Surrogate modeling for injection molding processes using deep learning
Injection molding is one of the most popular manufacturing methods for making complex plastic objects. Faster numerical simulation of this manufacturing process would allow faster and cheaper design cycles of new products. In this work, we propose a data processing pipeline that includes the extract...
Saved in:
| Published in | Structural and multidisciplinary optimization Vol. 65; no. 11 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2022
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1615-147X 1615-1488 |
| DOI | 10.1007/s00158-022-03380-0 |
Cover
| Abstract | Injection molding is one of the most popular manufacturing methods for making complex plastic objects. Faster numerical simulation of this manufacturing process would allow faster and cheaper design cycles of new products. In this work, we propose a data processing pipeline that includes the extraction of data from Moldflow simulation projects and the prediction of the fill time and deflection distributions over 3-dimensional surfaces using machine learning models. We propose algorithms for the engineering of features, including information of injector gates parameters that will mostly affect the time for plastic to reach the particular point of the form for fill time prediction, and geometrical features for deflection prediction. We propose and evaluate machine learning models for fill time and deflection distribution prediction and provide values of Mean Absolute Error, Median Absolute Error, and Root Mean Square Error metrics. Finally, we measure the execution time of our solution and show that our solution is much faster than Moldflow: approximately, 17 times and 14 times faster for mean and median total times, respectively, comparing the times of all analysis stages for deflection prediction. Our solution has been implemented in a prototype web application that was approved by the management board of Fiat Chrysler Automobiles and Illogic SRL. As one of the promising applications of similar surrogate modeling approaches, we envision the use of trained models as a fast objective function for optimizing injection molding process parameters, such as optimal placement of gates, which could significantly aid engineers in this task, or even automate it. |
|---|---|
| AbstractList | Injection molding is one of the most popular manufacturing methods for making complex plastic objects. Faster numerical simulation of this manufacturing process would allow faster and cheaper design cycles of new products. In this work, we propose a data processing pipeline that includes the extraction of data from Moldflow simulation projects and the prediction of the fill time and deflection distributions over 3-dimensional surfaces using machine learning models. We propose algorithms for the engineering of features, including information of injector gates parameters that will mostly affect the time for plastic to reach the particular point of the form for fill time prediction, and geometrical features for deflection prediction. We propose and evaluate machine learning models for fill time and deflection distribution prediction and provide values of Mean Absolute Error, Median Absolute Error, and Root Mean Square Error metrics. Finally, we measure the execution time of our solution and show that our solution is much faster than Moldflow: approximately, 17 times and 14 times faster for mean and median total times, respectively, comparing the times of all analysis stages for deflection prediction. Our solution has been implemented in a prototype web application that was approved by the management board of Fiat Chrysler Automobiles and Illogic SRL. As