Machine learning algorithms for predicting electrical load demand: an evaluation and comparison

Forecasting of load is essential for operating power systems. India recently witnessed one of the worst power crisis with the highest ever power demand of 207 GW on April 29, 2022. The demand in the month of May and June 2022 was estimated to reach 215 GW. The peak demand this year 2023, according t...

Full description

Saved in:
Bibliographic Details
Published inSadhana (Bangalore) Vol. 49; no. 1; p. 40
Main Authors Goswami, Kakoli, Kandali, Aditya Bihar
Format Journal Article
LanguageEnglish
Published New Delhi Springer India 25.01.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0973-7677
0256-2499
0973-7677
DOI10.1007/s12046-023-02354-2

Cover

Abstract Forecasting of load is essential for operating power systems. India recently witnessed one of the worst power crisis with the highest ever power demand of 207 GW on April 29, 2022. The demand in the month of May and June 2022 was estimated to reach 215 GW. The peak demand this year 2023, according to the electricity ministry, is predicted to be around 230 GW from April to June. The inability to meet certain fundamental issues as power can take a toll on any country’s economy. Proper prediction helps in proper decision making and planning. The main objective of this paper is to predict day ahead electrical load demand for Assam. Statistical and Machine Learning Algorithms has been studied. The study has been carried out using real-time data for the years 2016, 2017 and 2018. The paper presents a detailed analysis of the different hyper parameters of the deep learning models and their effect is seen on the learning efficiency. A novel stacked forecasting model is proposed using neural networks as base learners and CatBoost as the meta-learner. The performance of the proposed model has been evaluated and compared with individual models in terms of training time and accuracy using different error metrics namely MAE, MSE, RMSE, MAPE and R 2 score. A comparison of the proposed prediction model with the prediction models available in literature has been presented. The conclusion states that both the statistical and machine learning algorithms used in this study act as useful tools for daily load forecasting with considerable accuracy; yet machine learning algorithm outperforms the statistical methods. The entire work has been done in Google Colaboratory using Python as the programming language.
AbstractList Forecasting of load is essential for operating power systems. India recently witnessed one of the worst power crisis with the highest ever power demand of 207 GW on April 29, 2022. The demand in the month of May and June 2022 was estimated to reach 215 GW. The peak demand this year 2023, according to the electricity ministry, is predicted to be around 230 GW from April to June. The inability to meet certain fundamental issues as power can take a toll on any country’s economy. Proper prediction helps in proper decision making and planning. The main objective of this paper is to predict day ahead electrical load demand for Assam. Statistical and Machine Learning Algorithms has been studied. The study has been carried out using real-time data for the years 2016, 2017 and 2018. The paper presents a detailed analysis of the different hyper parameters of the deep learning models and their effect is seen on the learning efficiency. A novel stacked forecasting model is proposed using neural networks as base learners and CatBoost as the meta-learner. The performance of the proposed model has been evaluated and compared with individual models in terms of training time and accuracy using different error metrics namely MAE, MSE, RMSE, MAPE and R 2 score. A comparison of the proposed prediction model with the prediction models available in literature has been presented. The conclusion states that both the statistical and machine learning algorithms used in this study act as useful tools for daily load forecasting with considerable accuracy; yet machine learning algorithm outperforms the statistical methods. The entire work has been done in Google Colaboratory using Python as the programming language.
Forecasting of load is essential for operating power systems. India recently witnessed one of the worst power crisis with the highest ever power demand of 207 GW on April 29, 2022. The demand in the month of May and June 2022 was estimated to reach 215 GW. The peak demand this year 2023, according to the electricity ministry, is predicted to be around 230 GW from April to June. The inability to meet certain fundamental issues as power can take a toll on any country’s economy. Proper prediction helps in proper decision making and planning. The main objective of this paper is to predict day ahead electrical load demand for Assam. Statistical and Machine Learning Algorithms has been studied. The study has been carried out using real-time data for the years 2016, 2017 and 2018. The paper presents a detailed analysis of the different hyper parameters of the deep learning models and their effect is seen on the learning efficiency. A novel stacked forecasting model is proposed using neural networks as base learners and CatBoost as the meta-learner. The performance of the proposed model has been evaluated and compared with individual models in terms of training time and accuracy using different error metrics namely MAE, MSE, RMSE, MAPE and R2 score. A comparison of the proposed prediction model with the prediction models available in literature has been presented. The conclusion states that both the statistical and machine learning algorithms used in this study act as useful tools for daily load forecasting with considerable accuracy; yet machine learning algorithm outperforms the statistical methods. The entire work has been done in Google Colaboratory using Python as the programming language.
