Conditional autoregressive-tunicate swarm algorithm based generative adversarial network for violent crowd behavior recognition

Violent crowd behavior detection has gained significant attention in the computer vision system. Diverse crowd behavior detection approaches are introduced to detect violent behavior but enhancing the recognition rate poses a complex task due to different crowd diversity, mutual occlusion between cr...

Full description

Saved in:
Bibliographic Details
Published inThe Artificial intelligence review Vol. 56; no. Suppl 2; pp. 2099 - 2123
Main Authors Singh, Juginder Pal, Kumar, Manoj
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.11.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0269-2821
1573-7462
DOI10.1007/s10462-023-10571-8

Cover

Abstract Violent crowd behavior detection has gained significant attention in the computer vision system. Diverse crowd behavior detection approaches are introduced to detect violent behavior but enhancing the recognition rate poses a complex task due to different crowd diversity, mutual occlusion between crowds, and diversity of monitoring scene. Therefore, a crowd behavior recognition mechanism is introduced by Conditional Autoregressive-Tunicate Swarm Algorithm based Generative Adversarial Network (CA-TSA based GAN) to detect violent behavior. Accordingly, the developed CA-TSA is modeled by inheriting Conditional Autoregressive Value at Risk by Regression Quantiles with Tunicate Swarm Algorithm. Initially, the features, such as Tanimoto based Violence Flows descriptor, Local Ternary patterns, and Gray level co-occurrence matrix are extracted from the video frames. Then, the crowd behavior recognition is done by the GAN, which finds the abnormal and the normal crowd behaviors. Here, GAN is trained by the proposed CA-TSA. Moreover, the performance of the proposed method is analyzed using ASLAN challenge dataset. The developed model has the accuracy, sensitivity, and specificity values of 93.688%, 94.261%, and 94.051%, respectively.
AbstractList Violent crowd behavior detection has gained significant attention in the computer vision system. Diverse crowd behavior detection approaches are introduced to detect violent behavior but enhancing the recognition rate poses a complex task due to different crowd diversity, mutual occlusion between crowds, and diversity of monitoring scene. Therefore, a crowd behavior recognition mechanism is introduced by Conditional Autoregressive-Tunicate Swarm Algorithm based Generative Adversarial Network (CA-TSA based GAN) to detect violent behavior. Accordingly, the developed CA-TSA is modeled by inheriting Conditional Autoregressive Value at Risk by Regression Quantiles with Tunicate Swarm Algorithm. Initially, the features, such as Tanimoto based Violence Flows descriptor, Local Ternary patterns, and Gray level co-occurrence matrix are extracted from the video frames. Then, the crowd behavior recognition is done by the GAN, which finds the abnormal and the normal crowd behaviors. Here, GAN is trained by the proposed CA-TSA. Moreover, the performance of the proposed method is analyzed using ASLAN challenge dataset. The developed model has the accuracy, sensitivity, and specificity values of 93.688%, 94.261%, and 94.051%, respectively.
Author Singh, Juginder Pal
Kumar, Manoj
Author_xml – sequence: 1
  givenname: Juginder Pal
  surname: Singh
  fullname: Singh, Juginder Pal
  email: juginder.singh@gla.ac.in
  organization: Department of Computer Engineering & Applications, GLA University
– sequence: 2
  givenname: Manoj
  surname: Kumar
  fullname: Kumar, Manoj
  organization: Department of Computer Engineering & Applications, GLA University
BookMark eNp9kE9vFDEMxSNUJLaFL8ApEueU_JnsZI5oBQWpEhc4R56MZ5oymxQnuytOfHXSLhISh54sW-9n-71LdpFyQsbeKnmtpOzfFyW7rRZSG6Gk7ZVwL9hG2d6Ivs0v2Ebq7SC00-oVuyzlXkppdWc27PcupynWmBOsHA41Ey6EpcQjinpIMUBFXk5Aew7rkinWuz0foeDEF0xIUJuSw3REKkCxLUlYT5l-8DkTP8a8Yqo8UD5NfMQ7aBPihCEv6enqa_ZyhrXgm7_1in3_9PHb7rO4_XrzZffhVgSjhiqmTo8B1Ty7TikLowzWgWwORjloUAr7MBizDWF2rZ16BIuzk7azYGez7cwVe3fe-0D55wFL9ff5QM108dq5oeuHzvVNpc-q9nAphLN_oLgH-uWV9I9B-3PQvgXtn4L2rkHuPyjECo_mKkFcn0fNGS3tTlqQ_n31DPUHr9WYYg
CitedBy_id crossref_primary_10_1007_s10462_024_10786_3
crossref_primary_10_1007_s11831_025_10228_5
crossref_primary_10_1016_j_engappai_2024_109559
crossref_primary_10_3390_electronics13244925
Cites_doi 10.1007/s11042-016-3316-3
10.1016/j.neucom.2014.12.032
10.1109/CCDC.2019.8832598
10.1007/s11042-018-5701-6
10.1109/WACV.2018.00188
10.1007/s00138-017-0830-x
10.1109/TCSVT.2016.2637778
10.1007/978-981-13-3095-7_17
10.1016/j.imavis.2016.01.006
10.1016/j.engappai.2020.103541
10.1016/j.patcog.2012.11.021
10.1145/3240508.3240641
10.1109/ICPR.2014.714
10.1007/s13042-017-0682-8
10.1109/CVPRW.2012.6239348
10.1117/1.JEI.28.2.023033
10.1109/CVPR.2006.92
10.1109/TSMCB.2012.2192267
10.46253/j.mr.v3i3.a3
10.1109/CVPR.2013.319
10.1007/s11042-019-07806-8
10.1109/TIP.2010.2042645
10.1109/ICIP.2017.8296547
10.1007/s11760-019-01474-9
10.1109/ACCESS.2020.2990355
10.1049/iet-ipr.2017.0367
10.3386/w7341
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Nov 2023
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Nov 2023
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
CNYFK
DWQXO
E3H
F2A
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M1O
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PRQQA
PSYQQ
Q9U
DOI 10.1007/s10462-023-10571-8
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection (ProQuest)
ProQuest One Community College
Library & Information Science Collection
ProQuest Central
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (Proquest)
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Library Science Database
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
ProQuest One Psychology
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Library and Information Science Abstracts (LISA)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Library & Information Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
Business Premium Collection
Social Science Premium Collection
ABI/INFORM Global
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Library Science
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ProQuest One Social Sciences
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7462
EndPage 2123
ExternalDocumentID 10_1007_s10462_023_10571_8
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23N
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6J9
6NX
77K
7WY
8AO
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AAOBN
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMOR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACACY
ACBXY
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACULB
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFGXO
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
C24
C6C
CAG
CCPQU
CNYFK
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M1O
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~A9
~EX
77I
AAFWJ
AASML
AAYXX
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFHIU
AGQPQ
AHPBZ
AHWEU
AIXLP
AYFIA
CITATION
ICD
PHGZM
PHGZT
PQGLB
PRQQA
PUEGO
7SC
7XB
8AL
8FD
8FK
E3H
F2A
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-d42bce1ff84115ab0c58a0243b092a11e7c9336ccf82a1d7ea5ef80545a5f3643
IEDL.DBID U2A
ISSN 0269-2821
IngestDate Sat Oct 25 07:11:35 EDT 2025
Wed Oct 01 02:07:40 EDT 2025
Thu Apr 24 23:12:48 EDT 2025
Fri Feb 21 02:41:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue Suppl 2
Keywords Tunicate Swarm Algorithm (TSA)
Video surveillance
Crowd behavior analysis
Generative Adversarial Networks (GAN)
Violent behavior recognition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-d42bce1ff84115ab0c58a0243b092a11e7c9336ccf82a1d7ea5ef80545a5f3643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2889479487
PQPubID 36790
PageCount 25
ParticipantIDs proquest_journals_2889479487
crossref_primary_10_1007_s10462_023_10571_8
crossref_citationtrail_10_1007_s10462_023_10571_8
springer_journals_10_1007_s10462_023_10571_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231100
2023-11-00
20231101
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 20231100
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Science and Engineering Journal
PublicationTitle The Artificial intelligence review
PublicationTitleAbbrev Artif Intell Rev
PublicationYear 2023
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References CongYYuanJLiuJAbnormal event detection in crowded scenes using sparse representationPattern Recogn20134671851186410.1016/j.patcog.2012.11.021
RabieeHMousaviHNabiMRavanbakhshMDetection and localization of crowd behavior using a novel tracklet-based modelInt J Mach Learn Cybern20189121999201010.1007/s13042-017-0682-8
NayanNSahuSSKumarSDetecting anomalous crowd behavior using correlation analysis of optical flowSIViP20191361233124110.1007/s11760-019-01474-9
Gao, M., Jiang, J., Ma, L., Zhou, S., Zou, G., Pan, J. and Liu, Z., (2019) Violent crowd behavior detection using deep learning and compressive sensing. In: IEEE Chinese control and decision conference (CCDC), pp. 5329–5333, June 2019.
Bera A, Manocha D (2014) Realtime multilevel crowd tracking using reciprocal velocity obstacles. In: IEEE 22nd International Conference on Pattern Recognition, pp. 4164–4169, August 2014
RittscherJTuPHKrahnstoeverNSimultaneous estimation of segmentation and shapeIEEE Comput Soc Conf Comput Vision Pattern Recogn (CVPR’05)20052486493
ColqueRVHMCaetanoCde AndradeMTLSchwartzWRHistograms of optical flow orientation and magnitude and entropy to detect anomalous events in videosIEEE Trans Circuits Syst Video Technol201627367368210.1109/TCSVT.2016.2637778
RabaudVBelongieS(2006) Counting crowded moving objectsIEEE Comput Soc Conf Comput Vision Pattern Recogn (CVPR’06)2006170571110.1109/CVPR.2006.92
GaoYLiuHSunXWangCLiuYViolence detection using oriented violent flowsImage vis Comput201648374110.1016/j.imavis.2016.01.006
Ravanbakhsh M, Nabi M, Sangineto E, Marcenaro L, Regazzoni C, Sebe N (2017) Abnormal event detection in videos using generative adversarial nets. IEEE International conference on image processing (ICIP), pp. 1577–1581, September 2017
BeuraSMajhiBDashRMammogram classification using two dimensional discrete wavelet transform and gray-level co-occurrence matrix for detection of breast cancerNeurocomputing201515411410.1016/j.neucom.2014.12.032
LloydKRosinPLMarshallDMooreSCDetecting violent and abnormal crowd activity using temporal analysis of grey level co-occurrence matrix (GLCM)-based texture measuresMach vis Appl2017283–436137110.1007/s00138-017-0830-x
Hassner T, Itcher Y, Kliper-Gross O (2012) Violent flows: Real-time detection of violent crowd behavior. In: IEEE computer society conference on computer vision and pattern recognition workshops, pp. 1–6, June 2012.
Tirupattur P, Rawat YS, Spampinato C, Shah M (2018) ThoughtViz: visualizing human thoughts using generative adversarial network. In: Proceedings of the 26th ACM international conference on Multimedia, pp. 950–958, October 2018
FangZFeiFFangYLeeCXiongNShuLChenSAbnormal event detection in crowded scenes based on deep learningMultimedia Tools Appl20167522146171463910.1007/s11042-016-3316-3
Ravanbakhsh M, Nabi M, Mousavi H, Sangineto E, Sebe N (2018) Plug-and-play cnn for crowd motion analysis: an application in abnormal event detection. In: IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1689–1698, March 2018
PatilNBiswasPKGlobal abnormal events detection in crowded scenes using context location and motion-rich spatio-temporal volumesIET Image Proc201712459660410.1049/iet-ipr.2017.0367
KaurSAwasthiLKSangalALDhimanGTunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimizationEng Appl Artif Intell20209010354110.1016/j.engappai.2020.103541
DirekogluCAbnormal crowd behavior detection using motion information images and convolutional neural networksIEEE Access20208804088041610.1109/ACCESS.2020.2990355
Wijermans A, ́ Jorna R, Jager E, Van Vliet T (2007) Modelling crowd dynamics influence factors related to the probability of a riot. pp. 1-13. https://api.semanticscholar.org/CorpusID:52088577
WuSSan WongHCrowd motion partitioning in a scattered motion fieldIEEE Trans Syst Man Cybern20124251443145410.1109/TSMCB.2012.2192267
Wang X, Yang L, Hu J, Dai H (2018) A violent behavior detection algorithm combining streakline model with variational model. In: International Conference on Frontiers in Cyber Security, Springer, Singapore, pp. 216–224, November 2018
WagdarikarAMUSenapatiRKHaar wavelet transform and multiobjective cost function for video watermarkingMultimedia Research.2019243342
TanXTriggsBEnhanced local texture feature sets for face recognition under difficult lighting conditionsIEEE Trans Image Process201019616351650277852510.1109/TIP.2010.20426451371.68311
FusiniFZanchiniFMini-open surgical treatment of an ex professional volleyball player with unresponsive Hoffa’s diseaseMinerva Ortopedica e Traumatologica201667192194
ChenYCrowd behaviour recognition using enhanced butterfly optimization algorithm based recurrent neural networkMultimedia Res2020332010.46253/j.mr.v3i3.a3
Chen K, Gong S, Xiang T and Change Loy C (2013) Cumulative attribute space for age and crowd density estimation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2467–2474, 2013.
LambaSNainNDetecting anomalous crowd scenes by oriented Tracklets’ approach in active contour regionMultimedia Tools Appl20197822311013112010.1007/s11042-019-07806-8
WagdarikarAMUSenapatiRKMultiobjective cost function based digital video watermarking techniqueMultimedia Res2019212336
EngleRFManganelliSCAViaR: conditional value at risk by quantile regression (No. w7341)National Bureau Economic Res199910.3386/w7341
PanLZhouHLiuYWangMGlobal event influence model: integrating crowd motion and social psychology for global anomaly detection in dense crowdsJ Electron Imaging201928202303310.1117/1.JEI.28.2.023033
GnoumaMEjbaliRZaiedMAbnormal events’ detection in crowded scenesMultimedia Tools Appl20187719248432486410.1007/s11042-018-5701-6
The Action Similarity Labeling (ASLAN) challenge https://talhassner.github.io/home/projects/ASLAN/ASLAN-main.html. Accessed June 2020.
ZhouSShenWZengDFangMWeiYZhangZSpatial–temporal convolutional neural networks for anomaly detection and localization in crowded scenesSignal Process: Image Commun201647358368
N Nayan (10571_CR18) 2019; 13
X Tan (10571_CR26) 2010; 19
F Fusini (10571_CR10) 2016; 67
10571_CR4
N Patil (10571_CR20) 2017; 12
10571_CR1
S Beura (10571_CR2) 2015; 154
Y Gao (10571_CR11) 2016; 48
J Rittscher (10571_CR25) 2005; 2
L Pan (10571_CR19) 2019; 28
H Rabiee (10571_CR22) 2018; 9
10571_CR23
10571_CR14
AMU Wagdarikar (10571_CR30) 2019; 2
S Zhou (10571_CR34) 2016; 47
M Gnouma (10571_CR13) 2018; 77
S Wu (10571_CR33) 2012; 42
Y Cong (10571_CR6) 2013; 46
RVHM Colque (10571_CR5) 2016; 27
RF Engle (10571_CR8) 1999
10571_CR31
10571_CR32
AMU Wagdarikar (10571_CR29) 2019; 2
10571_CR12
C Direkoglu (10571_CR7) 2020; 8
10571_CR24
V Rabaud (10571_CR21) 2006; 1
10571_CR27
10571_CR28
S Lamba (10571_CR16) 2019; 78
Y Chen (10571_CR3) 2020; 3
Z Fang (10571_CR9) 2016; 75
S Kaur (10571_CR15) 2020; 90
K Lloyd (10571_CR17) 2017; 28
References_xml – reference: GnoumaMEjbaliRZaiedMAbnormal events’ detection in crowded scenesMultimedia Tools Appl20187719248432486410.1007/s11042-018-5701-6
– reference: Ravanbakhsh M, Nabi M, Sangineto E, Marcenaro L, Regazzoni C, Sebe N (2017) Abnormal event detection in videos using generative adversarial nets. IEEE International conference on image processing (ICIP), pp. 1577–1581, September 2017
– reference: ChenYCrowd behaviour recognition using enhanced butterfly optimization algorithm based recurrent neural networkMultimedia Res2020332010.46253/j.mr.v3i3.a3
– reference: Bera A, Manocha D (2014) Realtime multilevel crowd tracking using reciprocal velocity obstacles. In: IEEE 22nd International Conference on Pattern Recognition, pp. 4164–4169, August 2014
– reference: Chen K, Gong S, Xiang T and Change Loy C (2013) Cumulative attribute space for age and crowd density estimation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2467–2474, 2013.
– reference: EngleRFManganelliSCAViaR: conditional value at risk by quantile regression (No. w7341)National Bureau Economic Res199910.3386/w7341
– reference: ColqueRVHMCaetanoCde AndradeMTLSchwartzWRHistograms of optical flow orientation and magnitude and entropy to detect anomalous events in videosIEEE Trans Circuits Syst Video Technol201627367368210.1109/TCSVT.2016.2637778
– reference: LloydKRosinPLMarshallDMooreSCDetecting violent and abnormal crowd activity using temporal analysis of grey level co-occurrence matrix (GLCM)-based texture measuresMach vis Appl2017283–436137110.1007/s00138-017-0830-x
– reference: DirekogluCAbnormal crowd behavior detection using motion information images and convolutional neural networksIEEE Access20208804088041610.1109/ACCESS.2020.2990355
– reference: WagdarikarAMUSenapatiRKHaar wavelet transform and multiobjective cost function for video watermarkingMultimedia Research.2019243342
– reference: Wijermans A, ́ Jorna R, Jager E, Van Vliet T (2007) Modelling crowd dynamics influence factors related to the probability of a riot. pp. 1-13. https://api.semanticscholar.org/CorpusID:52088577
– reference: FangZFeiFFangYLeeCXiongNShuLChenSAbnormal event detection in crowded scenes based on deep learningMultimedia Tools Appl20167522146171463910.1007/s11042-016-3316-3
– reference: PatilNBiswasPKGlobal abnormal events detection in crowded scenes using context location and motion-rich spatio-temporal volumesIET Image Proc201712459660410.1049/iet-ipr.2017.0367
– reference: FusiniFZanchiniFMini-open surgical treatment of an ex professional volleyball player with unresponsive Hoffa’s diseaseMinerva Ortopedica e Traumatologica201667192194
– reference: RabaudVBelongieS(2006) Counting crowded moving objectsIEEE Comput Soc Conf Comput Vision Pattern Recogn (CVPR’06)2006170571110.1109/CVPR.2006.92
– reference: Wang X, Yang L, Hu J, Dai H (2018) A violent behavior detection algorithm combining streakline model with variational model. In: International Conference on Frontiers in Cyber Security, Springer, Singapore, pp. 216–224, November 2018
– reference: CongYYuanJLiuJAbnormal event detection in crowded scenes using sparse representationPattern Recogn20134671851186410.1016/j.patcog.2012.11.021
– reference: Tirupattur P, Rawat YS, Spampinato C, Shah M (2018) ThoughtViz: visualizing human thoughts using generative adversarial network. In: Proceedings of the 26th ACM international conference on Multimedia, pp. 950–958, October 2018
– reference: Ravanbakhsh M, Nabi M, Mousavi H, Sangineto E, Sebe N (2018) Plug-and-play cnn for crowd motion analysis: an application in abnormal event detection. In: IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1689–1698, March 2018
– reference: WuSSan WongHCrowd motion partitioning in a scattered motion fieldIEEE Trans Syst Man Cybern20124251443145410.1109/TSMCB.2012.2192267
– reference: GaoYLiuHSunXWangCLiuYViolence detection using oriented violent flowsImage vis Comput201648374110.1016/j.imavis.2016.01.006
– reference: RabieeHMousaviHNabiMRavanbakhshMDetection and localization of crowd behavior using a novel tracklet-based modelInt J Mach Learn Cybern20189121999201010.1007/s13042-017-0682-8
– reference: TanXTriggsBEnhanced local texture feature sets for face recognition under difficult lighting conditionsIEEE Trans Image Process201019616351650277852510.1109/TIP.2010.20426451371.68311
– reference: The Action Similarity Labeling (ASLAN) challenge https://talhassner.github.io/home/projects/ASLAN/ASLAN-main.html. Accessed June 2020.
– reference: Gao, M., Jiang, J., Ma, L., Zhou, S., Zou, G., Pan, J. and Liu, Z., (2019) Violent crowd behavior detection using deep learning and compressive sensing. In: IEEE Chinese control and decision conference (CCDC), pp. 5329–5333, June 2019.
– reference: BeuraSMajhiBDashRMammogram classification using two dimensional discrete wavelet transform and gray-level co-occurrence matrix for detection of breast cancerNeurocomputing201515411410.1016/j.neucom.2014.12.032
– reference: RittscherJTuPHKrahnstoeverNSimultaneous estimation of segmentation and shapeIEEE Comput Soc Conf Comput Vision Pattern Recogn (CVPR’05)20052486493
– reference: WagdarikarAMUSenapatiRKMultiobjective cost function based digital video watermarking techniqueMultimedia Res2019212336
– reference: Hassner T, Itcher Y, Kliper-Gross O (2012) Violent flows: Real-time detection of violent crowd behavior. In: IEEE computer society conference on computer vision and pattern recognition workshops, pp. 1–6, June 2012.
– reference: PanLZhouHLiuYWangMGlobal event influence model: integrating crowd motion and social psychology for global anomaly detection in dense crowdsJ Electron Imaging201928202303310.1117/1.JEI.28.2.023033
– reference: LambaSNainNDetecting anomalous crowd scenes by oriented Tracklets’ approach in active contour regionMultimedia Tools Appl20197822311013112010.1007/s11042-019-07806-8
– reference: KaurSAwasthiLKSangalALDhimanGTunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimizationEng Appl Artif Intell20209010354110.1016/j.engappai.2020.103541
– reference: NayanNSahuSSKumarSDetecting anomalous crowd behavior using correlation analysis of optical flowSIViP20191361233124110.1007/s11760-019-01474-9
– reference: ZhouSShenWZengDFangMWeiYZhangZSpatial–temporal convolutional neural networks for anomaly detection and localization in crowded scenesSignal Process: Image Commun201647358368
– volume: 75
  start-page: 14617
  issue: 22
  year: 2016
  ident: 10571_CR9
  publication-title: Multimedia Tools Appl
  doi: 10.1007/s11042-016-3316-3
– volume: 154
  start-page: 1
  year: 2015
  ident: 10571_CR2
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.12.032
– ident: 10571_CR12
  doi: 10.1109/CCDC.2019.8832598
– volume: 77
  start-page: 24843
  issue: 19
  year: 2018
  ident: 10571_CR13
  publication-title: Multimedia Tools Appl
  doi: 10.1007/s11042-018-5701-6
– volume: 47
  start-page: 358
  year: 2016
  ident: 10571_CR34
  publication-title: Signal Process: Image Commun
– ident: 10571_CR24
  doi: 10.1109/WACV.2018.00188
– volume: 28
  start-page: 361
  issue: 3–4
  year: 2017
  ident: 10571_CR17
  publication-title: Mach vis Appl
  doi: 10.1007/s00138-017-0830-x
– volume: 27
  start-page: 673
  issue: 3
  year: 2016
  ident: 10571_CR5
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2016.2637778
– ident: 10571_CR31
  doi: 10.1007/978-981-13-3095-7_17
– volume: 67
  start-page: 192
  year: 2016
  ident: 10571_CR10
  publication-title: Minerva Ortopedica e Traumatologica
– volume: 48
  start-page: 37
  year: 2016
  ident: 10571_CR11
  publication-title: Image vis Comput
  doi: 10.1016/j.imavis.2016.01.006
– volume: 90
  start-page: 103541
  year: 2020
  ident: 10571_CR15
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2020.103541
– volume: 46
  start-page: 1851
  issue: 7
  year: 2013
  ident: 10571_CR6
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2012.11.021
– volume: 2
  start-page: 486
  year: 2005
  ident: 10571_CR25
  publication-title: IEEE Comput Soc Conf Comput Vision Pattern Recogn (CVPR’05)
– ident: 10571_CR27
– ident: 10571_CR28
  doi: 10.1145/3240508.3240641
– ident: 10571_CR1
  doi: 10.1109/ICPR.2014.714
– volume: 9
  start-page: 1999
  issue: 12
  year: 2018
  ident: 10571_CR22
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-017-0682-8
– ident: 10571_CR14
  doi: 10.1109/CVPRW.2012.6239348
– volume: 2
  start-page: 33
  issue: 4
  year: 2019
  ident: 10571_CR29
  publication-title: Multimedia Research.
– volume: 28
  start-page: 023033
  issue: 2
  year: 2019
  ident: 10571_CR19
  publication-title: J Electron Imaging
  doi: 10.1117/1.JEI.28.2.023033
– volume: 1
  start-page: 705
  year: 2006
  ident: 10571_CR21
  publication-title: IEEE Comput Soc Conf Comput Vision Pattern Recogn (CVPR’06)
  doi: 10.1109/CVPR.2006.92
– volume: 2
  start-page: 23
  issue: 1
  year: 2019
  ident: 10571_CR30
  publication-title: Multimedia Res
– volume: 42
  start-page: 1443
  issue: 5
  year: 2012
  ident: 10571_CR33
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMCB.2012.2192267
– volume: 3
  start-page: 20
  issue: 3
  year: 2020
  ident: 10571_CR3
  publication-title: Multimedia Res
  doi: 10.46253/j.mr.v3i3.a3
– ident: 10571_CR4
  doi: 10.1109/CVPR.2013.319
– volume: 78
  start-page: 31101
  issue: 22
  year: 2019
  ident: 10571_CR16
  publication-title: Multimedia Tools Appl
  doi: 10.1007/s11042-019-07806-8
– volume: 19
  start-page: 1635
  issue: 6
  year: 2010
  ident: 10571_CR26
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2010.2042645
– ident: 10571_CR32
– ident: 10571_CR23
  doi: 10.1109/ICIP.2017.8296547
– volume: 13
  start-page: 1233
  issue: 6
  year: 2019
  ident: 10571_CR18
  publication-title: SIViP
  doi: 10.1007/s11760-019-01474-9
– volume: 8
  start-page: 80408
  year: 2020
  ident: 10571_CR7
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2990355
– volume: 12
  start-page: 596
  issue: 4
  year: 2017
  ident: 10571_CR20
  publication-title: IET Image Proc
  doi: 10.1049/iet-ipr.2017.0367
– year: 1999
  ident: 10571_CR8
  publication-title: National Bureau Economic Res
  doi: 10.3386/w7341
SSID ssj0005243
Score 2.3820472
Snippet Violent crowd behavior detection has gained significant attention in the computer vision system. Diverse crowd behavior detection approaches are introduced to...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2099
SubjectTerms Algorithms
Artificial Intelligence
Computer Science
Computer vision
Crowd monitoring
Generative adversarial networks
Model accuracy
Occlusion
Quantiles
Recognition
Vision systems
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED6VdmHhjSgveWADizpPZ0AIKlCFRIUQldgix7FhKAnQIEb-Oj7HaQCJjpETK8mdz5_v8R3AUeYPRKw8TZXBqzRgOaecS0ZZIjWXSSak9enejqPRJLh5DB87MG5qYTCtsrGJ1lDnpUQf-anHeYJs6Dw-f32j2DUKo6tNCw3hWivkZ5ZibAl6HjJjdaF3eTW-u_-R9FHn0XlRQs1hg7kyGldMF0QeNXsYxd63jPLfW1WLP_-ETO1OdL0GKw5Ckota5uvQUcUGrDbtGYhbrZvwNSwxHm19fUQgV4Gyh2tj32hVF4UoMvsU7y9ETJ_Mt1bPLwR3tZw8WTJqtIREYMfmmUA9JUWdM04M0CV1RL8i5t0_c9JU-5N5QlJZbMHk-uphOKKu3wKVZiFWNA-8TCqmNQ8MThTZQIZcIGNhNkg8wZiKZeL7kTRSNJd5rESoNDeYLxSh9g202YZuURZqB0iSC1-YoVAHKpChzpKBZn7EAy39mImwD6z5tal0ZOTYE2OatjTKKI7UiCO14kh5H47nz7zWVBwL795vJJa6ZTlLWyXqw0kjxXb4_9l2F8-2B8ueVRx0zexDt3r_UAcGrFTZodPAb4Rv6LY
  priority: 102
  providerName: ProQuest
Title Conditional autoregressive-tunicate swarm algorithm based generative adversarial network for violent crowd behavior recognition
URI https://link.springer.com/article/10.1007/s10462-023-10571-8
https://www.proquest.com/docview/2889479487
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005243
  issn: 0269-2821
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005243
  issn: 0269-2821
  databaseCode: AFBBN
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0005243
  issn: 0269-2821
  databaseCode: 8FG
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005243
  issn: 0269-2821
  databaseCode: AAJSJ
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005243
  issn: 0269-2821
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005243
  issn: 0269-2821
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4XLjwRozHlAM3iLS0TZseB2wgYICASXCq0jQZSNChrYgjfx0nbRkgQOIUVUmjqnbiL7H9GWAn9Vsy0p6hGvEqDVgmqBCKURYrI1ScSuXudHvn4XE_OLnlt1VS2LiOdq9dkm6n_pTsFoQeRRtDbW1aRsU0zHJL54Va3PfanwI7ylg5L4wpHihYlSrz8xxfzdEEY35zizpr012E-QomknYp1yWY0vkyLNQlGEi1Ilfg7WBofc7uPo9Iy0eg3QEa9zBalIkfmoxf5eiJyMfBcPRQ3D8Ra7kyMnCE03a3I9JWZR5Lq4skL-PCCYJZUnrtC4Lf_pqROqOffAQdDfNV6Hc7NwfHtKqpQBUutoJmgZcqzYwRAWJBmbYUF9KyEqat2JOM6UjFvh8qlBQ-ZpGWXBuBuI5LbnyEL2swkw9zvQ4kzqQvsYubQAeKmzRuGeaHIjDKj5jkDWD1r01URThu6148JhOqZCuOBMWROHEkogG7H-88l3Qbf47eqiWWVEtvnHhCxJY2X0QN2KulOOn-fbaN_w3fhDnPKZK9jtmCmWL0orcRoBRpE6ZF96gJs-3D3tm1bY_uTjvY7nfOL6-wt8cumk5n3wF7LOV2
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOJQL5VWxLS0-wAks1o6TOAdUFQpaXqsKgcQtdRwbDpClbKpVT_wzflvHjsMCEtw4Rk6syDOehz3zfQBrRdRVqeGWGoxXqWClpFJqRlmmrdRZobQ_0z3pJ71zcXgRX0zAQ9sL48oqW5voDXU50O6MfItLmTk0dJl-v_1DHWuUu11tKTRUoFYotz3EWGjsODL_RpjCDbcPfqK81znf3zvb7dHAMkA1ql9NS8ELbZi1UmB0pIqujqVyOH1FN-OKMZNqTPoTjf-Oj2VqVGysxEgnVrGN0KHjvJMwLSKRYfI3vbPX_3X6pMikqdvjSUYxuWGhbSc074mEU_SZ1HHtMiqfu8ZxvPviitZ7vv05mA0hK_nR6Ng8TJhqAT62dBAkWIdFuN8duPtvf7ZIlMNGMD6ZR3tK66YJxZDhSN3dEHV9iWtbX90Q50VLcunBr53lJcoxRA-V2xekamrUCQbWpKkgqAn--6gkLboAeSyAGlRLcP4uK_8JpqpBZZaBZKWKFA7FVhihY1tkXcuiRAqro5SpuAOsXdpcB_Bzx8FxnY9hm504chRH7sWRyw5sPH5z20B_vPn2SiuxPJiBYT5W2g5stlIcD78-2-e3Z1uFD72zk-P8-KB_9AVmuFcidyy0AlP13V_zFQOluvgWtJHA7_feAP8Bh3wltQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTtwwFL2iIFXdlNKHmEKLF-2qNYydl7OoqgoYQWlpF0VilzqODRKQASZoBJv-F7_Cz_ReJ2YAqexYdBklsRL72Pfh43MB3pVRX2dWOm7RX-WxqBRXyggucuOUyUttfE73-3a6sRN_3U12p-AynIUhWmVYE_1CXQ0N5chXpFI5qaGrbMV1tIifa4PPxyecKkjRTmsop9FCZMuejzF8G33aXMOxfi_lYP3X6gbvKgxwg9BreBXL0ljhnIrRM9Jl3yRKk0Zf2c-lFsJmBgP-1OB342WVWZ1Yp9DLSXTiIjTm2O4jmMkojCDaoPhxg17SMvZkmnMMa0R3YKc7thenkqO15FRlV3B12yhOPN07m7Pe5g1m4Sr0Vkt1OVg-a8plc3FHSPL_7M5n8LRzxdmXdu7MwZStn8NsKHPBulXvBfxZHdK-vs-ZMk2aD9YnKdBO8KY9XGPZaKxPj5g-3MMfa_aPGHkHFdvzot5kUZimytcjTfOd1S33nmHAwFpmRMNwZMYVC6oJ7JrYNaxfws6DdMMrmK6HtZ0Hllc60ngrcbGNTeLKvO9ElKrYmSgTOumBCMApTCfqTrVFDouJHDWBrUCwFR5sherBh-t3jltJk3ufXgwAKrrlbVRM0NODjwGjk9v_bu31_a0twWNEYfFtc3trAZ5IP0Mo27UI083pmX2D_l9TvvUTjcHvh4biX4wqau4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conditional+autoregressive-tunicate+swarm+algorithm+based+generative+adversarial+network+for+violent+crowd+behavior+recognition&rft.jtitle=The+Artificial+intelligence+review&rft.au=Singh%2C+Juginder+Pal&rft.au=Kumar%2C+Manoj&rft.date=2023-11-01&rft.issn=0269-2821&rft.eissn=1573-7462&rft.volume=56&rft.issue=S2&rft.spage=2099&rft.epage=2123&rft_id=info:doi/10.1007%2Fs10462-023-10571-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10462_023_10571_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-2821&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-2821&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-2821&client=summon