Application of an augmented Lagrangian approach to multibody systems with equality motion constraints

The focus of this work is on dynamics of multibody systems subject to bilateral motion constraints. First, a new set of equations of motion is employed, expressed as a coupled system of strongly nonlinear second-order ordinary differential equations. After putting these equations in a weak form, the...

Full description

Saved in:
Bibliographic Details
Published inNonlinear dynamics Vol. 99; no. 1; pp. 753 - 776
Main Authors Potosakis, N., Paraskevopoulos, E., Natsiavas, S.
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.01.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0924-090X
1573-269X
DOI10.1007/s11071-019-05059-6

Cover

Abstract The focus of this work is on dynamics of multibody systems subject to bilateral motion constraints. First, a new set of equations of motion is employed, expressed as a coupled system of strongly nonlinear second-order ordinary differential equations. After putting these equations in a weak form, the position, velocity and momentum type quantities are assumed to be independent. This leads to a three-field set of equations of motion. Next, an alternative formulation is developed, based on optimization principles. It is shown that the equations of motion can eventually be cast in a form obtained by application of an augmented Lagrangian formulation, after introducing an appropriate set of penalty terms. This final set of equations is then used as a basis for developing a new time integration scheme. The validity and numerical efficiency of this scheme is verified by applying it to several example systems. In those examples, special emphasis is put on illustrating the advantages of the new method when applied to selected mechanical systems, involving redundant constraints or singular configurations.
AbstractList The focus of this work is on dynamics of multibody systems subject to bilateral motion constraints. First, a new set of equations of motion is employed, expressed as a coupled system of strongly nonlinear second-order ordinary differential equations. After putting these equations in a weak form, the position, velocity and momentum type quantities are assumed to be independent. This leads to a three-field set of equations of motion. Next, an alternative formulation is developed, based on optimization principles. It is shown that the equations of motion can eventually be cast in a form obtained by application of an augmented Lagrangian formulation, after introducing an appropriate set of penalty terms. This final set of equations is then used as a basis for developing a new time integration scheme. The validity and numerical efficiency of this scheme is verified by applying it to several example systems. In those examples, special emphasis is put on illustrating the advantages of the new method when applied to selected mechanical systems, involving redundant constraints or singular configurations.
Author Natsiavas, S.
Paraskevopoulos, E.
Potosakis, N.
Author_xml – sequence: 1
  givenname: N.
  surname: Potosakis
  fullname: Potosakis, N.
  organization: Department of Mechanical Engineering, Aristotle University
– sequence: 2
  givenname: E.
  surname: Paraskevopoulos
  fullname: Paraskevopoulos, E.
  organization: Department of Mechanical Engineering, Aristotle University
– sequence: 3
  givenname: S.
  orcidid: 0000-0002-2529-600X
  surname: Natsiavas
  fullname: Natsiavas, S.
  email: natsiava@auth.gr
  organization: Department of Mechanical Engineering, Aristotle University
BookMark eNp9kDtrwzAQgEVJoUnaP9BJ0NntneXE1hhCXxDo0kI2IctyomBLjiRT8u_rJIVChwzHwXHfPb4JGVlnNSH3CI8IkD8FRMgxAeQJzGDGk_kVGeMsZ0k65-sRGQNPswQ4rG_IJIQdALAUijHRi65rjJLROEtdTaWlst-02kZd0ZXceGk35ljsOu-k2tLoaNs30ZSuOtBwCFG3gX6buKV638vGxANt3WmacjZEL42N4ZZc17IJ-u43T8nXy_Pn8i1Zfby-LxerRDHkMalYzTgHVDOEuuY1VFlZFvMhEJkEVRQlpDVmWVVqUFVaaMjZ8K1kUGHJgU3Jw3nucOy-1yGKneu9HVaKlGWMMcQ8H7rSc5fyLgSva9F500p_EAjiqFOcdYpBpzjpFPMBKv5BysSTtuOPzWWUndEw7LEb7f-uukD9ALz5jaw
CitedBy_id crossref_primary_10_1016_j_ijsolstr_2020_06_045
crossref_primary_10_1007_s11071_021_06500_5
crossref_primary_10_1016_j_ijnonlinmec_2021_103683
crossref_primary_10_1016_j_mechmachtheory_2021_104332
crossref_primary_10_1007_s11071_023_08326_9
