Surrogate modeling for injection molding processes using deep learning

Injection molding is one of the most popular manufacturing methods for making complex plastic objects. Faster numerical simulation of this manufacturing process would allow faster and cheaper design cycles of new products. In this work, we propose a data processing pipeline that includes the extract...

Full description

Saved in:
Bibliographic Details
Published inStructural and multidisciplinary optimization Vol. 65; no. 11
Main Authors Uglov, Arsenii, Nikolaev, Sergei, Belov, Sergei, Padalitsa, Daniil, Greenkina, Tatiana, Biagio, Marco San, Cacciatori, Fabio Massimo
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1615-147X
1615-1488
DOI10.1007/s00158-022-03380-0

Cover

Abstract Injection molding is one of the most popular manufacturing methods for making complex plastic objects. Faster numerical simulation of this manufacturing process would allow faster and cheaper design cycles of new products. In this work, we propose a data processing pipeline that includes the extraction of data from Moldflow simulation projects and the prediction of the fill time and deflection distributions over 3-dimensional surfaces using machine learning models. We propose algorithms for the engineering of features, including information of injector gates parameters that will mostly affect the time for plastic to reach the particular point of the form for fill time prediction, and geometrical features for deflection prediction. We propose and evaluate machine learning models for fill time and deflection distribution prediction and provide values of Mean Absolute Error, Median Absolute Error, and Root Mean Square Error metrics. Finally, we measure the execution time of our solution and show that our solution is much faster than Moldflow: approximately, 17 times and 14 times faster for mean and median total times, respectively, comparing the times of all analysis stages for deflection prediction. Our solution has been implemented in a prototype web application that was approved by the management board of Fiat Chrysler Automobiles and Illogic SRL. As one of the promising applications of similar surrogate modeling approaches, we envision the use of trained models as a fast objective function for optimizing injection molding process parameters, such as optimal placement of gates, which could significantly aid engineers in this task, or even automate it.
AbstractList Injection molding is one of the most popular manufacturing methods for making complex plastic objects. Faster numerical simulation of this manufacturing process would allow faster and cheaper design cycles of new products. In this work, we propose a data processing pipeline that includes the extraction of data from Moldflow simulation projects and the prediction of the fill time and deflection distributions over 3-dimensional surfaces using machine learning models. We propose algorithms for the engineering of features, including information of injector gates parameters that will mostly affect the time for plastic to reach the particular point of the form for fill time prediction, and geometrical features for deflection prediction. We propose and evaluate machine learning models for fill time and deflection distribution prediction and provide values of Mean Absolute Error, Median Absolute Error, and Root Mean Square Error metrics. Finally, we measure the execution time of our solution and show that our solution is much faster than Moldflow: approximately, 17 times and 14 times faster for mean and median total times, respectively, comparing the times of all analysis stages for deflection prediction. Our solution has been implemented in a prototype web application that was approved by the management board of Fiat Chrysler Automobiles and Illogic SRL. As one of the promising applications of similar surrogate modeling approaches, we envision the use of trained models as a fast objective function for optimizing injection molding process parameters, such as optimal placement of gates, which could significantly aid engineers in this task, or even automate it.
Injection molding is one of the most popular manufacturing methods for making complex plastic objects. Faster numerical simulation of this manufacturing process would allow faster and cheaper design cycles of new products. In this work, we propose a data processing pipeline that includes the extraction of data from Moldflow simulation projects and the prediction of the fill time and deflection distributions over 3-dimensional surfaces using machine learning models. We propose algorithms for the engineering of features, including information of injector gates parameters that will mostly affect the time for plastic to reach the particular point of the form for fill time prediction, and geometrical features for deflection prediction. We propose and evaluate machine learning models for fill time and deflection distribution prediction and provide values of Mean Absolute Error, Median Absolute Error, and Root Mean Square Error metrics. Finally, we measure the execution time of our solution and show that our solution is much faster than Moldflow: approximately, 17 times and 14 times faster for mean and median total times, respectively, comparing the times of all analysis stages for deflection prediction. Our solution has been implemented in a prototype web application that was approved by the management board of Fiat Chrysler Automobiles and Illogic SRL. As one of the promising applications of similar surrogate modeling approaches, we envision the use of trained models as a fast objective function for optimizing injection molding process parameters, such as optimal placement of gates, which could significantly aid engineers in this task, or even automate it.
