Artificial neural network for predicting the performance of waste polypropylene plastic-derived carbon nanotubes
In this study, an artificial neural network model using function fitting neural networks was developed to describe the yield and quality of multi-walled carbon nanotubes deposited over NiMo/CaTiO 3 catalyst using waste polypropylene plastics as cheap hydrocarbon feedstock using a single-stage chemic...
Saved in:
| Published in | International journal of environmental science and technology (Tehran) Vol. 22; no. 5; pp. 3749 - 3762 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1735-1472 1735-2630 1735-2630 |
| DOI | 10.1007/s13762-024-05868-2 |
Cover
| Abstract | In this study, an artificial neural network model using function fitting neural networks was developed to describe the yield and quality of multi-walled carbon nanotubes deposited over NiMo/CaTiO
3
catalyst using waste polypropylene plastics as cheap hydrocarbon feedstock using a single-stage chemical vapour deposition technique. The experimental dataset was developed using a user-specific design with four numeric factors (input variable): synthesis temperature, furnace heating rate, residence time, and carrier gas (nitrogen) flow rate to control the performance (yield and quality) of produced carbon nanotubes. Levenberg–Marquardt algorithm was utilized in training, validating, and testing the experimental dataset. The predicted model gave a considerable correlation coefficient (R) value close to 1. The presented model would be of remarkable benefit to successfully describe and predict the performance of polypropylene-derived carbon nanotubes and show how the predictive variables could affect the response variables (quality and yield) of carbon nanotubes. |
|---|---|
| AbstractList | In this study, an artificial neural network model using function fitting neural networks was developed to describe the yield and quality of multi-walled carbon nanotubes deposited over NiMo/CaTiO 3 catalyst using waste polypropylene plastics as cheap hydrocarbon feedstock using a single-stage chemical vapour deposition technique. The experimental dataset was developed using a user-specific design with four numeric factors (input variable): synthesis temperature, furnace heating rate, residence time, and carrier gas (nitrogen) flow rate to control the performance (yield and quality) of produced carbon nanotubes. Levenberg–Marquardt algorithm was utilized in training, validating, and testing the experimental dataset. The predicted model gave a considerable correlation coefficient (R) value close to 1. The presented model would be of remarkable benefit to successfully describe and predict the performance of polypropylene-derived carbon nanotubes and show how the predictive variables could affect the response variables (quality and yield) of carbon nanotubes. In this study, an artificial neural network model using function fitting neural networks was developed to describe the yield and quality of multi-walled carbon nanotubes deposited over NiMo/CaTiO 3 catalyst using waste polypropylene plastics as