Machine learning algorithms for predicting electrical load demand: an evaluation and comparison
Forecasting of load is essential for operating power systems. India recently witnessed one of the worst power crisis with the highest ever power demand of 207 GW on April 29, 2022. The demand in the month of May and June 2022 was estimated to reach 215 GW. The peak demand this year 2023, according t...
        Saved in:
      
    
          | Published in | Sadhana (Bangalore) Vol. 49; no. 1; p. 40 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New Delhi
          Springer India
    
        25.01.2024
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0973-7677 0256-2499 0973-7677  | 
| DOI | 10.1007/s12046-023-02354-2 | 
Cover
| Abstract | Forecasting of load is essential for operating power systems. India recently witnessed one of the worst power crisis with the highest ever power demand of 207 GW on April 29, 2022. The demand in the month of May and June 2022 was estimated to reach 215 GW. The peak demand this year 2023, according to the electricity ministry, is predicted to be around 230 GW from April to June. The inability to meet certain fundamental issues as power can take a toll on any country’s economy. Proper prediction helps in proper decision making and planning. The main objective of this paper is to predict day ahead electrical load demand for Assam. Statistical and Machine Learning Algorithms has been studied. The study has been carried out using real-time data for the years 2016, 2017 and 2018. The paper presents a detailed analysis of the different hyper parameters of the deep learning models and their effect is seen on the learning efficiency. A novel stacked forecasting model is proposed using neural networks as base learners and CatBoost as the meta-learner. The performance of the proposed model has been evaluated and compared with individual models in terms of training time and accuracy using different error metrics namely MAE, MSE, RMSE, MAPE and R
2
score. A comparison of the proposed prediction model with the prediction models available in literature has been presented. The conclusion states that both the statistical and machine learning algorithms used in this study act as useful tools for daily load forecasting with considerable accuracy; yet machine learning algorithm outperforms the statistical methods. The entire work has been done in Google Colaboratory using Python as the programming language. | 
    
|---|---|
| AbstractList | Forecasting of load is essential for operating power systems. India recently witnessed one of the worst power crisis with the highest ever power demand of 207 GW on April 29, 2022. The demand in the month of May and June 2022 was estimated to reach 215 GW. The peak demand this year 2023, according to the electricity ministry, is predicted to be around 230 GW from April to June. The inability to meet certain fundamental issues as power can take a toll on any country’s economy. Proper prediction helps in proper decision making and planning. The main objective of this paper is to predict day ahead electrical load demand for Assam. Statistical and Machine Learning Algorithms has been studied. The study has been carried out using real-time data for the years 2016, 2017 and 2018. The paper presents a detailed analysis of the different hyper parameters of the deep learning models and their effect is seen on the learning efficiency. A novel stacked forecasting model is proposed using neural networks as base learners and CatBoost as the meta-learner. The performance of the proposed model has been evaluated and compared with individual models in terms of training time and accuracy using different error metrics namely MAE, MSE, RMSE, MAPE and R
2
score. A comparison of the proposed prediction model with the prediction models available in literature has been presented. The conclusion states that both the statistical and machine learning algorithms used in this study act as useful tools for daily load forecasting with considerable accuracy; yet machine learning algorithm outperforms the statistical methods. The entire work has been done in Google Colaboratory using Python as the programming language. Forecasting of load is essential for operating power systems. India recently witnessed one of the worst power crisis with the highest ever power demand of 207 GW on April 29, 2022. The demand in the month of May and June 2022 was estimated to reach 215 GW. The peak demand this year 2023, according to the electricity ministry, is predicted to be around 230 GW from April to June. The inability to meet certain fundamental issues as power can take a toll on any country’s economy. Proper prediction helps in proper decision making and planning. The main objective of this paper is to predict day ahead electrical load demand for Assam. Statistical and Machine Learning Algorithms has been studied. The study has been carried out using real-time data for the years 2016, 2017 and 2018. The paper presents a detailed analysis of the different hyper parameters of the deep learning models and their effect is seen on the learning efficiency. A novel stacked forecasting model is proposed using neural networks as base learners and CatBoost as the meta-learner. The performance of the proposed model has been evaluated and compared with individual models in terms of training time and accuracy using different error metrics namely MAE, MSE, RMSE, MAPE and R2 score. A comparison of the proposed prediction model with the prediction models available in literature has been presented. The conclusion states that both the statistical and machine learning algorithms used in this study act as useful tools for daily load forecasting with considerable accuracy; yet machine learning algorithm outperforms the statistical methods. The entire work has been done in Google Colaboratory using Python as the programming language.  | 
    
| ArticleNumber | 40 | 
    
| Author | Kandali, Aditya Bihar Goswami, Kakoli  | 
    
| Author_xml | – sequence: 1 givenname: Kakoli orcidid: 0000-0002-1566-3339 surname: Goswami fullname: Goswami, Kakoli email: goswamikakolires@gmail.com organization: Department of Electrical Engineering, Jorhat Engineering College – sequence: 2 givenname: Aditya Bihar surname: Kandali fullname: Kandali, Aditya Bihar organization: Department of Electrical Engineering, Jorhat Engineering College  | 
    
| BookMark | eNp9kE1PwzAMhiM0JLbBH-AUiXMhTZqk5YYmvqQhLnCO0sTdMrXJSDok_j3digTisINlW34f23pnaOKDB4Quc3KdEyJvUk5JITJC2T54kdETNCWVZJkUUk7-1GdoltKGECpJyaZIvWizdh5wCzp651dYt6sQXb_uEm5CxNsI1pl-P4EWTB-d0S1ug7bYQqe9vcXaY_jU7U73Lvihs9iEbqujS8Gfo9NGtwkufvIcvT_cvy2esuXr4_PibpkZlld9ZjnnNSVca2IKU0DOJBOSGpELDrKkDdjaNJJKsESwEggTljdNXVVMNrqq2RxdjXu3MXzsIPVqE3bRDycVo1wSKkguB1U5qkwMKUVolHH94e0-ateqnKi9nWq0Uw1WqoOdig4o_Yduo-t0_DoOsRFKg9ivIP5-dYT6Bugyiqw | 
    
| CitedBy_id | crossref_primary_10_3390_app14219766 crossref_primary_10_1007_s42979_024_03483_z  | 
    
| Cites_doi | 10.1016/j.jclepro.2019.119264 10.1016/j.procs.2017.11.374 10.1016/j.apenergy.2020.115410 10.1109/TSG.2017.2686012 10.1080/14786451.2021.1873339 10.1109/TPWRS.2020.3028133 10.1016/j.energy.2018.06.012 10.1049/gtd2.12214 10.1109/TPWRS.2019.2963109 10.1109/TGCN.2020.2987304 10.1016/j.jhydrol.2019.04.085 10.1109/TPWRS.2020.3042389 10.1016/j.ijforecast.2019.03.017 10.1016/j.rser.2020.110114 10.1016/j.epsr.2020.106489 10.1109/TPWRS.2020.3036230 10.1007/s42835-020-00424-7 10.2166/nh.2020.026 10.35833/MPCE.2020.000321 10.1016/j.ijforecast.2020.06.008 10.1109/EEM.2019.8916412 10.1109/ComPE49325.2020.9200031 10.23919/CCC50068.2020.9188856 10.23919/ChiCC.2019.8865324 10.1109/IACS.2018.8355458  | 
    
| ContentType | Journal Article | 
    
| Copyright | Indian Academy of Sciences 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Indian Academy of Sciences 2024.  | 
    
| Copyright_xml | – notice: Indian Academy of Sciences 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Indian Academy of Sciences 2024.  | 
    
| DBID | AAYXX CITATION 8FE 8FG ABJCF AEUYN AFKRA ARAPS BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S P5Z P62 PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS  | 
    
| DOI | 10.1007/s12046-023-02354-2 | 
    
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection  | 
    
| DatabaseTitle | CrossRef Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Technology Collection  | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Sciences (General)  | 
    
| EISSN | 0973-7677 | 
    
| ExternalDocumentID | 10_1007_s12046_023_02354_2 | 
    
| GroupedDBID | -5B -5G -BR -EM -~C -~X .86 .VR 06D 0R~ 0VY 123 1N0 203 29P 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2WC 2~H 30V 4.4 406 408 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABDBF ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABLLD ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFLOW AFQWF AFWTZ AFZKB AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AYJHY B-. BA0 BGNMA CS3 CSCUP DDRTE DNIVK DPUIP E3Z EAD EAP EBLON EBS EIOEI EJD EOJEC ESBYG ESX FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GROUPED_DOAJ HG5 HG6 HMJXF HRMNR I-F IJ- IKXTQ IWAJR IXD I~X I~Z J-C J0Z JBSCW JZLTJ KOV KQ8 LLZTM M4Y MA- MK~ NF0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OBODZ OK1 P19 P2P P9P PF0 PT4 PT5 QOK QOS R89 R9I RAB RHV RNS ROL RPX RSV S16 S27 S3B SAP SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TR2 TSG TSK TSV TUS U2A UG4 UOJIU UTJUX VC2 W48 WK8 XSB YLTOR Z45 Z7R Z7S Z7X Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR _50 ~8M ~A9 ~EX AAPKM AAYXX ABDBE ABRTQ AFDZB AFOHR AHPBZ ATHPR CITATION OVT 8FE 8FG ABJCF AEUYN AFKRA ARAPS BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S P62 PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS  | 
    
| ID | FETCH-LOGICAL-c319t-d555b205aa0c4c4e1373672c6165e782fedbcf727ed0638e036d5ffb9937fa9b3 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 0973-7677 0256-2499  | 
    
| IngestDate | Sat Oct 11 06:55:40 EDT 2025 Wed Oct 01 04:21:06 EDT 2025 Thu Apr 24 23:11:54 EDT 2025 Fri Feb 21 02:41:24 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | time series analysis computational intelligence machine learning supervised learning Electrical load forecasting deep neural network  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c319t-d555b205aa0c4c4e1373672c6165e782fedbcf727ed0638e036d5ffb9937fa9b3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-1566-3339 | 
    
| PQID | 3257026017 | 
    
| PQPubID | 2043821 | 
    
| ParticipantIDs | proquest_journals_3257026017 crossref_citationtrail_10_1007_s12046_023_02354_2 crossref_primary_10_1007_s12046_023_02354_2 springer_journals_10_1007_s12046_023_02354_2  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-01-25 | 
    
| PublicationDateYYYYMMDD | 2024-01-25 | 
    
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-25 day: 25  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New Delhi | 
    
| PublicationPlace_xml | – name: New Delhi – name: Dordrecht  | 
    
| PublicationSubtitle | Published by the Indian Academy of Sciences | 
    
| PublicationTitle | Sadhana (Bangalore) | 
    
| PublicationTitleAbbrev | Sādhanā | 
    
| PublicationYear | 2024 | 
    
| Publisher | Springer India Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer India – name: Springer Nature B.V  | 
    
| References | Fan, Wang, Zhang, Ma, Wu (CR22) 2020; 248 CR19 Rai, De (CR29) 2021; 40 Smyl (CR7) 2020; 36 He, Li, Liu, Chen, Shahidehpour, Chen (CR18) 2021; 15 Wang, Chen, Zhang, Chen, Xin (CR12) 2021; 9 Atef, Eltawil (CR3) 2020; 187 Zhang, Wei, Li, Tan, Zhou (CR9) 2018; 158 Hewamalage, Bergmeir, Bandara (CR14) 2021; 37 Wang, Chen, Chen, Zeng, Kong, Sun (CR17) 2021; 36 Von Krannichfeldt, Wang, Hug (CR16) 2021; 36 CR2 Tan, Yuan, Li, Su, Li, He (CR5) 2020; 35 CR6 Lai, Yang, Pan, Zhang, Yuan, Ng (CR15) 2021; 36 CR28 Xu, Jiang, Zhang, Li, Zhang, Fu (CR1) 2020; 51 Wang, Mao, Wilamowski, Nelms (CR10) 2020; 4 CR27 CR26 CR25 Shi, Xu, Li (CR8) 2018; 9 CR24 CR21 CR20 He (CR13) 2017; 122 Kwon, Park, Song (CR11) 2020; 15 Chitalia, Pipattanasomporn, Garg Vand Rahman (CR4) 2020; 278 Huang, Wu, Ma, Zhang, Fan, Yu (CR23) 2019; 574 Ağbulut, Güre, Biçen (CR30) 2021; 135 H Shi (2354_CR8) 2018; 9 J Wang (2354_CR12) 2021; 9 2354_CR26 2354_CR27 2354_CR24 2354_CR25 M Tan (2354_CR5) 2020; 35 2354_CR28 Y Wang (2354_CR17) 2021; 36 G Chitalia (2354_CR4) 2020; 278 BS Kwon (2354_CR11) 2020; 15 S Atef (2354_CR3) 2020; 187 Ü Ağbulut (2354_CR30) 2021; 135 2354_CR2 2354_CR20 H Hewamalage (2354_CR14) 2021; 37 2354_CR21 W Xu (2354_CR1) 2020; 51 W He (2354_CR13) 2017; 122 2354_CR6 L Wang (2354_CR10) 2020; 4 J Fan (2354_CR22) 2020; 248 S Rai (2354_CR29) 2021; 40 S He (2354_CR18) 2021; 15 2354_CR19 J Zhang (2354_CR9) 2018; 158 G Huang (2354_CR23) 2019; 574 L Von Krannichfeldt (2354_CR16) 2021; 36 S Smyl (2354_CR7) 2020; 36 CS Lai (2354_CR15) 2021; 36  | 
    
| References_xml | – volume: 248 start-page: 119264 year: 2020 ident: CR22 article-title: Predicting daily diffuse horizontal solar radiation in various climatic regions of China using support vector machine and tree-based soft computing models with local and extrinsic climatic data publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.119264 – ident: CR2 – volume: 122 start-page: 308 year: 2017 end-page: 314 ident: CR13 article-title: Load forecasting via deep neural networks publication-title: Proc. Comput. Sci. doi: 10.1016/j.procs.2017.11.374 – volume: 278 start-page: 115410 year: 2020 ident: CR4 article-title: Robust short-term electrical load forecasting framework for commercial buildings using deep recurrent neural networks publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.115410 – volume: 9 start-page: 5271 year: 2018 end-page: 5280 ident: CR8 article-title: Deep learning for household load forecasting-A novel pooling deep RNN publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2017.2686012 – volume: 40 start-page: 821 issue: 9 year: 2021 end-page: 839 ident: CR29 article-title: Analysis of classical and machine learning based short-term and mid-term load forecasting for smart grid publication-title: Int. J. Sustain. Energy doi: 10.1080/14786451.2021.1873339 – ident: CR6 – volume: 36 start-page: 1984 issue: 3 year: 2021 end-page: 1997 ident: CR17 article-title: Short-term load forecasting for industrial customers based on TCN-LightGBM publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2020.3028133 – ident: CR25 – ident: CR27 – volume: 158 start-page: 774 year: 2018 end-page: 781 ident: CR9 article-title: Short term electricity load forecasting using a hybrid model publication-title: Energy doi: 10.1016/j.energy.2018.06.012 – volume: 15 start-page: 2773 issue: 19 year: 2021 end-page: 2786 ident: CR18 article-title: A per-unit curve rotated decoupling method for CNN-TCN based day-ahead load forecasting publication-title: IET Gener. Transm. Distrib. doi: 10.1049/gtd2.12214 – volume: 35 start-page: 2937 year: 2020 end-page: 2948 ident: CR5 article-title: Ultra-short-term industrial power demand forecasting using LSTM based hybrid ensemble learning publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2019.2963109 – volume: 4 start-page: 616 issue: 2 year: 2020 end-page: 628 ident: CR10 article-title: Ensemble learning for load forecasting publication-title: IEEE Trans. Green Commun. Netw. doi: 10.1109/TGCN.2020.2987304 – volume: 574 start-page: 1029 year: 2019 end-page: 1041 ident: CR23 article-title: Evaluation of CatBoost method for prediction of reference evapotranspiration in humid regions publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.04.085 – volume: 36 start-page: 2992 issue: 4 year: 2021 end-page: 3003 ident: CR15 article-title: Multi-view neural network ensemble for short and mid-term load forecasting publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2020.3042389 – ident: CR21 – volume: 36 start-page: 75 year: 2020 end-page: 85 ident: CR7 article-title: A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2019.03.017 – ident: CR19 – volume: 135 start-page: 110114 year: 2021 ident: CR30 article-title: Prediction of daily global solar radiation using different machine learning algorithms: evaluation and comparison publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2020.110114 – volume: 187 start-page: 106489 year: 2020 ident: CR3 article-title: Assessment of stacked unidirectional and bidirectional long short-term memory networks for electricity load forecasting publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2020.106489 – volume: 36 start-page: 545 issue: 1 year: 2021 end-page: 548 ident: CR16 article-title: Online ensemble learning for load forecasting publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2020.3036230 – volume: 15 start-page: 1501 issue: 4 year: 2020 end-page: 1509 ident: CR11 article-title: Short-term load forecasting based on deep neural networks using LSTM layer publication-title: J. Electr. Eng. Technol. doi: 10.1007/s42835-020-00424-7 – volume: 51 start-page: 1358 year: 2020 end-page: 1376 ident: CR1 article-title: Using long short-term memory networks for river flow prediction publication-title: Hydrol. Res. doi: 10.2166/nh.2020.026 – volume: 9 start-page: 160 issue: 1 year: 2021 end-page: 169 ident: CR12 article-title: Building load forecasting using deep neural network with efficient feature fusion publication-title: J. Mod. Power Syst. Clean Energy doi: 10.35833/MPCE.2020.000321 – ident: CR28 – ident: CR26 – ident: CR24 – ident: CR20 – volume: 37 start-page: 388 issue: 1 year: 2021 end-page: 427 ident: CR14 article-title: Recurrent neural networks for time series forecasting: current status and future directions publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2020.06.008 – volume: 15 start-page: 2773 issue: 19 year: 2021 ident: 2354_CR18 publication-title: IET Gener. Transm. Distrib. doi: 10.1049/gtd2.12214 – ident: 2354_CR21 doi: 10.1109/EEM.2019.8916412 – ident: 2354_CR26 doi: 10.1109/ComPE49325.2020.9200031 – ident: 2354_CR19 doi: 10.23919/CCC50068.2020.9188856 – volume: 278 start-page: 115410 year: 2020 ident: 2354_CR4 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.115410 – volume: 36 start-page: 1984 issue: 3 year: 2021 ident: 2354_CR17 publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2020.3028133 – volume: 36 start-page: 75 year: 2020 ident: 2354_CR7 publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2019.03.017 – volume: 51 start-page: 1358 year: 2020 ident: 2354_CR1 publication-title: Hydrol. Res. doi: 10.2166/nh.2020.026 – volume: 158 start-page: 774 year: 2018 ident: 2354_CR9 publication-title: Energy doi: 10.1016/j.energy.2018.06.012 – volume: 37 start-page: 388 issue: 1 year: 2021 ident: 2354_CR14 publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2020.06.008 – volume: 187 start-page: 106489 year: 2020 ident: 2354_CR3 publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2020.106489 – ident: 2354_CR20 doi: 10.23919/ChiCC.2019.8865324 – ident: 2354_CR27 – volume: 574 start-page: 1029 year: 2019 ident: 2354_CR23 publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.04.085 – volume: 36 start-page: 545 issue: 1 year: 2021 ident: 2354_CR16 publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2020.3036230 – volume: 35 start-page: 2937 year: 2020 ident: 2354_CR5 publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2019.2963109 – volume: 248 start-page: 119264 year: 2020 ident: 2354_CR22 publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.119264 – ident: 2354_CR25 – volume: 36 start-page: 2992 issue: 4 year: 2021 ident: 2354_CR15 publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2020.3042389 – volume: 4 start-page: 616 issue: 2 year: 2020 ident: 2354_CR10 publication-title: IEEE Trans. Green Commun. Netw. doi: 10.1109/TGCN.2020.2987304 – ident: 2354_CR6 doi: 10.1109/IACS.2018.8355458 – volume: 15 start-page: 1501 issue: 4 year: 2020 ident: 2354_CR11 publication-title: J. Electr. Eng. Technol. doi: 10.1007/s42835-020-00424-7 – volume: 135 start-page: 110114 year: 2021 ident: 2354_CR30 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2020.110114 – volume: 9 start-page: 5271 year: 2018 ident: 2354_CR8 publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2017.2686012 – volume: 122 start-page: 308 year: 2017 ident: 2354_CR13 publication-title: Proc. Comput. Sci. doi: 10.1016/j.procs.2017.11.374 – ident: 2354_CR2 – volume: 9 start-page: 160 issue: 1 year: 2021 ident: 2354_CR12 publication-title: J. Mod. Power Syst. Clean Energy doi: 10.35833/MPCE.2020.000321 – volume: 40 start-page: 821 issue: 9 year: 2021 ident: 2354_CR29 publication-title: Int. J. Sustain. Energy doi: 10.1080/14786451.2021.1873339 – ident: 2354_CR28 – ident: 2354_CR24  | 
    
| SSID | ssj0027083 | 
    
| Score | 2.3527865 | 
    
| Snippet | Forecasting of load is essential for operating power systems. India recently witnessed one of the worst power crisis with the highest ever power demand of... Forecasting of load is essential for operating power systems. India recently witnessed one of the worst power crisis with the highest ever power demand of 207...  | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 40 | 
    
| SubjectTerms | Accuracy Algorithms Datasets Deep learning Distance learning Electric power demand Electric power systems Electrical loads Electricity Energy consumption Engineering Forecasting Forecasting techniques Literature reviews Machine learning Neural networks Peak demand Peak load Prediction models Programming languages Python Real time Root-mean-square errors Statistical methods Time series  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NS8QwEB109-JF_MTVVXLwoGiwTZOtK4ioKIvgIqLgreSreli7q7v-f2fadIuCHnoobQOdSTJvksx7APtaeyGTPOK27xIuLaY7xqSCu1gnJo60ixXVDt8Pe4NnefeiXhZgWNfC0LHKek4sJ2o3trRGfpKQ3BrxX6UXkw9OqlG0u1pLaOggreDOS4qxRWgLYsZqQfvqZvjw2KRgUUXMiYGeY-LRD2U0VTGdwFyRYwyjS0kufoaqBn_-2jItI9HtCiwHCMkuK5-vwoIv1mA1DNIpOwhM0ofrkN2XRyU9C9oQr0yPXvGnZm_vU4ZolU0-aZ-GTj6zSg-HXMZGY-2Y8--6cGdMF6xhBMc7x-xcunADnm9vnq4HPCgqcItDbcadUsqISGkdWWmlj5M06aXC9uKe8ogVcu-MzRHSeEdQxmN4cyrPDYGYXPdNsgmtYlz4LWBx6qSOhRfOYYaXCpN72Re5VhIjnFenHYhr42U20I2T6sUoa4iSyeAZGjsrDZ6JDhzNv5lUZBv_vt2tfZKFgTfNmm7SgePaT83jv1vb_r-1HVgSCGdo8UWoLrRmn19-F-HIzOyFPvYNMYXa6w priority: 102 providerName: ProQuest  | 
    
| Title | Machine learning algorithms for predicting electrical load demand: an evaluation and comparison | 
    
| URI | https://link.springer.com/article/10.1007/s12046-023-02354-2 https://www.proquest.com/docview/3257026017  | 
    
| Volume | 49 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 0973-7677 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0027083 issn: 0973-7677 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 0973-7677 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0027083 issn: 0973-7677 databaseCode: KQ8 dateStart: 19780701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 0973-7677 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0027083 issn: 0973-7677 databaseCode: ABDBF dateStart: 20060601 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 0973-7677 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0027083 issn: 0973-7677 databaseCode: ADMLS dateStart: 20060601 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 0973-7677 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0027083 issn: 0973-7677 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 0973-7677 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0027083 issn: 0973-7677 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BWWBAUEAUSuWBAQSRGsduWrYWGhCoCCEqwRT5K2Vo06op_59z6hBAgMQQWVHsDHe2753P9w7gWAhDWZA0PdXRgccUujtShtTTvgik3xTa5zZ3eHDfuhmy22f-7JLCsuK2exGSzHfqMtmNoi_noY2xD2cebrxr3NJ54Swe0m7pZiGqcOkxP4_7aoJKXPktFJpbmGgLNh00JN2lLrdhxaRV2PhEGFiFbbcUM3Li-KJPdyAe5BciDXEVIEZEjEdTdPpfJxlBTEpmcxuNsfebybLqjVUMGU-FJtpMRKoviEhJyfuNb5qojwKFuzCM-k-XN56rm-ApXFALT3POJW1yIZqKKWb8IAxaIVUtv8UNIoLEaKkSBC5GW8Bi0IhpniTSQpVEdGSwB5V0mpp9IH6omfCpoVqjHxdSmRjWoYngDO2Y4e0a-IUoY-VIxW1ti3Fc0iFb8cco-jgXf0xrcPYxZrak1Pizd73QUOyWVxYHtvaeJUMLa3BeaK38_PvfDv7X_RDWKYIYe-RCeR0qi_mbOUIQspANWG1H1w1Y6_auepFtr1_u-tj2-vcPj418Rr4DtUjZeQ | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLQXVCioS3n4QCVQazVx7A1BQoinlseuEAKJm_Er9LBkt-wixJ_jtzFOHCIqwY1DDlESH8aT-WZsz_cBrCrlGE_yiJrMJpQbLHe0Thm1sUp0HCkbC9873O21O5f8-EpcTcBT3Qvjj1XWMbEM1HZg_Br5n8TLrXn-q3R7-I961Si_u1pLaKggrWC3Soqx0Nhx4h4fsIQbbR3t43z_ZOzw4GKvQ4PKADXofmNqhRCaRUKpyHDDXZykSTtlph23hUP8zJ3VJkeYd9bDu8OQb0Weaw_sucp0guN-gime8AyLv6ndg97ZeVPyRRURKCYWFAudLLTtVM17DGtTipjpL8Epew2NTb773xZtiXyHX2E6pKxkp_KxGZhwxSzMhKAwImuBuXr9G8hueTTTkaBFcUNU_waNOP57OyKYHZPhnd8X8ietSaW_412E9AfKEutuVWE3iSpIw0COd5aYF6nEObj8ENvOw2QxKNx3IHFquYqZY9ZiRZkynTuesVwJjojqxEYL4tp40gR6c6-y0ZcNMbM3uERjy9LgkrXg18s3w4rc4923F-s5keFHH8nGLVvwu56n5vHboy28P9oKfO5cdE_l6VHv5Ad8YZhK-YUfJhZhcnx375YwFRrr5eBvBK4_2sWfAcK2GDA | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4YTIwejKBGFHUPHjTa0G53qXgjKsEHxIMk3Db7RBMoBOr_d7a0FI2aeOih6W4PMzudbzoz3yB0JoQhNLS-p5o69KiCcEfKiHg6EKEMfKED5nqHu71Gp08fB2yw0sWfVrvnKclFT4NjaYqT-lTbetH4RiCu88DfuItRDz7C69QRJcCJ7pNWEXIBwshaZX7e99UdFRjzW1o09TbtHbSdwUTcWui1jNZMXEFbK-SBFVTOzHKOzzPu6ItdxLtpcaTB2TSIIRaj4WT2nryN5xjwKZ7OXGbG1TrjxQQcpyQ8mgiNtRmLWN9gEeOCAxzuNFbLYYV7qN--f73teNkMBU-BcSWeZoxJ4jMhfEUVNUEYhY2IqEbQYAbQgTVaKgsgxmgHXgw4NM2slQ62WNGU4T4qxZPYHCAcRJqKgBiiNcR0EZHW0CaxglHwaYZdV1GQi5KrjGDczbkY8YIa2Ymfg-h5Kn5OquhyuWe6oNf4c3Ut1xDPTG3OQzeHzxGjRVV0lWutePz72w7_t_wUbbzctfnzQ-_pCG0SwDbuTwxhNVRKZh_mGLBJIk_S4_cJKeDbGw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+algorithms+for+predicting+electrical+load+demand%3A+an+evaluation+and+comparison&rft.jtitle=Sadhana+%28Bangalore%29&rft.au=Goswami%2C+Kakoli&rft.au=Kandali%2C+Aditya+Bihar&rft.date=2024-01-25&rft.pub=Springer+India&rft.eissn=0973-7677&rft.volume=49&rft.issue=1&rft_id=info:doi/10.1007%2Fs12046-023-02354-2&rft.externalDocID=10_1007_s12046_023_02354_2 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0973-7677&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0973-7677&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0973-7677&client=summon |