ArticleNumber 305
Author Belov, Sergei
Greenkina, Tatiana
Cacciatori, Fabio Massimo
Nikolaev, Sergei
Biagio, Marco San
Uglov, Arsenii
Padalitsa, Daniil
Author_xml – sequence: 1
  givenname: Arsenii
  surname: Uglov
  fullname: Uglov, Arsenii
  organization: Skolkovo Institute of Science and Technology, Center for Design, Manufacturing and Materials
– sequence: 2
  givenname: Sergei
  surname: Nikolaev
  fullname: Nikolaev, Sergei
  email: s.nikolaev@cyberphysics.xyz
  organization: Skolkovo Institute of Science and Technology, Center for Design, Manufacturing and Materials
– sequence: 3
  givenname: Sergei
  surname: Belov
  fullname: Belov, Sergei
  organization: Skolkovo Institute of Science and Technology, Center for Design, Manufacturing and Materials
– sequence: 4
  givenname: Daniil
  surname: Padalitsa
  fullname: Padalitsa, Daniil
  organization: Skolkovo Institute of Science and Technology, Center for Design, Manufacturing and Materials
– sequence: 5
  givenname: Tatiana
  surname: Greenkina
  fullname: Greenkina, Tatiana
  organization: Skolkovo Institute of Science and Technology, Center for Design, Manufacturing and Materials
– sequence: 6
  givenname: Marco San
  surname: Biagio
  fullname: Biagio, Marco San
  organization: Illogic s.r.l
– sequence: 7
  givenname: Fabio Massimo
  surname: Cacciatori
  fullname: Cacciatori, Fabio Massimo
  organization: Illogic s.r.l
BookMark eNp9UMtOwzAQtFCRaAs_wCkS58A6iWP7iCpKkSpxACRuluNHlSq1i50c-HscgkDi0Mu-NDO7Ows0c94ZhK4x3GIAehcBMGE5FEUOZckghzM0xzUmOa4Ym_3W9P0CLWLcAwCDis_R-mUIwe9kb7KD16Zr3S6zPmSt2xvVt96lcafH6TF4ZWI0MRvi2GtjjllnZHCpu0TnVnbRXP3kJXpbP7yuNvn2-fFpdb_NVYl5n2tSSdKArSy1pbS2YE2jeU0lVaRR1DaEU8tlVVspNaMA3KhSV9w0DdPWknKJbibddM3HYGIv9n4ILq0UBS1IzXhSSCg2oVTwMQZjhWp7OX7TB9l2AoMYXROTayK5Jr5dS3GJin_UY2gPMnyeJpUTKSaw25nwd9UJ1hc5GoNM
CitedBy_id crossref_primary_10_1016_j_jmsy_2025_01_008
crossref_primary_10_1016_j_ecoenv_2022_113400
crossref_primary_10_1016_j_compositesa_2024_108340
Cites_doi 10.1109/ICCVW.2019.00509
10.1007/s10845-018-1418-7
10.1109/COMPSAC.2018.10223
10.1145/3072959.3073608
10.1109/MSP.2017.2693418
10.1109/ICCV.2015.114
10.1007/s00170-017-1045-z
10.1109/CVPR.2018.00275
10.1088/1757-899x/651/1/012047
10.1007/s13369-019-03855-1
10.1109/TNNLS.2019.2957109
10.1007/s00170-014-6434-y
10.1051/epjconf/202024502026
10.1109/IJCNN.2016.7727386
10.5772/36125
10.1088/1748-0221/15/05/C05032
10.1007/978-3-319-17091-6_6
10.1109/IROS.2015.7353481
10.1145/3326362
10.4028/www.scientific.net/amr.399-401.1672
10.1007/s00158-020-02659-4
10.1007/978-3-319-24574-4_28
10.1016/j.jprocont.2017.12.003
10.1002/adv.21554
10.1016/j.nima.2020.164135
10.1007/s00170-019-03813-z
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s00158-022-03380-0
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList Engineering Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1615-1488
ExternalDocumentID 10_1007_s00158_022_03380_0
GrantInformation_xml – fundername: Finpiemonte
  grantid: 117
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
199
1N0
2.D
203
29Q
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
L6V
LAS
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZMTXR
_50
~02
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-d54a5b0f4f7f3aff28bbd967a7c5bc7fb597f9a46faad87009ec3d49ebb8dff53
IEDL.DBID AGYKE
ISSN 1615-147X
IngestDate Sat Sep 06 22:12:22 EDT 2025
Wed Oct 01 02:17:28 EDT 2025
Thu Apr 24 23:11:39 EDT 2025
Fri Feb 21 02:44:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Deep learning
3d machine learning
Point cloud
Machine learning
Injection molding
Fluid dynamics simulation
Mesh
Surrogate modeling
3d data
Autodesk Moldflow
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-d54a5b0f4f7f3aff28bbd967a7c5bc7fb597f9a46faad87009ec3d49ebb8dff53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2725689597
PQPubID 2043658
ParticipantIDs proquest_journals_2725689597