cheap hydrocarbon feedstock using a single-stage chemical vapour deposition technique. The experimental dataset was developed using a user-specific design with four numeric factors (input variable): synthesis temperature, furnace heating rate, residence time, and carrier gas (nitrogen) flow rate to control the performance (yield and quality) of produced carbon nanotubes. Levenberg–Marquardt algorithm was utilized in training, validating, and testing the experimental dataset. The predicted model gave a considerable correlation coefficient (R) value close to 1. The presented model would be of remarkable benefit to successfully describe and predict the performance of polypropylene-derived carbon nanotubes and show how the predictive variables could affect the response variables (quality and yield) of carbon nanotubes. In this study, an artificial neural network model using function fitting neural networks was developed to describe the yield and quality of multi-walled carbon nanotubes deposited over NiMo/CaTiO₃ catalyst using waste polypropylene plastics as cheap hydrocarbon feedstock using a single-stage chemical vapour deposition technique. The experimental dataset was developed using a user-specific design with four numeric factors (input variable): synthesis temperature, furnace heating rate, residence time, and carrier gas (nitrogen) flow rate to control the performance (yield and quality) of produced carbon nanotubes. Levenberg–Marquardt algorithm was utilized in training, validating, and testing the experimental dataset. The predicted model gave a considerable correlation coefficient (R) value close to 1. The presented model would be of remarkable benefit to successfully describe and predict the performance of polypropylene-derived carbon nanotubes and show how the predictive variables could affect the response variables (quality and yield) of carbon nanotubes. |
| Author | Mamo, M. A. Moothi, K. Ayeleru, O. O. Daramola, M. O. Akintola, A. T. Modekwe, H. U. |
| Author_xml | – sequence: 1 givenname: H. U. orcidid: 0000-0003-3430-3731 surname: Modekwe fullname: Modekwe, H. U. email: uche_lyne2@yahoo.com, uchelyne2@gmail.com organization: Renewable Energy and Biomass Research, Department of Chemical Engineering, University of Johannesburg – sequence: 2 givenname: A. T. surname: Akintola fullname: Akintola, A. T. organization: Renewable Energy and Biomass Research, Department of Chemical Engineering, University of Johannesburg – sequence: 3 givenname: O. O. surname: Ayeleru fullname: Ayeleru, O. O. organization: Centre for Nanoengineering and Advanced Materials, University of Johannesburg – sequence: 4 givenname: M. A. surname: Mamo fullname: Mamo, M. A. organization: Research Centre for Synthesis and Catalysis, Department of Chemical Science, Faculty of Science, Doornfontein Campus, University of Johannesburg – sequence: 5 givenname: M. O. surname: Daramola fullname: Daramola, M. O. organization: Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria – sequence: 6 givenname: K. surname: Moothi fullname: Moothi, K. organization: Faculty of Engineering, School of Chemical and Minerals Engineering, North-West University |
