A K-means Interval Type-2 Fuzzy Neural Network for Medical Diagnosis

This paper proposes a new medical diagnosis algorithm that uses a K -means interval type-2 fuzzy neural network (KIT2FNN). This KIT2FNN classifier uses a K -means clustering algorithm as the pre-classifier and an interval type-2 fuzzy neural network as the main classifier. Initially, the training da...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of fuzzy systems Vol. 21; no. 7; pp. 2258 - 2269
Main Authors Le, Tien-Loc, Huynh, Tuan-Tu, Lin, Lo-Yi, Lin, Chih-Min, Chao, Fei
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1562-2479
2199-3211
DOI10.1007/s40815-019-00730-x

Cover

Abstract This paper proposes a new medical diagnosis algorithm that uses a K -means interval type-2 fuzzy neural network (KIT2FNN). This KIT2FNN classifier uses a K -means clustering algorithm as the pre-classifier and an interval type-2 fuzzy neural network as the main classifier. Initially, the training data are classified into k groups using the K -means clustering algorithm and these data groups are then used sequentially to train the structure of the k classifiers for the interval type-2 fuzzy neural network (IT2FNN). The test data are also initially used to determine to which classifier they are best suited and then they are inputted into the corresponding main classifier for classification. The parameters for the proposed IT2FNN are updated using the steepest descent gradient approach. The Lyapunov theory is also used to verify the convergence and stability of the proposed method. The performance of the system is evaluated using several medical datasets from the University of California at Irvine (UCI). All of the experimental and comparison results are presented to demonstrate the effectiveness of the proposed medical diagnosis algorithm.
AbstractList This paper proposes a new medical diagnosis algorithm that uses a K -means interval type-2 fuzzy neural network (KIT2FNN). This KIT2FNN classifier uses a K -means clustering algorithm as the pre-classifier and an interval type-2 fuzzy neural network as the main classifier. Initially, the training data are classified into k groups using the K -means clustering algorithm and these data groups are then used sequentially to train the structure of the k classifiers for the interval type-2 fuzzy neural network (IT2FNN). The test data are also initially used to determine to which classifier they are best suited and then they are inputted into the corresponding main classifier for classification. The parameters for the proposed IT2FNN are updated using the steepest descent gradient approach. The Lyapunov theory is also used to verify the convergence and stability of the proposed method. The performance of the system is evaluated using several medical datasets from the University of California at Irvine (UCI). All of the experimental and comparison results are presented to demonstrate the effectiveness of the proposed medical diagnosis algorithm.
This paper proposes a new medical diagnosis algorithm that uses a K-means interval type-2 fuzzy neural network (KIT2FNN). This KIT2FNN classifier uses a K-means clustering algorithm as the pre-classifier and an interval type-2 fuzzy neural network as the main classifier. Initially, the training data are classified into k groups using the K-means clustering algorithm and these data groups are then used sequentially to train the structure of the k classifiers for the interval type-2 fuzzy neural network (IT2FNN). The test data are also initially used to determine to which classifier they are best suited and then they are inputted into the corresponding main classifier for classification. The parameters for the proposed IT2FNN are updated using the steepest descent gradient approach. The Lyapunov theory is also used to verify the convergence and stability of the proposed method. The performance of the system is evaluated using several medical datasets from the University of California at Irvine (UCI). All of the experimental and comparison results are presented to demonstrate the effectiveness of the proposed medical diagnosis algorithm.
Author Lin, Chih-Min
Lin, Lo-Yi
Le, Tien-Loc
Chao, Fei
Huynh, Tuan-Tu
Author_xml – sequence: 1
  givenname: Tien-Loc
  surname: Le
  fullname: Le, Tien-Loc
  organization: Yuan Ze University, Department of Electrical Electronic and Mechanical Engineering, Lac Hong University
– sequence: 2
  givenname: Tuan-Tu
  surname: Huynh
  fullname: Huynh, Tuan-Tu
  organization: Yuan Ze University, Department of Electrical Electronic and Mechanical Engineering, Lac Hong University
– sequence: 3
  givenname: Lo-Yi
  surname: Lin
  fullname: Lin, Lo-Yi
  organization: Department of Radiology, Taipei Veterans General Hospital
– sequence: 4
  givenname: Chih-Min
  surname: Lin
  fullname: Lin, Chih-Min
  email: cml@saturn.yzu.edu.tw
  organization: Yuan Ze University
– sequence: 5
  givenname: Fei
  surname: Chao
  fullname: Chao, Fei
  organization: Department of Cognitive Science, Xiamen University
BookMark eNp9kEFPAjEQhRuDiYj8AU-beK522m53eyQgSkS84Lkp2y5ZhS62uwr8eqtrYuLB02Re3jfz8s5Rz9XOInQJ5BoIyW4CJzmkmIDEcWUE709Qn4KUmFGAHupDKiimPJNnaBhCtSIMqGCpYH00GSUPeGu1C8nMNda_602yPOwspsm0PR4PycK2PmoL23zU_jUpa588WlMVUZtUeu3qUIULdFrqTbDDnzlAz9Pb5fgez5_uZuPRHBcMZIMNK7KV5AU1QA0jZSGN1AQ4KbkGE0OWIi1FxiWzPNcUuKBQ8DwVIITR0rABuuru7nz91trQqJe69S6-VFQyJkBmKYmuvHMVvg7B21IVVaObqnaN19VGAVFftamuNhVrU9-1qX1E6R9056ut9of_IdZBIZrd2vrfVP9QnwRUgBU
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3539369
crossref_primary_10_1007_s00500_021_05686_5
crossref_primary_10_1016_j_patcog_2022_108861
crossref_primary_10_1109_ACCESS_2020_3028617
crossref_primary_10_1109_TFUZZ_2022_3215470
crossref_primary_10_3390_app10186553
crossref_primary_10_1155_2021_4265650
crossref_primary_10_1007_s40815_023_01657_0
crossref_primary_10_1007_s11042_021_11221_3
crossref_primary_10_1016_j_ins_2024_120157
crossref_primary_10_1016_j_ins_2023_01_134
crossref_primary_10_1007_s40815_020_01009_2
crossref_primary_10_1109_ACCESS_2021_3126880
Cites_doi 10.1016/j.patrec.2017.03.008
10.1016/S0019-9958(65)90241-X
10.1109/91.873577
10.1016/j.neucom.2017.11.009
10.1155/2015/283532
10.1016/j.eswa.2014.12.025
10.1007/s00521-015-2103-9
10.4236/jcc.2014.29005
10.1016/j.measurement.2018.04.002
10.1109/TFUZZ.2017.2775599
10.1016/0020-0255(75)90036-5
10.1016/j.engappai.2015.08.003
10.1007/s40815-017-0301-6
10.1007/s40430-016-0559-x
10.1016/j.eswa.2012.11.007
10.1016/j.eswa.2013.08.044
10.1109/TFUZZ.2017.2648855
10.14257/ijbsbt.2014.6.2.07
10.1007/s11071-014-1683-8
10.1007/978-3-319-29052-2_5
10.1007/s40846-016-0191-3
10.1007/s40815-017-0326-x
ContentType Journal Article
Copyright Taiwan Fuzzy Systems Association 2019
Taiwan Fuzzy Systems Association 2019.
Copyright_xml – notice: Taiwan Fuzzy Systems Association 2019
– notice: Taiwan Fuzzy Systems Association 2019.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOI 10.1007/s40815-019-00730-x
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection (LUT)
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2199-3211
EndPage 2269
ExternalDocumentID 10_1007_s40815_019_00730_x
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan
  grantid: 106-2221-E-155-MY3
  funderid: http://dx.doi.org/10.13039/501100004663
GroupedDBID -EM
.4S
.DC
0R~
188
203
2UF
4.4
406
5GY
9RA
A8Z
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABDZT
ABECU
ABFTV
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AFBBN
AFKRA
AFQWF
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AIAKS
AIGIU
AILAN
AINHJ
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ARAPS
ARCSS
ATFKH
AVXWI
AXYYD
BENPR
BGLVJ
BGNMA
CCPQU
CNMHZ
CSCUP
CVCKV
DNIVK
DPUIP
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
GGCAI
GJIRD
HCIFZ
HG6
HRMNR
I-F
IKXTQ
IWAJR
IXD
J-C
J9A
JBSCW
JZLTJ
K7-
KOV
LLZTM
M4Y
M7S
NPVJJ
NQJWS
NU0
O9J
OK1
P2P
PT4
PTHSS
RLLFE
ROL
RSV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
TUS
TUXDW
UG4
UOJIU
UTJUX
UZ4
UZXMN
VFIZW
Z88
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ESTFP
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-d3c7b94c2d12d30fc9d9a0140f4a1d156f65f67493e48a214621c4856166da9d3
IEDL.DBID AGYKE
ISSN 1562-2479
IngestDate Fri Jul 25 11:02:50 EDT 2025
Wed Oct 01 03:51:10 EDT 2025
Thu Apr 24 22:57:04 EDT 2025
Fri Feb 21 02:32:42 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Classification problem
Interval type-2 fuzzy neural network
Medical diagnosis
means clustering algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-d3c7b94c2d12d30fc9d9a0140f4a1d156f65f67493e48a214621c4856166da9d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2933619750
PQPubID 2043640
PageCount 12
ParticipantIDs proquest_journals_2933619750
crossref_citationtrail_10_1007_s40815_019_00730_x
crossref_primary_10_1007_s40815_019_00730_x
springer_journals_10_1007_s40815_019_00730_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20191000
2019-10-00
20191001
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 20191000
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle International journal of fuzzy systems
PublicationTitleAbbrev Int. J. Fuzzy Syst
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Jiang, Zhang, Li, Wang (CR6) 2017
Guan, Lin, Ji, Lin, Le, Rudas (CR17) 2016; 13
Dwivedi (CR19) 2016; 29
Gan, Ng (CR8) 2017; 90
Tomar, Agarwal (CR30) 2014; 6
Aličković, Subasi (CR23) 2017; 28
Buscema, Breda, Lodwick (CR29) 2013; 5
Zirkohi, Lin (CR13) 2015; 79
Zhou, Chao, Lin (CR18) 2018; 20
Lim, Chan (CR27) 2015; 42
Mendel (CR24) 2001
Li, Wang, Wu, Lam, Gao (CR16) 2018; 26
Lin, Le (CR15) 2017; 19
Zadeh (CR9) 1965; 8
Karabulut, Ibrikci (CR33) 2014; 2
Vora, Oza (CR3) 2013; 1
Zheng, Yoon, Lam (CR26) 2014; 41
Yunoh, Abdullah, Saad, Nopiah, Nuawi (CR4) 2017; 39
Eyoh, John, De Maere (CR12) 2017; 26
Khan, Suleman, Farooq, Rafiq, Tariq (CR28) 2017; 17
Singh, Malik, Sharma (CR5) 2011; 12
Stoean, Stoean (CR25) 2013; 40
Liang, Mendel (CR11) 2000; 8
Ravindran, Jambek, Muthusamy, Neoh (CR34) 2015; 2015
Liu, Wang, Su, Zhang, Zhu, Wang, Wang (CR20) 2017; 2017
Lee (CR31) 2015; 45
Lin, Le, Huynh (CR14) 2018; 275
Xie, Jiang, Xie, Gao (CR2) 2011; 6
Zadeh (CR10) 1975; 8
Yılmaz (CR21) 2016; 36
Tuncer, Alkan (CR7) 2018; 123
Yılmaz, Kılıkçıer (CR32) 2013; 2013
Steinhaus (CR1) 1956; 1
Mandal (CR22) 2017; 11
E Yılmaz (730_CR32) 2013; 2013
P Vora (730_CR3) 2013; 1
JM Mendel (730_CR24) 2001
H Li (730_CR16) 2018; 26
Q Zhou (730_CR18) 2018; 20
J Xie (730_CR2) 2011; 6
E Yılmaz (730_CR21) 2016; 36
D Tomar (730_CR30) 2014; 6
CK Lim (730_CR27) 2015; 42
S-H Lee (730_CR31) 2015; 45
K Singh (730_CR5) 2011; 12
SA Tuncer (730_CR7) 2018; 123
X Liu (730_CR20) 2017; 2017
LA Zadeh (730_CR10) 1975; 8
RA Khan (730_CR28) 2017; 17
Q Liang (730_CR11) 2000; 8
J-S Guan (730_CR17) 2016; 13
MM Zirkohi (730_CR13) 2015; 79
R Stoean (730_CR25) 2013; 40
I Mandal (730_CR22) 2017; 11
E Aličković (730_CR23) 2017; 28
EM Karabulut (730_CR33) 2014; 2
M Buscema (730_CR29) 2013; 5
G Gan (730_CR8) 2017; 90
AK Dwivedi (730_CR19) 2016; 29
P Jiang (730_CR6) 2017
C-M Lin (730_CR15) 2017; 19
C-M Lin (730_CR14) 2018; 275
H Steinhaus (730_CR1) 1956; 1
M Yunoh (730_CR4) 2017; 39
I Eyoh (730_CR12) 2017; 26
S Ravindran (730_CR34) 2015; 2015
B Zheng (730_CR26) 2014; 41
LA Zadeh (730_CR9) 1965; 8
References_xml – volume: 90
  start-page: 8
  year: 2017
  end-page: 14
  ident: CR8
  article-title: -means clustering with outlier removal
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2017.03.008
– volume: 8
  start-page: 338
  issue: 3
  year: 1965
  end-page: 353
  ident: CR9
  article-title: Fuzzy sets
  publication-title: Inf. Control
  doi: 10.1016/S0019-9958(65)90241-X
– volume: 29
  start-page: 1
  issue: 10
  year: 2016
  end-page: 9
  ident: CR19
  article-title: Performance evaluation of different machine learning techniques for prediction of heart disease
  publication-title: Neural Comput. Appl.
– volume: 8
  start-page: 535
  issue: 5
  year: 2000
  end-page: 550
  ident: CR11
  article-title: Interval type-2 fuzzy logic systems: theory and design
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/91.873577
– year: 2001
  ident: CR24
  publication-title: Uncertain rule-based fuzzy logic systems: introduction and new directions
– volume: 1
  start-page: 1
  issue: 3
  year: 2013
  end-page: 14
  ident: CR3
  article-title: A survey on -mean clustering and particle swarm optimization
  publication-title: Int. J. Sci. Mod. Eng.
– volume: 2013
  start-page: 1
  year: 2013
  end-page: 8
  ident: CR32
  article-title: Determination of fetal state from cardiotocogram using LS-SVM with particle swarm optimization and binary decision tree
  publication-title: Comput. Math. Methods Med.
– volume: 275
  start-page: 2239
  year: 2018
  end-page: 2250
  ident: CR14
  article-title: Self-evolving function-link interval type-2 fuzzy neural network for nonlinear system identification and control
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.11.009
– volume: 2015
  start-page: 1
  year: 2015
  end-page: 11
  ident: CR34
  article-title: A novel clinical decision support system using improved adaptive genetic algorithm for the assessment of fetal well-being
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2015/283532
– volume: 42
  start-page: 3410
  issue: 7
  year: 2015
  end-page: 3419
  ident: CR27
  article-title: A weighted inference engine based on interval-valued fuzzy relational theory
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.12.025
– volume: 28
  start-page: 753
  issue: 4
  year: 2017
  end-page: 763
  ident: CR23
  article-title: Breast cancer diagnosis using GA feature selection and rotation forest
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-2103-9
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 11
  ident: CR20
  article-title: A hybrid classification system for heart disease diagnosis based on the RFRS method
  publication-title: Comput. Math. Methods Med.
– volume: 2
  start-page: 32
  issue: 09
  year: 2014
  end-page: 37
  ident: CR33
  article-title: Analysis of cardiotocogram data for fetal distress determination by decision tree based adaptive boosting approach
  publication-title: J. Comput. Commun.
  doi: 10.4236/jcc.2014.29005
– volume: 123
  start-page: 298
  year: 2018
  end-page: 303
  ident: CR7
  article-title: A decision support system for detection of the renal cell cancer in the kidney
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.04.002
– volume: 12
  start-page: 105
  year: 2011
  end-page: 109
  ident: CR5
  article-title: Evolving limitations in -means algorithm in data mining and their removal
  publication-title: Int. J. Comput. Eng. Manag.
– volume: 26
  start-page: 2396
  issue: 4
  year: 2017
  end-page: 2408
  ident: CR12
  article-title: Interval type-2 intuitionistic fuzzy logic for regression problems
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2017.2775599
– volume: 5
  start-page: 29
  issue: 1
  year: 2013
  ident: CR29
  article-title: Training with Input selection and testing (TWIST) algorithm: a significant advance in pattern recognition performance of machine learning
  publication-title: J. Intell. Learn. Syst. Appl.
– volume: 8
  start-page: 199
  issue: 3
  year: 1975
  end-page: 249
  ident: CR10
  article-title: The concept of a linguistic variable and its application to approximate reasoning—I
  publication-title: Inf. Sci.
  doi: 10.1016/0020-0255(75)90036-5
– volume: 45
  start-page: 482
  year: 2015
  end-page: 487
  ident: CR31
  article-title: Feature selection based on the center of gravity of BSWFMs using NEWFM
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2015.08.003
– volume: 19
  start-page: 1362
  issue: 5
  year: 2017
  end-page: 1374
  ident: CR15
  article-title: PSO-self-organizing interval type-2 fuzzy neural network for antilock braking systems
  publication-title: Int. J. Fuzzy Syst.
  doi: 10.1007/s40815-017-0301-6
– volume: 17
  start-page: 207
  issue: 12
  year: 2017
  ident: CR28
  article-title: Data mining algorithms for classification of diagnostic cancer using genetic optimization algorithms
  publication-title: IJCSNS
– volume: 39
  start-page: 757
  issue: 3
  year: 2017
  end-page: 764
  ident: CR4
  article-title: -means clustering analysis and artificial neural network classification of fatigue strain signals
  publication-title: J. Brazilian Soc. Mech. Sci. Eng.
  doi: 10.1007/s40430-016-0559-x
– volume: 11
  start-page: 1374
  issue: 9
  year: 2017
  end-page: 1400
  ident: CR22
  article-title: Machine learning algorithms for the creation of clinical healthcare enterprise systems
  publication-title: Enterp. Inf. Syst.
– volume: 40
  start-page: 2677
  issue: 7
  year: 2013
  end-page: 2686
  ident: CR25
  article-title: Modeling medical decision making by support vector machines, explaining by rules of evolutionary algorithms with feature selection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.11.007
– volume: 41
  start-page: 1476
  issue: 4
  year: 2014
  end-page: 1482
  ident: CR26
  article-title: Breast cancer diagnosis based on feature extraction using a hybrid of -means and support vector machine algorithms
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.08.044
– volume: 26
  start-page: 246
  issue: 1
  year: 2018
  end-page: 257
  ident: CR16
  article-title: Optimal guaranteed cost sliding-mode control of interval type-2 fuzzy time-delay systems
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2017.2648855
– volume: 6
  start-page: 69
  issue: 2
  year: 2014
  end-page: 82
  ident: CR30
  article-title: Feature selection based least square twin support vector machine for diagnosis of heart disease
  publication-title: Int. J. Bio-Sci. Bio-Technol.
  doi: 10.14257/ijbsbt.2014.6.2.07
– volume: 79
  start-page: 513
  issue: 1
  year: 2015
  end-page: 526
  ident: CR13
  article-title: Interval type-2 fuzzy-neural network indirect adaptive sliding mode control for an active suspension system
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-014-1683-8
– volume: 6
  start-page: 271
  issue: 2
  year: 2011
  end-page: 279
  ident: CR2
  article-title: An efficient global -means clustering algorithm
  publication-title: J. Comput. Phys.
– volume: 13
  start-page: 39
  issue: 4
  year: 2016
  end-page: 52
  ident: CR17
  article-title: Breast tumor computer-aided diagnosis using self-validating cerebellar model neural networks
  publication-title: Acta Polytech. Hung.
– start-page: 53
  year: 2017
  end-page: 61
  ident: CR6
  article-title: Pattern recognition for acoustic emission signals of offshore platform T-tube damage based on -means clustering
  publication-title: Advances in Acoustic Emission Technology
  doi: 10.1007/978-3-319-29052-2_5
– volume: 36
  start-page: 820
  issue: 6
  year: 2016
  end-page: 832
  ident: CR21
  article-title: Fetal state assessment from cardiotocogram data using artificial neural networks
  publication-title: J. Med. Biol. Eng.
  doi: 10.1007/s40846-016-0191-3
– volume: 20
  start-page: 349
  issue: 2
  year: 2018
  end-page: 365
  ident: CR18
  article-title: A functional-link-based fuzzy brain emotional learning network for breast tumor classification and chaotic system synchronization
  publication-title: Int. J. Fuzzy Syst.
  doi: 10.1007/s40815-017-0326-x
– volume: 1
  start-page: 801
  issue: 804
  year: 1956
  ident: CR1
  article-title: Sur la division des corp materiels en parties
  publication-title: Bull. Acad. Polonaise Sci.
– volume: 17
  start-page: 207
  issue: 12
  year: 2017
  ident: 730_CR28
  publication-title: IJCSNS
– volume: 26
  start-page: 246
  issue: 1
  year: 2018
  ident: 730_CR16
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2017.2648855
– volume: 79
  start-page: 513
  issue: 1
  year: 2015
  ident: 730_CR13
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-014-1683-8
– volume: 11
  start-page: 1374
  issue: 9
  year: 2017
  ident: 730_CR22
  publication-title: Enterp. Inf. Syst.
– volume: 42
  start-page: 3410
  issue: 7
  year: 2015
  ident: 730_CR27
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.12.025
– volume: 26
  start-page: 2396
  issue: 4
  year: 2017
  ident: 730_CR12
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2017.2775599
– volume: 41
  start-page: 1476
  issue: 4
  year: 2014
  ident: 730_CR26
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.08.044
– volume: 28
  start-page: 753
  issue: 4
  year: 2017
  ident: 730_CR23
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-2103-9
– start-page: 53
  volume-title: Advances in Acoustic Emission Technology
  year: 2017
  ident: 730_CR6
  doi: 10.1007/978-3-319-29052-2_5
– volume: 5
  start-page: 29
  issue: 1
  year: 2013
  ident: 730_CR29
  publication-title: J. Intell. Learn. Syst. Appl.
– volume: 1
  start-page: 801
  issue: 804
  year: 1956
  ident: 730_CR1
  publication-title: Bull. Acad. Polonaise Sci.
– volume: 20
  start-page: 349
  issue: 2
  year: 2018
  ident: 730_CR18
  publication-title: Int. J. Fuzzy Syst.
  doi: 10.1007/s40815-017-0326-x
– volume: 29
  start-page: 1
  issue: 10
  year: 2016
  ident: 730_CR19
  publication-title: Neural Comput. Appl.
– volume: 12
  start-page: 105
  year: 2011
  ident: 730_CR5
  publication-title: Int. J. Comput. Eng. Manag.
– volume: 6
  start-page: 69
  issue: 2
  year: 2014
  ident: 730_CR30
  publication-title: Int. J. Bio-Sci. Bio-Technol.
  doi: 10.14257/ijbsbt.2014.6.2.07
– volume: 36
  start-page: 820
  issue: 6
  year: 2016
  ident: 730_CR21
  publication-title: J. Med. Biol. Eng.
  doi: 10.1007/s40846-016-0191-3
– volume: 2015
  start-page: 1
  year: 2015
  ident: 730_CR34
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2015/283532
– volume: 6
  start-page: 271
  issue: 2
  year: 2011
  ident: 730_CR2
  publication-title: J. Comput. Phys.
– volume: 39
  start-page: 757
  issue: 3
  year: 2017
  ident: 730_CR4
  publication-title: J. Brazilian Soc. Mech. Sci. Eng.
  doi: 10.1007/s40430-016-0559-x
– volume: 19
  start-page: 1362
  issue: 5
  year: 2017
  ident: 730_CR15
  publication-title: Int. J. Fuzzy Syst.
  doi: 10.1007/s40815-017-0301-6
– volume: 45
  start-page: 482
  year: 2015
  ident: 730_CR31
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2015.08.003
– volume: 90
  start-page: 8
  year: 2017
  ident: 730_CR8
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2017.03.008
– volume: 8
  start-page: 338
  issue: 3
  year: 1965
  ident: 730_CR9
  publication-title: Inf. Control
  doi: 10.1016/S0019-9958(65)90241-X
– volume: 13
  start-page: 39
  issue: 4
  year: 2016
  ident: 730_CR17
  publication-title: Acta Polytech. Hung.
– volume-title: Uncertain rule-based fuzzy logic systems: introduction and new directions
  year: 2001
  ident: 730_CR24
– volume: 123
  start-page: 298
  year: 2018
  ident: 730_CR7
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.04.002
– volume: 2017
  start-page: 1
  year: 2017
  ident: 730_CR20
  publication-title: Comput. Math. Methods Med.
– volume: 40
  start-page: 2677
  issue: 7
  year: 2013
  ident: 730_CR25
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.11.007
– volume: 275
  start-page: 2239
  year: 2018
  ident: 730_CR14
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.11.009
– volume: 8
  start-page: 199
  issue: 3
  year: 1975
  ident: 730_CR10
  publication-title: Inf. Sci.
  doi: 10.1016/0020-0255(75)90036-5
– volume: 2
  start-page: 32
  issue: 09
  year: 2014
  ident: 730_CR33
  publication-title: J. Comput. Commun.
  doi: 10.4236/jcc.2014.29005
– volume: 1
  start-page: 1
  issue: 3
  year: 2013
  ident: 730_CR3
  publication-title: Int. J. Sci. Mod. Eng.
– volume: 8
  start-page: 535
  issue: 5
  year: 2000
  ident: 730_CR11
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/91.873577
– volume: 2013
  start-page: 1
  year: 2013
  ident: 730_CR32
  publication-title: Comput. Math. Methods Med.
SSID ssib031263563
ssib053833614
ssib026410675
ssj0002147029
ssib008679421
Score 2.2447157
Snippet This paper proposes a new medical diagnosis algorithm that uses a K -means interval type-2 fuzzy neural network (KIT2FNN). This KIT2FNN classifier uses a K...
This paper proposes a new medical diagnosis algorithm that uses a K-means interval type-2 fuzzy neural network (KIT2FNN). This KIT2FNN classifier uses a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2258
SubjectTerms Algorithms
Artificial Intelligence
Artificial neural networks
Cardiovascular disease
Classification
Classifiers
Cluster analysis
Clustering
Computational Intelligence
Data mining
Datasets
Diagnosis
Engineering
Fuzzy logic
Heart
Machine learning
Management Science
Mathematical functions
Medical diagnosis
Neural networks
Operations Research
Pattern recognition
Stability analysis
Tumors
Vector quantization
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60XvQgPrFaJQdvGuxms9vNQaQ-SlEsIgrelt0kC4LWR1uo_fXOZF8q2Os-suxkkpnJzHwfwGHHUmV7aLlQnuUyMxmPIhVwjIUy9McTP82oUfh2EPYf5fVT8LQAg7IXhsoqyz3RbdTmTdMZ-QmaJR-dfTRwZ-8fnFijKLtaUmgkBbWCOXUQY4uwJAgZqwFL51eDu_tKwwhe7kdnJ3oDBKFWabTvETZLDUiFuwF9VVanNsTq03bUZxj3CC5kRxWdOK4fT6KBpVo4xSkD1ubT39audmH_ZF2dMeutwWrhhbJurjbrsGCHG7DyA5twEy677Ia_WrRkzJ0aokYyClq5YL3JbPbFCNYDrw3yOnKGzi8rsj7sMq_fex5twWPv6uGizwvKBa5xLY658XUnVVIL4wnjtzOtjEooCMtk4hn85ywMMpxd5VsZJUQKLjwtI3TCwtAkyvjb0Bi-De0OsNRLjVGBxhgbY9A2hiWoCJH0dRgom3bCJnilaGJd4JETLcZLXCEpO3HGKM7YiTOeNuGoeuc9R-OY-3SrlHhcrMxRXOtRE47LWahv_z_a7vzR9mBZ0MS7Or8WNMafE7uP_so4PSiU8BvhWdxQ
  priority: 102
  providerName: ProQuest
Title A K-means Interval Type-2 Fuzzy Neural Network for Medical Diagnosis
URI https://link.springer.com/article/10.1007/s40815-019-00730-x
https://www.proquest.com/docview/2933619750
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2199-3211
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002147029
  issn: 1562-2479
  databaseCode: AFBBN
  dateStart: 20150301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2199-3211
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0002147029
  issn: 1562-2479
  databaseCode: BENPR
  dateStart: 20150301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 2199-3211
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002147029
  issn: 1562-2479
  databaseCode: AGYKE
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED50e9EHf4vTKXnwTSNrk3bN43Sb4nCIONCn0iYpiDrFbaD7672kaTdFBZ8KbVrayyX3Xe_uO4DDpjaZ7aGmvvA05ZnKaBSJgKIvlCEeT1iamULhq354MeCXd8GdKwobFdnuRUjS7tRlsRtH62USzQQ14aUGReRYtXxbFai2zu97nVKPDIncXP0m2nxDlFbqLfMMA8uMdgrXPGPOTNkd3PTuadgGZ-jd-NTnTeHqbX5-ka82bQZUv8VWrcnqrsKg-Ng8U-XxZDJOT-T0Gw_kf6WxBisOw5JWrnTrsKCHG7A8x2y4Ce0W6dFnjXaQ2H-OqM_EuLzUJ93JdPpBDCkInuvnWegEoTNxMSPSzrP_HkZbMOh2bs8uqGvYQCWu5DFVTDZTwaWvPF-xRiaFEolx4TKeeAplmYVBhrohmOZRYlqK-57kEUK4MFSJUGwbKsOXod4BknqpUiKQ6KGjB9tApwbVKOJMhoHQaTOsgVeIPJaOzdw01XiKSx5mK6EYJRRbCcXvNTgq73nNuTz-HF0vZjJ263oUIzhCTREIs2pwXEzM7PLvT9v93_A9WPLN3NqswTpUxm8TvY_oZ5wewGLUPT9wKo_H007_-uYTWY7y8w
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOACHqlCqLqXgQzkVi43tZOMDQsCyWrqwQggkbmliO1KldnnsogI_rr-NGa-TBSS4cc3DSsZjz3yemW8AvrccZbYnjgsdOa5KW_I01TFHLFSiP57LoqRC4eN-0j1XPy_iiyn4X9XCUFpltSf6jdpeGjoj30KzJNHZRwO3c3XNqWsURVerFhp5aK1gtz3FWCjs6Ln7fwjhhtuHbZzvDSE6B2f7XR66DHCD6jfiVppWoZURNhJWNkujrc4Jd5QqjyzCmzKJS_whLZ1Kc-qDLSKjUvQ7ksTm2kocdxpmlVQawd_s3kH_5LTWaKKze1JJit4HUbbVK0hGxAUzIcDC3Yf-UtWnRNRFqOlbreGHCC5US4fKH1__p9CgU-6d5hRxa_K759Z14jK_iPJ649n5CB-C18t2x2q6CFNusAQLT7gQP0F7l_X4X4eWk_lTSlwBjEAyF6xz-_Bwz4hGBK_1x3nrDJ1tFqJMrD3OF_w9XIbzdxH-Z5gZXA7cF2BFVFirY4OYHjFvE2EQKl6qpEli7YpW0oCoEk1mAv85teH4k9XMzV6cGYoz8-LM7hrwo37nasz-8ebTq5XEs7ATDLOJ3jZgs5qFye3XR1t5e7R1mOueHR9lR4f93leYF6QEPsdwFWZGN7fuG_pKo2ItKCSDX--9Bh4BnnEX-w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4YSIwefBtR1D140wXa3T72SAR8oMSDJHhq2n0kRkUiJVF-vbN9gURNjNd227SzM51vOjPfIHTiKVPZ7ipic0sRpqUmvs8dArGQBjwe0kibRuHbnnvZZ9cDZzDXxZ9Uu-cpybSnwbA0DeP6SOp60fjGwJOZojNOTKqpQQBFliE08UDTy82Lh2670ClDKDfXywn-35CmFTpMLcPGMqOgAvunNHNZydfczPFpJMPOINKxic08nvXefP8gX_3bDLQu5FkT99VZR2H-4mnVylNtEkc1MV3ghPyPZDbQWoZtcTNVxk20pIZbaHWO8XAbtZq4S14U-Eec_IsEPccmFCY27kym0w9syELgWC-tTscAqXGWS8KttCrwcbyD-p32_fklyQY5EAEWHhNJhRdxJmxp2ZI2tOCShya00yy0JMhVu44GneFUMT80o8ZtSzAfoJ3rypBLuotKw9eh2kM4siIpuSMgcofItgHBDqiXz6hwHa4iz60gKxd_IDKWczNs4zko-JkTCQUgoSCRUPBeQafFNaOU4-PX1dV8V4PM3scBgCbQGg7wq4LO8k2anf75bvt_W36Mlu9aneDmqtc9QCu22eaksLCKSvHbRB0CQIqjo8wGPgFFP_w2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+K-means+Interval+Type-2+Fuzzy+Neural+Network+for+Medical+Diagnosis&rft.jtitle=International+journal+of+fuzzy+systems&rft.au=Le%2C+Tien-Loc&rft.au=Huynh%2C+Tuan-Tu&rft.au=Lin%2C+Lo-Yi&rft.au=Lin%2C+Chih-Min&rft.date=2019-10-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1562-2479&rft.eissn=2199-3211&rft.volume=21&rft.issue=7&rft.spage=2258&rft.epage=2269&rft_id=info:doi/10.1007%2Fs40815-019-00730-x&rft.externalDocID=10_1007_s40815_019_00730_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1562-2479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1562-2479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1562-2479&client=summon