crossref_citationtrail_10_1007_s00158_022_03380_0
crossref_primary_10_1007_s00158_022_03380_0
springer_journals_10_1007_s00158_022_03380_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221100
2022-11-00
20221101
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 20221100
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Structural and multidisciplinary optimization
PublicationTitleAbbrev Struct Multidisc Optim
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Garcia-Garcia A, Gomez-Donoso F, Rodríguez J, Orts S, Cazorla M, Azorin-Lopez J (2016) PointNet: a 3D convolutional neural network for real-time object class recognition. pp 1578–1584. https://doi.org/10.1109/IJCNN.2016.7727386
Jian ZhaoGCAn innovative surrogate-based searching method for reducing warpage and cycle time in injection moldingAdv Polym Technol201610.1002/adv.21554
TapiaGKhairallahSAMatthewsMJKingWEElwanyAGaussian process-based surrogate modeling framework for process planning in laser powder-bed fusion additive manufacturing of 316l stainless steelInt J Adv Manuf Technol201810.1007/s00170-017-1045-z
XuYZhangQZhangWZhangPOptimization of injection molding process parameters to improve the mechanical performance of polymer product against impactInt J Adv Manuf Technol2015769–122199220810.1007/s00170-014-6434-y
Han ZH, Zhang KS (2012) Surrogate-based optimization. In: Real-world applications of genetic algorithms. InTech, https://doi.org/10.5772/36125, www.intechopen.com
GarcíaVSánchezJSRodríguez-PicónLAMéndez-GonzálezLCde JesúsOchoa-Domínguez HUsing regression models for predicting the product quality in a tubing extrusion processJ Intell Manuf20193062535254410.1007/s10845-018-1418-7
Gong S, Chen L, Bronstein M, Zafeiriou S (2019) SpiralNet++: a fast and highly efficient mesh convolution operator
ZhouXHsiehSJWangJCAccelerating extrusion-based additive manufacturing optimization processes with surrogate-based multi-fidelity modelsInt J Adv Manuf Technol201910.1007/s00170-019-03813-z
Muhendislik (2020) Homepage of element muhendislik. https://www.elementmuhendislik.com
ChenXChenXZhouWZhangJYaoWThe heat source layout optimization using deep learning surrogate modelingStruct Multidiscip Optim20206263127314810.1007/s00158-020-02659-4
Wang Y, Sun Y, Liu Z, Sarma SE, Bronstein MM, Solomon JM (2019) Dynamic graph CNN for learning on point clouds. arXiv:1801.07829 [cs]
Injection A (2020) Hot runner mould injection manufacturers. www.anole-hot-runner.com/hot-runner-mould.htm
Verma N, Boyer E, Verbeek J (2018) FeaStNet: feature-steered graph convolutions for 3D shape analysis. arXiv:1706.05206 [cs]
Maturana D, Scherer S (2015) VoxNet: A 3D convolutional neural network for real-time object recognition. In: 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, Hamburg, Germany, pp 922–928. https://doi.org/10.1109/IROS.2015.7353481
Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. 1505.04597
LiaoXPRuanTXiaWMaJYLiLLMulti-objective optimization by gaussian genetic algorithm and its application in injection modelingAdv Mater Res201110.4028/www.scientific.net/amr.399-401.1672
BronsteinMMBrunaJLeCunYSzlamAVandergheynstPGeometric deep learning: going beyond Euclidean dataIEEE Signal Process Mag2017344184210.1109/MSP.2017.2693418
MukrasSMOmarHMMufadiFAExperimental-based multi-objective optimization of injection molding process parametersArab J Sci Eng20194497653766510.1007/s13369-019-03855-1
CornoJGeorgNZadehSGZadehSGHellerJGubarevVRoggenTRömerUSchmidtCSchöpsSSchultzJSulimovAvan RienenUUncertainty modeling and analysis of the european x-ray free electron laser cavities manufacturing processNucl Instr Methods Phys Res Sect A202010.1016/j.nima.2020.164135
Ratnikov F (2020a) Generative adversarial networks for LHCb fast simulation. arXiv:2003.09762 [hep-ex, physics:physics]
Wang PS, Liu Y, Guo YX, Sun CY, Tong X (2017) O-CNN: octree-based convolutional neural networks for 3D shape analysis. ACM Trans Graph.