crossref_primary_10_1016_j_ijnonlinmec_2025_105088
crossref_primary_10_1016_j_mechmachtheory_2020_104174
crossref_primary_10_1007_s10489_024_05720_7
crossref_primary_10_1007_s11071_022_07748_1
crossref_primary_10_1007_s11071_021_06526_9
crossref_primary_10_1016_j_mechmachtheory_2021_104294
crossref_primary_10_1016_j_mechmachtheory_2021_104591
crossref_primary_10_1007_s11044_022_09814_3
crossref_primary_10_1016_j_mechmachtheory_2023_105567
crossref_primary_10_1016_j_engappai_2025_110373
crossref_primary_10_1016_j_ast_2025_110044
crossref_primary_10_1177_14644193211061914
crossref_primary_10_1016_j_apm_2023_01_037
crossref_primary_10_1016_j_compstruc_2021_106547
Cites_doi 10.1115/1.4027671
10.1007/s11071-016-2774-5
10.1137/0312021
10.1007/978-0-387-21792-5
10.1023/A:1019581227898
10.1007/978-94-011-6450-4
10.1016/j.ijnonlinmec.2015.07.007
10.1017/CBO9780511610523
10.1007/978-94-007-0335-3
10.1007/s11071-012-0727-1
10.1007/BF00047121
10.1115/1.3079826
10.1017/CBO9780511804441
10.1007/b97376
10.1007/s11071-012-0413-3
10.1007/s11044-016-9510-2
10.1007/s11071-014-1783-5
10.1017/S0962492904000212
10.1007/s11071-011-0224-y
10.1115/1.2389043
10.1016/j.ijnonlinmec.2009.01.006
10.1007/s11071-009-9579-8
10.1016/j.ijsolstr.2012.09.001
10.1007/BF01833296
10.1007/b98874
ContentType Journal Article
Copyright Springer Nature B.V. 2019
Nonlinear Dynamics is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer Nature B.V. 2019
– notice: Nonlinear Dynamics is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s11071-019-05059-6
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList
Engineering Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1573-269X
EndPage 776
ExternalDocumentID 10_1007_s11071_019_05059_6
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9T
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZMTXR
_50
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-d3f39901c510ff9f0d4bb86bb8113a0c88b02f144dbe0cd28e073059a30d1b903
IEDL.DBID BENPR
ISSN 0924-090X
IngestDate Fri Jul 25 11:15:17 EDT 2025
Wed Oct 01 02:34:43 EDT 2025
Thu Apr 24 23:08:58 EDT 2025
Fri Feb 21 02:32:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Analytical dynamics
Multibody dynamics
Generalized Gauss principle
Augmented Lagrangian formulation
Bilateral constraints
Weak form of equations of motion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-d3f39901c510ff9f0d4bb86bb8113a0c88b02f144dbe0cd28e073059a30d1b903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2529-600X
PQID 2343331177
PQPubID 2043746
PageCount 24
ParticipantIDs proquest_journals_2343331177
crossref_primary_10_1007_s11071_019_05059_6
crossref_citationtrail_10_1007_s11071_019_05059_6
springer_journals_10_1007_s11071_019_05059_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200100
2020-1-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 1
  year: 2020
  text: 20200100
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems
PublicationTitle Nonlinear dynamics
PublicationTitleAbbrev Nonlinear Dyn
PublicationYear 2020
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References BoydSVandenbergheLConvex Optimization2004New YorkCambridge University Press10.1017/CBO9780511804441
RektorysKVariational Methods in Mathematics, Science and Engineering1977DordrechtD. Reidel Publishing Company10.1007/978-94-011-6450-4
Paraskevopoulos, E., Potosakis, N., Natsiavas, S.: Application of an augmented Lagrangian methodology to dynamics of multibody systems with equality constraints. In: 9th GRACM International Congress on Computational Mechanics, Chania, Greece (2018)
PapalukopoulosCNatsiavasSDynamics of large scale mechanical models using multi-level substructuringASME J. Comput. Nonlinear Dyn.20072405110.1115/1.2389043
PapastavridisJGTensor Calculus and Analytical Dynamics1999Boca RatonCRC Press
RockafellarRAugmented Lagrange multiplier functions and duality in nonconvex programmingSIAM J. Control19741226828538416310.1137/0312021
IFToMM T.C. for Multibody Dynamics, Library of Computational Benchmark Problems. http://www.iftomm-multibody.org/benchmark
BlochAMNonholonomic Mechanics and Control2003New YorkSpringer10.1007/b97376
BertsekasDPConvex Optimization Theory2009BelmontAthena Scientific1242.90001
GreenwoodDTPrinciples of Dynamics1988Englewood CliffsPrentice-Hall Inc.