one of the promising applications of similar surrogate modeling approaches, we envision the use of trained models as a fast objective function for optimizing injection molding process parameters, such as optimal placement of gates, which could significantly aid engineers in this task, or even automate it. Injection molding is one of the most popular manufacturing methods for making complex plastic objects. Faster numerical simulation of this manufacturing process would allow faster and cheaper design cycles of new products. In this work, we propose a data processing pipeline that includes the extraction of data from Moldflow simulation projects and the prediction of the fill time and deflection distributions over 3-dimensional surfaces using machine learning models. We propose algorithms for the engineering of features, including information of injector gates parameters that will mostly affect the time for plastic to reach the particular point of the form for fill time prediction, and geometrical features for deflection prediction. We propose and evaluate machine learning models for fill time and deflection distribution prediction and provide values of Mean Absolute Error, Median Absolute Error, and Root Mean Square Error metrics. Finally, we measure the execution time of our solution and show that our solution is much faster than Moldflow: approximately, 17 times and 14 times faster for mean and median total times, respectively, comparing the times of all analysis stages for deflection prediction. Our solution has been implemented in a prototype web application that was approved by the management board of Fiat Chrysler Automobiles and Illogic SRL. As one of the promising applications of similar surrogate modeling approaches, we envision the use of trained models as a fast objective function for optimizing injection molding process parameters, such as optimal placement of gates, which could significantly aid engineers in this task, or even automate it. |
| ArticleNumber | 305 |
| Author | Belov, Sergei Greenkina, Tatiana Cacciatori, Fabio Massimo Nikolaev, Sergei Biagio, Marco San Uglov, Arsenii Padalitsa, Daniil |
| Author_xml | – sequence: 1 givenname: Arsenii surname: Uglov fullname: Uglov, Arsenii organization: Skolkovo Institute of Science and Technology, Center for Design, Manufacturing and Materials – sequence: 2 givenname: Sergei surname: Nikolaev fullname: Nikolaev, Sergei email: s.nikolaev@cyberphysics.xyz organization: Skolkovo Institute of Science and Technology, Center for Design, Manufacturing and Materials – sequence: 3 givenname: Sergei surname: Belov fullname: Belov, Sergei organization: Skolkovo Institute of Science and Technology, Center for Design, Manufacturing and Materials – sequence: 4 givenname: Daniil surname: Padalitsa fullname: Padalitsa, Daniil organization: Skolkovo Institute of Science and Technology, Center for Design, Manufacturing and Materials – sequence: 5 givenname: Tatiana surname: Greenkina fullname: Greenkina, Tatiana organization: Skolkovo Institute of Science and Technology, Center for Design, Manufacturing and Materials – sequence: 6 givenname: Marco San surname: Biagio fullname: Biagio, Marco San organization: Illogic s.r.l – sequence: 7 givenname: Fabio Massimo surname: Cacciatori fullname: Cacciatori, Fabio Massimo organization: Illogic s.r.l |
| BookMark | eNp9UMtOwzAQtFCRaAs_wCkS58A6iWP7iCpKkSpxACRuluNHlSq1i50c-HscgkDi0Mu-NDO7Ows0c94ZhK4x3GIAehcBMGE5FEUOZckghzM0xzUmOa4Ym_3W9P0CLWLcAwCDis_R-mUIwe9kb7KD16Zr3S6zPmSt2xvVt96lcafH6TF4ZWI0MRvi2GtjjllnZHCpu0TnVnbRXP3kJXpbP7yuNvn2-fFpdb_NVYl5n2tSSdKArSy1pbS2YE2jeU0lVaRR1DaEU8tlVVspNaMA3KhSV9w0DdPWknKJbibddM3HYGIv9n4ILq0UBS1IzXhSSCg2oVTwMQZjhWp7OX7TB9l2AoMYXROTayK5Jr5dS3GJin_UY2gPMnyeJpUTKSaw25nwd9UJ1hc5GoNM |