Belyaev M, Burnaev E, Kapushev Y (2014) Exact inference for gaussian process regression in case of big data with the cartesian product structure. arXiv:1403.6573
Moseley B, Markham A, Nissen-Meyer T (2018) Fast approximate simulation of seismic waves with deep learning. arXiv:1807.06873 [physics]
Su H, Maji S, Kalogerakis E, Learned-Miller E (2015) Multi-view convolutional neural networks for 3d shape recognition. In: Proceedings of the IEEE international conference on computer vision, pp 945–953
Morand L, Helm D, Iza-Teran R, Garcke J (2019) A knowledge-based surrogate modeling approach for cup drawing with limited data. null https://doi.org/10.1088/1757-899x/651/1/012047
RatnikovFUsing machine learning to speed up and improve calorimeter R &DJ Inst20201505C05032C0503210.1088/1748-0221/15/05/C05032
de Haan P, Weiler M, Cohen T, Welling M (2020) Gauge equivariant mesh CNNs: anisotropic convolutions on geometric graphs. arXiv:2003.05425 [cs, stat]
XGBoost (2019) Xgboost documentation-xgboost 1.5.2 documentation. https://xgboost.readthedocs.io/en/stable
Orihara R, Narasaki R, Yoshinaga Y, Morioka Y, Kokojima Y (2018) Approximation of time-consuming simulation based on generative adversarial network. In: 2018 IEEE 42nd annual computer software and applications conference (COMPSAC), vol 02, pp 171–176. https://doi.org/10.1109/COMPSAC.2018.10223, iSSN: 0730-3157
Qi CR, Yi L, Su H, Guibas LJ (2017) PointNet++: deep hierarchical feature learning on point sets in a metric space. arXiv:1706.02413 [cs]
Cohen TS, Weiler M, Kicanaoglu B, Welling M (2019) Gauge Equivariant Convolutional Networks and the Icosahedral CNN. arXiv:1902.04615 [cs, stat]
LuoLYaoYGaoFZhaoCMixed-effects gaussian process modeling approach with application in injection molding processesJ Process Control201810.1016/j.jprocont.2017.12.003
Wu Z, Song S, Khosla A, Yu F, Zhang L, Tang X, Xiao J (2015) 3D ShapeNets: a deep representation for volumetric shapes. arXiv:1406.5670 [cs]
LiuHOngYSShenXCaiJWhen gaussian process meets big data: a review of scalable gpsIEEE Trans Neural Netw Learn Syst2020311144054423416996210.1109/TNNLS.2019.2957109
3380_CR19
3380_CR17
3380_CR18
L Luo (3380_CR15) 2018
3380_CR16
3380_CR11
H Liu (3380_CR14) 2020; 31
3380_CR31
3380_CR10
F Ratnikov (3380_CR24) 2020; 15
3380_CR32
3380_CR30
3380_CR6
3380_CR9
3380_CR8
GC Jian Zhao (3380_CR12) 2016
X Chen (3380_CR3) 2020; 62
3380_CR1
J Corno (3380_CR5) 2020
V García (3380_CR7) 2019; 30
3380_CR28
3380_CR29
3380_CR26
3380_CR4
3380_CR25
3380_CR22
3380_CR23
3380_CR21
MM Bronstein (3380_CR2) 2017; 34
Y Xu (3380_CR33) 2015; 76
G Tapia (3380_CR27) 2018
XP Liao (3380_CR13) 2011
SM Mukras (3380_CR20) 2019; 44
X Zhou (3380_CR34) 2019
References_xml – reference: Muhendislik (2020) Homepage of element muhendislik. https://www.elementmuhendislik.com/
– reference: Cohen TS, Weiler M, Kicanaoglu B, Welling M (2019) Gauge Equivariant Convolutional Networks and the Icosahedral CNN. arXiv:1902.04615 [cs, stat]
– reference: Wang Y, Sun Y, Liu Z, Sarma SE, Bronstein MM, Solomon JM (2019) Dynamic graph CNN for learning on point clouds. arXiv:1801.07829 [cs]
– reference: Ratnikov F (2020a) Generative adversarial networks for LHCb fast simulation. arXiv:2003.09762 [hep-ex, physics:physics]
– reference: RatnikovFUsing machine learning to speed up and improve calorimeter R &DJ Inst20201505C05032C0503210.1088/1748-0221/15/05/C05032
– reference: Injection A (2020) Hot runner mould injection manufacturers. www.anole-hot-runner.com/hot-runner-mould.htm
– reference: XuYZhangQZhangWZhangPOptimization of injection molding process parameters to improve the mechanical performance of polymer product against impactInt J Adv Manuf Technol2015769–122199220810.1007/s00170-014-6434-y
– reference: Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. 1505.04597
– reference: ChenXChenXZhouWZhangJYaoWThe heat source layout optimization using deep learning surrogate modelingStruct Multidiscip Optim20206263127314810.1007/s00158-020-02659-4
– reference: Su H, Maji S, Kalogerakis E, Learned-Miller E (2015) Multi-view convolutional neural networks for 3d shape recognition. In: Proceedings of the IEEE international conference on computer vision, pp 945–953
– reference: Maturana D, Scherer S (2015) VoxNet: A 3D convolutional neural network for real-time object recognition. In: 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, Hamburg, Germany, pp 922–928. https://doi.org/10.1109/IROS.2015.7353481
– reference: de Haan P, Weiler M, Cohen T, Welling M (2020) Gauge equivariant mesh CNNs: anisotropic convolutions on geometric graphs. arXiv:2003.05425 [cs, stat]
– reference: Morand L, Helm D, Iza-Teran R, Garcke J (2019) A knowledge-based surrogate modeling approach for cup drawing with limited data. null https://doi.org/10.1088/1757-899x/651/1/012047
– reference: Garcia-Garcia A, Gomez-Donoso F, Rodríguez J, Orts S, Cazorla M, Azorin-Lopez J (2016) PointNet: a 3D convolutional neural network for real-time object class recognition. pp 1578–1584. https://doi.org/10.1109/IJCNN.2016.7727386
– reference: LiuHOngYSShenXCaiJWhen gaussian process meets big data: a review of scalable gpsIEEE Trans Neural Netw Learn Syst2020311144054423416996210.1109/TNNLS.2019.2957109
– reference: Moseley B, Markham A, Nissen-Meyer T (2018) Fast approximate simulation of seismic waves with deep learning. arXiv:1807.06873 [physics]
– reference: Han ZH, Zhang KS (2012) Surrogate-based optimization. In: Real-world applications of genetic algorithms. InTech, https://doi.org/10.5772/36125, www.intechopen.com
– reference: Verma N, Boyer E, Verbeek J (2018) FeaStNet: feature-steered graph convolutions for 3D shape analysis. arXiv:1706.05206 [cs]
– reference: Jian ZhaoGCAn innovative surrogate-based searching method for reducing warpage and cycle time in injection moldingAdv Polym Technol201610.1002/adv.21554
– reference: XGBoost (2019) Xgboost documentation-xgboost 1.5.2 documentation. https://xgboost.readthedocs.io/en/stable/
– reference: ZhouXHsiehSJWangJCAccelerating extrusion-based additive manufacturing optimization processes with surrogate-based multi-fidelity modelsInt J Adv Manuf Technol201910.1007/s00170-019-03813-z
– reference: Wu Z, Song S, Khosla A, Yu F, Zhang L, Tang X, Xiao J (2015) 3D ShapeNets: a deep representation for volumetric shapes. arXiv:1406.5670 [cs]
