Application of an augmented Lagrangian approach to multibody systems with equality motion constraints
The focus of this work is on dynamics of multibody systems subject to bilateral motion constraints. First, a new set of equations of motion is employed, expressed as a coupled system of strongly nonlinear second-order ordinary differential equations. After putting these equations in a weak form, the...
        Saved in:
      
    
          | Published in | Nonlinear dynamics Vol. 99; no. 1; pp. 753 - 776 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Dordrecht
          Springer Netherlands
    
        01.01.2020
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0924-090X 1573-269X  | 
| DOI | 10.1007/s11071-019-05059-6 | 
Cover
| Abstract | The focus of this work is on dynamics of multibody systems subject to bilateral motion constraints. First, a new set of equations of motion is employed, expressed as a coupled system of strongly nonlinear second-order ordinary differential equations. After putting these equations in a weak form, the position, velocity and momentum type quantities are assumed to be independent. This leads to a three-field set of equations of motion. Next, an alternative formulation is developed, based on optimization principles. It is shown that the equations of motion can eventually be cast in a form obtained by application of an augmented Lagrangian formulation, after introducing an appropriate set of penalty terms. This final set of equations is then used as a basis for developing a new time integration scheme. The validity and numerical efficiency of this scheme is verified by applying it to several example systems. In those examples, special emphasis is put on illustrating the advantages of the new method when applied to selected mechanical systems, involving redundant constraints or singular configurations. | 
    
|---|---|
| AbstractList | The focus of this work is on dynamics of multibody systems subject to bilateral motion constraints. First, a new set of equations of motion is employed, expressed as a coupled system of strongly nonlinear second-order ordinary differential equations. After putting these equations in a weak form, the position, velocity and momentum type quantities are assumed to be independent. This leads to a three-field set of equations of motion. Next, an alternative formulation is developed, based on optimization principles. It is shown that the equations of motion can eventually be cast in a form obtained by application of an augmented Lagrangian formulation, after introducing an appropriate set of penalty terms. This final set of equations is then used as a basis for developing a new time integration scheme. The validity and numerical efficiency of this scheme is verified by applying it to several example systems. In those examples, special emphasis is put on illustrating the advantages of the new method when applied to selected mechanical systems, involving redundant constraints or singular configurations. | 
    
| Author | Natsiavas, S. Paraskevopoulos, E. Potosakis, N.  | 
    
| Author_xml | – sequence: 1 givenname: N. surname: Potosakis fullname: Potosakis, N. organization: Department of Mechanical Engineering, Aristotle University – sequence: 2 givenname: E. surname: Paraskevopoulos fullname: Paraskevopoulos, E. organization: Department of Mechanical Engineering, Aristotle University – sequence: 3 givenname: S. orcidid: 0000-0002-2529-600X surname: Natsiavas fullname: Natsiavas, S. email: natsiava@auth.gr organization: Department of Mechanical Engineering, Aristotle University  | 
    
| BookMark | eNp9kDtrwzAQgEVJoUnaP9BJ0NntneXE1hhCXxDo0kI2IctyomBLjiRT8u_rJIVChwzHwXHfPb4JGVlnNSH3CI8IkD8FRMgxAeQJzGDGk_kVGeMsZ0k65-sRGQNPswQ4rG_IJIQdALAUijHRi65rjJLROEtdTaWlst-02kZd0ZXceGk35ljsOu-k2tLoaNs30ZSuOtBwCFG3gX6buKV638vGxANt3WmacjZEL42N4ZZc17IJ-u43T8nXy_Pn8i1Zfby-LxerRDHkMalYzTgHVDOEuuY1VFlZFvMhEJkEVRQlpDVmWVVqUFVaaMjZ8K1kUGHJgU3Jw3nucOy-1yGKneu9HVaKlGWMMcQ8H7rSc5fyLgSva9F500p_EAjiqFOcdYpBpzjpFPMBKv5BysSTtuOPzWWUndEw7LEb7f-uukD9ALz5jaw | 
    