| CitedBy_id | crossref_primary_10_1016_j_jmsy_2025_01_008 crossref_primary_10_1016_j_ecoenv_2022_113400 crossref_primary_10_1016_j_compositesa_2024_108340 |
| Cites_doi | 10.1109/ICCVW.2019.00509 10.1007/s10845-018-1418-7 10.1109/COMPSAC.2018.10223 10.1145/3072959.3073608 10.1109/MSP.2017.2693418 10.1109/ICCV.2015.114 10.1007/s00170-017-1045-z 10.1109/CVPR.2018.00275 10.1088/1757-899x/651/1/012047 10.1007/s13369-019-03855-1 10.1109/TNNLS.2019.2957109 10.1007/s00170-014-6434-y 10.1051/epjconf/202024502026 10.1109/IJCNN.2016.7727386 10.5772/36125 10.1088/1748-0221/15/05/C05032 10.1007/978-3-319-17091-6_6 10.1109/IROS.2015.7353481 10.1145/3326362 10.4028/www.scientific.net/amr.399-401.1672 10.1007/s00158-020-02659-4 10.1007/978-3-319-24574-4_28 10.1016/j.jprocont.2017.12.003 10.1002/adv.21554 10.1016/j.nima.2020.164135 10.1007/s00170-019-03813-z |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s00158-022-03380-0 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central ProQuest Central Technology Collection ProQuest One ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
| DatabaseTitleList | Engineering Database |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1615-1488 |
| ExternalDocumentID | 10_1007_s00158_022_03380_0 |
| GrantInformation_xml | – fundername: Finpiemonte grantid: 117 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 199 1N0 2.D 203 29Q 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV L6V LAS LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9P PF0 PT4 PT5 PTHSS QOK QOS R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8R Z8S Z8T Z8U Z8W Z8Z Z92 ZMTXR _50 ~02 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-d54a5b0f4f7f3aff28bbd967a7c5bc7fb597f9a46faad87009ec3d49ebb8dff53 |
| IEDL.DBID | AGYKE |
| ISSN | 1615-147X |
| IngestDate | Sat Sep 06 22:12:22 EDT 2025 Wed Oct 01 02:17:28 EDT 2025 Thu Apr 24 23:11:39 EDT 2025 Fri Feb 21 02:44:17 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Deep learning 3d machine learning Point cloud Machine learning Injection molding Fluid dynamics simulation Mesh Surrogate modeling 3d data Autodesk Moldflow |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-d54a5b0f4f7f3aff28bbd967a7c5bc7fb597f9a46faad87009ec3d49ebb8dff53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2725689597 |
| PQPubID | 2043658 |
| ParticipantIDs | proquest_journals_2725689597 crossref_citationtrail_10_1007_s00158_022_03380_0 crossref_primary_10_1007_s00158_022_03380_0 springer_journals_10_1007_s00158_022_03380_0 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20221100 2022-11-00 20221101 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: 20221100 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Structural and multidisciplinary optimization |
| PublicationTitleAbbrev | Struct Multidisc Optim |
| PublicationYear | 2022 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Garcia-Garcia A, Gomez-Donoso F, Rodríguez J, Orts S, Cazorla M, Azorin-Lopez J (2016) PointNet: a 3D convolutional neural network for real-time object class recognition. pp 1578–1584. https://doi.org/10.1109/IJCNN.2016.7727386 Jian ZhaoGCAn innovative surrogate-based searching method for reducing warpage and cycle time in injection moldingAdv Polym Technol201610.1002/adv.21554 TapiaGKhairallahSAMatthewsMJKingWEElwanyAGaussian process-based surrogate modeling framework for process planning in laser powder-bed fusion additive manufacturing of 316l stainless steelInt J Adv Manuf Technol201810.1007/s00170-017-1045-z XuYZhangQZhangWZhangPOptimization of injection molding process parameters to improve the mechanical performance of polymer product against impactInt J Adv Manuf Technol2015769–122199220810.1007/s00170-014-6434-y Han ZH, Zhang KS (2012) Surrogate-based optimization. In: Real-world applications of genetic algorithms. InTech, https://doi.org/10.5772/36125, www.intechopen.com GarcíaVSánchezJSRodríguez-PicónLAMéndez-GonzálezLCde JesúsOchoa-Domínguez HUsing regression models for predicting the product quality in a tubing extrusion processJ Intell Manuf20193062535254410.1007/s10845-018-1418-7 Gong S, Chen L, Bronstein M, Zafeiriou S (2019) SpiralNet++: a fast and highly efficient mesh convolution operator ZhouXHsiehSJWangJCAccelerating extrusion-based additive manufacturing optimization processes with surrogate-based multi-fidelity modelsInt J Adv Manuf Technol201910.1007/s00170-019-03813-z Muhendislik (2020) Homepage of element muhendislik. https://www.elementmuhendislik.com ChenXChenXZhouWZhangJYaoWThe heat source layout optimization using deep learning surrogate modelingStruct Multidiscip Optim20206263127314810.1007/s00158-020-02659-4 Wang Y, Sun Y, Liu Z, Sarma SE, Bronstein MM, Solomon JM (2019) Dynamic graph CNN for learning on point clouds. arXiv:1801.07829 [cs] Injection A (2020) Hot runner mould injection manufacturers. www.anole-hot-runner.com/hot-runner-mould.htm Verma N, Boyer E, Verbeek J (2018) FeaStNet: feature-steered graph convolutions for 3D shape analysis. arXiv:1706.05206 [cs] Maturana D, Scherer S (2015) VoxNet: A 3D convolutional neural network for real-time object recognition. In: 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, Hamburg, Germany, pp 922–928. https://doi.org/10.1109/IROS.2015.7353481 Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. 1505.04597 LiaoXPRuanTXiaWMaJYLiLLMulti-objective optimization by gaussian genetic algorithm and its application in injection modelingAdv Mater Res201110.4028/www.scientific.net/amr.399-401.1672 BronsteinMMBrunaJLeCunYSzlamAVandergheynstPGeometric deep learning: going beyond Euclidean dataIEEE Signal Process Mag2017344184210.1109/MSP.2017.2693418 MukrasSMOmarHMMufadiFAExperimental-based multi-objective optimization of injection molding process parametersArab J Sci Eng20194497653766510.1007/s13369-019-03855-1 CornoJGeorgNZadehSGZadehSGHellerJGubarevVRoggenTRömerUSchmidtCSchöpsSSchultzJSulimovAvan RienenUUncertainty modeling and analysis of the european x-ray free electron laser cavities manufacturing processNucl Instr Methods Phys Res Sect A202010.1016/j.nima.2020.164135 Ratnikov F (2020a) Generative adversarial networks for LHCb fast simulation. arXiv:2003.09762 [hep-ex, physics:physics] Wang PS, Liu Y, Guo YX, Sun CY, Tong X (2017) O-CNN: octree-based convolutional neural networks for 3D shape analysis. ACM Trans Graph. Belyaev M, Burnaev E, Kapushev Y (2014) Exact inference for gaussian process regression in case of big data with the cartesian product structure. arXiv:1403.6573 Moseley B, Markham A, Nissen-Meyer T (2018) Fast approximate simulation of seismic waves with deep learning. arXiv:1807.06873 [physics] Su H, Maji S, Kalogerakis E, Learned-Miller E (2015) Multi-view convolutional neural networks for 3d shape recognition. In: Proceedings of the IEEE international conference on computer vision, pp 945–953 Morand L, Helm D, Iza-Teran R, Garcke J (2019) A knowledge-based surrogate modeling approach for cup drawing with limited data. null https://doi.org/10.1088/1757-899x/651/1/012047 RatnikovFUsing machine learning to speed up and improve calorimeter R &DJ Inst20201505C05032C0503210.1088/1748-0221/15/05/C05032 de Haan P, Weiler M, Cohen T, Welling M (2020) Gauge equivariant mesh CNNs: anisotropic convolutions on geometric graphs. arXiv:2003.05425 [cs, stat] XGBoost (2019) Xgboost documentation-xgboost 1.5.2 documentation. https://xgboost.readthedocs.io/en/stable Orihara R, Narasaki R, Yoshinaga Y, Morioka Y, Kokojima Y (2018) Approximation of time-consuming simulation based on generative adversarial network. In: 2018 IEEE 42nd annual computer software and applications conference (COMPSAC), vol 02, pp 171–176. https://doi.org/10.1109/COMPSAC.2018.10223, iSSN: 0730-3157 Qi CR, Yi L, Su H, Guibas LJ (2017) PointNet++: deep hierarchical feature learning on point sets in a metric space. arXiv:1706.02413 [cs] Cohen TS, Weiler M, Kicanaoglu B, Welling M (2019) Gauge Equivariant Convolutional Networks and the Icosahedral CNN. arXiv:1902.04615 [cs, stat] LuoLYaoYGaoFZhaoCMixed-effects gaussian process modeling approach with application in injection molding processesJ Process Control201810.1016/j.jprocont.2017.12.003 Wu Z, Song S, Khosla A, Yu F, Zhang L, Tang X, Xiao J (2015) 3D ShapeNets: a deep representation for volumetric shapes. arXiv:1406.5670 [cs] LiuHOngYSShenXCaiJWhen gaussian process meets big data: a review of scalable gpsIEEE Trans Neural Netw Learn Syst2020311144054423416996210.1109/TNNLS.2019.2957109 3380_CR19 3380_CR17 3380_CR18 L Luo (3380_CR15) 2018 3380_CR16 3380_CR11 H Liu (3380_CR14) 2020; 31 3380_CR31 3380_CR10 F Ratnikov (3380_CR24) 2020; 15 3380_CR32 3380_CR30 3380_CR6 3380_CR9 3380_CR8 GC Jian Zhao (3380_CR12) 2016 X Chen (3380_CR3) 2020; 62 3380_CR1 J Corno (3380_CR5) 2020 V García (3380_CR7) 2019; 30 3380_CR28 3380_CR29 3380_CR26 3380_CR4 3380_CR25 3380_CR22 3380_CR23 3380_CR21 MM Bronstein (3380_CR2) 2017; 34 Y Xu (3380_CR33) 2015; 76 G Tapia (3380_CR27) 2018 XP Liao (3380_CR13) 2011 SM Mukras (3380_CR20) 2019; 44 X Zhou (3380_CR34) 2019 |
| References_xml | – reference: Muhendislik (2020) Homepage of element muhendislik. https://www.elementmuhendislik.com/ – reference: Cohen TS, Weiler M, Kicanaoglu B, Welling M (2019) Gauge Equivariant Convolutional Networks and the Icosahedral CNN. arXiv:1902.04615 [cs, stat] – reference: Wang Y, Sun Y, Liu Z, Sarma SE, Bronstein MM, Solomon JM (2019) Dynamic graph CNN for learning on point clouds. arXiv:1801.07829 [cs] – reference: Ratnikov F (2020a) Generative adversarial networks for LHCb fast simulation. arXiv:2003.09762 [hep-ex, physics:physics] – reference: RatnikovFUsing machine learning to speed up and improve calorimeter R &DJ Inst20201505C05032C0503210.1088/1748-0221/15/05/C05032 – reference: Injection A (2020) Hot runner mould injection manufacturers. www.anole-hot-runner.com/hot-runner-mould.htm – reference: XuYZhangQZhangWZhangPOptimization of injection molding process parameters to improve the mechanical performance of polymer product against impactInt J Adv Manuf Technol2015769–122199220810.1007/s00170-014-6434-y – reference: Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. 1505.04597 – reference: ChenXChenXZhouWZhangJYaoWThe heat source layout optimization using deep learning surrogate modelingStruct Multidiscip Optim20206263127314810.1007/s00158-020-02659-4 – reference: Su H, Maji S, Kalogerakis E, Learned-Miller E (2015) Multi-view convolutional neural networks for 3d shape recognition. In: Proceedings of the IEEE international conference on computer vision, pp 945–953 – reference: Maturana D, Scherer S (2015) VoxNet: A 3D convolutional neural network for real-time object recognition. In: 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, Hamburg, Germany, pp 922–928. https://doi.org/10.1109/IROS.2015.7353481 – reference: de Haan P, Weiler M, Cohen T, Welling M (2020) Gauge equivariant mesh CNNs: anisotropic convolutions on geometric graphs. arXiv:2003.05425 [cs, stat] – reference: Morand L, Helm D, Iza-Teran R, Garcke J (2019) A knowledge-based surrogate modeling approach for cup drawing with limited data. null https://doi.org/10.1088/1757-899x/651/1/012047 – reference: Garcia-Garcia A, Gomez-Donoso F, Rodríguez J, Orts S, Cazorla M, Azorin-Lopez J (2016) PointNet: a 3D convolutional neural network for real-time object class recognition. pp 1578–1584. https://doi.org/10.1109/IJCNN.2016.7727386 – reference: LiuHOngYSShenXCaiJWhen gaussian process meets big data: a review of scalable gpsIEEE Trans Neural Netw Learn Syst2020311144054423416996210.1109/TNNLS.2019.2957109 – reference: Moseley B, Markham A, Nissen-Meyer T (2018) Fast approximate simulation of seismic waves with deep learning. arXiv:1807.06873 [physics] – reference: Han ZH, Zhang KS (2012) Surrogate-based optimization. In: Real-world applications of genetic algorithms. InTech, https://doi.org/10.5772/36125, www.intechopen.com – reference: Verma N, Boyer E, Verbeek J (2018) FeaStNet: feature-steered graph convolutions for 3D shape analysis. arXiv:1706.05206 [cs] – reference: Jian ZhaoGCAn innovative surrogate-based searching method for reducing warpage and cycle time in injection moldingAdv Polym Technol201610.1002/adv.21554 – reference: XGBoost (2019) Xgboost documentation-xgboost 1.5.2 documentation. https://xgboost.readthedocs.io/en/stable/ – reference: ZhouXHsiehSJWangJCAccelerating extrusion-based additive manufacturing optimization processes with surrogate-based multi-fidelity modelsInt J Adv Manuf Technol201910.1007/s00170-019-03813-z – reference: Wu Z, Song S, Khosla A, Yu F, Zhang L, Tang X, Xiao J (2015) 3D ShapeNets: a deep representation for volumetric shapes. arXiv:1406.5670 [cs] – reference: Orihara R, Narasaki R, Yoshinaga Y, Morioka Y, Kokojima Y (2018) Approximation of time-consuming simulation based on generative adversarial network. In: 2018 IEEE 42nd annual computer software and applications conference (COMPSAC), vol 02, pp 171–176. https://doi.org/10.1109/COMPSAC.2018.10223, iSSN: 0730-3157 – reference: Belyaev M, Burnaev E, Kapushev Y (2014) Exact inference for gaussian process regression in case of big data with the cartesian product structure. arXiv:1403.6573 – reference: MukrasSMOmarHMMufadiFAExperimental-based multi-objective optimization of injection molding process parametersArab J Sci Eng20194497653766510.1007/s13369-019-03855-1 – reference: Qi CR, Yi L, Su H, Guibas LJ (2017) PointNet++: deep hierarchical feature learning on point sets in a metric space. arXiv:1706.02413 [cs] – reference: BronsteinMMBrunaJLeCunYSzlamAVandergheynstPGeometric deep learning: going beyond Euclidean dataIEEE Signal Process Mag2017344184210.1109/MSP.2017.2693418 – reference: LuoLYaoYGaoFZhaoCMixed-effects gaussian process modeling approach with application in injection molding processesJ Process Control201810.1016/j.jprocont.2017.12.003 – reference: CornoJGeorgNZadehSGZadehSGHellerJGubarevVRoggenTRömerUSchmidtCSchöpsSSchultzJSulimovAvan RienenUUncertainty modeling and analysis of the european x-ray free electron laser cavities manufacturing processNucl Instr Methods Phys Res Sect A202010.1016/j.nima.2020.164135 – reference: GarcíaVSánchezJSRodríguez-PicónLAMéndez-GonzálezLCde JesúsOchoa-Domínguez HUsing regression models for predicting the product quality in a tubing extrusion processJ Intell Manuf20193062535254410.1007/s10845-018-1418-7 – reference: Wang PS, Liu Y, Guo YX, Sun CY, Tong X (2017) O-CNN: octree-based convolutional neural networks for 3D shape analysis. ACM Trans Graph. – reference: TapiaGKhairallahSAMatthewsMJKingWEElwanyAGaussian process-based surrogate modeling framework for process planning in laser powder-bed fusion additive manufacturing of 316l stainless steelInt J Adv Manuf Technol201810.1007/s00170-017-1045-z – reference: Gong S, Chen L, Bronstein M, Zafeiriou S (2019) SpiralNet++: a fast and highly efficient mesh convolution operator – reference: LiaoXPRuanTXiaWMaJYLiLLMulti-objective optimization by gaussian genetic algorithm and its application in injection modelingAdv Mater Res201110.4028/www.scientific.net/amr.399-401.1672 – ident: 3380_CR32 – ident: 3380_CR9 doi: 10.1109/ICCVW.2019.00509 – volume: 30 start-page: 2535 issue: 6 year: 2019 ident: 3380_CR7 publication-title: J Intell Manuf doi: 10.1007/s10845-018-1418-7 – ident: 3380_CR21 doi: 10.1109/COMPSAC.2018.10223 – ident: 3380_CR29 doi: 10.1145/3072959.3073608 – volume: 34 start-page: 18 issue: 4 year: 2017 ident: 3380_CR2 publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2017.2693418 – ident: 3380_CR26 doi: 10.1109/ICCV.2015.114 – ident: 3380_CR22 – year: 2018 ident: 3380_CR27 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-017-1045-z – ident: 3380_CR18 – ident: 3380_CR28 doi: 10.1109/CVPR.2018.00275 – ident: 3380_CR17 doi: 10.1088/1757-899x/651/1/012047 – volume: 44 start-page: 7653 issue: 9 year: 2019 ident: 3380_CR20 publication-title: Arab J Sci Eng doi: 10.1007/s13369-019-03855-1 – volume: 31 start-page: 4405 issue: 11 year: 2020 ident: 3380_CR14 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2019.2957109 – volume: 76 start-page: 2199 issue: 9–12 year: 2015 ident: 3380_CR33 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-014-6434-y – ident: 3380_CR23 doi: 10.1051/epjconf/202024502026 – ident: 3380_CR8 doi: 10.1109/IJCNN.2016.7727386 – ident: 3380_CR6 – ident: 3380_CR10 doi: 10.5772/36125 – volume: 15 start-page: C05032 issue: 05 year: 2020 ident: 3380_CR24 publication-title: J Inst doi: 10.1088/1748-0221/15/05/C05032 – ident: 3380_CR4 – ident: 3380_CR31 – ident: 3380_CR1 doi: 10.1007/978-3-319-17091-6_6 – ident: 3380_CR16 doi: 10.1109/IROS.2015.7353481 – ident: 3380_CR30 doi: 10.1145/3326362 – year: 2011 ident: 3380_CR13 publication-title: Adv Mater Res doi: 10.4028/www.scientific.net/amr.399-401.1672 – volume: 62 start-page: 3127 issue: 6 year: 2020 ident: 3380_CR3 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-020-02659-4 – ident: 3380_CR25 doi: 10.1007/978-3-319-24574-4_28 – year: 2018 ident: 3380_CR15 publication-title: J Process Control doi: 10.1016/j.jprocont.2017.12.003 – year: 2016 ident: 3380_CR12 publication-title: Adv Polym Technol doi: 10.1002/adv.21554 – year: 2020 ident: 3380_CR5 publication-title: Nucl Instr Methods Phys Res Sect A doi: 10.1016/j.nima.2020.164135 – ident: 3380_CR11 – year: 2019 ident: 3380_CR34 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-019-03813-z – ident: 3380_CR19 |
| SSID | ssj0008049 |
| Score | 2.3825254 |
| Snippet | Injection molding is one of the most popular manufacturing methods for making complex plastic objects. Faster numerical simulation of this manufacturing... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms Applications programs Automobile industry Computational Mathematics and Numerical Analysis Computer simulation Data processing Deep learning Deflection Engineering Engineering Design Error analysis Industrial Application Paper Injection molding Machine learning Manufacturing Mathematical models Optimization Process parameters Product development Production methods Theoretical and Applied Mechanics |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB5qe9GD-MRqlRy8aXAf2c3mIKJiKYJF1EJvS7JJiiLb2sf_N8lmWxXsNdnNYZKZ-ZJ5fADnXNjgj7mWmKsAw4SzDPOEFJjRxMywVEhiC4Wf-mlvQB6HybAB_boWxqZV1jbRGWo5Luwb-VVEjXPOmMG_N5MvbFmjbHS1ptDgnlpBXrsWYxvQimxnrCa07h76zy9L25xVgNjCHBwSOvRlNK6YzsKHDNvs9sDc2wIc_HZVK_z5J2TqPFF3B7Y9hES31Z7vQkOVe7D1o7HgPnRfF9Pp2L6QIUd1YwaRQafovfxwqVelGXZRJzSpCgXUDNkM-BGSSk2Qp5IYHcCg-_B238OeMQEXRpXmWCaEJyLQRFMdc62jTAjJUsppkYiCamHEpxknqeZcGk0NmCpiSZgSIpNaJ_EhNMtxqY4AKSojllGiGQ1IqCOuQq0NXtMyTmNKZRvCWjh54duJW1aLz3zZCNkJNDcCzZ1A86ANF8t_JlUzjbVfd2qZ516xZvnqGLThst6H1fT_qx2vX-0ENiO79a7KsAPN-XShTg3cmIszf4a-ARGm0Qc priority: 102 providerName: ProQuest |
| Title | Surrogate modeling for injection molding processes using deep learning |
| URI | https://link.springer.com/article/10.1007/s00158-022-03380-0 https://www.proquest.com/docview/2725689597 |
| Volume | 65 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1615-1488 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008049 issn: 1615-147X databaseCode: AFBBN dateStart: 19890301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1615-1488 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0008049 issn: 1615-147X databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1615-1488 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0008049 issn: 1615-147X databaseCode: 8FG dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1615-1488 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008049 issn: 1615-147X databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1615-1488 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008049 issn: 1615-147X databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH_a2st2AMaHKB-VD7uBUZo4cXxsUQPatGoCKnWnyI5txIZC1Y8Lfz3PTtICgkmcItmOFb_3bP9e3hfAd6mc8QfVElQFBGVSpFTGrKCCx9gjEqWZCxT-NUoux-zHJJ7UQWHzxtu9MUn6k3oV7Oau95Q67_MA9aqAoqLe9vm2WtDuX_z5OVydwGkFex2YoT3GJ3WwzNuzvLyQ1ijzlWHU3zfZJoybL63cTP6dLRfqrHh8lcTxo0vZgo0agJJ-JTHf4JMpt-Hrs7SEO5BdL2ezB_d_jfhCOdhIENuSu_Kvd9wqsdnbrMi0CjMwc-L852-JNmZK6kIUt7swzoY355e0rrdAC9yIC6pjJmMVWGa5jaS1YaqUFgmXvIhVwa1C5cMKyRIrpcZ9HghTRJoJo1SqrY2jPWiVD6XZB2K4DkXKmRU8YD0bStOzFtGe1VESca470GuInhd1MnJXE-M-X6VR9jTKkUa5p1EedOBk9c60SsXx39FHDS_zelvO85AjwksFrqMDpw1r1t3vz3bwseGH8CV03PUxi0fQWsyW5hjBy0J14XOaXXRRYrPBYNStJRefg-Ho9xX2jsP-EzYy6Qc |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB4hOLAcEMtDdIFdH-AE1qaJE8cHhPZBVV4V2gWpt2DHdsUKpaUtQvvn9rft2HVaQIIbVztxpPHE843n8QHsSuWCP-iWoCsgKJMipzJlJRU8xRmRKc1cofBFJ2tfs9Nu2p2Df3UtjEurrM9Ef1DrfunuyL_GHI1zLhD_Hg3uqWONctHVmkJDBmoFfehbjIXCjjPz9xFduNHhyU_c7704bh1f_WjTwDJAS1S_MdUpk6mKLLPcJtLaOFdKi4xLXqaq5FbhJ62QLLNSatTuSJgy0UwYpXJtrWONQBOwwBIm0Plb-H7cufw1tQX5BIA7WEWbjHdD2Y4v3nNwJacumz5CPzGi0XPTOMO7L0K03vK1VmA5QFbybaJjH2HOVKuw9KSR4Rq0fj8Mh313I0c8tQ4OEkTD5Lb641O9Khz2US4ymBQmmBFxGfc9oo0ZkEBd0VuH63eR3QbMV_3KbAIxXMci58wKHrGmjaVpWov40OokSzjXDWjWwinK0L7csWjcFdPGy16gBQq08AItogbsT98ZTJp3vPn0di3zIvzIo2Kmdg04qPdhNv36ap_eXu0LLLavLs6L85PO2RZ8iJ0a-ArHbZgfDx_MDkKdsfoc9InAzXur8H_a5BFy |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA8yQfRB_MTp1Dz4pmFdmzbN41DH_BqCDvZWkiYZinRl6_5_L2m7TVHB1yQN9HLX_K53vzuELoS0wR9wS8AV4IQKHhMR0pRwFsIMj6Silij8NIj6Q3o_CkcrLH6X7V6HJEtOg63SlBXtXJn2gvhmr_qY2Ex0D3wsj4DTvk5toQTQ6KHfXXyL4xIAW1hDOpSNKtrMz3t8vZqWePNbiNTdPL0dtF1BRtwtz3gXrelsD22tFBLcR72X-XQ6sX_EsGttA4MY0Ch-y95dqlUGwy7KhPOSGKBn2Ga8j7HSOsdV64jxARr2bl-v-6TqkEBSMJ2CqJCKUHqGGmYCYYwfS6l4xARLQ5kyI8FdMFzQyAihwDI9rtNAUa6ljJUxYXCIGtkk00cIa6Z8HjNqOPNox_hCd4wBfGZUEAWMqSbq1MJJ0qp8uO1i8ZEsCh87gSYg0MQJNPGa6HLxTF4Wz_hzdauWeVIZ0izxGWCymMN7NNFVfQ7L6d93O_7f8nO08XzTSx7vBg8naNO3WuEIhy3UKKZzfQrIo5BnTrk-AZiHzlU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surrogate+modeling+for+injection+molding+processes+using+deep+learning&rft.jtitle=Structural+and+multidisciplinary+optimization&rft.au=Uglov%2C+Arsenii&rft.au=Nikolaev%2C+Sergei&rft.au=Belov%2C+Sergei&rft.au=Padalitsa%2C+Daniil&rft.date=2022-11-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1615-147X&rft.eissn=1615-1488&rft.volume=65&rft.issue=11&rft_id=info:doi/10.1007%2Fs00158-022-03380-0&rft.externalDocID=10_1007_s00158_022_03380_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-147X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-147X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-147X&client=summon |