ArticleNumber 40
Author Kandali, Aditya Bihar
Goswami, Kakoli
Author_xml – sequence: 1
  givenname: Kakoli
  orcidid: 0000-0002-1566-3339
  surname: Goswami
  fullname: Goswami, Kakoli
  email: goswamikakolires@gmail.com
  organization: Department of Electrical Engineering, Jorhat Engineering College
– sequence: 2
  givenname: Aditya Bihar
  surname: Kandali
  fullname: Kandali, Aditya Bihar
  organization: Department of Electrical Engineering, Jorhat Engineering College
BookMark eNp9kE1PwzAMhiM0JLbBH-AUiXMhTZqk5YYmvqQhLnCO0sTdMrXJSDok_j3digTisINlW34f23pnaOKDB4Quc3KdEyJvUk5JITJC2T54kdETNCWVZJkUUk7-1GdoltKGECpJyaZIvWizdh5wCzp651dYt6sQXb_uEm5CxNsI1pl-P4EWTB-d0S1ug7bYQqe9vcXaY_jU7U73Lvihs9iEbqujS8Gfo9NGtwkufvIcvT_cvy2esuXr4_PibpkZlld9ZjnnNSVca2IKU0DOJBOSGpELDrKkDdjaNJJKsESwEggTljdNXVVMNrqq2RxdjXu3MXzsIPVqE3bRDycVo1wSKkguB1U5qkwMKUVolHH94e0-ateqnKi9nWq0Uw1WqoOdig4o_Yduo-t0_DoOsRFKg9ivIP5-dYT6Bugyiqw
CitedBy_id crossref_primary_10_3390_app14219766
crossref_primary_10_1007_s42979_024_03483_z
Cites_doi 10.1016/j.jclepro.2019.119264
10.1016/j.procs.2017.11.374
10.1016/j.apenergy.2020.115410
10.1109/TSG.2017.2686012
10.1080/14786451.2021.1873339
10.1109/TPWRS.2020.3028133
10.1016/j.energy.2018.06.012
10.1049/gtd2.12214
10.1109/TPWRS.2019.2963109
10.1109/TGCN.2020.2987304
10.1016/j.jhydrol.2019.04.085
10.1109/TPWRS.2020.3042389
10.1016/j.ijforecast.2019.03.017
10.1016/j.rser.2020.110114
10.1016/j.epsr.2020.106489
10.1109/TPWRS.2020.3036230
10.1007/s42835-020-00424-7
10.2166/nh.2020.026
10.35833/MPCE.2020.000321
10.1016/j.ijforecast.2020.06.008
10.1109/EEM.2019.8916412
10.1109/ComPE49325.2020.9200031
10.23919/CCC50068.2020.9188856
10.23919/ChiCC.2019.8865324
10.1109/IACS.2018.8355458
ContentType Journal Article
Copyright Indian Academy of Sciences 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Indian Academy of Sciences 2024.