– reference: Orihara R, Narasaki R, Yoshinaga Y, Morioka Y, Kokojima Y (2018) Approximation of time-consuming simulation based on generative adversarial network. In: 2018 IEEE 42nd annual computer software and applications conference (COMPSAC), vol 02, pp 171–176. https://doi.org/10.1109/COMPSAC.2018.10223, iSSN: 0730-3157
– reference: Belyaev M, Burnaev E, Kapushev Y (2014) Exact inference for gaussian process regression in case of big data with the cartesian product structure. arXiv:1403.6573
– reference: MukrasSMOmarHMMufadiFAExperimental-based multi-objective optimization of injection molding process parametersArab J Sci Eng20194497653766510.1007/s13369-019-03855-1
– reference: Qi CR, Yi L, Su H, Guibas LJ (2017) PointNet++: deep hierarchical feature learning on point sets in a metric space. arXiv:1706.02413 [cs]
– reference: BronsteinMMBrunaJLeCunYSzlamAVandergheynstPGeometric deep learning: going beyond Euclidean dataIEEE Signal Process Mag2017344184210.1109/MSP.2017.2693418
– reference: LuoLYaoYGaoFZhaoCMixed-effects gaussian process modeling approach with application in injection molding processesJ Process Control201810.1016/j.jprocont.2017.12.003
– reference: CornoJGeorgNZadehSGZadehSGHellerJGubarevVRoggenTRömerUSchmidtCSchöpsSSchultzJSulimovAvan RienenUUncertainty modeling and analysis of the european x-ray free electron laser cavities manufacturing processNucl Instr Methods Phys Res Sect A202010.1016/j.nima.2020.164135
– reference: GarcíaVSánchezJSRodríguez-PicónLAMéndez-GonzálezLCde JesúsOchoa-Domínguez HUsing regression models for predicting the product quality in a tubing extrusion processJ Intell Manuf20193062535254410.1007/s10845-018-1418-7
– reference: Wang PS, Liu Y, Guo YX, Sun CY, Tong X (2017) O-CNN: octree-based convolutional neural networks for 3D shape analysis. ACM Trans Graph.
– reference: TapiaGKhairallahSAMatthewsMJKingWEElwanyAGaussian process-based surrogate modeling framework for process planning in laser powder-bed fusion additive manufacturing of 316l stainless steelInt J Adv Manuf Technol201810.1007/s00170-017-1045-z
– reference: Gong S, Chen L, Bronstein M, Zafeiriou S (2019) SpiralNet++: a fast and highly efficient mesh convolution operator
– reference: LiaoXPRuanTXiaWMaJYLiLLMulti-objective optimization by gaussian genetic algorithm and its application in injection modelingAdv Mater Res201110.4028/www.scientific.net/amr.399-401.1672
– ident: 3380_CR32
– ident: 3380_CR9
  doi: 10.1109/ICCVW.2019.00509
– volume: 30
  start-page: 2535
  issue: 6
  year: 2019
  ident: 3380_CR7
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-018-1418-7
– ident: 3380_CR21
  doi: 10.1109/COMPSAC.2018.10223
– ident: 3380_CR29
  doi: 10.1145/3072959.3073608
– volume: 34
  start-page: 18
  issue: 4
  year: 2017
  ident: 3380_CR2
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2017.2693418
– ident: 3380_CR26
  doi: 10.1109/ICCV.2015.114
– ident: 3380_CR22
– year: 2018
  ident: 3380_CR27
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-017-1045-z
– ident: 3380_CR18
– ident: 3380_CR28
  doi: 10.1109/CVPR.2018.00275
– ident: 3380_CR17
  doi: 10.1088/1757-899x/651/1/012047
– volume: 44
  start-page: 7653
  issue: 9
  year: 2019
  ident: 3380_CR20
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-019-03855-1
– volume: 31
  start-page: 4405
  issue: 11
  year: 2020
  ident: 3380_CR14
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2019.2957109
– volume: 76
  start-page: 2199
  issue: 9–12
  year: 2015
  ident: 3380_CR33
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-014-6434-y
– ident: 3380_CR23
  doi: 10.1051/epjconf/202024502026
– ident: 3380_CR8
  doi: 10.1109/IJCNN.2016.7727386
– ident: 3380_CR6
– ident: 3380_CR10
  doi: 10.5772/36125
– volume: 15
  start-page: C05032
  issue: 05
  year: 2020
  ident: 3380_CR24
  publication-title: J Inst
  doi: 10.1088/1748-0221/15/05/C05032
– ident: 3380_CR4
– ident: 3380_CR31
– ident: 3380_CR1
  doi: 10.1007/978-3-319-17091-6_6
– ident: 3380_CR16
  doi: 10.1109/IROS.2015.7353481
– ident: 3380_CR30
  doi: 10.1145/3326362
– year: 2011
  ident: 3380_CR13
  publication-title: Adv Mater Res
  doi: 10.4028/www.scientific.net/amr.399-401.1672
– volume: 62
  start-page: 3127
  issue: 6
  year: 2020
  ident: 3380_CR3
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-020-02659-4
– ident: 3380_CR25
  doi: 10.1007/978-3-319-24574-4_28
– year: 2018
  ident: 3380_CR15
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2017.12.003
– year: 2016
  ident: 3380_CR12
  publication-title: Adv Polym Technol
  doi: 10.1002/adv.21554
– year: 2020
  ident: 3380_CR5
  publication-title: Nucl Instr Methods Phys Res Sect A
  doi: 10.1016/j.nima.2020.164135
– ident: 3380_CR11
– year: 2019
  ident: 3380_CR34
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-019-03813-z
– ident: 3380_CR19
SSID ssj0008049
Score 2.3825254
Snippet Injection molding is one of the most popular manufacturing methods for making complex plastic objects. Faster numerical simulation of this manufacturing...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Applications programs
Automobile industry
Computational Mathematics and Numerical Analysis
Computer simulation
Data processing
Deep learning
Deflection
Engineering
Engineering Design
Error analysis
Industrial Application Paper
Injection molding
Machine learning
Manufacturing
Mathematical models
Optimization
Process parameters
Product development
Production methods
Theoretical and Applied Mechanics
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB5qe9GD-MRqlRy8aXAf2c3mIKJiKYJF1EJvS7JJiiLb2sf_N8lmWxXsNdnNYZKZ-ZJ5fADnXNjgj7mWmKsAw4SzDPOEFJjRxMywVEhiC4Wf-mlvQB6HybAB_boWxqZV1jbRGWo5Luwb-VVEjXPOmMG_N5MvbFmjbHS1ptDgnlpBXrsWYxvQimxnrCa07h76zy9L25xVgNjCHBwSOvRlNK6YzsKHDNvs9sDc2wIc_HZVK_z5J2TqPFF3B7Y9hES31Z7vQkOVe7D1o7HgPnRfF9Pp2L6QIUd1YwaRQafovfxwqVelGXZRJzSpCgXUDNkM-BGSSk2Qp5IYHcCg-_B238OeMQEXRpXmWCaEJyLQRFMdc62jTAjJUsppkYiCamHEpxknqeZcGk0NmCpiSZgSIpNaJ_EhNMtxqY4AKSojllGiGQ1IqCOuQq0NXtMyTmNKZRvCWjh54duJW1aLz3zZCNkJNDcCzZ1A86ANF8t_JlUzjbVfd2qZ516xZvnqGLThst6H1fT_qx2vX-0ENiO79a7KsAPN-XShTg3cmIszf4a-ARGm0Qc
  priority: 102
  providerName: ProQuest
Title Surrogate modeling for injection molding processes using deep learning
URI https://link.springer.com/article/10.1007/s00158-022-03380-0
https://www.proquest.com/docview/2725689597
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1615-1488
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008049
  issn: 1615-147X
  databaseCode: AFBBN
  dateStart: 19890301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1615-1488
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0008049
  issn: 1615-147X
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1615-1488
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0008049
  issn: 1615-147X
  databaseCode: 8FG
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1615-1488
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008049
  issn: 1615-147X
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1615-1488
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008049
  issn: 1615-147X
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH_a2st2AMaHKB-VD7uBUZo4cXxsUQPatGoCKnWnyI5txIZC1Y8Lfz3PTtICgkmcItmOFb_3bP9e3hfAd6mc8QfVElQFBGVSpFTGrKCCx9gjEqWZCxT-NUoux-zHJJ7UQWHzxtu9MUn6k3oV7Oau95Q67_MA9aqAoqLe9vm2WtDuX_z5OVydwGkFex2YoT3GJ3WwzNuzvLyQ1ijzlWHU3zfZJoybL63cTP6dLRfqrHh8lcTxo0vZgo0agJJ-JTHf4JMpt-Hrs7SEO5BdL2ezB_d_jfhCOdhIENuSu_Kvd9wqsdnbrMi0CjMwc-L852-JNmZK6kIUt7swzoY355e0rrdAC9yIC6pjJmMVWGa5jaS1YaqUFgmXvIhVwa1C5cMKyRIrpcZ9HghTRJoJo1SqrY2jPWiVD6XZB2K4DkXKmRU8YD0bStOzFtGe1VESca470GuInhd1MnJXE-M-X6VR9jTKkUa5p1EedOBk9c60SsXx39FHDS_zelvO85AjwksFrqMDpw1r1t3vz3bwseGH8CV03PUxi0fQWsyW5hjBy0J14XOaXXRRYrPBYNStJRefg-Ho9xX2jsP-EzYy6Qc
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB4hOLAcEMtDdIFdH-AE1qaJE8cHhPZBVV4V2gWpt2DHdsUKpaUtQvvn9rft2HVaQIIbVztxpPHE843n8QHsSuWCP-iWoCsgKJMipzJlJRU8xRmRKc1cofBFJ2tfs9Nu2p2Df3UtjEurrM9Ef1DrfunuyL_GHI1zLhD_Hg3uqWONctHVmkJDBmoFfehbjIXCjjPz9xFduNHhyU_c7704bh1f_WjTwDJAS1S_MdUpk6mKLLPcJtLaOFdKi4xLXqaq5FbhJ62QLLNSatTuSJgy0UwYpXJtrWONQBOwwBIm0Plb-H7cufw1tQX5BIA7WEWbjHdD2Y4v3nNwJacumz5CPzGi0XPTOMO7L0K03vK1VmA5QFbybaJjH2HOVKuw9KSR4Rq0fj8Mh313I0c8tQ4OEkTD5Lb641O9Khz2US4ymBQmmBFxGfc9oo0ZkEBd0VuH63eR3QbMV_3KbAIxXMci58wKHrGmjaVpWov40OokSzjXDWjWwinK0L7csWjcFdPGy16gBQq08AItogbsT98ZTJp3vPn0di3zIvzIo2Kmdg04qPdhNv36ap_eXu0LLLavLs6L85PO2RZ8iJ0a-ArHbZgfDx_MDkKdsfoc9InAzXur8H_a5BFy
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA8yQfRB_MTp1Dz4pmFdmzbN41DH_BqCDvZWkiYZinRl6_5_L2m7TVHB1yQN9HLX_K53vzuELoS0wR9wS8AV4IQKHhMR0pRwFsIMj6Silij8NIj6Q3o_CkcrLH6X7V6HJEtOg63SlBXtXJn2gvhmr_qY2Ex0D3wsj4DTvk5toQTQ6KHfXXyL4xIAW1hDOpSNKtrMz3t8vZqWePNbiNTdPL0dtF1BRtwtz3gXrelsD22tFBLcR72X-XQ6sX_EsGttA4MY0Ch-y95dqlUGwy7KhPOSGKBn2Ga8j7HSOsdV64jxARr2bl-v-6TqkEBSMJ2CqJCKUHqGGmYCYYwfS6l4xARLQ5kyI8FdMFzQyAihwDI9rtNAUa6ljJUxYXCIGtkk00cIa6Z8HjNqOPNox_hCd4wBfGZUEAWMqSbq1MJJ0qp8uO1i8ZEsCh87gSYg0MQJNPGa6HLxTF4Wz_hzdauWeVIZ0izxGWCymMN7NNFVfQ7L6d93O_7f8nO08XzTSx7vBg8naNO3WuEIhy3UKKZzfQrIo5BnTrk-AZiHzlU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surrogate+modeling+for+injection+molding+processes+using+deep+learning&rft.jtitle=Structural+and+multidisciplinary+optimization&rft.au=Uglov%2C+Arsenii&rft.au=Nikolaev%2C+Sergei&rft.au=Belov%2C+Sergei&rft.au=Padalitsa%2C+Daniil&rft.date=2022-11-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1615-147X&rft.eissn=1615-1488&rft.volume=65&rft.issue=11&rft_id=info:doi/10.1007%2Fs00158-022-03380-0&rft.externalDocID=10_1007_s00158_022_03380_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-147X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-147X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-147X&client=summon