| CitedBy_id | crossref_primary_10_1016_j_ijsolstr_2020_06_045 crossref_primary_10_1007_s11071_021_06500_5 crossref_primary_10_1016_j_ijnonlinmec_2021_103683 crossref_primary_10_1016_j_mechmachtheory_2021_104332 crossref_primary_10_1007_s11071_023_08326_9 crossref_primary_10_1016_j_ijnonlinmec_2025_105088 crossref_primary_10_1016_j_mechmachtheory_2020_104174 crossref_primary_10_1007_s10489_024_05720_7 crossref_primary_10_1007_s11071_022_07748_1 crossref_primary_10_1007_s11071_021_06526_9 crossref_primary_10_1016_j_mechmachtheory_2021_104294 crossref_primary_10_1016_j_mechmachtheory_2021_104591 crossref_primary_10_1007_s11044_022_09814_3 crossref_primary_10_1016_j_mechmachtheory_2023_105567 crossref_primary_10_1016_j_engappai_2025_110373 crossref_primary_10_1016_j_ast_2025_110044 crossref_primary_10_1177_14644193211061914 crossref_primary_10_1016_j_apm_2023_01_037 crossref_primary_10_1016_j_compstruc_2021_106547  | 
    
| Cites_doi | 10.1115/1.4027671 10.1007/s11071-016-2774-5 10.1137/0312021 10.1007/978-0-387-21792-5 10.1023/A:1019581227898 10.1007/978-94-011-6450-4 10.1016/j.ijnonlinmec.2015.07.007 10.1017/CBO9780511610523 10.1007/978-94-007-0335-3 10.1007/s11071-012-0727-1 10.1007/BF00047121 10.1115/1.3079826 10.1017/CBO9780511804441 10.1007/b97376 10.1007/s11071-012-0413-3 10.1007/s11044-016-9510-2 10.1007/s11071-014-1783-5 10.1017/S0962492904000212 10.1007/s11071-011-0224-y 10.1115/1.2389043 10.1016/j.ijnonlinmec.2009.01.006 10.1007/s11071-009-9579-8 10.1016/j.ijsolstr.2012.09.001 10.1007/BF01833296 10.1007/b98874  | 
    
| ContentType | Journal Article | 
    
| Copyright | Springer Nature B.V. 2019 Nonlinear Dynamics is a copyright of Springer, (2019). All Rights Reserved.  | 
    
| Copyright_xml | – notice: Springer Nature B.V. 2019 – notice: Nonlinear Dynamics is a copyright of Springer, (2019). All Rights Reserved.  | 
    
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS  | 
    
| DOI | 10.1007/s11071-019-05059-6 | 
    
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection  | 
    
| DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Engineering Database  | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Applied Sciences Engineering  | 
    
| EISSN | 1573-269X | 
    
| EndPage | 776 | 
    
| ExternalDocumentID | 10_1007_s11071_019_05059_6 | 
    
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9T PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8S Z8T Z8W Z8Z Z92 ZMTXR _50 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO DWQXO PKEHL PQEST PQQKQ PQUKI PRINS  | 
    
| ID | FETCH-LOGICAL-c319t-d3f39901c510ff9f0d4bb86bb8113a0c88b02f144dbe0cd28e073059a30d1b903 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 0924-090X | 
    
| IngestDate | Fri Jul 25 11:15:17 EDT 2025 Wed Oct 01 02:34:43 EDT 2025 Thu Apr 24 23:08:58 EDT 2025 Fri Feb 21 02:32:39 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Analytical dynamics Multibody dynamics Generalized Gauss principle Augmented Lagrangian formulation Bilateral constraints Weak form of equations of motion  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c319t-d3f39901c510ff9f0d4bb86bb8113a0c88b02f144dbe0cd28e073059a30d1b903 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-2529-600X | 
    
| PQID | 2343331177 | 
    
| PQPubID | 2043746 | 
    
| PageCount | 24 | 
    
| ParticipantIDs | proquest_journals_2343331177 crossref_primary_10_1007_s11071_019_05059_6 crossref_citationtrail_10_1007_s11071_019_05059_6 springer_journals_10_1007_s11071_019_05059_6  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20200100 2020-1-00 20200101  | 
    
| PublicationDateYYYYMMDD | 2020-01-01 | 
    
| PublicationDate_xml | – month: 1 year: 2020 text: 20200100  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Dordrecht | 
    
| PublicationPlace_xml | – name: Dordrecht | 
    
| PublicationSubtitle | An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems | 
    
| PublicationTitle | Nonlinear dynamics | 
    
| PublicationTitleAbbrev | Nonlinear Dyn | 
    
| PublicationYear | 2020 | 
    
| Publisher | Springer Netherlands Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V  | 
    
| References | BoydSVandenbergheLConvex Optimization2004New YorkCambridge University Press10.1017/CBO9780511804441 RektorysKVariational Methods in Mathematics, Science and Engineering1977DordrechtD. Reidel Publishing Company10.1007/978-94-011-6450-4 Paraskevopoulos, E., Potosakis, N., Natsiavas, S.: Application of an augmented Lagrangian methodology to dynamics of multibody systems with equality constraints. In: 9th GRACM International Congress on Computational Mechanics, Chania, Greece (2018) PapalukopoulosCNatsiavasSDynamics of large scale mechanical models using multi-level substructuringASME J. Comput. Nonlinear Dyn.20072405110.1115/1.2389043 PapastavridisJGTensor Calculus and Analytical Dynamics1999Boca RatonCRC Press RockafellarRAugmented Lagrange multiplier functions and duality in nonconvex programmingSIAM J. Control19741226828538416310.1137/0312021 IFToMM T.C. for Multibody Dynamics, Library of Computational Benchmark Problems. http://www.iftomm-multibody.org/benchmark BlochAMNonholonomic Mechanics and Control2003New YorkSpringer10.1007/b97376 BertsekasDPConvex Optimization Theory2009BelmontAthena Scientific1242.90001 GreenwoodDTPrinciples of Dynamics1988Englewood CliffsPrentice-Hall Inc. ParaskevopoulosENatsiavasSOn application of Newton’s law to mechanical systems with motion constraintsNonlinear Dyn.201372455475304398110.1007/s11071-012-0727-1 DopicoDGonzalezFCuadradoJKövecsesJDetermination of holonomic and nonholonomic constraint reactions in an index-3 augmented Lagrangian formulation with velocity and acceleration projectionsASME J. Comput. Nonlinear Dyn.2014904100610.1115/1.4027671 BertsekasDPConstraint Optimization and Lagrange Multiplier Methods1982New YorkAcademic Press0572.90067 KurdilaAJJunkinsJLHsuSLyapunov stable penalty methods for imposing holonomic constraints in multibody system dynamicsNonlinear Dyn.1993451820708.70013 MotionSolve v14.0, User Guide, Altair Engineering Inc., Irvine, California, USA BauchauOAFlexible Multibody Dynamics2011LondonSpringer10.1007/978-94-007-0335-3 García OrdenJCEnergy considerations for the stabilization of constrained mechanical systems with velocity projectionNonlinear Dyn.2010604962261000810.1007/s11071-009-9579-8 García OrdenJCCondeSCControllable velocity projection for constraint stabilization in multibody dynamicsNonlinear Dyn.201268245257290417210.1007/s11071-011-0224-y NocedalJWrightSJNumerical Optimization1999New YorkSpringer10.1007/b98874 LeineRINijmeijerHDynamics and Bifurcations of Non-smooth Mechanical Systems2013BerlinSpringer1068.70003 PacejkaHBTyre and Vehicle Dynamics20123OxfordButterworth-Heinemann Potosakis, N., Paraskevopoulos, E., Natsiavas, S.: Numerical integration of a new set of equations of motion for a class of multibody systems using an augmented Lagrangian approach. In: 5th Joint International Conference on Multibody System Dynamics, Lisbon, Portugal (2018) GeradinMCardonaAFlexible Multibody Dynamics2001New YorkWiley0874.73072 BayoELedesmaRAugmented Lagrangian and mass-orthogonal projection methods for constrained multibody dynamicsNonlinear Dyn.19969113130139400410.1007/BF01833296 TheodosiouCNatsiavasSDynamics of finite element structural models with multiple unilateral constraintsInt. J. Non-linear Mech.20094437138210.1016/j.ijnonlinmec.2009.01.006 ŽenišekANonlinear Elliptic and Evolution Problems and their Finite Element Approximations1990LondonAcademic Press0731.65090 FloresPLeineRIGlockerChApplication of the nonsmooth dynamics approach to model and analysis of the contact-impact events in cam-follower systemsNonlinear Dyn.20126921172133294554510.1007/s11071-012-0413-3 BauchauOAEppleABottassoCLScaling of constraints and augmented Lagrangian formulations in multibody dynamics simulationsASME J. Comput. Nonlinear Dyn.2009402100710.1115/1.3079826 FrankelTThe Geometry of Physics: An Introduction1997New YorkCambridge University Press0888.58077 ParaskevopoulosENatsiavasSWeak formulation and first order form of the equations of motion for a class of constrained mechanical systemsInt. J. Non-linear Mech.20157720822210.1016/j.ijnonlinmec.2015.07.007 BlajerWAugmented Lagrangian formulation: geometrical interpretation and application to systems with singularities and redundancyMultibody Syst. Dyn.20028141159190509110.1023/A:1019581227898 MurrayRMLiZSastrySSA Mathematical Introduction to Robot Manipulation1994Boca RatonCRC Press0858.70001 ShabanaAADynamics of Multibody Systems20053New YorkCambridge University Press10.1017/CBO9780511610523 ParaskevopoulosENatsiavasSA new look into the kinematics and dynamics of finite rigid body rotations using Lie group theoryInt. J. Solids Struct.201350577210.1016/j.ijsolstr.2012.09.001 Neimark, J.I., Fufaev, N.A.: Dynamics of Nonholonomic Systems. Translations of Mathematical Monographs, American Mathematical Society 33, Providence, RI (1972) BrenanKECampbellSLPetzholdLRNumerical Solution of Initial-Value Problems in Differential-Algebraic Equations1989New YorkNorth-Holland Adams, M.S.C.: User Guide. MSC Software Corporation, California, USA (2016) MarsdenJERatiuTSIntroduction to Mechanics and Symmetry19992New YorkSpringer10.1007/978-0-387-21792-5 NatsiavasSParaskevopoulosEA set of ordinary differential equations of motion for constrained mechanical systemsNonlinear Dyn.2015791911193810.1007/s11071-014-1783-5 BenziMicheleGolubGene H.LiesenJörgNumerical solution of saddle point problemsActa Numerica2005141137216834210.1017/S0962492904000212 GonzalezFDopicoDPastorinoRCuadradoJBehaviour of augmented Lagrangian and Hamiltonian methods for multibody dynamics in the proximity of singular configurationsNonlinear Dyn.20168514911508352013510.1007/s11071-016-2774-5 MashayekhiMJKövecsesJA comparative study between the augmented Lagrangian method and the complementarity approach for modeling the contact problemMultibody Syst. Dyn.201740327345366924610.1007/s11044-016-9510-2 DP Bertsekas (5059_CR22) 2009 JC García Orden (5059_CR33) 2010; 60 E Bayo (5059_CR23) 1996; 9 RM Murray (5059_CR2) 1994 DP Bertsekas (5059_CR13) 1982 KE Brenan (5059_CR7) 1989 HB Pacejka (5059_CR37) 2012 JG Papastavridis (5059_CR17) 1999 AM Bloch (5059_CR3) 2003 E Paraskevopoulos (5059_CR29) 2013; 50 F Gonzalez (5059_CR27) 2016; 85 T Frankel (5059_CR18) 1997 Michele Benzi (5059_CR28) 2005; 14 S Natsiavas (5059_CR9) 2015; 79 P Flores (5059_CR41) 2012; 69 E Paraskevopoulos (5059_CR12) 2015; 77 JC García Orden (5059_CR34) 2012; 68 MJ Mashayekhi (5059_CR42) 2017; 40 OA Bauchau (5059_CR6) 2011 K Rektorys (5059_CR10) 1977 OA Bauchau (5059_CR25) 2009; 4 5059_CR30 R Rockafellar (5059_CR40) 1974; 12 5059_CR31 C Papalukopoulos (5059_CR38) 2007; 2 A Ženišek (5059_CR11) 1990 S Boyd (5059_CR15) 2004 AA Shabana (5059_CR4) 2005 M Geradin (5059_CR5) 2001 W Blajer (5059_CR24) 2002; 8 DT Greenwood (5059_CR1) 1988 J Nocedal (5059_CR14) 1999 JE Marsden (5059_CR20) 1999 E Paraskevopoulos (5059_CR8) 2013; 72 5059_CR16 RI Leine (5059_CR21) 2013 D Dopico (5059_CR26) 2014; 9 AJ Kurdila (5059_CR32) 1993; 4 C Theodosiou (5059_CR39) 2009; 44 5059_CR19 5059_CR35 5059_CR36  | 
    
| References_xml | – reference: BrenanKECampbellSLPetzholdLRNumerical Solution of Initial-Value Problems in Differential-Algebraic Equations1989New YorkNorth-Holland – reference: BertsekasDPConstraint Optimization and Lagrange Multiplier Methods1982New YorkAcademic Press0572.90067 – reference: LeineRINijmeijerHDynamics and Bifurcations of Non-smooth Mechanical Systems2013BerlinSpringer1068.70003 – reference: BlochAMNonholonomic Mechanics and Control2003New YorkSpringer10.1007/b97376 – reference: MarsdenJERatiuTSIntroduction to Mechanics and Symmetry19992New YorkSpringer10.1007/978-0-387-21792-5 – reference: BauchauOAEppleABottassoCLScaling of constraints and augmented Lagrangian formulations in multibody dynamics simulationsASME J. Comput. Nonlinear Dyn.2009402100710.1115/1.3079826 – reference: GreenwoodDTPrinciples of Dynamics1988Englewood CliffsPrentice-Hall Inc. – reference: IFToMM T.C. for Multibody Dynamics, Library of Computational Benchmark Problems. http://www.iftomm-multibody.org/benchmark – reference: GonzalezFDopicoDPastorinoRCuadradoJBehaviour of augmented Lagrangian and Hamiltonian methods for multibody dynamics in the proximity of singular configurationsNonlinear Dyn.20168514911508352013510.1007/s11071-016-2774-5 – reference: BauchauOAFlexible Multibody Dynamics2011LondonSpringer10.1007/978-94-007-0335-3 – reference: ŽenišekANonlinear Elliptic and Evolution Problems and their Finite Element Approximations1990LondonAcademic Press0731.65090 – reference: BayoELedesmaRAugmented Lagrangian and mass-orthogonal projection methods for constrained multibody dynamicsNonlinear Dyn.19969113130139400410.1007/BF01833296 – reference: FloresPLeineRIGlockerChApplication of the nonsmooth dynamics approach to model and analysis of the contact-impact events in cam-follower systemsNonlinear Dyn.20126921172133294554510.1007/s11071-012-0413-3 – reference: MurrayRMLiZSastrySSA Mathematical Introduction to Robot Manipulation1994Boca RatonCRC Press0858.70001 – reference: BlajerWAugmented Lagrangian formulation: geometrical interpretation and application to systems with singularities and redundancyMultibody Syst. Dyn.20028141159190509110.1023/A:1019581227898 – reference: PapalukopoulosCNatsiavasSDynamics of large scale mechanical models using multi-level substructuringASME J. Comput. Nonlinear Dyn.20072405110.1115/1.2389043 – reference: BoydSVandenbergheLConvex Optimization2004New YorkCambridge University Press10.1017/CBO9780511804441 – reference: PacejkaHBTyre and Vehicle Dynamics20123OxfordButterworth-Heinemann – reference: DopicoDGonzalezFCuadradoJKövecsesJDetermination of holonomic and nonholonomic constraint reactions in an index-3 augmented Lagrangian formulation with velocity and acceleration projectionsASME J. Comput. Nonlinear Dyn.2014904100610.1115/1.4027671 – reference: RektorysKVariational Methods in Mathematics, Science and Engineering1977DordrechtD. Reidel Publishing Company10.1007/978-94-011-6450-4 – reference: Adams, M.S.C.: User Guide. MSC Software Corporation, California, USA (2016) – reference: MashayekhiMJKövecsesJA comparative study between the augmented Lagrangian method and the complementarity approach for modeling the contact problemMultibody Syst. Dyn.201740327345366924610.1007/s11044-016-9510-2 – reference: ShabanaAADynamics of Multibody Systems20053New YorkCambridge University Press10.1017/CBO9780511610523 – reference: García OrdenJCCondeSCControllable velocity projection for constraint stabilization in multibody dynamicsNonlinear Dyn.201268245257290417210.1007/s11071-011-0224-y – reference: ParaskevopoulosENatsiavasSOn application of Newton’s law to mechanical systems with motion constraintsNonlinear Dyn.201372455475304398110.1007/s11071-012-0727-1 – reference: BenziMicheleGolubGene H.LiesenJörgNumerical solution of saddle point problemsActa Numerica2005141137216834210.1017/S0962492904000212 – reference: PapastavridisJGTensor Calculus and Analytical Dynamics1999Boca RatonCRC Press – reference: Neimark, J.I., Fufaev, N.A.: Dynamics of Nonholonomic Systems. Translations of Mathematical Monographs, American Mathematical Society 33, Providence, RI (1972) – reference: MotionSolve v14.0, User Guide, Altair Engineering Inc., Irvine, California, USA – reference: TheodosiouCNatsiavasSDynamics of finite element structural models with multiple unilateral constraintsInt. J. Non-linear Mech.20094437138210.1016/j.ijnonlinmec.2009.01.006 – reference: NocedalJWrightSJNumerical Optimization1999New YorkSpringer10.1007/b98874 – reference: NatsiavasSParaskevopoulosEA set of ordinary differential equations of motion for constrained mechanical systemsNonlinear Dyn.2015791911193810.1007/s11071-014-1783-5 – reference: FrankelTThe Geometry of Physics: An Introduction1997New YorkCambridge University Press0888.58077 – reference: KurdilaAJJunkinsJLHsuSLyapunov stable penalty methods for imposing holonomic constraints in multibody system dynamicsNonlinear Dyn.1993451820708.70013 – reference: Paraskevopoulos, E., Potosakis, N., Natsiavas, S.: Application of an augmented Lagrangian methodology to dynamics of multibody systems with equality constraints. In: 9th GRACM International Congress on Computational Mechanics, Chania, Greece (2018) – reference: GeradinMCardonaAFlexible Multibody Dynamics2001New YorkWiley0874.73072 – reference: ParaskevopoulosENatsiavasSA new look into the kinematics and dynamics of finite rigid body rotations using Lie group theoryInt. J. Solids Struct.201350577210.1016/j.ijsolstr.2012.09.001 – reference: ParaskevopoulosENatsiavasSWeak formulation and first order form of the equations of motion for a class of constrained mechanical systemsInt. J. Non-linear Mech.20157720822210.1016/j.ijnonlinmec.2015.07.007 – reference: BertsekasDPConvex Optimization Theory2009BelmontAthena Scientific1242.90001 – reference: García OrdenJCEnergy considerations for the stabilization of constrained mechanical systems with velocity projectionNonlinear Dyn.2010604962261000810.1007/s11071-009-9579-8 – reference: Potosakis, N., Paraskevopoulos, E., Natsiavas, S.: Numerical integration of a new set of equations of motion for a class of multibody systems using an augmented Lagrangian approach. In: 5th Joint International Conference on Multibody System Dynamics, Lisbon, Portugal (2018) – reference: RockafellarRAugmented Lagrange multiplier functions and duality in nonconvex programmingSIAM J. Control19741226828538416310.1137/0312021 – ident: 5059_CR35 – volume: 9 start-page: 041006 year: 2014 ident: 5059_CR26 publication-title: ASME J. Comput. Nonlinear Dyn. doi: 10.1115/1.4027671 – volume: 85 start-page: 1491 year: 2016 ident: 5059_CR27 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-016-2774-5 – volume-title: Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations year: 1989 ident: 5059_CR7 – ident: 5059_CR16 – ident: 5059_CR31 – volume: 12 start-page: 268 year: 1974 ident: 5059_CR40 publication-title: SIAM J. Control doi: 10.1137/0312021 – ident: 5059_CR19 – volume-title: Introduction to Mechanics and Symmetry year: 1999 ident: 5059_CR20 doi: 10.1007/978-0-387-21792-5 – volume: 8 start-page: 141 year: 2002 ident: 5059_CR24 publication-title: Multibody Syst. Dyn. doi: 10.1023/A:1019581227898 – volume-title: Variational Methods in Mathematics, Science and Engineering year: 1977 ident: 5059_CR10 doi: 10.1007/978-94-011-6450-4 – volume-title: Dynamics and Bifurcations of Non-smooth Mechanical Systems year: 2013 ident: 5059_CR21 – volume: 77 start-page: 208 year: 2015 ident: 5059_CR12 publication-title: Int. J. Non-linear Mech. doi: 10.1016/j.ijnonlinmec.2015.07.007 – volume-title: Dynamics of Multibody Systems year: 2005 ident: 5059_CR4 doi: 10.1017/CBO9780511610523 – volume-title: Flexible Multibody Dynamics year: 2011 ident: 5059_CR6 doi: 10.1007/978-94-007-0335-3 – volume: 72 start-page: 455 year: 2013 ident: 5059_CR8 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-012-0727-1 – volume: 4 start-page: 51 year: 1993 ident: 5059_CR32 publication-title: Nonlinear Dyn. doi: 10.1007/BF00047121 – volume-title: Constraint Optimization and Lagrange Multiplier Methods year: 1982 ident: 5059_CR13 – volume-title: A Mathematical Introduction to Robot Manipulation year: 1994 ident: 5059_CR2 – volume-title: The Geometry of Physics: An Introduction year: 1997 ident: 5059_CR18 – volume: 4 start-page: 021007 year: 2009 ident: 5059_CR25 publication-title: ASME J. Comput. Nonlinear Dyn. doi: 10.1115/1.3079826 – volume-title: Tensor Calculus and Analytical Dynamics year: 1999 ident: 5059_CR17 – volume-title: Flexible Multibody Dynamics year: 2001 ident: 5059_CR5 – ident: 5059_CR36 – volume-title: Convex Optimization year: 2004 ident: 5059_CR15 doi: 10.1017/CBO9780511804441 – volume-title: Principles of Dynamics year: 1988 ident: 5059_CR1 – ident: 5059_CR30 – volume-title: Nonholonomic Mechanics and Control year: 2003 ident: 5059_CR3 doi: 10.1007/b97376 – volume-title: Convex Optimization Theory year: 2009 ident: 5059_CR22 – volume: 69 start-page: 2117 year: 2012 ident: 5059_CR41 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-012-0413-3 – volume: 40 start-page: 327 year: 2017 ident: 5059_CR42 publication-title: Multibody Syst. Dyn. doi: 10.1007/s11044-016-9510-2 – volume-title: Tyre and Vehicle Dynamics year: 2012 ident: 5059_CR37 – volume: 79 start-page: 1911 year: 2015 ident: 5059_CR9 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-014-1783-5 – volume: 14 start-page: 1 year: 2005 ident: 5059_CR28 publication-title: Acta Numerica doi: 10.1017/S0962492904000212 – volume: 68 start-page: 245 year: 2012 ident: 5059_CR34 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-011-0224-y – volume: 2 start-page: 40 year: 2007 ident: 5059_CR38 publication-title: ASME J. Comput. Nonlinear Dyn. doi: 10.1115/1.2389043 – volume: 44 start-page: 371 year: 2009 ident: 5059_CR39 publication-title: Int. J. Non-linear Mech. doi: 10.1016/j.ijnonlinmec.2009.01.006 – volume: 60 start-page: 49 year: 2010 ident: 5059_CR33 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-009-9579-8 – volume: 50 start-page: 57 year: 2013 ident: 5059_CR29 publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2012.09.001 – volume-title: Nonlinear Elliptic and Evolution Problems and their Finite Element Approximations year: 1990 ident: 5059_CR11 – volume: 9 start-page: 113 year: 1996 ident: 5059_CR23 publication-title: Nonlinear Dyn. doi: 10.1007/BF01833296 – volume-title: Numerical Optimization year: 1999 ident: 5059_CR14 doi: 10.1007/b98874  | 
    
| SSID | ssj0003208 | 
    
| Score | 2.3674262 | 
    
| Snippet | The focus of this work is on dynamics of multibody systems subject to bilateral motion constraints. First, a new set of equations of motion is employed,... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 753 | 
    
| SubjectTerms | Automotive Engineering Classical Mechanics Control Differential equations Dynamical Systems Engineering Equations of motion Mathematical analysis Mechanical Engineering Mechanical systems Multibody systems Nonlinear equations Optimization Ordinary differential equations Original Paper Time integration Vibration  | 
    
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86L3rwYypOp-TgTQNt0nbNcYgyRD052K3kcwjSie0O--_NS9NVRQUPhdKmIfTlJe_3Xt7vIXQplcxFKjXhNlckESNFRMwtSaxhDmJH3GhIFH58yibT5H6WzkJSWNWedm9Dkn6l7pLdHFIB6MsJVF_jJNtEWynQeblZPKXj9frLqK9DFzlkAV6IWUiV-bmPr9tRZ2N-C4v63eZuH-0GMxGPG7keoA1T9tFeMBlxUMiqj3Y-8QkeIjPuwtF4YbEosVjOPe2mxg9i7val-Qs8DETiuF5gf6JQLvQKN6TOFQbXLDZNtuUKN2V-sAI7EspJ1NURmt7dPt9MSKijQJRTsJpoZhmEv5TTP2u5jXQiZZ65K46ZiFSey4hah6y0NJHSNDeg9ykXLNKx5BE7Rr1yUZoThAXEqaXhhmrutD0T7p4nxlA10iPN6ADF7e8sVCAZh8G9Fh09MoigcCIovAiKbICu1t-8NRQbf7YetlIqgrpVBWUJYwzizwN03Uque_17b6f_a36Gtingbe-CGaJe_b40584oqeWFn4MftRLZaw priority: 102 providerName: Springer Nature  | 
    
| Title | Application of an augmented Lagrangian approach to multibody systems with equality motion constraints | 
    
| URI | https://link.springer.com/article/10.1007/s11071-019-05059-6 https://www.proquest.com/docview/2343331177  | 
    
| Volume | 99 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025 customDbUrl: eissn: 1573-269X dateEnd: 20241103 omitProxy: false ssIdentifier: ssj0003208 issn: 0924-090X databaseCode: AMVHM dateStart: 19900301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-269X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003208 issn: 0924-090X databaseCode: AFBBN dateStart: 19900101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-269X dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0003208 issn: 0924-090X databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-269X dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0003208 issn: 0924-090X databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-269X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003208 issn: 0924-090X databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-269X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003208 issn: 0924-090X databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB5BcikHXi1qeER76A1WtXcdx3tAKKAE1JYIVY2Unqx9RpVQHIg58O_Zsde4rQQHS9b6IcuzMzuPne8D-KK0yuRAGSpcpmkih5rKWDiaOMt9iB0Ja7BR-Haa3sySb_PBfAOmTS8MbqtsbGJlqE2hMUf-lfGEc44lxovVA0XWKKyuNhQaMlArmPMKYmwTugyRsTrQvRxP736-2mbOKo66yEcdmKGYhzaaupnOR0IYWguK7G6Cpv8uVa3_-V_JtFqJJruwHVxIMqplvgcbdrkPO8GdJEFZ1_uw9RfW4Eewo7ZUTQpH5JLIp0UFyWnID7nwa9biDw4GkHFSFqTabagK80xqwOc1wbQtsXUn5jOpKYCIRh8TqSbK9SeYTca_rm5o4Fig2itfSQ13HEtj2uumc8JFJlEqS_0Rx1xGOstUxJyPuoyykTYss2gTBkLyyMRKRPwAOstiaT8DkVjDVlZYZoS3BKn05yKxlumhGRrOehA3vzPXAYAcP-4-b6GTUQS5F0FeiSBPe3D6-syqht949-7jRkp5UMV13k6cHpw1kmsvv_22w_ffdgQfGMbeVTrmGDrl45M98Q5KqfqwmU2u-9AdXf_-Pu6HOehHZ2z0AsTz5lo | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOACHttAitqWtD-2pWE3sbDY-oIpS0ALLqkIg7S31c4WENkCCqv1z_W31JA6BSuXGIVKUhxV5JuP5ZjzfAHxSWmWyrwwVLtM0kQNNZSwcTZzlHmJHwhosFD4dp8OL5HjSnyzAn7YWBrdVtjaxNtSm0Bgj_8p4wjnHFOO36xuKXaMwu9q20JChtYLZrSnGQmHHiZ3_9hCu3D364eX9mbHDg_P9IQ1dBqj26ldRwx3H5JD22umccJFJlMpSf8Qxl5HOMhUx53GHUTbShmUW_4q-kDwysRIR9-MuwnLCE-HB3_L3g_HPs_u1gLO6J17kUQ5GRCahbKcp3vPIC6G8oNhNTtD08dLY-bv_pGjrle_wFbwILivZa3RsHRbsbANeBveVBONQbsDaA27D12D3utQ4KRyRMyLvpjUFqCEjOfVr5PQSLwZSc1IVpN7dqAozJw3BdEkwTExsU_k5J03LIaLRp8XWFlX5Bi6eZbY3YWlWzOwWEIk5c2WFZUZ4y5NKfy4Sa5kemIHhrAdxO525DoTn-HFXeUfVjCLIvQjyWgR52oMv9-9cN3QfTz693UopD79-mXeK2oOdVnLd7f-P9vbp0T7CyvD8dJSPjsYn72CVIe6vQ0HbsFTd3tn33jmq1IeggQR-PbfS_wWFFB-I | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB58gOjBR1WsVt2DN11MdtM0eyxq8Y0HC72FfRZB0mLTQ_-9O0lqVFTwEAjJZlkyO7vzzex8A3CitEpkWxkqXKJpJDuaylA4GjnLPcQOhDWYKPzwGF_3o9tBe_Api7847T4PSZY5DcjSlOXnY-PO68Q3j1oQBguKldgEjRdhOUKiBD-j-6z7sRZzVtSkCzzKQI_EoEqb-bmPr1tTbW9-C5EWO09vE9Yrk5F0SxlvwYLNGrBRmY-kUs5JA9Y-cQtug-3WoWkyckRmRE6HBQWnIfdy6Peo4Qs-rEjFST4ixelCNTIzUhI8Twi6aYktMy9npCz5QzTalFhaIp_sQL939XxxTauaClR7Zcup4Y5jKEx7XXROuMBESiWxv8KQy0AniQqY8yjLKBtowxKLa0BbSB6YUImA78JSNsrsHhCJMWtlhWVGeM2Ppb8XkbVMd0zHcNaEcP47U10RjuPgXtOaKhlFkHoRpIUI0rgJpx_fjEu6jT9bt-ZSSivVm6SMR5xzjEU34Wwuufr1773t_6_5Maw8XfbS-5vHuwNYZQjDC89MC5byt6k99LZKro6K6fgO34zgkw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+an+augmented+Lagrangian+approach+to+multibody+systems+with+equality+motion+constraints&rft.jtitle=Nonlinear+dynamics&rft.au=Potosakis%2C+N.&rft.au=Paraskevopoulos%2C+E.&rft.au=Natsiavas%2C+S.&rft.date=2020-01-01&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=99&rft.issue=1&rft.spage=753&rft.epage=776&rft_id=info:doi/10.1007%2Fs11071-019-05059-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11071_019_05059_6 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon |