Artificial neural network for predicting the performance of waste polypropylene plastic-derived carbon nanotubes

In this study, an artificial neural network model using function fitting neural networks was developed to describe the yield and quality of multi-walled carbon nanotubes deposited over NiMo/CaTiO 3 catalyst using waste polypropylene plastics as cheap hydrocarbon feedstock using a single-stage chemic...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of environmental science and technology (Tehran) Vol. 22; no. 5; pp. 3749 - 3762
Main Authors Modekwe, H. U., Akintola, A. T., Ayeleru, O. O., Mamo, M. A., Daramola, M. O., Moothi, K.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2025
Subjects
Online AccessGet full text
ISSN1735-1472
1735-2630
1735-2630
DOI10.1007/s13762-024-05868-2

Cover

Abstract In this study, an artificial neural network model using function fitting neural networks was developed to describe the yield and quality of multi-walled carbon nanotubes deposited over NiMo/CaTiO 3 catalyst using waste polypropylene plastics as cheap hydrocarbon feedstock using a single-stage chemical vapour deposition technique. The experimental dataset was developed using a user-specific design with four numeric factors (input variable): synthesis temperature, furnace heating rate, residence time, and carrier gas (nitrogen) flow rate to control the performance (yield and quality) of produced carbon nanotubes. Levenberg–Marquardt algorithm was utilized in training, validating, and testing the experimental dataset. The predicted model gave a considerable correlation coefficient (R) value close to 1. The presented model would be of remarkable benefit to successfully describe and predict the performance of polypropylene-derived carbon nanotubes and show how the predictive variables could affect the response variables (quality and yield) of carbon nanotubes.
AbstractList In this study, an artificial neural network model using function fitting neural networks was developed to describe the yield and quality of multi-walled carbon nanotubes deposited over NiMo/CaTiO 3 catalyst using waste polypropylene plastics as cheap hydrocarbon feedstock using a single-stage chemical vapour deposition technique. The experimental dataset was developed using a user-specific design with four numeric factors (input variable): synthesis temperature, furnace heating rate, residence time, and carrier gas (nitrogen) flow rate to control the performance (yield and quality) of produced carbon nanotubes. Levenberg–Marquardt algorithm was utilized in training, validating, and testing the experimental dataset. The predicted model gave a considerable correlation coefficient (R) value close to 1. The presented model would be of remarkable benefit to successfully describe and predict the performance of polypropylene-derived carbon nanotubes and show how the predictive variables could affect the response variables (quality and yield) of carbon nanotubes.
In this study, an artificial neural network model using function fitting neural networks was developed to describe the yield and quality of multi-walled carbon nanotubes deposited over NiMo/CaTiO 3 catalyst using waste polypropylene plastics as cheap hydrocarbon feedstock using a single-stage chemical vapour deposition technique. The experimental dataset was developed using a user-specific design with four numeric factors (input variable): synthesis temperature, furnace heating rate, residence time, and carrier gas (nitrogen) flow rate to control the performance (yield and quality) of produced carbon nanotubes. Levenberg–Marquardt algorithm was utilized in training, validating, and testing the experimental dataset. The predicted model gave a considerable correlation coefficient (R) value close to 1. The presented model would be of remarkable benefit to successfully describe and predict the performance of polypropylene-derived carbon nanotubes and show how the predictive variables could affect the response variables (quality and yield) of carbon nanotubes.
In this study, an artificial neural network model using function fitting neural networks was developed to describe the yield and quality of multi-walled carbon nanotubes deposited over NiMo/CaTiO₃ catalyst using waste polypropylene plastics as cheap hydrocarbon feedstock using a single-stage chemical vapour deposition technique. The experimental dataset was developed using a user-specific design with four numeric factors (input variable): synthesis temperature, furnace heating rate, residence time, and carrier gas (nitrogen) flow rate to control the performance (yield and quality) of produced carbon nanotubes. Levenberg–Marquardt algorithm was utilized in training, validating, and testing the experimental dataset. The predicted model gave a considerable correlation coefficient (R) value close to 1. The presented model would be of remarkable benefit to successfully describe and predict the performance of polypropylene-derived carbon nanotubes and show how the predictive variables could affect the response variables (quality and yield) of carbon nanotubes.
Author Mamo, M. A.
Moothi, K.
Ayeleru, O. O.
Daramola, M. O.
Akintola, A. T.
Modekwe, H. U.
Author_xml – sequence: 1
  givenname: H. U.
  orcidid: 0000-0003-3430-3731
  surname: Modekwe
  fullname: Modekwe, H. U.
  email: uche_lyne2@yahoo.com, uchelyne2@gmail.com
  organization: Renewable Energy and Biomass Research, Department of Chemical Engineering, University of Johannesburg
– sequence: 2
  givenname: A. T.
  surname: Akintola
  fullname: Akintola, A. T.
  organization: Renewable Energy and Biomass Research, Department of Chemical Engineering, University of Johannesburg
– sequence: 3
  givenname: O. O.
  surname: Ayeleru
  fullname: Ayeleru, O. O.
  organization: Centre for Nanoengineering and Advanced Materials, University of Johannesburg
– sequence: 4
  givenname: M. A.
  surname: Mamo
  fullname: Mamo, M. A.
  organization: Research Centre for Synthesis and Catalysis, Department of Chemical Science, Faculty of Science, Doornfontein Campus, University of Johannesburg
– sequence: 5
  givenname: M. O.
  surname: Daramola
  fullname: Daramola, M. O.
  organization: Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria
– sequence: 6
  givenname: K.
  surname: Moothi
  fullname: Moothi, K.
  organization: Faculty of Engineering, School of Chemical and Minerals Engineering, North-West University
BookMark eNqNkLtOxDAQRS0EErDwA1QuaQJ-xykR4iUh0UBteZ0JGLx2sBNW-_cYdmtENTNX945mzjHajykCQmeUXFBC2stCeatYQ5hoiNRKN2wPHdGWy4YpTvZ3PRUtO0THpbwTIpQQ9AiNV3nyg3feBhxhzr9lWqf8gYeU8Zih927y8RVPb4BHyFVd2egApwGvbZmqmMJmzGncBIh1ClX0rukh-y_osbN5mSKONqZpXkI5QQeDDQVOd3WBXm5vnq_vm8enu4frq8fGcdpNTS-IWkoN2jLuqAQNRDvJB6ol7YmyTHZL5UQH2jkBQ6vAgaIw6E5ICbTnC8S3e-c42s3ahmDG7Fc2bwwl5gea2UIzFZr5hWZYTZ1vU_WhzxnKZFa-OAjBRkhzMZwRwmkrOl2tbGt1OZWSYfjf_t1VpZrjK2TznuYcK4i_Ut9kd5JP
Cites_doi 10.1016/j.carbon.2022.10.044
10.1007/s00339-016-0153-1
10.1016/j.matpr.2020.02.398
10.1021/ie1015552
10.1016/j.heliyon.2024.e24679
10.1016/j.physb.2021.412852
10.1002/app.39931
10.1515/ntrev-2012-0038
10.1016/j.physrep.2004.10.006
10.3390/catal11060692
10.2174/1573413710666140818210043
10.1088/1757-899x/1107/1/012067
10.1016/j.cej.2012.03.077
10.1021/acs.energyfuels.7b02311
10.9790/1676-1201031926
10.1007/s40995-017-0198-9
10.1021/acsnano.8b06511
10.1007/978-3-030-49342-4_7
10.1016/j.cep.2017.09.011
10.3390/en12173291
10.1016/j.carbon.2011.03.028
10.1089/big.2013.0037
10.1016/j.micromeso.2004.06.012
10.1039/b821136a
10.1016/j.carbon.2019.07.013
10.1016/j.carbon.2005.06.001
10.3390/catal10091030
ContentType Journal Article
Copyright The Author(s) 2024
Copyright_xml – notice: The Author(s) 2024
DBID C6C
AAYXX
CITATION
7S9
L.6
ADTOC
UNPAY
DOI 10.1007/s13762-024-05868-2
DatabaseName Springer Nature OA Free Journals
CrossRef
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef

AGRICOLA
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1735-2630
EndPage 3762
ExternalDocumentID 10.1007/s13762-024-05868-2
10_1007_s13762_024_05868_2
GrantInformation_xml – fundername: University of Johannesburg
GroupedDBID -EM
06D
0R~
0VY
203
29J
2WC
30V
3V.
4.4
406
408
5GY
7XC
8AF
8FE
8FG
8FH
8G5
8R4
8R5
96X
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABXPI
ACAOD
ACCUX
ACDTI
ACGFO
ACGFS
ACHSB
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACPRK
ACREN
ACZOJ
ADDVE
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEUYN
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
ANMIH
ATCPS
AUKKA
AXYYD
AYJHY
AZQEC
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
C1A
C6C
CCPQU
CSCUP
DNIVK
DPUIP
DWQXO
E3Z
EBLON
EBS
EDH
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GNUQQ
GQ6
GQ7
GUQSH
GX1
HCIFZ
HG6
HH5
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
L6V
LLZTM
M2O
M48
M4Y
M7S
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
PADUT
PATMY
PQQKQ
PROAC
PT4
PTHSS
PYCSY
Q2X
RBI
RLLFE
ROL
RSV
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TR2
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
Z5O
Z7R
Z7V
Z7Y
Z7Z
ZMTXR
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ABVJJ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
OVT
PHGZM
PHGZT
PQGLB
PUEGO
7S9
L.6
ADTOC
UNPAY
ID FETCH-LOGICAL-c319t-d406b58e8a23c15e8e08c53f1851d06a259b6c49e8cc4ef76ece61ef89455e1d3
IEDL.DBID M48
ISSN 1735-1472
1735-2630
IngestDate Sun Oct 26 03:36:05 EDT 2025
Fri Sep 05 17:26:43 EDT 2025
Wed Oct 01 06:54:40 EDT 2025
Sat Feb 22 01:10:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Modelling
Yield
Artificial Neural Network
Plastic-derived carbon nanotubes
Quality
Waste polypropylene plastics
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-d406b58e8a23c15e8e08c53f1851d06a259b6c49e8cc4ef76ece61ef89455e1d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3430-3731
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1007/s13762-024-05868-2
PQID 3200317498
PQPubID 24069
PageCount 14
ParticipantIDs unpaywall_primary_10_1007_s13762_024_05868_2
proquest_miscellaneous_3200317498
crossref_primary_10_1007_s13762_024_05868_2
springer_journals_10_1007_s13762_024_05868_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250300
2025-03-00
20250301
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 3
  year: 2025
  text: 20250300
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationTitle International journal of environmental science and technology (Tehran)
PublicationTitleAbbrev Int. J. Environ. Sci. Technol
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References HU Modekwe (5868_CR23) 2021; 11
AB Çolak (5868_CR7) 2021; 608
HU Modekwe (5868_CR21) 2021; 1107
5868_CR17
R Das (5868_CR8) 2015; 11
R Parmar (5868_CR25) 2017; 12
5868_CR12
HU Modekwe (5868_CR20) 2020; 10
K Raji (5868_CR26) 2013; 2
A Bazargan (5868_CR5) 2012; 195–196
M Sedighi (5868_CR29) 2011; 50
CU Deniz (5868_CR10) 2017; 31
S Bharati (5868_CR6) 2021; 1181
H Yu (5868_CR31) 2011
F Kusumo (5868_CR15) 2019; 12
EJ De Fortuny (5868_CR9) 2013; 1
5868_CR3
A Kukovecz (5868_CR14) 2005; 43
5868_CR28
VY Lakovlev (5868_CR16) 2019; 153
Y Yang (5868_CR30) 2004; 74
JH Lehman (5868_CR19) 2011; 49
HU Modekwe (5868_CR22) 2021; 38
SNK Abad (5868_CR1) 2017; 41
MS Dresselhaus (5868_CR11) 2005; 409
S Lefrant (5868_CR18) 2009; 19
C Zhuo (5868_CR32) 2014; 131
M Aci (5868_CR2) 2016; 122
DV Krasnikov (5868_CR13) 2023; 202
R Rao (5868_CR27) 2018; 12
HU Modekwe (5868_CR24) 2024; 10
G Bajad (5868_CR4) 2017; 121
References_xml – start-page: 1
  volume-title: Intelligent Systems
  year: 2011
  ident: 5868_CR31
– volume: 202
  start-page: 76
  year: 2023
  ident: 5868_CR13
  publication-title: Carbon
  doi: 10.1016/j.carbon.2022.10.044
– volume: 122
  start-page: 1
  year: 2016
  ident: 5868_CR2
  publication-title: Appl Phys A Mater Sci Process
  doi: 10.1007/s00339-016-0153-1
– volume: 38
  start-page: 549
  year: 2021
  ident: 5868_CR22
  publication-title: Mater Today Proc
  doi: 10.1016/j.matpr.2020.02.398
– volume: 50
  start-page: 1536
  year: 2011
  ident: 5868_CR29
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie1015552
– volume: 10
  start-page: e24679
  year: 2024
  ident: 5868_CR24
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2024.e24679
– volume: 608
  start-page: 412852
  year: 2021
  ident: 5868_CR7
  publication-title: Phys B Condens Matter
  doi: 10.1016/j.physb.2021.412852
– volume: 131
  start-page: 1
  year: 2014
  ident: 5868_CR32
  publication-title: J Appl Polym Sci
  doi: 10.1002/app.39931
– volume: 2
  start-page: 73
  year: 2013
  ident: 5868_CR26
  publication-title: Nanotechnol Rev
  doi: 10.1515/ntrev-2012-0038
– volume: 409
  start-page: 47
  year: 2005
  ident: 5868_CR11
  publication-title: Phys Rep
  doi: 10.1016/j.physrep.2004.10.006
– volume: 11
  start-page: 692
  issue: 6
  year: 2021
  ident: 5868_CR23
  publication-title: Catalysts
  doi: 10.3390/catal11060692
– volume: 11
  start-page: 1
  year: 2015
  ident: 5868_CR8
  publication-title: Curr Nanosci
  doi: 10.2174/1573413710666140818210043
– ident: 5868_CR12
– volume: 1107
  start-page: 012067
  year: 2021
  ident: 5868_CR21
  publication-title: IOP Conf Ser Mater Sci Eng
  doi: 10.1088/1757-899x/1107/1/012067
– volume: 195–196
  start-page: 377
  year: 2012
  ident: 5868_CR5
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2012.03.077
– volume: 31
  start-page: 11932
  year: 2017
  ident: 5868_CR10
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.7b02311
– ident: 5868_CR28
– ident: 5868_CR3
– volume: 12
  start-page: 19
  year: 2017
  ident: 5868_CR25
  publication-title: IOSR J Electr Electron Eng
  doi: 10.9790/1676-1201031926
– volume: 41
  start-page: 151
  year: 2017
  ident: 5868_CR1
  publication-title: Iran J Sci Technol Trans A Sci
  doi: 10.1007/s40995-017-0198-9
– volume: 12
  start-page: 11756
  year: 2018
  ident: 5868_CR27
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b06511
– volume: 1181
  start-page: 69
  year: 2021
  ident: 5868_CR6
  publication-title: Adv Intell Syst Comput
  doi: 10.1007/978-3-030-49342-4_7
– volume: 121
  start-page: 205
  year: 2017
  ident: 5868_CR4
  publication-title: Chem Eng Process Process Intensif
  doi: 10.1016/j.cep.2017.09.011
– volume: 12
  start-page: 3291
  year: 2019
  ident: 5868_CR15
  publication-title: Energies
  doi: 10.3390/en12173291
– ident: 5868_CR17
– volume: 49
  start-page: 2581
  year: 2011
  ident: 5868_CR19
  publication-title: Carbon
  doi: 10.1016/j.carbon.2011.03.028
– volume: 1
  start-page: 215
  year: 2013
  ident: 5868_CR9
  publication-title: Big Data
  doi: 10.1089/big.2013.0037
– volume: 74
  start-page: 133
  year: 2004
  ident: 5868_CR30
  publication-title: Microporous Mesoporous Mater
  doi: 10.1016/j.micromeso.2004.06.012
– volume: 19
  start-page: 5690
  year: 2009
  ident: 5868_CR18
  publication-title: J Mater Chem
  doi: 10.1039/b821136a
– volume: 153
  start-page: 100
  year: 2019
  ident: 5868_CR16
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.07.013
– volume: 43
  start-page: 2842
  year: 2005
  ident: 5868_CR14
  publication-title: Carbon
  doi: 10.1016/j.carbon.2005.06.001
– volume: 10
  start-page: 1030
  year: 2020
  ident: 5868_CR20
  publication-title: Catalysts
  doi: 10.3390/catal10091030
SSID ssj0046441
Score 2.3920748
Snippet In this study, an artificial neural network model using function fitting neural networks was developed to describe the yield and quality of multi-walled carbon...
SourceID unpaywall
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 3749
SubjectTerms algorithms
Aquatic Pollution
carbon nanotubes
catalysts
data collection
Earth and Environmental Science
Ecotoxicology
Environment
Environmental Chemistry
Environmental Science and Engineering
feedstocks
furnaces
neural networks
nitrogen
Original Paper
polypropylenes
Soil Science & Conservation
temperature
vapors
Waste Water Technology
Water Management
Water Pollution Control
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61y6HlAH0hlkdlpN7AKE7srPeIEA9RwYmV6CmynfGlqyTaTUDw6xlnE5YiVMEpiiLZzjw8nzUznwF-kUkoO4o899YglxRCuLbjnEthxcg5VLZl57-8Ss8n8uJG3XRNYfO-2r1PSbY79bLZjXwh5hRTeKR0Svr9CCst39YAVo7O_vw-6XdgGWJ82wiZKC7kKO6aZV4f5d-AtESZT4nRVfjUFJW5vzPT6bPYc7oOk37Vi5KTv4dNbQ_dwwtCx_f-1hdY68AoO1pYz1f4gMU3WH1GUfgdqvBxwTLBAvdl-2grxxnBXVbNQqInlE4zQpKsWrYhsNKzO0M2xKpyGvqqqnsKcPRGcJ2m4zlNcIs5c2Zmy4IVpijrxuL8B0xOT66Pz3l3SwN35L41zwkSWKVRmzhxQqHGSDuVeAICIo9SQ-crmzo5Ru2cRD9K0WEq0OuxVApFnmzAoCgL3AQmEu8jmSvjhZfKOO20zpFOoF4ZqQQOYb9XVVYtyDiyJe1ykGNGcsxaOWbxEPZ6bWbkMyERYgosm3mWhIo8OoqN9RAOeq1knfPO_zvkwZMpvGEFW-8bfRs-x-F24bbCbQcG9azBXYI8tf3ZWfgjz074hQ
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46D-LB3-JEJYI3zWzWpMuOIooIigcH81SS9OXiaMvaKvrX-9J1bg4RPbWlJW3z3uP7wnvvCyGn6BLS9ALHnNHABEIIU6afMMEN71kL0tTq_PcP0e1A3A3lsJHJ8b0wC_n7i4JjBHQZIgkLpIrQqstkJZLIu1tkZfDwePlcdzyGknFR79RUn3ejMGg6ZH4e5DsKzajlVzZ0jaxWaa7f3_RoNAc4NxuTnYuKWqfQ15m8dKrSdOzHgorj3_5lk6w3vJNeThxliyxBuk3W5tQId0jub04EJaiXuawPdZE4RWZL87HP6fgqaYqkkeazjgOaOfqm0V1ono18C1X-jliGV8jM8XUswRe8QkKtHpsspalOs7IyUOySwc3109UtazZkYBYjtWQJor-RCpTuhpZLUBAoK0OHmM-TINK4lDKRFX1Q1gpwvQgsRByc6gspgSfhHmmlWQr7hPLQuUAkUjvuhNRWWaUSwMWmk1pIDm1yNjVQnE90N-KZwrKfxxjnMa7nMe62ycnUhjGGh8956BSyqohDX3yHq66-apPzqXHjJk6LX4c8_3KAP3zBwf8ePyStclzBERKa0hw3nvwJb1bttQ
  priority: 102
  providerName: Unpaywall
Title Artificial neural network for predicting the performance of waste polypropylene plastic-derived carbon nanotubes
URI https://link.springer.com/article/10.1007/s13762-024-05868-2
https://www.proquest.com/docview/3200317498
https://doi.org/10.1007/s13762-024-05868-2
UnpaywallVersion publishedVersion
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1735-2630
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0046441
  issn: 1735-1472
  databaseCode: HH5
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1735-2630
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0046441
  issn: 1735-1472
  databaseCode: AFBBN
  dateStart: 20040301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1735-2630
  dateEnd: 20251130
  omitProxy: true
  ssIdentifier: ssj0046441
  issn: 1735-1472
  databaseCode: M48
  dateStart: 20040301
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1735-2630
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0046441
  issn: 1735-1472
  databaseCode: AGYKE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1735-2630
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0046441
  issn: 1735-1472
  databaseCode: U2A
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7yOLQ5hKYPsmm6qNBbomLZklc-hLAsedCS0EMMyclI8ui02O4-muy_78i73k0hlPZiYQSSmG_EN2JeAF9IJZQdRJ57a5BLohCubVZyKawYOIfKttX5b27T61x-u1f3W9C1O1oJcPri0y70k8on469PPxfndOHPNmlwdEtiTmzDI6VTQn4bdompstDK4UauvQoycH-bIJkoLuQgXiXRvLzGn0S1sT7XDtM9eDWvGrN4NOPxM066fAP7K2OSDZfoH8AWVm9h71mJwXfQhMlllQgWale2Qxv5zchcZc0kOGpC6DMjS5A1mzQCVnv2aEgHWFOPQ15UsyCCoj8yt2k7XtIGv7BkzkxsXbHKVPVsbnH6HvLLi7vRNV91WeCOrt-Ml0TpVmnUJk6cUKgx0k4lnohclFFq6H1kUycz1M5J9IMUHaYCvc6kUijK5APsVHWFh8BE4n0kS2W88FIZp53WJRIQXhmpBPbgpBNp0SyLaRSbsskBgIIAKFoAirgHnzupF6TzwZFhKqzn0yIJEXX0lMp0D047OIpOd_665Okasn84wdF_nfcjvI5Dc-A2QO0YdmaTOX4ii2Vm-7A7vHr4ftGH7VE66rdKSd88HtJMfvtj-PAb0hTqfQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSyQxEC58HNTDoq6Lo6tG8KaBTnfSkznKsjI-Tw54C0m6chq6m3ko_nsrPd2OwiLrqWkakiZfJV8VVfUF4IxMQrl-EnhwFrkkCuHaDQouhRN971G5Rp3__iEfjuTNk3pqm8KmXbV7l5JsTuplsxvthZQTp_BE6ZzwXYX1KGAVFfNH6WV3_srI8E0bZKa4kP20bZX59xif6WjpY76nRbdgY17W9vXFjscfmOdqG360LiO7XGC8AytY7sLWByHBn1DHjwstCBYVKptHU9_NyCll9SSmY2KBMyN_j9XLZgFWBfZiCWlWV-PY_VS_Eg3RGznVNB0vaIJnLJi3E1eVrLRlNZs7nO7B6Orv458hb-9S4J422YwXRNxOadQ2zbxQqDHRXmWB6FoUSW4pCnK5lwPU3ksM_Rw95gKDHkilUBTZL1grqxL3gYkshEQWygYRpLJee60LpDgxKCuVwB6cd0tq6oVkhlmKI0cADAFgGgBM2oPTbtUNWXZMV9gSq_nUZLFujgKmge7BRQeHabfY9MshL94h-48_OPje6CewMXy8vzN31w-3h7CZxvuAm5q037A2m8zxiJyUmTtubPINz-TeZg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEB3aFNrmEPpJN21aFXprRCxb8mqPZZMl_Qo9NJCb0MfotMhm19uQf5-Rd53dQintyRiDZPQkvREz7wngA00J5cZF5NFZ5JIohGs3CVwKJ8beo3K9O__3i_r8Un65Ulc7Kv6-2n1ISa41DdmlKXUnbYgnW-EbrYuSE7_wQumasL4PDySxW77DYFpPh71YZrbvJZGV4kKOy41s5s9t_E5N23jzLkW6D49WqbU313Y-32Gh2RM42ISP7NMa76dwD9Mz2N8xFXwObf649oVg2a2yf_S13owCVNYucmomFzsziv1YuxUOsCaya0uos7aZZyVUe0OURG8UYFN3PFAHvzAwbxeuSSzZ1HQrh8sXcDk7-zk955t7FbinBdfxQCTulEZty8oLhRoL7VUVibpFKGpLJyJXezlB7b3EOK7RYy0w6olUCkWoXsJeahK-AiaqGAsZlI0iSmW99loHpDNjVFYqgSP4OAypadf2GWZrlJwBMASA6QEw5QjeD6NuaJbn1IVN2KyWpso1dHR4mugRHA9wmM1yW_61yeM7yP7hDw7_r_V38PDH6cx8-3zx9TU8LvPVwH152hvY6xYrPKJ4pXNv-yl5C45G4ow
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46D-LB3-JEJYI3zWzWpMuOIooIigcH81SS9OXiaMvaKvrX-9J1bg4RPbWlJW3z3uP7wnvvCyGn6BLS9ALHnNHABEIIU6afMMEN71kL0tTq_PcP0e1A3A3lsJHJ8b0wC_n7i4JjBHQZIgkLpIrQqstkJZLIu1tkZfDwePlcdzyGknFR79RUn3ejMGg6ZH4e5DsKzajlVzZ0jaxWaa7f3_RoNAc4NxuTnYuKWqfQ15m8dKrSdOzHgorj3_5lk6w3vJNeThxliyxBuk3W5tQId0jub04EJaiXuawPdZE4RWZL87HP6fgqaYqkkeazjgOaOfqm0V1ono18C1X-jliGV8jM8XUswRe8QkKtHpsspalOs7IyUOySwc3109UtazZkYBYjtWQJor-RCpTuhpZLUBAoK0OHmM-TINK4lDKRFX1Q1gpwvQgsRByc6gspgSfhHmmlWQr7hPLQuUAkUjvuhNRWWaUSwMWmk1pIDm1yNjVQnE90N-KZwrKfxxjnMa7nMe62ycnUhjGGh8956BSyqohDX3yHq66-apPzqXHjJk6LX4c8_3KAP3zBwf8ePyStclzBERKa0hw3nvwJb1bttQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+neural+network+for+predicting+the+performance+of+waste+polypropylene+plastic-derived+carbon+nanotubes&rft.jtitle=International+journal+of+environmental+science+and+technology+%28Tehran%29&rft.au=Modekwe%2C+H.+U.&rft.au=Akintola%2C+A.+T.&rft.au=Ayeleru%2C+O.+O.&rft.au=Mamo%2C+M.+A.&rft.date=2025-03-01&rft.issn=1735-1472&rft.eissn=1735-2630&rft.volume=22&rft.issue=5&rft.spage=3749&rft.epage=3762&rft_id=info:doi/10.1007%2Fs13762-024-05868-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13762_024_05868_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1735-1472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1735-1472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1735-1472&client=summon