Medical diagnosis Medical imaging Networks Search algorithms Swarm intelligence |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5BWWBAPEWhIA9sYJHUeTgDQpQWARIVQhR1i_xElaAtpfx_zolDAIkOmXL2cOd7JL77PoDjMJQ8Ve2ExlYKGmWRopmxinKuleayreLYDTjf95ObQXQ3jIdL0K9mYVxbZRUTi0CtJ8r9Iz9jrpTBvQJ2MX2njjXK3a5WFBrCUyvo8wJibBlW2g4ZqwErnV7_4bFu-oh5SXPLGcUPw6EfoymH6UIHzos5DJ82S2nwO1XV9eefK9MiE11vwLovIcllafNNWDLjLVj7ASy4Dc_dojGDTCzpl33exN_IkNs3jCDETyE5qxBXBX7ODOmWXXejD5R1tNKkgxlOE5TojF5IV8zFDgyue09XN9QzKFCFrjWnOtE8Mhj0FKojVipJtVKMa2E4ZqU01MpkAbNZZNEVpbAiTVAmFDwQNsp0yHahMZ6MzR6QSErLA5bqQIooUEZkaEybslDHjrdGNiGslJUrDy_uWC5e8xoY2Sk4RwXnhYLzoAkn32umJbjGQulWZYPcO9pHXh-LJpxWdqlf_7_b_uLdDmDVEcuXbXstaMxnn-YQy4-5PPJn6gvzsdUl priority: 102 providerName: ProQuest |
| Title | Design of Network Medical Image Information Feature Diagnosis Method Based on Big Data |
| URI | https://link.springer.com/article/10.1007/s11036-023-02237-0 https://www.proquest.com/docview/3099949403 |
| Volume | 28 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1572-8153 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0005584 issn: 1383-469X databaseCode: ADMLS dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1572-8153 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0005584 issn: 1383-469X databaseCode: 8FG dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1572-8153 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005584 issn: 1383-469X databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1572-8153 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005584 issn: 1383-469X databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB7RcKEHWl4iQCMfemuNduN9eI9Jk_BoiVAhKJxWfiIEBEQ2l_76jne93YIAicNqD5611p6xZyx_8w3A1zCUPFXdhMZWChplkaKZsYpyrpXmsqvi2CU4n4yTw0l0PI2nPilsXqPd6yvJcqdukt1CR56LPgafLkspHtSXS76tFiz3Di5_DhtoR8yrYracUTz-TX2yzMu9PHVITZT57GK09DejTzCp_7SCmdzsLwq5r_48I3F871A-w6oPQEmvspg1WDKzdfj4Hy3hBlwMSlgHubdkXKHEib_PIUd3uP8Qn8PkdEpcDLl4NGRQYfau5yjrilKTPvpHTVCif31FBqIQmzAZDc9_HFJff4EqXJgF1YnmkcEtU6F_i5VKUq0U41oYjj4tDbUyWcBsFllcyFJYkSYoEwoeCBtlOmRb0Jrdz8w2kEhKywOW6kCKKFBGZGgKNmWhjl3VG9mGsFZCrjw5uauRcZs3tMpuznKcs7ycszxow7d_3zxU1BxvSu_Vus39Mp3nzMXHaKABa8P3WlVN8-u97bxPfBdWXJn6CgS4B63icWG-YDBTyA584KODDlrw4OTXWcdbMr77w_Hpb2yddHt_ARnl7Us |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOACHqi1ULKWtD-2pWE1iJ3EOCLFd0C6PFUJQ7S31E60Eu8Auqvrn-ts6TpymrQQ3DjllMofx55lxPDMfwMc4ViLXSUZTpyTlBde0sE5TIYw2QiU6TX2D8-kw61_yo1E6WoBfTS-ML6tsfGLlqM1U-3_kX5hPZVBXxPZu76hnjfK3qw2FhgzUCma3GjEWGjuO7c8feISb7Q56uN6fkuTw4OJrnwaWAaoRfnNqMiO4Rceg0YunWme50ZoJI61Az53HRtsiYq7gDuGqpJN5hjKxFJF0vDAxQ72LsMwZL_Dwt9w9GJ6dt0UmqahpdQWjeBAdhbadunkv9sOAMWbik7CcRv-Gxjbf_e-Ktop8hy_hRUhZyX6NsVewYCevYe2vQYbr8K1XFYKQqSPDuq6chBsgMrhBj0VC15NHAfFZ58O9Jb26ym88Q1lPY026GFENQYnu-Ir05FxuwOWz2PINLE2mE7sJhCvlRMRyEynJI21lgeBxOYtN6nlyVAfixlilDuPMPavGddkOYvYGLtHAZWXgMurA5z_f3NbDPJ6U3m7WoAwbe1a2MOzATrMu7evHtW09re0DrPQvTk_Kk8Hw-C2selL7umRwG5bm9w_2HaY-c_U-4IvA9-eG9G-ynBK4 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB4FKiE4oLaACIWyh_ZEV9heP9YHhEhNIAWiHgjKzewTIUFCSRDir_HrOutHTZHgloNPHs9h5vPM2DszH8A335c8UUFMIysFDdNQ0dRYRTnXSnMZqChyA85n_fh4EP4aRsMWPNezMK6tso6JRaDWY-X-ke8yV8qgLo_t2qot4nfW3b_7Qx2DlDtprek0SoicmKdH_Hyb7PUy9PX3IOgenv88phXDAFUIvSnVseahwaCgMIJHSsWJVopxLQzHqJ34WpnUYzYNLUJVCiuSGGV8wT1hw1T7DPXOwYfEbXF3U-rdo6a9JOIloS5nFD9Bh9XATjm257s1wJgt8QpYQr3_k2JT6b46nC1yXvcjLFfFKjko0fUJWmb0GZZerDBcgYusaAEhY0v6ZUc5qc5-SO8WYxWp5p2c_4mrNx_uDcnK_r7rCco6AmvSwVyqCUp0rq9IJqZiFQYzseQazI_GI7MOJJTSco8l2pMi9JQRKcLGJszXkWPIkW3wa2Plqlpk7vg0bvJmBbMzcI4GzgsD514bdv49c1eu8XhXerP2QV690pO8AWAbftR-aW6_rW3jfW3bsIBAzk97_ZMvsOjY7MtewU2Yn94_mC2seabyawEuApezRvNfHh8QUg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+Network+Medical+Image+Information+Feature+Diagnosis+Method+Based+on+Big+Data&rft.jtitle=Mobile+networks+and+applications&rft.au=Li%2C+Wei&rft.au=Liu%2C+Hui&rft.date=2023-10-01&rft.pub=Springer+US&rft.issn=1383-469X&rft.eissn=1572-8153&rft.volume=28&rft.issue=5&rft.spage=1751&rft.epage=1761&rft_id=info:doi/10.1007%2Fs11036-023-02237-0&rft.externalDocID=10_1007_s11036_023_02237_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1383-469X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1383-469X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1383-469X&client=summon |