| BookMark | eNqNkLtOxDAQRS0EErDwA1QuaQJ-xykR4iUh0UBteZ0JGLx2sBNW-_cYdmtENTNX945mzjHajykCQmeUXFBC2stCeatYQ5hoiNRKN2wPHdGWy4YpTvZ3PRUtO0THpbwTIpQQ9AiNV3nyg3feBhxhzr9lWqf8gYeU8Zih927y8RVPb4BHyFVd2egApwGvbZmqmMJmzGncBIh1ClX0rukh-y_osbN5mSKONqZpXkI5QQeDDQVOd3WBXm5vnq_vm8enu4frq8fGcdpNTS-IWkoN2jLuqAQNRDvJB6ol7YmyTHZL5UQH2jkBQ6vAgaIw6E5ICbTnC8S3e-c42s3ahmDG7Fc2bwwl5gea2UIzFZr5hWZYTZ1vU_WhzxnKZFa-OAjBRkhzMZwRwmkrOl2tbGt1OZWSYfjf_t1VpZrjK2TznuYcK4i_Ut9kd5JP |
| Cites_doi | 10.1016/j.carbon.2022.10.044 10.1007/s00339-016-0153-1 10.1016/j.matpr.2020.02.398 10.1021/ie1015552 10.1016/j.heliyon.2024.e24679 10.1016/j.physb.2021.412852 10.1002/app.39931 10.1515/ntrev-2012-0038 10.1016/j.physrep.2004.10.006 10.3390/catal11060692 10.2174/1573413710666140818210043 10.1088/1757-899x/1107/1/012067 10.1016/j.cej.2012.03.077 10.1021/acs.energyfuels.7b02311 10.9790/1676-1201031926 10.1007/s40995-017-0198-9 10.1021/acsnano.8b06511 10.1007/978-3-030-49342-4_7 10.1016/j.cep.2017.09.011 10.3390/en12173291 10.1016/j.carbon.2011.03.028 10.1089/big.2013.0037 10.1016/j.micromeso.2004.06.012 10.1039/b821136a 10.1016/j.carbon.2019.07.013 10.1016/j.carbon.2005.06.001 10.3390/catal10091030 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 |
| Copyright_xml | – notice: The Author(s) 2024 |
| DBID | C6C AAYXX CITATION 7S9 L.6 ADTOC UNPAY |
| DOI | 10.1007/s13762-024-05868-2 |
| DatabaseName | Springer Nature OA Free Journals CrossRef AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef AGRICOLA |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1735-2630 |
| EndPage | 3762 |
| ExternalDocumentID | 10.1007/s13762-024-05868-2 10_1007_s13762_024_05868_2 |
| GrantInformation_xml | – fundername: University of Johannesburg |
| GroupedDBID | -EM 06D 0R~ 0VY 203 29J 2WC 30V 3V. 4.4 406 408 5GY 7XC 8AF 8FE 8FG 8FH 8G5 8R4 8R5 96X AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAZMS ABAKF ABDZT ABECU ABFTV ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABXPI ACAOD ACCUX ACDTI ACGFO ACGFS ACHSB ACIWK ACKNC ACMLO ACOKC ACPIV ACPRK ACREN ACZOJ ADDVE ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEUYN AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR ANMIH ATCPS AUKKA AXYYD AYJHY AZQEC BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS C1A C6C CCPQU CSCUP DNIVK DPUIP DWQXO E3Z EBLON EBS EDH EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GNUQQ GQ6 GQ7 GUQSH GX1 HCIFZ HG6 HH5 HMJXF HRMNR HZ~ I0C IKXTQ IWAJR IXD J-C JBSCW JZLTJ KOV L6V LLZTM M2O M48 M4Y M7S NPVJJ NQJWS NU0 O9- O93 O9J P2P PADUT PATMY PQQKQ PROAC PT4 PTHSS PYCSY Q2X RBI RLLFE ROL RSV SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TR2 TSG U2A UG4 UOJIU UTJUX UZXMN VFIZW W48 Z5O Z7R Z7V Z7Y Z7Z ZMTXR ~A9 AAYXX ABBRH ABDBE ABFSG ABRTQ ABVJJ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION OVT PHGZM PHGZT PQGLB PUEGO 7S9 L.6 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c319t-d406b58e8a23c15e8e08c53f1851d06a259b6c49e8cc4ef76ece61ef89455e1d3 |
| IEDL.DBID | M48 |
| ISSN | 1735-1472 1735-2630 |
| IngestDate | Sun Oct 26 03:36:05 EDT 2025 Fri Sep 05 17:26:43 EDT 2025 Wed Oct 01 06:54:40 EDT 2025 Sat Feb 22 01:10:12 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Modelling Yield Artificial Neural Network Plastic-derived carbon nanotubes Quality Waste polypropylene plastics |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-d406b58e8a23c15e8e08c53f1851d06a259b6c49e8cc4ef76ece61ef89455e1d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-3430-3731 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1007/s13762-024-05868-2 |
| PQID | 3200317498 |
| PQPubID | 24069 |
| PageCount | 14 |
| ParticipantIDs | unpaywall_primary_10_1007_s13762_024_05868_2 proquest_miscellaneous_3200317498 crossref_primary_10_1007_s13762_024_05868_2 springer_journals_10_1007_s13762_024_05868_2 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20250300 2025-03-00 20250301 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 3 year: 2025 text: 20250300 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg |
| PublicationTitle | International journal of environmental science and technology (Tehran) |
| PublicationTitleAbbrev | Int. J. Environ. Sci. Technol |
| PublicationYear | 2025 |
| Publisher | Springer Berlin Heidelberg |
| Publisher_xml | – name: Springer Berlin Heidelberg |
| References | HU Modekwe (5868_CR23) 2021; 11 AB Çolak (5868_CR7) 2021; 608 HU Modekwe (5868_CR21) 2021; 1107 5868_CR17 R Das (5868_CR8) 2015; 11 R Parmar (5868_CR25) 2017; 12 5868_CR12 HU Modekwe (5868_CR20) 2020; 10 K Raji (5868_CR26) 2013; 2 A Bazargan (5868_CR5) 2012; 195–196 M Sedighi (5868_CR29) 2011; 50 CU Deniz (5868_CR10) 2017; 31 S Bharati (5868_CR6) 2021; 1181 H Yu (5868_CR31) 2011 F Kusumo (5868_CR15) 2019; 12 EJ De Fortuny (5868_CR9) 2013; 1 5868_CR3 A Kukovecz (5868_CR14) 2005; 43 5868_CR28 VY Lakovlev (5868_CR16) 2019; 153 Y Yang (5868_CR30) 2004; 74 JH Lehman (5868_CR19) 2011; 49 HU Modekwe (5868_CR22) 2021; 38 SNK Abad (5868_CR1) 2017; 41 MS Dresselhaus (5868_CR11) 2005; 409 S Lefrant (5868_CR18) 2009; 19 C Zhuo (5868_CR32) 2014; 131 M Aci (5868_CR2) 2016; 122 DV Krasnikov (5868_CR13) 2023; 202 R Rao (5868_CR27) 2018; 12 HU Modekwe (5868_CR24) 2024; 10 G Bajad (5868_CR4) 2017; 121 |
| References_xml | – start-page: 1 volume-title: Intelligent Systems year: 2011 ident: 5868_CR31 – volume: 202 start-page: 76 year: 2023 ident: 5868_CR13 publication-title: Carbon doi: 10.1016/j.carbon.2022.10.044 – volume: 122 start-page: 1 year: 2016 ident: 5868_CR2 publication-title: Appl Phys A Mater Sci Process doi: 10.1007/s00339-016-0153-1 – volume: 38 start-page: 549 year: 2021 ident: 5868_CR22 publication-title: Mater Today Proc doi: 10.1016/j.matpr.2020.02.398 – volume: 50 start-page: 1536 year: 2011 ident: 5868_CR29 publication-title: Ind Eng Chem Res doi: 10.1021/ie1015552 – volume: 10 start-page: e24679 year: 2024 ident: 5868_CR24 publication-title: Heliyon doi: 10.1016/j.heliyon.2024.e24679 – volume: 608 start-page: 412852 year: 2021 ident: 5868_CR7 publication-title: Phys B Condens Matter doi: 10.1016/j.physb.2021.412852 – volume: 131 start-page: 1 year: 2014 ident: 5868_CR32 publication-title: J Appl Polym Sci doi: 10.1002/app.39931 – volume: 2 start-page: 73 year: 2013 ident: 5868_CR26 publication-title: Nanotechnol Rev doi: 10.1515/ntrev-2012-0038 – volume: 409 start-page: 47 year: 2005 ident: 5868_CR11 publication-title: Phys Rep doi: 10.1016/j.physrep.2004.10.006 – volume: 11 start-page: 692 issue: 6 year: 2021 ident: 5868_CR23 publication-title: Catalysts doi: 10.3390/catal11060692 – volume: 11 start-page: 1 year: 2015 ident: 5868_CR8 publication-title: Curr Nanosci doi: 10.2174/1573413710666140818210043 – ident: 5868_CR12 – volume: 1107 start-page: 012067 year: 2021 ident: 5868_CR21 publication-title: IOP Conf Ser Mater Sci Eng doi: 10.1088/1757-899x/1107/1/012067 – volume: 195–196 start-page: 377 year: 2012 ident: 5868_CR5 publication-title: Chem Eng J doi: 10.1016/j.cej.2012.03.077 – volume: 31 start-page: 11932 year: 2017 ident: 5868_CR10 publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.7b02311 – ident: 5868_CR28 – ident: 5868_CR3 – volume: 12 start-page: 19 year: 2017 ident: 5868_CR25 publication-title: IOSR J Electr Electron Eng doi: 10.9790/1676-1201031926 – volume: 41 start-page: 151 year: 2017 ident: 5868_CR1 publication-title: Iran J Sci Technol Trans A Sci doi: 10.1007/s40995-017-0198-9 – volume: 12 start-page: 11756 year: 2018 ident: 5868_CR27 publication-title: ACS Nano doi: 10.1021/acsnano.8b06511 – volume: 1181 start-page: 69 year: 2021 ident: 5868_CR6 publication-title: Adv Intell Syst Comput doi: 10.1007/978-3-030-49342-4_7 – volume: 121 start-page: 205 year: 2017 ident: 5868_CR4 publication-title: Chem Eng Process Process Intensif doi: 10.1016/j.cep.2017.09.011 – volume: 12 start-page: 3291 year: 2019 ident: 5868_CR15 publication-title: Energies doi: 10.3390/en12173291 – ident: 5868_CR17 – volume: 49 start-page: 2581 year: 2011 ident: 5868_CR19 publication-title: Carbon doi: 10.1016/j.carbon.2011.03.028 – volume: 1 start-page: 215 year: 2013 ident: 5868_CR9 publication-title: Big Data doi: 10.1089/big.2013.0037 – volume: 74 start-page: 133 year: 2004 ident: 5868_CR30 publication-title: Microporous Mesoporous Mater doi: 10.1016/j.micromeso.2004.06.012 – volume: 19 start-page: 5690 year: 2009 ident: 5868_CR18 publication-title: J Mater Chem doi: 10.1039/b821136a – volume: 153 start-page: 100 year: 2019 ident: 5868_CR16 publication-title: Carbon doi: 10.1016/j.carbon.2019.07.013 – volume: 43 start-page: 2842 year: 2005 ident: 5868_CR14 publication-title: Carbon doi: 10.1016/j.carbon.2005.06.001 – volume: 10 start-page: 1030 year: 2020 ident: 5868_CR20 publication-title: Catalysts doi: 10.3390/catal10091030 |
| SSID | ssj0046441 |
| Score | 2.3920748 |
| Snippet | In this study, an artificial neural network model using function fitting neural networks was developed to describe the yield and quality of multi-walled carbon... |
| SourceID | unpaywall proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 3749 |
| SubjectTerms | algorithms Aquatic Pollution carbon nanotubes catalysts data collection Earth and Environmental Science Ecotoxicology Environment Environmental Chemistry Environmental Science and Engineering feedstocks furnaces neural networks nitrogen Original Paper polypropylenes Soil Science & Conservation temperature vapors Waste Water Technology Water Management Water Pollution Control |
| SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61y6HlAH0hlkdlpN7AKE7srPeIEA9RwYmV6CmynfGlqyTaTUDw6xlnE5YiVMEpiiLZzjw8nzUznwF-kUkoO4o899YglxRCuLbjnEthxcg5VLZl57-8Ss8n8uJG3XRNYfO-2r1PSbY79bLZjXwh5hRTeKR0Svr9CCst39YAVo7O_vw-6XdgGWJ82wiZKC7kKO6aZV4f5d-AtESZT4nRVfjUFJW5vzPT6bPYc7oOk37Vi5KTv4dNbQ_dwwtCx_f-1hdY68AoO1pYz1f4gMU3WH1GUfgdqvBxwTLBAvdl-2grxxnBXVbNQqInlE4zQpKsWrYhsNKzO0M2xKpyGvqqqnsKcPRGcJ2m4zlNcIs5c2Zmy4IVpijrxuL8B0xOT66Pz3l3SwN35L41zwkSWKVRmzhxQqHGSDuVeAICIo9SQ-crmzo5Ru2cRD9K0WEq0OuxVApFnmzAoCgL3AQmEu8jmSvjhZfKOO20zpFOoF4ZqQQOYb9XVVYtyDiyJe1ykGNGcsxaOWbxEPZ6bWbkMyERYgosm3mWhIo8OoqN9RAOeq1knfPO_zvkwZMpvGEFW-8bfRs-x-F24bbCbQcG9azBXYI8tf3ZWfgjz074hQ priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46D-LB3-JEJYI3zWzWpMuOIooIigcH81SS9OXiaMvaKvrX-9J1bg4RPbWlJW3z3uP7wnvvCyGn6BLS9ALHnNHABEIIU6afMMEN71kL0tTq_PcP0e1A3A3lsJHJ8b0wC_n7i4JjBHQZIgkLpIrQqstkJZLIu1tkZfDwePlcdzyGknFR79RUn3ejMGg6ZH4e5DsKzajlVzZ0jaxWaa7f3_RoNAc4NxuTnYuKWqfQ15m8dKrSdOzHgorj3_5lk6w3vJNeThxliyxBuk3W5tQId0jub04EJaiXuawPdZE4RWZL87HP6fgqaYqkkeazjgOaOfqm0V1ono18C1X-jliGV8jM8XUswRe8QkKtHpsspalOs7IyUOySwc3109UtazZkYBYjtWQJor-RCpTuhpZLUBAoK0OHmM-TINK4lDKRFX1Q1gpwvQgsRByc6gspgSfhHmmlWQr7hPLQuUAkUjvuhNRWWaUSwMWmk1pIDm1yNjVQnE90N-KZwrKfxxjnMa7nMe62ycnUhjGGh8956BSyqohDX3yHq66-apPzqXHjJk6LX4c8_3KAP3zBwf8ePyStclzBERKa0hw3nvwJb1bttQ priority: 102 providerName: Unpaywall |
| Title | Artificial neural network for predicting the performance of waste polypropylene plastic-derived carbon nanotubes |
| URI | https://link.springer.com/article/10.1007/s13762-024-05868-2 https://www.proquest.com/docview/3200317498 https://doi.org/10.1007/s13762-024-05868-2 |
| UnpaywallVersion | publishedVersion |
| Volume | 22 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1735-2630 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0046441 issn: 1735-1472 databaseCode: HH5 dateStart: 20040101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1735-2630 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0046441 issn: 1735-1472 databaseCode: AFBBN dateStart: 20040301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1735-2630 dateEnd: 20251130 omitProxy: true ssIdentifier: ssj0046441 issn: 1735-1472 databaseCode: M48 dateStart: 20040301 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1735-2630 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0046441 issn: 1735-1472 databaseCode: AGYKE dateStart: 20040101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1735-2630 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0046441 issn: 1735-1472 databaseCode: U2A dateStart: 20120101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7yOLQ5hKYPsmm6qNBbomLZklc-hLAsedCS0EMMyclI8ui02O4-muy_78i73k0hlPZiYQSSmG_EN2JeAF9IJZQdRJ57a5BLohCubVZyKawYOIfKttX5b27T61x-u1f3W9C1O1oJcPri0y70k8on469PPxfndOHPNmlwdEtiTmzDI6VTQn4bdompstDK4UauvQoycH-bIJkoLuQgXiXRvLzGn0S1sT7XDtM9eDWvGrN4NOPxM066fAP7K2OSDZfoH8AWVm9h71mJwXfQhMlllQgWale2Qxv5zchcZc0kOGpC6DMjS5A1mzQCVnv2aEgHWFOPQ15UsyCCoj8yt2k7XtIGv7BkzkxsXbHKVPVsbnH6HvLLi7vRNV91WeCOrt-Ml0TpVmnUJk6cUKgx0k4lnohclFFq6H1kUycz1M5J9IMUHaYCvc6kUijK5APsVHWFh8BE4n0kS2W88FIZp53WJRIQXhmpBPbgpBNp0SyLaRSbsskBgIIAKFoAirgHnzupF6TzwZFhKqzn0yIJEXX0lMp0D047OIpOd_665Okasn84wdF_nfcjvI5Dc-A2QO0YdmaTOX4ii2Vm-7A7vHr4ftGH7VE66rdKSd88HtJMfvtj-PAb0hTqfQ |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSyQxEC58HNTDoq6Lo6tG8KaBTnfSkznKsjI-Tw54C0m6chq6m3ko_nsrPd2OwiLrqWkakiZfJV8VVfUF4IxMQrl-EnhwFrkkCuHaDQouhRN971G5Rp3__iEfjuTNk3pqm8KmXbV7l5JsTuplsxvthZQTp_BE6ZzwXYX1KGAVFfNH6WV3_srI8E0bZKa4kP20bZX59xif6WjpY76nRbdgY17W9vXFjscfmOdqG360LiO7XGC8AytY7sLWByHBn1DHjwstCBYVKptHU9_NyCll9SSmY2KBMyN_j9XLZgFWBfZiCWlWV-PY_VS_Eg3RGznVNB0vaIJnLJi3E1eVrLRlNZs7nO7B6Orv458hb-9S4J422YwXRNxOadQ2zbxQqDHRXmWB6FoUSW4pCnK5lwPU3ksM_Rw95gKDHkilUBTZL1grqxL3gYkshEQWygYRpLJee60LpDgxKCuVwB6cd0tq6oVkhlmKI0cADAFgGgBM2oPTbtUNWXZMV9gSq_nUZLFujgKmge7BRQeHabfY9MshL94h-48_OPje6CewMXy8vzN31w-3h7CZxvuAm5q037A2m8zxiJyUmTtubPINz-TeZg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEB3aFNrmEPpJN21aFXprRCxb8mqPZZMl_Qo9NJCb0MfotMhm19uQf5-Rd53dQintyRiDZPQkvREz7wngA00J5cZF5NFZ5JIohGs3CVwKJ8beo3K9O__3i_r8Un65Ulc7Kv6-2n1ISa41DdmlKXUnbYgnW-EbrYuSE7_wQumasL4PDySxW77DYFpPh71YZrbvJZGV4kKOy41s5s9t_E5N23jzLkW6D49WqbU313Y-32Gh2RM42ISP7NMa76dwD9Mz2N8xFXwObf649oVg2a2yf_S13owCVNYucmomFzsziv1YuxUOsCaya0uos7aZZyVUe0OURG8UYFN3PFAHvzAwbxeuSSzZ1HQrh8sXcDk7-zk955t7FbinBdfxQCTulEZty8oLhRoL7VUVibpFKGpLJyJXezlB7b3EOK7RYy0w6olUCkWoXsJeahK-AiaqGAsZlI0iSmW99loHpDNjVFYqgSP4OAypadf2GWZrlJwBMASA6QEw5QjeD6NuaJbn1IVN2KyWpso1dHR4mugRHA9wmM1yW_61yeM7yP7hDw7_r_V38PDH6cx8-3zx9TU8LvPVwH152hvY6xYrPKJ4pXNv-yl5C45G4ow |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46D-LB3-JEJYI3zWzWpMuOIooIigcH81SS9OXiaMvaKvrX-9J1bg4RPbWlJW3z3uP7wnvvCyGn6BLS9ALHnNHABEIIU6afMMEN71kL0tTq_PcP0e1A3A3lsJHJ8b0wC_n7i4JjBHQZIgkLpIrQqstkJZLIu1tkZfDwePlcdzyGknFR79RUn3ejMGg6ZH4e5DsKzajlVzZ0jaxWaa7f3_RoNAc4NxuTnYuKWqfQ15m8dKrSdOzHgorj3_5lk6w3vJNeThxliyxBuk3W5tQId0jub04EJaiXuawPdZE4RWZL87HP6fgqaYqkkeazjgOaOfqm0V1ono18C1X-jliGV8jM8XUswRe8QkKtHpsspalOs7IyUOySwc3109UtazZkYBYjtWQJor-RCpTuhpZLUBAoK0OHmM-TINK4lDKRFX1Q1gpwvQgsRByc6gspgSfhHmmlWQr7hPLQuUAkUjvuhNRWWaUSwMWmk1pIDm1yNjVQnE90N-KZwrKfxxjnMa7nMe62ycnUhjGGh8956BSyqohDX3yHq66-apPzqXHjJk6LX4c8_3KAP3zBwf8ePyStclzBERKa0hw3nvwJb1bttQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+neural+network+for+predicting+the+performance+of+waste+polypropylene+plastic-derived+carbon+nanotubes&rft.jtitle=International+journal+of+environmental+science+and+technology+%28Tehran%29&rft.au=Modekwe%2C+H.+U.&rft.au=Akintola%2C+A.+T.&rft.au=Ayeleru%2C+O.+O.&rft.au=Mamo%2C+M.+A.&rft.date=2025-03-01&rft.issn=1735-1472&rft.eissn=1735-2630&rft.volume=22&rft.issue=5&rft.spage=3749&rft.epage=3762&rft_id=info:doi/10.1007%2Fs13762-024-05868-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13762_024_05868_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1735-1472&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1735-1472&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1735-1472&client=summon |