ParaskevopoulosENatsiavasSOn application of Newton’s law to mechanical systems with motion constraintsNonlinear Dyn.201372455475304398110.1007/s11071-012-0727-1
DopicoDGonzalezFCuadradoJKövecsesJDetermination of holonomic and nonholonomic constraint reactions in an index-3 augmented Lagrangian formulation with velocity and acceleration projectionsASME J. Comput. Nonlinear Dyn.2014904100610.1115/1.4027671
BertsekasDPConstraint Optimization and Lagrange Multiplier Methods1982New YorkAcademic Press0572.90067
KurdilaAJJunkinsJLHsuSLyapunov stable penalty methods for imposing holonomic constraints in multibody system dynamicsNonlinear Dyn.1993451820708.70013
MotionSolve v14.0, User Guide, Altair Engineering Inc., Irvine, California, USA
BauchauOAFlexible Multibody Dynamics2011LondonSpringer10.1007/978-94-007-0335-3
García OrdenJCEnergy considerations for the stabilization of constrained mechanical systems with velocity projectionNonlinear Dyn.2010604962261000810.1007/s11071-009-9579-8
García OrdenJCCondeSCControllable velocity projection for constraint stabilization in multibody dynamicsNonlinear Dyn.201268245257290417210.1007/s11071-011-0224-y
NocedalJWrightSJNumerical Optimization1999New YorkSpringer10.1007/b98874
LeineRINijmeijerHDynamics and Bifurcations of Non-smooth Mechanical Systems2013BerlinSpringer1068.70003
PacejkaHBTyre and Vehicle Dynamics20123OxfordButterworth-Heinemann
Potosakis, N., Paraskevopoulos, E., Natsiavas, S.: Numerical integration of a new set of equations of motion for a class of multibody systems using an augmented Lagrangian approach. In: 5th Joint International Conference on Multibody System Dynamics, Lisbon, Portugal (2018)
GeradinMCardonaAFlexible Multibody Dynamics2001New YorkWiley0874.73072
BayoELedesmaRAugmented Lagrangian and mass-orthogonal projection methods for constrained multibody dynamicsNonlinear Dyn.19969113130139400410.1007/BF01833296
TheodosiouCNatsiavasSDynamics of finite element structural models with multiple unilateral constraintsInt. J. Non-linear Mech.20094437138210.1016/j.ijnonlinmec.2009.01.006
ŽenišekANonlinear Elliptic and Evolution Problems and their Finite Element Approximations1990LondonAcademic Press0731.65090
FloresPLeineRIGlockerChApplication of the nonsmooth dynamics approach to model and analysis of the contact-impact events in cam-follower systemsNonlinear Dyn.20126921172133294554510.1007/s11071-012-0413-3
BauchauOAEppleABottassoCLScaling of constraints and augmented Lagrangian formulations in multibody dynamics simulationsASME J. Comput. Nonlinear Dyn.2009402100710.1115/1.3079826
FrankelTThe Geometry of Physics: An Introduction1997New YorkCambridge University Press0888.58077
ParaskevopoulosENatsiavasSWeak formulation and first order form of the equations of motion for a class of constrained mechanical systemsInt. J. Non-linear Mech.20157720822210.1016/j.ijnonlinmec.2015.07.007
BlajerWAugmented Lagrangian formulation: geometrical interpretation and application to systems with singularities and redundancyMultibody Syst. Dyn.20028141159190509110.1023/A:1019581227898
MurrayRMLiZSastrySSA Mathematical Introduction to Robot Manipulation1994Boca RatonCRC Press0858.70001
ShabanaAADynamics of Multibody Systems20053New YorkCambridge University Press10.1017/CBO9780511610523