Copyright_xml – notice: Indian Academy of Sciences 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Indian Academy of Sciences 2024.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AEUYN
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s12046-023-02354-2
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Technology Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 0973-7677
ExternalDocumentID 10_1007_s12046_023_02354_2
GroupedDBID -5B
-5G
-BR
-EM
-~C
-~X
.86
.VR
06D
0R~
0VY
123
1N0
203
29P
29~
2J2
2JN
2JY
2KG
2KM
2LR
2WC
2~H
30V
4.4
406
408
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABDBF
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABLLD
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFLOW
AFQWF
AFWTZ
AFZKB
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BGNMA
CS3
CSCUP
DDRTE
DNIVK
DPUIP
E3Z
EAD
EAP
EBLON
EBS
EIOEI
EJD
EOJEC
ESBYG
ESX
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GROUPED_DOAJ
HG5
HG6
HMJXF
HRMNR
I-F
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
KQ8
LLZTM
M4Y
MA-
MK~
NF0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OBODZ
OK1
P19
P2P
P9P
PF0
PT4
PT5
QOK
QOS
R89
R9I
RAB
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TR2
TSG
TSK
TSV
TUS
U2A
UG4
UOJIU
UTJUX
VC2
W48
WK8
XSB
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
_50
~8M
~A9
~EX
AAPKM
AAYXX
ABDBE
ABRTQ
AFDZB
AFOHR
AHPBZ
ATHPR
CITATION
OVT
8FE
8FG
ABJCF
AEUYN
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P62
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-c319t-d555b205aa0c4c4e1373672c6165e782fedbcf727ed0638e036d5ffb9937fa9b3
IEDL.DBID U2A
ISSN 0973-7677
0256-2499
IngestDate Sat Oct 11 06:55:40 EDT 2025
Wed Oct 01 04:21:06 EDT 2025
Thu Apr 24 23:11:54 EDT 2025
Fri Feb 21 02:41:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords time series analysis
computational intelligence
machine learning
supervised learning
Electrical load forecasting
deep neural network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-d555b205aa0c4c4e1373672c6165e782fedbcf727ed0638e036d5ffb9937fa9b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1566-3339
PQID 3257026017
PQPubID 2043821
ParticipantIDs proquest_journals_3257026017
crossref_citationtrail_10_1007_s12046_023_02354_2
crossref_primary_10_1007_s12046_023_02354_2
springer_journals_10_1007_s12046_023_02354_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-25
PublicationDateYYYYMMDD 2024-01-25
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-25
  day: 25
PublicationDecade 2020
PublicationPlace New Delhi
PublicationPlace_xml – name: New Delhi
– name: Dordrecht
PublicationSubtitle Published by the Indian Academy of Sciences
PublicationTitle Sadhana (Bangalore)
PublicationTitleAbbrev Sādhanā
PublicationYear 2024
Publisher Springer India
Springer Nature B.V
Publisher_xml – name: Springer India
– name: Springer Nature B.V
References Fan, Wang, Zhang, Ma, Wu (CR22) 2020; 248
CR19
Rai, De (CR29) 2021; 40
Smyl (CR7) 2020; 36
He, Li, Liu, Chen, Shahidehpour, Chen (CR18) 2021; 15
Wang, Chen, Zhang, Chen, Xin (CR12) 2021; 9
Atef, Eltawil (CR3) 2020; 187
Zhang, Wei, Li, Tan, Zhou (CR9) 2018; 158
Hewamalage, Bergmeir, Bandara (CR14) 2021; 37
Wang, Chen, Chen, Zeng, Kong, Sun (CR17) 2021; 36
Von Krannichfeldt, Wang, Hug (CR16) 2021; 36
CR2
Tan, Yuan, Li, Su, Li, He (CR5) 2020; 35
CR6
Lai, Yang, Pan, Zhang, Yuan, Ng (CR15) 2021; 36
CR28
Xu, Jiang, Zhang, Li, Zhang, Fu (CR1) 2020; 51
Wang, Mao, Wilamowski, Nelms (CR10) 2020; 4
CR27
CR26
CR25
Shi, Xu, Li (CR8) 2018; 9
CR24
CR21
CR20
He (CR13) 2017; 122
Kwon, Park, Song (CR11) 2020; 15
Chitalia, Pipattanasomporn, Garg Vand Rahman (CR4) 2020; 278
Huang, Wu, Ma, Zhang, Fan, Yu (CR23) 2019; 574
Ağbulut, Güre, Biçen (CR30) 2021; 135
H Shi (2354_CR8) 2018; 9
J Wang (2354_CR12) 2021; 9
2354_CR26
2354_CR27
2354_CR24
2354_CR25
M Tan (2354_CR5) 2020; 35
2354_CR28
Y Wang (2354_CR17) 2021; 36
G Chitalia (2354_CR4) 2020; 278
BS Kwon (2354_CR11) 2020; 15
S Atef (2354_CR3) 2020; 187
Ü Ağbulut (2354_CR30) 2021; 135
2354_CR2
2354_CR20
H Hewamalage (2354_CR14) 2021; 37
2354_CR21
W Xu (2354_CR1) 2020; 51
W He (2354_CR13) 2017; 122
2354_CR6
L Wang (2354_CR10) 2020; 4
J Fan (2354_CR22) 2020; 248
S Rai (2354_CR29) 2021; 40
S He (2354_CR18) 2021; 15
2354_CR19
J Zhang (2354_CR9) 2018; 158
G Huang (2354_CR23) 2019; 574
L Von Krannichfeldt (2354_CR16) 2021; 36
S Smyl (2354_CR7) 2020; 36
CS Lai (2354_CR15) 2021; 36
References_xml – volume: 248
  start-page: 119264
  year: 2020
  ident: CR22
  article-title: Predicting daily diffuse horizontal solar radiation in various climatic regions of China using support vector machine and tree-based soft computing models with local and extrinsic climatic data
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.119264
– ident: CR2
– volume: 122
  start-page: 308
  year: 2017
  end-page: 314
  ident: CR13
  article-title: Load forecasting via deep neural networks
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2017.11.374
– volume: 278
  start-page: 115410
  year: 2020
  ident: CR4
  article-title: Robust short-term electrical load forecasting framework for commercial buildings using deep recurrent neural networks
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.115410
– volume: 9
  start-page: 5271
  year: 2018
  end-page: 5280
  ident: CR8
  article-title: Deep learning for household load forecasting-A novel pooling deep RNN
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2017.2686012
– volume: 40
  start-page: 821
  issue: 9
  year: 2021
  end-page: 839
  ident: CR29
  article-title: Analysis of classical and machine learning based short-term and mid-term load forecasting for smart grid
  publication-title: Int. J. Sustain. Energy
  doi: 10.1080/14786451.2021.1873339
– ident: CR6
– volume: 36
  start-page: 1984
  issue: 3
  year: 2021
  end-page: 1997
  ident: CR17
  article-title: Short-term load forecasting for industrial customers based on TCN-LightGBM
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2020.3028133
– ident: CR25
– ident: CR27
– volume: 158
  start-page: 774
  year: 2018
  end-page: 781
  ident: CR9
  article-title: Short term electricity load forecasting using a hybrid model
  publication-title: Energy
  doi: 10.1016/j.energy.2018.06.012
– volume: 15
  start-page: 2773
  issue: 19
  year: 2021
  end-page: 2786
  ident: CR18
  article-title: A per-unit curve rotated decoupling method for CNN-TCN based day-ahead load forecasting
  publication-title: IET Gener. Transm. Distrib.
  doi: 10.1049/gtd2.12214
– volume: 35
  start-page: 2937
  year: 2020
  end-page: 2948
  ident: CR5
  article-title: Ultra-short-term industrial power demand forecasting using LSTM based hybrid ensemble learning
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2019.2963109
– volume: 4
  start-page: 616
  issue: 2
  year: 2020
  end-page: 628
  ident: CR10
  article-title: Ensemble learning for load forecasting
  publication-title: IEEE Trans. Green Commun. Netw.
  doi: 10.1109/TGCN.2020.2987304
– volume: 574
  start-page: 1029
  year: 2019
  end-page: 1041
  ident: CR23
  article-title: Evaluation of CatBoost method for prediction of reference evapotranspiration in humid regions
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.04.085
– volume: 36
  start-page: 2992
  issue: 4
  year: 2021
  end-page: 3003
  ident: CR15
  article-title: Multi-view neural network ensemble for short and mid-term load forecasting
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2020.3042389
– ident: CR21
– volume: 36
  start-page: 75
  year: 2020
  end-page: 85
  ident: CR7
  article-title: A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2019.03.017
– ident: CR19
– volume: 135
  start-page: 110114
  year: 2021
  ident: CR30
  article-title: Prediction of daily global solar radiation using different machine learning algorithms: evaluation and comparison
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2020.110114
– volume: 187
  start-page: 106489
  year: 2020
  ident: CR3
  article-title: Assessment of stacked unidirectional and bidirectional long short-term memory networks for electricity load forecasting
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2020.106489
– volume: 36
  start-page: 545
  issue: 1
  year: 2021
  end-page: 548
  ident: CR16
  article-title: Online ensemble learning for load forecasting
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2020.3036230
– volume: 15
  start-page: 1501
  issue: 4
  year: 2020
  end-page: 1509
  ident: CR11
  article-title: Short-term load forecasting based on deep neural networks using LSTM layer
  publication-title: J. Electr. Eng. Technol.
  doi: 10.1007/s42835-020-00424-7
– volume: 51
  start-page: 1358
  year: 2020
  end-page: 1376
  ident: CR1
  article-title: Using long short-term memory networks for river flow prediction
  publication-title: Hydrol. Res.
  doi: 10.2166/nh.2020.026
– volume: 9
  start-page: 160
  issue: 1
  year: 2021
  end-page: 169
  ident: CR12
  article-title: Building load forecasting using deep neural network with efficient feature fusion
  publication-title: J. Mod. Power Syst. Clean Energy
  doi: 10.35833/MPCE.2020.000321
– ident: CR28
– ident: CR26
– ident: CR24
– ident: CR20
– volume: 37
  start-page: 388
  issue: 1
  year: 2021
  end-page: 427
  ident: CR14
  article-title: Recurrent neural networks for time series forecasting: current status and future directions
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2020.06.008
– volume: 15
  start-page: 2773
  issue: 19
  year: 2021
  ident: 2354_CR18
  publication-title: IET Gener. Transm. Distrib.
  doi: 10.1049/gtd2.12214
– ident: 2354_CR21
  doi: 10.1109/EEM.2019.8916412
– ident: 2354_CR26
  doi: 10.1109/ComPE49325.2020.9200031
– ident: 2354_CR19
  doi: 10.23919/CCC50068.2020.9188856
– volume: 278
  start-page: 115410
  year: 2020
  ident: 2354_CR4
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.115410
– volume: 36
  start-page: 1984
  issue: 3
  year: 2021
  ident: 2354_CR17
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2020.3028133
– volume: 36
  start-page: 75
  year: 2020
  ident: 2354_CR7
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2019.03.017
– volume: 51
  start-page: 1358
  year: 2020
  ident: 2354_CR1
  publication-title: Hydrol. Res.
  doi: 10.2166/nh.2020.026
– volume: 158
  start-page: 774
  year: 2018
  ident: 2354_CR9
  publication-title: Energy
  doi: 10.1016/j.energy.2018.06.012
– volume: 37
  start-page: 388
  issue: 1
  year: 2021
  ident: 2354_CR14
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2020.06.008
– volume: 187
  start-page: 106489
  year: 2020
  ident: 2354_CR3
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2020.106489
– ident: 2354_CR20
  doi: 10.23919/ChiCC.2019.8865324
– ident: 2354_CR27
– volume: 574
  start-page: 1029
  year: 2019
  ident: 2354_CR23
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.04.085
– volume: 36
  start-page: 545
  issue: 1
  year: 2021
  ident: 2354_CR16
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2020.3036230
– volume: 35
  start-page: 2937
  year: 2020
  ident: 2354_CR5
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2019.2963109
– volume: 248
  start-page: 119264
  year: 2020
  ident: 2354_CR22
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.119264
– ident: 2354_CR25
– volume: 36
  start-page: 2992
  issue: 4
  year: 2021
  ident: 2354_CR15
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2020.3042389
– volume: 4
  start-page: 616
  issue: 2
  year: 2020
  ident: 2354_CR10
  publication-title: IEEE Trans. Green Commun. Netw.
  doi: 10.1109/TGCN.2020.2987304
– ident: 2354_CR6
  doi: 10.1109/IACS.2018.8355458
– volume: 15
  start-page: 1501
  issue: 4
  year: 2020
  ident: 2354_CR11
  publication-title: J. Electr. Eng. Technol.
  doi: 10.1007/s42835-020-00424-7
– volume: 135
  start-page: 110114
  year: 2021
  ident: 2354_CR30
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2020.110114
– volume: 9
  start-page: 5271
  year: 2018
  ident: 2354_CR8
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2017.2686012
– volume: 122
  start-page: 308
  year: 2017
  ident: 2354_CR13
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2017.11.374
– ident: 2354_CR2
– volume: 9
  start-page: 160
  issue: 1
  year: 2021
  ident: 2354_CR12
  publication-title: J. Mod. Power Syst. Clean Energy
  doi: 10.35833/MPCE.2020.000321
– volume: 40
  start-page: 821
  issue: 9
  year: 2021
  ident: 2354_CR29
  publication-title: Int. J. Sustain. Energy
  doi: 10.1080/14786451.2021.1873339
– ident: 2354_CR28
– ident: 2354_CR24
SSID ssj0027083
Score 2.3527865
Snippet Forecasting of load is essential for operating power systems. India recently witnessed one of the worst power crisis with the highest ever power demand of...
Forecasting of load is essential for operating power systems. India recently witnessed one of the worst power crisis with the highest ever power demand of 207...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 40
SubjectTerms Accuracy
Algorithms
Datasets
Deep learning
Distance learning
Electric power demand
Electric power systems
Electrical loads
Electricity
Energy consumption
Engineering
Forecasting
Forecasting techniques
Literature reviews
Machine learning
Neural networks
Peak demand
Peak load
Prediction models
Programming languages
Python
Real time
Root-mean-square errors
Statistical methods
Time series
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NS8QwEB109-JF_MTVVXLwoGiwTZOtK4ioKIvgIqLgreSreli7q7v-f2fadIuCHnoobQOdSTJvksx7APtaeyGTPOK27xIuLaY7xqSCu1gnJo60ixXVDt8Pe4NnefeiXhZgWNfC0LHKek4sJ2o3trRGfpKQ3BrxX6UXkw9OqlG0u1pLaOggreDOS4qxRWgLYsZqQfvqZvjw2KRgUUXMiYGeY-LRD2U0VTGdwFyRYwyjS0kufoaqBn_-2jItI9HtCiwHCMkuK5-vwoIv1mA1DNIpOwhM0ofrkN2XRyU9C9oQr0yPXvGnZm_vU4ZolU0-aZ-GTj6zSg-HXMZGY-2Y8--6cGdMF6xhBMc7x-xcunADnm9vnq4HPCgqcItDbcadUsqISGkdWWmlj5M06aXC9uKe8ogVcu-MzRHSeEdQxmN4cyrPDYGYXPdNsgmtYlz4LWBx6qSOhRfOYYaXCpN72Re5VhIjnFenHYhr42U20I2T6sUoa4iSyeAZGjsrDZ6JDhzNv5lUZBv_vt2tfZKFgTfNmm7SgePaT83jv1vb_r-1HVgSCGdo8UWoLrRmn19-F-HIzOyFPvYNMYXa6w
  priority: 102
  providerName: ProQuest
Title Machine learning algorithms for predicting electrical load demand: an evaluation and comparison
URI https://link.springer.com/article/10.1007/s12046-023-02354-2
https://www.proquest.com/docview/3257026017
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 0973-7677
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0027083
  issn: 0973-7677
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 0973-7677
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0027083
  issn: 0973-7677
  databaseCode: KQ8
  dateStart: 19780701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 0973-7677
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0027083
  issn: 0973-7677
  databaseCode: ABDBF
  dateStart: 20060601
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 0973-7677
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0027083
  issn: 0973-7677
  databaseCode: ADMLS
  dateStart: 20060601
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 0973-7677
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0027083
  issn: 0973-7677
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 0973-7677
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0027083
  issn: 0973-7677
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BWWBAUEAUSuWBAQSRGsduWrYWGhCoCCEqwRT5K2Vo06op_59z6hBAgMQQWVHsDHe2753P9w7gWAhDWZA0PdXRgccUujtShtTTvgik3xTa5zZ3eHDfuhmy22f-7JLCsuK2exGSzHfqMtmNoi_noY2xD2cebrxr3NJ54Swe0m7pZiGqcOkxP4_7aoJKXPktFJpbmGgLNh00JN2lLrdhxaRV2PhEGFiFbbcUM3Li-KJPdyAe5BciDXEVIEZEjEdTdPpfJxlBTEpmcxuNsfebybLqjVUMGU-FJtpMRKoviEhJyfuNb5qojwKFuzCM-k-XN56rm-ApXFALT3POJW1yIZqKKWb8IAxaIVUtv8UNIoLEaKkSBC5GW8Bi0IhpniTSQpVEdGSwB5V0mpp9IH6omfCpoVqjHxdSmRjWoYngDO2Y4e0a-IUoY-VIxW1ti3Fc0iFb8cco-jgXf0xrcPYxZrak1Pizd73QUOyWVxYHtvaeJUMLa3BeaK38_PvfDv7X_RDWKYIYe-RCeR0qi_mbOUIQspANWG1H1w1Y6_auepFtr1_u-tj2-vcPj418Rr4DtUjZeQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLQXVCioS3n4QCVQazVx7A1BQoinlseuEAKJm_Er9LBkt-wixJ_jtzFOHCIqwY1DDlESH8aT-WZsz_cBrCrlGE_yiJrMJpQbLHe0Thm1sUp0HCkbC9873O21O5f8-EpcTcBT3Qvjj1XWMbEM1HZg_Br5n8TLrXn-q3R7-I961Si_u1pLaKggrWC3Soqx0Nhx4h4fsIQbbR3t43z_ZOzw4GKvQ4PKADXofmNqhRCaRUKpyHDDXZykSTtlph23hUP8zJ3VJkeYd9bDu8OQb0Weaw_sucp0guN-gime8AyLv6ndg97ZeVPyRRURKCYWFAudLLTtVM17DGtTipjpL8Epew2NTb773xZtiXyHX2E6pKxkp_KxGZhwxSzMhKAwImuBuXr9G8hueTTTkaBFcUNU_waNOP57OyKYHZPhnd8X8ietSaW_412E9AfKEutuVWE3iSpIw0COd5aYF6nEObj8ENvOw2QxKNx3IHFquYqZY9ZiRZkynTuesVwJjojqxEYL4tp40gR6c6-y0ZcNMbM3uERjy9LgkrXg18s3w4rc4923F-s5keFHH8nGLVvwu56n5vHboy28P9oKfO5cdE_l6VHv5Ad8YZhK-YUfJhZhcnx375YwFRrr5eBvBK4_2sWfAcK2GDA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4YTIwejKBGFHUPHjTa0G53qXgjKsEHxIMk3Db7RBMoBOr_d7a0FI2aeOih6W4PMzudbzoz3yB0JoQhNLS-p5o69KiCcEfKiHg6EKEMfKED5nqHu71Gp08fB2yw0sWfVrvnKclFT4NjaYqT-lTbetH4RiCu88DfuItRDz7C69QRJcCJ7pNWEXIBwshaZX7e99UdFRjzW1o09TbtHbSdwUTcWui1jNZMXEFbK-SBFVTOzHKOzzPu6ItdxLtpcaTB2TSIIRaj4WT2nryN5xjwKZ7OXGbG1TrjxQQcpyQ8mgiNtRmLWN9gEeOCAxzuNFbLYYV7qN--f73teNkMBU-BcSWeZoxJ4jMhfEUVNUEYhY2IqEbQYAbQgTVaKgsgxmgHXgw4NM2slQ62WNGU4T4qxZPYHCAcRJqKgBiiNcR0EZHW0CaxglHwaYZdV1GQi5KrjGDczbkY8YIa2Ymfg-h5Kn5OquhyuWe6oNf4c3Ut1xDPTG3OQzeHzxGjRVV0lWutePz72w7_t_wUbbzctfnzQ-_pCG0SwDbuTwxhNVRKZh_mGLBJIk_S4_cJKeDbGw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+algorithms+for+predicting+electrical+load+demand%3A+an+evaluation+and+comparison&rft.jtitle=Sadhana+%28Bangalore%29&rft.au=Goswami%2C+Kakoli&rft.au=Kandali%2C+Aditya+Bihar&rft.date=2024-01-25&rft.pub=Springer+India&rft.eissn=0973-7677&rft.volume=49&rft.issue=1&rft_id=info:doi/10.1007%2Fs12046-023-02354-2&rft.externalDocID=10_1007_s12046_023_02354_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0973-7677&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0973-7677&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0973-7677&client=summon