ParaskevopoulosENatsiavasSA new look into the kinematics and dynamics of finite rigid body rotations using Lie group theoryInt. J. Solids Struct.201350577210.1016/j.ijsolstr.2012.09.001
Neimark, J.I., Fufaev, N.A.: Dynamics of Nonholonomic Systems. Translations of Mathematical Monographs, American Mathematical Society 33, Providence, RI (1972)
BrenanKECampbellSLPetzholdLRNumerical Solution of Initial-Value Problems in Differential-Algebraic Equations1989New YorkNorth-Holland
Adams, M.S.C.: User Guide. MSC Software Corporation, California, USA (2016)
MarsdenJERatiuTSIntroduction to Mechanics and Symmetry19992New YorkSpringer10.1007/978-0-387-21792-5
NatsiavasSParaskevopoulosEA set of ordinary differential equations of motion for constrained mechanical systemsNonlinear Dyn.2015791911193810.1007/s11071-014-1783-5
BenziMicheleGolubGene H.LiesenJörgNumerical solution of saddle point problemsActa Numerica2005141137216834210.1017/S0962492904000212
GonzalezFDopicoDPastorinoRCuadradoJBehaviour of augmented Lagrangian and Hamiltonian methods for multibody dynamics in the proximity of singular configurationsNonlinear Dyn.20168514911508352013510.1007/s11071-016-2774-5
MashayekhiMJKövecsesJA comparative study between the augmented Lagrangian method and the complementarity approach for modeling the contact problemMultibody Syst. Dyn.201740327345366924610.1007/s11044-016-9510-2
DP Bertsekas (5059_CR22) 2009
JC García Orden (5059_CR33) 2010; 60
E Bayo (5059_CR23) 1996; 9
RM Murray (5059_CR2) 1994
DP Bertsekas (5059_CR13) 1982
KE Brenan (5059_CR7) 1989
HB Pacejka (5059_CR37) 2012
JG Papastavridis (5059_CR17) 1999
AM Bloch (5059_CR3) 2003
E Paraskevopoulos (5059_CR29) 2013; 50
F Gonzalez (5059_CR27) 2016; 85
T Frankel (5059_CR18) 1997
Michele Benzi (5059_CR28) 2005; 14
S Natsiavas (5059_CR9) 2015; 79
P Flores (5059_CR41) 2012; 69
E Paraskevopoulos (5059_CR12) 2015; 77
JC García Orden (5059_CR34) 2012; 68
MJ Mashayekhi (5059_CR42) 2017; 40
OA Bauchau (5059_CR6) 2011
K Rektorys (5059_CR10) 1977
OA Bauchau (5059_CR25) 2009; 4
5059_CR30
R Rockafellar (5059_CR40) 1974; 12
5059_CR31
C Papalukopoulos (5059_CR38) 2007; 2
A Ženišek (5059_CR11) 1990
S Boyd (5059_CR15) 2004
AA Shabana (5059_CR4) 2005
M Geradin (5059_CR5) 2001
W Blajer (5059_CR24) 2002; 8
DT Greenwood (5059_CR1) 1988
J Nocedal (5059_CR14) 1999
JE Marsden (5059_CR20) 1999
E Paraskevopoulos (5059_CR8) 2013; 72
5059_CR16
RI Leine (5059_CR21) 2013
D Dopico (5059_CR26) 2014; 9
AJ Kurdila (5059_CR32) 1993; 4
C Theodosiou (5059_CR39) 2009; 44
5059_CR19
5059_CR35
5059_CR36
References_xml – reference: BrenanKECampbellSLPetzholdLRNumerical Solution of Initial-Value Problems in Differential-Algebraic Equations1989New YorkNorth-Holland
– reference: BertsekasDPConstraint Optimization and Lagrange Multiplier Methods1982New YorkAcademic Press0572.90067
– reference: LeineRINijmeijerHDynamics and Bifurcations of Non-smooth Mechanical Systems2013BerlinSpringer1068.70003
– reference: BlochAMNonholonomic Mechanics and Control2003New YorkSpringer10.1007/b97376
– reference: MarsdenJERatiuTSIntroduction to Mechanics and Symmetry19992New YorkSpringer10.1007/978-0-387-21792-5
– reference: BauchauOAEppleABottassoCLScaling of constraints and augmented Lagrangian formulations in multibody dynamics simulationsASME J. Comput. Nonlinear Dyn.2009402100710.1115/1.3079826
– reference: GreenwoodDTPrinciples of Dynamics1988Englewood CliffsPrentice-Hall Inc.
– reference: IFToMM T.C. for Multibody Dynamics, Library of Computational Benchmark Problems. http://www.iftomm-multibody.org/benchmark
– reference: GonzalezFDopicoDPastorinoRCuadradoJBehaviour of augmented Lagrangian and Hamiltonian methods for multibody dynamics in the proximity of singular configurationsNonlinear Dyn.20168514911508352013510.1007/s11071-016-2774-5
– reference: BauchauOAFlexible Multibody Dynamics2011LondonSpringer10.1007/978-94-007-0335-3
– reference: ŽenišekANonlinear Elliptic and Evolution Problems and their Finite Element Approximations1990LondonAcademic Press0731.65090
– reference: BayoELedesmaRAugmented Lagrangian and mass-orthogonal projection methods for constrained multibody dynamicsNonlinear Dyn.19969113130139400410.1007/BF01833296
– reference: FloresPLeineRIGlockerChApplication of the nonsmooth dynamics approach to model and analysis of the contact-impact events in cam-follower systemsNonlinear Dyn.20126921172133294554510.1007/s11071-012-0413-3
– reference: MurrayRMLiZSastrySSA Mathematical Introduction to Robot Manipulation1994Boca RatonCRC Press0858.70001
– reference: BlajerWAugmented Lagrangian formulation: geometrical interpretation and application to systems with singularities and redundancyMultibody Syst. Dyn.20028141159190509110.1023/A:1019581227898
– reference: PapalukopoulosCNatsiavasSDynamics of large scale mechanical models using multi-level substructuringASME J. Comput. Nonlinear Dyn.20072405110.1115/1.2389043
– reference: BoydSVandenbergheLConvex Optimization2004New YorkCambridge University Press10.1017/CBO9780511804441
– reference: PacejkaHBTyre and Vehicle Dynamics20123OxfordButterworth-Heinemann
– reference: DopicoDGonzalezFCuadradoJKövecsesJDetermination of holonomic and nonholonomic constraint reactions in an index-3 augmented Lagrangian formulation with velocity and acceleration projectionsASME J. Comput. Nonlinear Dyn.2014904100610.1115/1.4027671
– reference: RektorysKVariational Methods in Mathematics, Science and Engineering1977DordrechtD. Reidel Publishing Company10.1007/978-94-011-6450-4
– reference: Adams, M.S.C.: User Guide. MSC Software Corporation, California, USA (2016)
– reference: MashayekhiMJKövecsesJA comparative study between the augmented Lagrangian method and the complementarity approach for modeling the contact problemMultibody Syst. Dyn.201740327345366924610.1007/s11044-016-9510-2
– reference: ShabanaAADynamics of Multibody Systems20053New YorkCambridge University Press10.1017/CBO9780511610523
– reference: García OrdenJCCondeSCControllable velocity projection for constraint stabilization in multibody dynamicsNonlinear Dyn.201268245257290417210.1007/s11071-011-0224-y
– reference: ParaskevopoulosENatsiavasSOn application of Newton’s law to mechanical systems with motion constraintsNonlinear Dyn.201372455475304398110.1007/s11071-012-0727-1
– reference: BenziMicheleGolubGene H.LiesenJörgNumerical solution of saddle point problemsActa Numerica2005141137216834210.1017/S0962492904000212
– reference: PapastavridisJGTensor Calculus and Analytical Dynamics1999Boca RatonCRC Press
– reference: Neimark, J.I., Fufaev, N.A.: Dynamics of Nonholonomic Systems. Translations of Mathematical Monographs, American Mathematical Society 33, Providence, RI (1972)
– reference: MotionSolve v14.0, User Guide, Altair Engineering Inc., Irvine, California, USA
– reference: TheodosiouCNatsiavasSDynamics of finite element structural models with multiple unilateral constraintsInt. J. Non-linear Mech.20094437138210.1016/j.ijnonlinmec.2009.01.006
– reference: NocedalJWrightSJNumerical Optimization1999New YorkSpringer10.1007/b98874
– reference: NatsiavasSParaskevopoulosEA set of ordinary differential equations of motion for constrained mechanical systemsNonlinear Dyn.2015791911193810.1007/s11071-014-1783-5
– reference: FrankelTThe Geometry of Physics: An Introduction1997New YorkCambridge University Press0888.58077
– reference: KurdilaAJJunkinsJLHsuSLyapunov stable penalty methods for imposing holonomic constraints in multibody system dynamicsNonlinear Dyn.1993451820708.70013
– reference: Paraskevopoulos, E., Potosakis, N., Natsiavas, S.: Application of an augmented Lagrangian methodology to dynamics of multibody systems with equality constraints. In: 9th GRACM International Congress on Computational Mechanics, Chania, Greece (2018)
– reference: GeradinMCardonaAFlexible Multibody Dynamics2001New YorkWiley0874.73072
– reference: ParaskevopoulosENatsiavasSA new look into the kinematics and dynamics of finite rigid body rotations using Lie group theoryInt. J. Solids Struct.201350577210.1016/j.ijsolstr.2012.09.001
– reference: ParaskevopoulosENatsiavasSWeak formulation and first order form of the equations of motion for a class of constrained mechanical systemsInt. J. Non-linear Mech.20157720822210.1016/j.ijnonlinmec.2015.07.007
– reference: BertsekasDPConvex Optimization Theory2009BelmontAthena Scientific1242.90001
– reference: García OrdenJCEnergy considerations for the stabilization of constrained mechanical systems with velocity projectionNonlinear Dyn.2010604962261000810.1007/s11071-009-9579-8
– reference: Potosakis, N., Paraskevopoulos, E., Natsiavas, S.: Numerical integration of a new set of equations of motion for a class of multibody systems using an augmented Lagrangian approach. In: 5th Joint International Conference on Multibody System Dynamics, Lisbon, Portugal (2018)
– reference: RockafellarRAugmented Lagrange multiplier functions and duality in nonconvex programmingSIAM J. Control19741226828538416310.1137/0312021
– ident: 5059_CR35
– volume: 9
  start-page: 041006
  year: 2014
  ident: 5059_CR26
  publication-title: ASME J. Comput. Nonlinear Dyn.
  doi: 10.1115/1.4027671
– volume: 85
  start-page: 1491
  year: 2016
  ident: 5059_CR27
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-016-2774-5
– volume-title: Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations
  year: 1989
  ident: 5059_CR7
– ident: 5059_CR16
– ident: 5059_CR31
– volume: 12
  start-page: 268
  year: 1974
  ident: 5059_CR40
  publication-title: SIAM J. Control
  doi: 10.1137/0312021
– ident: 5059_CR19
– volume-title: Introduction to Mechanics and Symmetry
  year: 1999
  ident: 5059_CR20
  doi: 10.1007/978-0-387-21792-5
– volume: 8
  start-page: 141
  year: 2002
  ident: 5059_CR24
  publication-title: Multibody Syst. Dyn.
  doi: 10.1023/A:1019581227898
– volume-title: Variational Methods in Mathematics, Science and Engineering
  year: 1977
  ident: 5059_CR10
  doi: 10.1007/978-94-011-6450-4
– volume-title: Dynamics and Bifurcations of Non-smooth Mechanical Systems
  year: 2013
  ident: 5059_CR21
– volume: 77
  start-page: 208
  year: 2015
  ident: 5059_CR12
  publication-title: Int. J. Non-linear Mech.
  doi: 10.1016/j.ijnonlinmec.2015.07.007
– volume-title: Dynamics of Multibody Systems
  year: 2005
  ident: 5059_CR4
  doi: 10.1017/CBO9780511610523
– volume-title: Flexible Multibody Dynamics
  year: 2011
  ident: 5059_CR6
  doi: 10.1007/978-94-007-0335-3
– volume: 72
  start-page: 455
  year: 2013
  ident: 5059_CR8
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-012-0727-1
– volume: 4
  start-page: 51
  year: 1993
  ident: 5059_CR32
  publication-title: Nonlinear Dyn.
  doi: 10.1007/BF00047121
– volume-title: Constraint Optimization and Lagrange Multiplier Methods
  year: 1982
  ident: 5059_CR13
– volume-title: A Mathematical Introduction to Robot Manipulation
  year: 1994
  ident: 5059_CR2
– volume-title: The Geometry of Physics: An Introduction
  year: 1997
  ident: 5059_CR18
– volume: 4
  start-page: 021007
  year: 2009
  ident: 5059_CR25
  publication-title: ASME J. Comput. Nonlinear Dyn.
  doi: 10.1115/1.3079826
– volume-title: Tensor Calculus and Analytical Dynamics
  year: 1999
  ident: 5059_CR17
– volume-title: Flexible Multibody Dynamics
  year: 2001
  ident: 5059_CR5
– ident: 5059_CR36
– volume-title: Convex Optimization
  year: 2004
  ident: 5059_CR15
  doi: 10.1017/CBO9780511804441
– volume-title: Principles of Dynamics
  year: 1988
  ident: 5059_CR1
– ident: 5059_CR30
– volume-title: Nonholonomic Mechanics and Control
  year: 2003
  ident: 5059_CR3
  doi: 10.1007/b97376
– volume-title: Convex Optimization Theory
  year: 2009
  ident: 5059_CR22
– volume: 69
  start-page: 2117
  year: 2012
  ident: 5059_CR41
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-012-0413-3
– volume: 40
  start-page: 327
  year: 2017
  ident: 5059_CR42
  publication-title: Multibody Syst. Dyn.
  doi: 10.1007/s11044-016-9510-2
– volume-title: Tyre and Vehicle Dynamics
  year: 2012
  ident: 5059_CR37
– volume: 79
  start-page: 1911
  year: 2015
  ident: 5059_CR9
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-014-1783-5
– volume: 14
  start-page: 1
  year: 2005
  ident: 5059_CR28
  publication-title: Acta Numerica
  doi: 10.1017/S0962492904000212
– volume: 68
  start-page: 245
  year: 2012
  ident: 5059_CR34
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-011-0224-y
– volume: 2
  start-page: 40
  year: 2007
  ident: 5059_CR38
  publication-title: ASME J. Comput. Nonlinear Dyn.
  doi: 10.1115/1.2389043
– volume: 44
  start-page: 371
  year: 2009
  ident: 5059_CR39
  publication-title: Int. J. Non-linear Mech.
  doi: 10.1016/j.ijnonlinmec.2009.01.006
– volume: 60
  start-page: 49
  year: 2010
  ident: 5059_CR33
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-009-9579-8
– volume: 50
  start-page: 57
  year: 2013
  ident: 5059_CR29
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2012.09.001
– volume-title: Nonlinear Elliptic and Evolution Problems and their Finite Element Approximations
  year: 1990
  ident: 5059_CR11
– volume: 9
  start-page: 113
  year: 1996
  ident: 5059_CR23
  publication-title: Nonlinear Dyn.
  doi: 10.1007/BF01833296
– volume-title: Numerical Optimization
  year: 1999
  ident: 5059_CR14
  doi: 10.1007/b98874
SSID ssj0003208
Score 2.3674262
Snippet The focus of this work is on dynamics of multibody systems subject to bilateral motion constraints. First, a new set of equations of motion is employed,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 753
SubjectTerms Automotive Engineering
Classical Mechanics
Control
Differential equations
Dynamical Systems
Engineering
Equations of motion
Mathematical analysis
Mechanical Engineering
Mechanical systems
Multibody systems
Nonlinear equations
Optimization
Ordinary differential equations
Original Paper
Time integration
Vibration
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86L3rwYypOp-TgTQNt0nbNcYgyRD052K3kcwjSie0O--_NS9NVRQUPhdKmIfTlJe_3Xt7vIXQplcxFKjXhNlckESNFRMwtSaxhDmJH3GhIFH58yibT5H6WzkJSWNWedm9Dkn6l7pLdHFIB6MsJVF_jJNtEWynQeblZPKXj9frLqK9DFzlkAV6IWUiV-bmPr9tRZ2N-C4v63eZuH-0GMxGPG7keoA1T9tFeMBlxUMiqj3Y-8QkeIjPuwtF4YbEosVjOPe2mxg9i7val-Qs8DETiuF5gf6JQLvQKN6TOFQbXLDZNtuUKN2V-sAI7EspJ1NURmt7dPt9MSKijQJRTsJpoZhmEv5TTP2u5jXQiZZ65K46ZiFSey4hah6y0NJHSNDeg9ykXLNKx5BE7Rr1yUZoThAXEqaXhhmrutD0T7p4nxlA10iPN6ADF7e8sVCAZh8G9Fh09MoigcCIovAiKbICu1t-8NRQbf7YetlIqgrpVBWUJYwzizwN03Uque_17b6f_a36Gtingbe-CGaJe_b40584oqeWFn4MftRLZaw
  priority: 102
  providerName: Springer Nature
Title Application of an augmented Lagrangian approach to multibody systems with equality motion constraints
URI https://link.springer.com/article/10.1007/s11071-019-05059-6
https://www.proquest.com/docview/2343331177
Volume 99
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 20241103
  omitProxy: false
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: AMVHM
  dateStart: 19900301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-269X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: AFBBN
  dateStart: 19900101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-269X
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB5BcikHXi1qeER76A1WtXcdx3tAKKAE1JYIVY2Unqx9RpVQHIg58O_Zsde4rQQHS9b6IcuzMzuPne8D-KK0yuRAGSpcpmkih5rKWDiaOMt9iB0Ja7BR-Haa3sySb_PBfAOmTS8MbqtsbGJlqE2hMUf-lfGEc44lxovVA0XWKKyuNhQaMlArmPMKYmwTugyRsTrQvRxP736-2mbOKo66yEcdmKGYhzaaupnOR0IYWguK7G6Cpv8uVa3_-V_JtFqJJruwHVxIMqplvgcbdrkPO8GdJEFZ1_uw9RfW4Eewo7ZUTQpH5JLIp0UFyWnID7nwa9biDw4GkHFSFqTabagK80xqwOc1wbQtsXUn5jOpKYCIRh8TqSbK9SeYTca_rm5o4Fig2itfSQ13HEtj2uumc8JFJlEqS_0Rx1xGOstUxJyPuoyykTYss2gTBkLyyMRKRPwAOstiaT8DkVjDVlZYZoS3BKn05yKxlumhGRrOehA3vzPXAYAcP-4-b6GTUQS5F0FeiSBPe3D6-syqht949-7jRkp5UMV13k6cHpw1kmsvv_22w_ffdgQfGMbeVTrmGDrl45M98Q5KqfqwmU2u-9AdXf_-Pu6HOehHZ2z0AsTz5lo
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOACHttAitqWtD-2pWE3sbDY-oIpS0ALLqkIg7S31c4WENkCCqv1z_W31JA6BSuXGIVKUhxV5JuP5ZjzfAHxSWmWyrwwVLtM0kQNNZSwcTZzlHmJHwhosFD4dp8OL5HjSnyzAn7YWBrdVtjaxNtSm0Bgj_8p4wjnHFOO36xuKXaMwu9q20JChtYLZrSnGQmHHiZ3_9hCu3D364eX9mbHDg_P9IQ1dBqj26ldRwx3H5JD22umccJFJlMpSf8Qxl5HOMhUx53GHUTbShmUW_4q-kDwysRIR9-MuwnLCE-HB3_L3g_HPs_u1gLO6J17kUQ5GRCahbKcp3vPIC6G8oNhNTtD08dLY-bv_pGjrle_wFbwILivZa3RsHRbsbANeBveVBONQbsDaA27D12D3utQ4KRyRMyLvpjUFqCEjOfVr5PQSLwZSc1IVpN7dqAozJw3BdEkwTExsU_k5J03LIaLRp8XWFlX5Bi6eZbY3YWlWzOwWEIk5c2WFZUZ4y5NKfy4Sa5kemIHhrAdxO525DoTn-HFXeUfVjCLIvQjyWgR52oMv9-9cN3QfTz693UopD79-mXeK2oOdVnLd7f-P9vbp0T7CyvD8dJSPjsYn72CVIe6vQ0HbsFTd3tn33jmq1IeggQR-PbfS_wWFFB-I
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB58gOjBR1WsVt2DN11MdtM0eyxq8Y0HC72FfRZB0mLTQ_-9O0lqVFTwEAjJZlkyO7vzzex8A3CitEpkWxkqXKJpJDuaylA4GjnLPcQOhDWYKPzwGF_3o9tBe_Api7847T4PSZY5DcjSlOXnY-PO68Q3j1oQBguKldgEjRdhOUKiBD-j-6z7sRZzVtSkCzzKQI_EoEqb-bmPr1tTbW9-C5EWO09vE9Yrk5F0SxlvwYLNGrBRmY-kUs5JA9Y-cQtug-3WoWkyckRmRE6HBQWnIfdy6Peo4Qs-rEjFST4ixelCNTIzUhI8Twi6aYktMy9npCz5QzTalFhaIp_sQL939XxxTauaClR7Zcup4Y5jKEx7XXROuMBESiWxv8KQy0AniQqY8yjLKBtowxKLa0BbSB6YUImA78JSNsrsHhCJMWtlhWVGeM2Ppb8XkbVMd0zHcNaEcP47U10RjuPgXtOaKhlFkHoRpIUI0rgJpx_fjEu6jT9bt-ZSSivVm6SMR5xzjEU34Wwuufr1773t_6_5Maw8XfbS-5vHuwNYZQjDC89MC5byt6k99LZKro6K6fgO34zgkw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+an+augmented+Lagrangian+approach+to+multibody+systems+with+equality+motion+constraints&rft.jtitle=Nonlinear+dynamics&rft.au=Potosakis%2C+N.&rft.au=Paraskevopoulos%2C+E.&rft.au=Natsiavas%2C+S.&rft.date=2020-01-01&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=99&rft.issue=1&rft.spage=753&rft.epage=776&rft_id=info:doi/10.1007%2Fs11071-019-05059-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11071_019_05059_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon