A K-means Interval Type-2 Fuzzy Neural Network for Medical Diagnosis
This paper proposes a new medical diagnosis algorithm that uses a K -means interval type-2 fuzzy neural network (KIT2FNN). This KIT2FNN classifier uses a K -means clustering algorithm as the pre-classifier and an interval type-2 fuzzy neural network as the main classifier. Initially, the training da...
Saved in:
| Published in | International journal of fuzzy systems Vol. 21; no. 7; pp. 2258 - 2269 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2019
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1562-2479 2199-3211 |
| DOI | 10.1007/s40815-019-00730-x |
Cover
| Abstract | This paper proposes a new medical diagnosis algorithm that uses a
K
-means interval type-2 fuzzy neural network (KIT2FNN). This KIT2FNN classifier uses a
K
-means clustering algorithm as the pre-classifier and an interval type-2 fuzzy neural network as the main classifier. Initially, the training data are classified into
k
groups using the
K
-means clustering algorithm and these data groups are then used sequentially to train the structure of the
k
classifiers for the interval type-2 fuzzy neural network (IT2FNN). The test data are also initially used to determine to which classifier they are best suited and then they are inputted into the corresponding main classifier for classification. The parameters for the proposed IT2FNN are updated using the steepest descent gradient approach. The Lyapunov theory is also used to verify the convergence and stability of the proposed method. The performance of the system is evaluated using several medical datasets from the University of California at Irvine (UCI). All of the experimental and comparison results are presented to demonstrate the effectiveness of the proposed medical diagnosis algorithm. |
|---|---|
| AbstractList | This paper proposes a new medical diagnosis algorithm that uses a
K
-means interval type-2 fuzzy neural network (KIT2FNN). This KIT2FNN classifier uses a
K
-means clustering algorithm as the pre-classifier and an interval type-2 fuzzy neural network as the main classifier. Initially, the training data are classified into
k
groups using the
K
-means clustering algorithm and these data groups are then used sequentially to train the structure of the
k
classifiers for the interval type-2 fuzzy neural network (IT2FNN). The test data are also initially used to determine to which classifier they are best suited and then they are inputted into the corresponding main classifier for classification. The parameters for the proposed IT2FNN are updated using the steepest descent gradient approach. The Lyapunov theory is also used to verify the convergence and stability of the proposed method. The performance of the system is evaluated using several medical datasets from the University of California at Irvine (UCI). All of the experimental and comparison results are presented to demonstrate the effectiveness of the proposed medical diagnosis algorithm. This paper proposes a new medical diagnosis algorithm that uses a K-means interval type-2 fuzzy neural network (KIT2FNN). This KIT2FNN classifier uses a K-means clustering algorithm as the pre-classifier and an interval type-2 fuzzy neural network as the main classifier. Initially, the training data are classified into k groups using the K-means clustering algorithm and these data groups are then used sequentially to train the structure of the k classifiers for the interval type-2 fuzzy neural network (IT2FNN). The test data are also initially used to determine to which classifier they are best suited and then they are inputted into the corresponding main classifier for classification. The parameters for the proposed IT2FNN are updated using the steepest descent gradient approach. The Lyapunov theory is also used to verify the convergence and stability of the proposed method. The performance of the system is evaluated using several medical datasets from the University of California at Irvine (UCI). All of the experimental and comparison results are presented to demonstrate the effectiveness of the proposed medical diagnosis algorithm. |
| Author | Lin, Chih-Min Lin, Lo-Yi Le, Tien-Loc Chao, Fei Huynh, Tuan-Tu |
| Author_xml | – sequence: 1 givenname: Tien-Loc surname: Le fullname: Le, Tien-Loc organization: Yuan Ze University, Department of Electrical Electronic and Mechanical Engineering, Lac Hong University – sequence: 2 givenname: Tuan-Tu surname: Huynh fullname: Huynh, Tuan-Tu organization: Yuan Ze University, Department of Electrical Electronic and Mechanical Engineering, Lac Hong University – sequence: 3 givenname: Lo-Yi surname: Lin fullname: Lin, Lo-Yi organization: Department of Radiology, Taipei Veterans General Hospital – sequence: 4 givenname: Chih-Min surname: Lin fullname: Lin, Chih-Min email: cml@saturn.yzu.edu.tw organization: Yuan Ze University – sequence: 5 givenname: Fei surname: Chao fullname: Chao, Fei organization: Department of Cognitive Science, Xiamen University |
| BookMark | eNp9kEFPAjEQhRuDiYj8AU-beK522m53eyQgSkS84Lkp2y5ZhS62uwr8eqtrYuLB02Re3jfz8s5Rz9XOInQJ5BoIyW4CJzmkmIDEcWUE709Qn4KUmFGAHupDKiimPJNnaBhCtSIMqGCpYH00GSUPeGu1C8nMNda_602yPOwspsm0PR4PycK2PmoL23zU_jUpa588WlMVUZtUeu3qUIULdFrqTbDDnzlAz9Pb5fgez5_uZuPRHBcMZIMNK7KV5AU1QA0jZSGN1AQ4KbkGE0OWIi1FxiWzPNcUuKBQ8DwVIITR0rABuuru7nz91trQqJe69S6-VFQyJkBmKYmuvHMVvg7B21IVVaObqnaN19VGAVFftamuNhVrU9-1qX1E6R9056ut9of_IdZBIZrd2vrfVP9QnwRUgBU |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3539369 crossref_primary_10_1007_s00500_021_05686_5 crossref_primary_10_1016_j_patcog_2022_108861 crossref_primary_10_1109_ACCESS_2020_3028617 crossref_primary_10_1109_TFUZZ_2022_3215470 crossref_primary_10_3390_app10186553 crossref_primary_10_1155_2021_4265650 crossref_primary_10_1007_s40815_023_01657_0 crossref_primary_10_1007_s11042_021_11221_3 crossref_primary_10_1016_j_ins_2024_120157 crossref_primary_10_1016_j_ins_2023_01_134 crossref_primary_10_1007_s40815_020_01009_2 crossref_primary_10_1109_ACCESS_2021_3126880 |
| Cites_doi | 10.1016/j.patrec.2017.03.008 10.1016/S0019-9958(65)90241-X 10.1109/91.873577 10.1016/j.neucom.2017.11.009 10.1155/2015/283532 10.1016/j.eswa.2014.12.025 10.1007/s00521-015-2103-9 10.4236/jcc.2014.29005 10.1016/j.measurement.2018.04.002 10.1109/TFUZZ.2017.2775599 10.1016/0020-0255(75)90036-5 10.1016/j.engappai.2015.08.003 10.1007/s40815-017-0301-6 10.1007/s40430-016-0559-x 10.1016/j.eswa.2012.11.007 10.1016/j.eswa.2013.08.044 10.1109/TFUZZ.2017.2648855 10.14257/ijbsbt.2014.6.2.07 10.1007/s11071-014-1683-8 10.1007/978-3-319-29052-2_5 10.1007/s40846-016-0191-3 10.1007/s40815-017-0326-x |
| ContentType | Journal Article |
| Copyright | Taiwan Fuzzy Systems Association 2019 Taiwan Fuzzy Systems Association 2019. |
| Copyright_xml | – notice: Taiwan Fuzzy Systems Association 2019 – notice: Taiwan Fuzzy Systems Association 2019. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS |
| DOI | 10.1007/s40815-019-00730-x |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection (LUT) ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2199-3211 |
| EndPage | 2269 |
| ExternalDocumentID | 10_1007_s40815_019_00730_x |
| GrantInformation_xml | – fundername: Ministry of Science and Technology, Taiwan grantid: 106-2221-E-155-MY3 funderid: http://dx.doi.org/10.13039/501100004663 |
| GroupedDBID | -EM .4S .DC 0R~ 188 203 2UF 4.4 406 5GY 9RA A8Z AACDK AAHNG AAIAL AAJBT AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABAKF ABDZT ABECU ABFTV ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AEVLU AEXYK AFBBN AFKRA AFQWF AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AIAKS AIGIU AILAN AINHJ AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ARAPS ARCSS ATFKH AVXWI AXYYD BENPR BGLVJ BGNMA CCPQU CNMHZ CSCUP CVCKV DNIVK DPUIP EBLON EBS EDO EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE GGCAI GJIRD HCIFZ HG6 HRMNR I-F IKXTQ IWAJR IXD J-C J9A JBSCW JZLTJ K7- KOV LLZTM M4Y M7S NPVJJ NQJWS NU0 O9J OK1 P2P PT4 PTHSS RLLFE ROL RSV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG TUS TUXDW UG4 UOJIU UTJUX UZ4 UZXMN VFIZW Z88 ZMTXR AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ESTFP PHGZM PHGZT PQGLB PUEGO 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c319t-d3c7b94c2d12d30fc9d9a0140f4a1d156f65f67493e48a214621c4856166da9d3 |
| IEDL.DBID | AGYKE |
| ISSN | 1562-2479 |
| IngestDate | Fri Jul 25 11:02:50 EDT 2025 Wed Oct 01 03:51:10 EDT 2025 Thu Apr 24 22:57:04 EDT 2025 Fri Feb 21 02:32:42 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Classification problem Interval type-2 fuzzy neural network Medical diagnosis means clustering algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-d3c7b94c2d12d30fc9d9a0140f4a1d156f65f67493e48a214621c4856166da9d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2933619750 |
| PQPubID | 2043640 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_2933619750 crossref_citationtrail_10_1007_s40815_019_00730_x crossref_primary_10_1007_s40815_019_00730_x springer_journals_10_1007_s40815_019_00730_x |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20191000 2019-10-00 20191001 |
| PublicationDateYYYYMMDD | 2019-10-01 |
| PublicationDate_xml | – month: 10 year: 2019 text: 20191000 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | International journal of fuzzy systems |
| PublicationTitleAbbrev | Int. J. Fuzzy Syst |
| PublicationYear | 2019 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Jiang, Zhang, Li, Wang (CR6) 2017 Guan, Lin, Ji, Lin, Le, Rudas (CR17) 2016; 13 Dwivedi (CR19) 2016; 29 Gan, Ng (CR8) 2017; 90 Tomar, Agarwal (CR30) 2014; 6 Aličković, Subasi (CR23) 2017; 28 Buscema, Breda, Lodwick (CR29) 2013; 5 Zirkohi, Lin (CR13) 2015; 79 Zhou, Chao, Lin (CR18) 2018; 20 Lim, Chan (CR27) 2015; 42 Mendel (CR24) 2001 Li, Wang, Wu, Lam, Gao (CR16) 2018; 26 Lin, Le (CR15) 2017; 19 Zadeh (CR9) 1965; 8 Karabulut, Ibrikci (CR33) 2014; 2 Vora, Oza (CR3) 2013; 1 Zheng, Yoon, Lam (CR26) 2014; 41 Yunoh, Abdullah, Saad, Nopiah, Nuawi (CR4) 2017; 39 Eyoh, John, De Maere (CR12) 2017; 26 Khan, Suleman, Farooq, Rafiq, Tariq (CR28) 2017; 17 Singh, Malik, Sharma (CR5) 2011; 12 Stoean, Stoean (CR25) 2013; 40 Liang, Mendel (CR11) 2000; 8 Ravindran, Jambek, Muthusamy, Neoh (CR34) 2015; 2015 Liu, Wang, Su, Zhang, Zhu, Wang, Wang (CR20) 2017; 2017 Lee (CR31) 2015; 45 Lin, Le, Huynh (CR14) 2018; 275 Xie, Jiang, Xie, Gao (CR2) 2011; 6 Zadeh (CR10) 1975; 8 Yılmaz (CR21) 2016; 36 Tuncer, Alkan (CR7) 2018; 123 Yılmaz, Kılıkçıer (CR32) 2013; 2013 Steinhaus (CR1) 1956; 1 Mandal (CR22) 2017; 11 E Yılmaz (730_CR32) 2013; 2013 P Vora (730_CR3) 2013; 1 JM Mendel (730_CR24) 2001 H Li (730_CR16) 2018; 26 Q Zhou (730_CR18) 2018; 20 J Xie (730_CR2) 2011; 6 E Yılmaz (730_CR21) 2016; 36 D Tomar (730_CR30) 2014; 6 CK Lim (730_CR27) 2015; 42 S-H Lee (730_CR31) 2015; 45 K Singh (730_CR5) 2011; 12 SA Tuncer (730_CR7) 2018; 123 X Liu (730_CR20) 2017; 2017 LA Zadeh (730_CR10) 1975; 8 RA Khan (730_CR28) 2017; 17 Q Liang (730_CR11) 2000; 8 J-S Guan (730_CR17) 2016; 13 MM Zirkohi (730_CR13) 2015; 79 R Stoean (730_CR25) 2013; 40 I Mandal (730_CR22) 2017; 11 E Aličković (730_CR23) 2017; 28 EM Karabulut (730_CR33) 2014; 2 M Buscema (730_CR29) 2013; 5 G Gan (730_CR8) 2017; 90 AK Dwivedi (730_CR19) 2016; 29 P Jiang (730_CR6) 2017 C-M Lin (730_CR15) 2017; 19 C-M Lin (730_CR14) 2018; 275 H Steinhaus (730_CR1) 1956; 1 M Yunoh (730_CR4) 2017; 39 I Eyoh (730_CR12) 2017; 26 S Ravindran (730_CR34) 2015; 2015 B Zheng (730_CR26) 2014; 41 LA Zadeh (730_CR9) 1965; 8 |
| References_xml | – volume: 90 start-page: 8 year: 2017 end-page: 14 ident: CR8 article-title: -means clustering with outlier removal publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2017.03.008 – volume: 8 start-page: 338 issue: 3 year: 1965 end-page: 353 ident: CR9 article-title: Fuzzy sets publication-title: Inf. Control doi: 10.1016/S0019-9958(65)90241-X – volume: 29 start-page: 1 issue: 10 year: 2016 end-page: 9 ident: CR19 article-title: Performance evaluation of different machine learning techniques for prediction of heart disease publication-title: Neural Comput. Appl. – volume: 8 start-page: 535 issue: 5 year: 2000 end-page: 550 ident: CR11 article-title: Interval type-2 fuzzy logic systems: theory and design publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/91.873577 – year: 2001 ident: CR24 publication-title: Uncertain rule-based fuzzy logic systems: introduction and new directions – volume: 1 start-page: 1 issue: 3 year: 2013 end-page: 14 ident: CR3 article-title: A survey on -mean clustering and particle swarm optimization publication-title: Int. J. Sci. Mod. Eng. – volume: 2013 start-page: 1 year: 2013 end-page: 8 ident: CR32 article-title: Determination of fetal state from cardiotocogram using LS-SVM with particle swarm optimization and binary decision tree publication-title: Comput. Math. Methods Med. – volume: 275 start-page: 2239 year: 2018 end-page: 2250 ident: CR14 article-title: Self-evolving function-link interval type-2 fuzzy neural network for nonlinear system identification and control publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.11.009 – volume: 2015 start-page: 1 year: 2015 end-page: 11 ident: CR34 article-title: A novel clinical decision support system using improved adaptive genetic algorithm for the assessment of fetal well-being publication-title: Comput. Math. Methods Med. doi: 10.1155/2015/283532 – volume: 42 start-page: 3410 issue: 7 year: 2015 end-page: 3419 ident: CR27 article-title: A weighted inference engine based on interval-valued fuzzy relational theory publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.12.025 – volume: 28 start-page: 753 issue: 4 year: 2017 end-page: 763 ident: CR23 article-title: Breast cancer diagnosis using GA feature selection and rotation forest publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-2103-9 – volume: 2017 start-page: 1 year: 2017 end-page: 11 ident: CR20 article-title: A hybrid classification system for heart disease diagnosis based on the RFRS method publication-title: Comput. Math. Methods Med. – volume: 2 start-page: 32 issue: 09 year: 2014 end-page: 37 ident: CR33 article-title: Analysis of cardiotocogram data for fetal distress determination by decision tree based adaptive boosting approach publication-title: J. Comput. Commun. doi: 10.4236/jcc.2014.29005 – volume: 123 start-page: 298 year: 2018 end-page: 303 ident: CR7 article-title: A decision support system for detection of the renal cell cancer in the kidney publication-title: Measurement doi: 10.1016/j.measurement.2018.04.002 – volume: 12 start-page: 105 year: 2011 end-page: 109 ident: CR5 article-title: Evolving limitations in -means algorithm in data mining and their removal publication-title: Int. J. Comput. Eng. Manag. – volume: 26 start-page: 2396 issue: 4 year: 2017 end-page: 2408 ident: CR12 article-title: Interval type-2 intuitionistic fuzzy logic for regression problems publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2017.2775599 – volume: 5 start-page: 29 issue: 1 year: 2013 ident: CR29 article-title: Training with Input selection and testing (TWIST) algorithm: a significant advance in pattern recognition performance of machine learning publication-title: J. Intell. Learn. Syst. Appl. – volume: 8 start-page: 199 issue: 3 year: 1975 end-page: 249 ident: CR10 article-title: The concept of a linguistic variable and its application to approximate reasoning—I publication-title: Inf. Sci. doi: 10.1016/0020-0255(75)90036-5 – volume: 45 start-page: 482 year: 2015 end-page: 487 ident: CR31 article-title: Feature selection based on the center of gravity of BSWFMs using NEWFM publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2015.08.003 – volume: 19 start-page: 1362 issue: 5 year: 2017 end-page: 1374 ident: CR15 article-title: PSO-self-organizing interval type-2 fuzzy neural network for antilock braking systems publication-title: Int. J. Fuzzy Syst. doi: 10.1007/s40815-017-0301-6 – volume: 17 start-page: 207 issue: 12 year: 2017 ident: CR28 article-title: Data mining algorithms for classification of diagnostic cancer using genetic optimization algorithms publication-title: IJCSNS – volume: 39 start-page: 757 issue: 3 year: 2017 end-page: 764 ident: CR4 article-title: -means clustering analysis and artificial neural network classification of fatigue strain signals publication-title: J. Brazilian Soc. Mech. Sci. Eng. doi: 10.1007/s40430-016-0559-x – volume: 11 start-page: 1374 issue: 9 year: 2017 end-page: 1400 ident: CR22 article-title: Machine learning algorithms for the creation of clinical healthcare enterprise systems publication-title: Enterp. Inf. Syst. – volume: 40 start-page: 2677 issue: 7 year: 2013 end-page: 2686 ident: CR25 article-title: Modeling medical decision making by support vector machines, explaining by rules of evolutionary algorithms with feature selection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.11.007 – volume: 41 start-page: 1476 issue: 4 year: 2014 end-page: 1482 ident: CR26 article-title: Breast cancer diagnosis based on feature extraction using a hybrid of -means and support vector machine algorithms publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.08.044 – volume: 26 start-page: 246 issue: 1 year: 2018 end-page: 257 ident: CR16 article-title: Optimal guaranteed cost sliding-mode control of interval type-2 fuzzy time-delay systems publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2017.2648855 – volume: 6 start-page: 69 issue: 2 year: 2014 end-page: 82 ident: CR30 article-title: Feature selection based least square twin support vector machine for diagnosis of heart disease publication-title: Int. J. Bio-Sci. Bio-Technol. doi: 10.14257/ijbsbt.2014.6.2.07 – volume: 79 start-page: 513 issue: 1 year: 2015 end-page: 526 ident: CR13 article-title: Interval type-2 fuzzy-neural network indirect adaptive sliding mode control for an active suspension system publication-title: Nonlinear Dyn. doi: 10.1007/s11071-014-1683-8 – volume: 6 start-page: 271 issue: 2 year: 2011 end-page: 279 ident: CR2 article-title: An efficient global -means clustering algorithm publication-title: J. Comput. Phys. – volume: 13 start-page: 39 issue: 4 year: 2016 end-page: 52 ident: CR17 article-title: Breast tumor computer-aided diagnosis using self-validating cerebellar model neural networks publication-title: Acta Polytech. Hung. – start-page: 53 year: 2017 end-page: 61 ident: CR6 article-title: Pattern recognition for acoustic emission signals of offshore platform T-tube damage based on -means clustering publication-title: Advances in Acoustic Emission Technology doi: 10.1007/978-3-319-29052-2_5 – volume: 36 start-page: 820 issue: 6 year: 2016 end-page: 832 ident: CR21 article-title: Fetal state assessment from cardiotocogram data using artificial neural networks publication-title: J. Med. Biol. Eng. doi: 10.1007/s40846-016-0191-3 – volume: 20 start-page: 349 issue: 2 year: 2018 end-page: 365 ident: CR18 article-title: A functional-link-based fuzzy brain emotional learning network for breast tumor classification and chaotic system synchronization publication-title: Int. J. Fuzzy Syst. doi: 10.1007/s40815-017-0326-x – volume: 1 start-page: 801 issue: 804 year: 1956 ident: CR1 article-title: Sur la division des corp materiels en parties publication-title: Bull. Acad. Polonaise Sci. – volume: 17 start-page: 207 issue: 12 year: 2017 ident: 730_CR28 publication-title: IJCSNS – volume: 26 start-page: 246 issue: 1 year: 2018 ident: 730_CR16 publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2017.2648855 – volume: 79 start-page: 513 issue: 1 year: 2015 ident: 730_CR13 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-014-1683-8 – volume: 11 start-page: 1374 issue: 9 year: 2017 ident: 730_CR22 publication-title: Enterp. Inf. Syst. – volume: 42 start-page: 3410 issue: 7 year: 2015 ident: 730_CR27 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.12.025 – volume: 26 start-page: 2396 issue: 4 year: 2017 ident: 730_CR12 publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2017.2775599 – volume: 41 start-page: 1476 issue: 4 year: 2014 ident: 730_CR26 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.08.044 – volume: 28 start-page: 753 issue: 4 year: 2017 ident: 730_CR23 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-2103-9 – start-page: 53 volume-title: Advances in Acoustic Emission Technology year: 2017 ident: 730_CR6 doi: 10.1007/978-3-319-29052-2_5 – volume: 5 start-page: 29 issue: 1 year: 2013 ident: 730_CR29 publication-title: J. Intell. Learn. Syst. Appl. – volume: 1 start-page: 801 issue: 804 year: 1956 ident: 730_CR1 publication-title: Bull. Acad. Polonaise Sci. – volume: 20 start-page: 349 issue: 2 year: 2018 ident: 730_CR18 publication-title: Int. J. Fuzzy Syst. doi: 10.1007/s40815-017-0326-x – volume: 29 start-page: 1 issue: 10 year: 2016 ident: 730_CR19 publication-title: Neural Comput. Appl. – volume: 12 start-page: 105 year: 2011 ident: 730_CR5 publication-title: Int. J. Comput. Eng. Manag. – volume: 6 start-page: 69 issue: 2 year: 2014 ident: 730_CR30 publication-title: Int. J. Bio-Sci. Bio-Technol. doi: 10.14257/ijbsbt.2014.6.2.07 – volume: 36 start-page: 820 issue: 6 year: 2016 ident: 730_CR21 publication-title: J. Med. Biol. Eng. doi: 10.1007/s40846-016-0191-3 – volume: 2015 start-page: 1 year: 2015 ident: 730_CR34 publication-title: Comput. Math. Methods Med. doi: 10.1155/2015/283532 – volume: 6 start-page: 271 issue: 2 year: 2011 ident: 730_CR2 publication-title: J. Comput. Phys. – volume: 39 start-page: 757 issue: 3 year: 2017 ident: 730_CR4 publication-title: J. Brazilian Soc. Mech. Sci. Eng. doi: 10.1007/s40430-016-0559-x – volume: 19 start-page: 1362 issue: 5 year: 2017 ident: 730_CR15 publication-title: Int. J. Fuzzy Syst. doi: 10.1007/s40815-017-0301-6 – volume: 45 start-page: 482 year: 2015 ident: 730_CR31 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2015.08.003 – volume: 90 start-page: 8 year: 2017 ident: 730_CR8 publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2017.03.008 – volume: 8 start-page: 338 issue: 3 year: 1965 ident: 730_CR9 publication-title: Inf. Control doi: 10.1016/S0019-9958(65)90241-X – volume: 13 start-page: 39 issue: 4 year: 2016 ident: 730_CR17 publication-title: Acta Polytech. Hung. – volume-title: Uncertain rule-based fuzzy logic systems: introduction and new directions year: 2001 ident: 730_CR24 – volume: 123 start-page: 298 year: 2018 ident: 730_CR7 publication-title: Measurement doi: 10.1016/j.measurement.2018.04.002 – volume: 2017 start-page: 1 year: 2017 ident: 730_CR20 publication-title: Comput. Math. Methods Med. – volume: 40 start-page: 2677 issue: 7 year: 2013 ident: 730_CR25 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.11.007 – volume: 275 start-page: 2239 year: 2018 ident: 730_CR14 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.11.009 – volume: 8 start-page: 199 issue: 3 year: 1975 ident: 730_CR10 publication-title: Inf. Sci. doi: 10.1016/0020-0255(75)90036-5 – volume: 2 start-page: 32 issue: 09 year: 2014 ident: 730_CR33 publication-title: J. Comput. Commun. doi: 10.4236/jcc.2014.29005 – volume: 1 start-page: 1 issue: 3 year: 2013 ident: 730_CR3 publication-title: Int. J. Sci. Mod. Eng. – volume: 8 start-page: 535 issue: 5 year: 2000 ident: 730_CR11 publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/91.873577 – volume: 2013 start-page: 1 year: 2013 ident: 730_CR32 publication-title: Comput. Math. Methods Med. |
| SSID | ssib031263563 ssib053833614 ssib026410675 ssj0002147029 ssib008679421 |
| Score | 2.2447157 |
| Snippet | This paper proposes a new medical diagnosis algorithm that uses a
K
-means interval type-2 fuzzy neural network (KIT2FNN). This KIT2FNN classifier uses a
K... This paper proposes a new medical diagnosis algorithm that uses a K-means interval type-2 fuzzy neural network (KIT2FNN). This KIT2FNN classifier uses a... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2258 |
| SubjectTerms | Algorithms Artificial Intelligence Artificial neural networks Cardiovascular disease Classification Classifiers Cluster analysis Clustering Computational Intelligence Data mining Datasets Diagnosis Engineering Fuzzy logic Heart Machine learning Management Science Mathematical functions Medical diagnosis Neural networks Operations Research Pattern recognition Stability analysis Tumors Vector quantization |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60XvQgPrFaJQdvGuxms9vNQaQ-SlEsIgrelt0kC4LWR1uo_fXOZF8q2Os-suxkkpnJzHwfwGHHUmV7aLlQnuUyMxmPIhVwjIUy9McTP82oUfh2EPYf5fVT8LQAg7IXhsoqyz3RbdTmTdMZ-QmaJR-dfTRwZ-8fnFijKLtaUmgkBbWCOXUQY4uwJAgZqwFL51eDu_tKwwhe7kdnJ3oDBKFWabTvETZLDUiFuwF9VVanNsTq03bUZxj3CC5kRxWdOK4fT6KBpVo4xSkD1ubT39audmH_ZF2dMeutwWrhhbJurjbrsGCHG7DyA5twEy677Ia_WrRkzJ0aokYyClq5YL3JbPbFCNYDrw3yOnKGzi8rsj7sMq_fex5twWPv6uGizwvKBa5xLY658XUnVVIL4wnjtzOtjEooCMtk4hn85ywMMpxd5VsZJUQKLjwtI3TCwtAkyvjb0Bi-De0OsNRLjVGBxhgbY9A2hiWoCJH0dRgom3bCJnilaGJd4JETLcZLXCEpO3HGKM7YiTOeNuGoeuc9R-OY-3SrlHhcrMxRXOtRE47LWahv_z_a7vzR9mBZ0MS7Or8WNMafE7uP_so4PSiU8BvhWdxQ priority: 102 providerName: ProQuest |
| Title | A K-means Interval Type-2 Fuzzy Neural Network for Medical Diagnosis |
| URI | https://link.springer.com/article/10.1007/s40815-019-00730-x https://www.proquest.com/docview/2933619750 |
| Volume | 21 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2199-3211 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002147029 issn: 1562-2479 databaseCode: AFBBN dateStart: 20150301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2199-3211 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0002147029 issn: 1562-2479 databaseCode: BENPR dateStart: 20150301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 2199-3211 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002147029 issn: 1562-2479 databaseCode: AGYKE dateStart: 20150101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED50e9EHf4vTKXnwTSNrk3bN43Sb4nCIONCn0iYpiDrFbaD7672kaTdFBZ8KbVrayyX3Xe_uO4DDpjaZ7aGmvvA05ZnKaBSJgKIvlCEeT1iamULhq354MeCXd8GdKwobFdnuRUjS7tRlsRtH62USzQQ14aUGReRYtXxbFai2zu97nVKPDIncXP0m2nxDlFbqLfMMA8uMdgrXPGPOTNkd3PTuadgGZ-jd-NTnTeHqbX5-ka82bQZUv8VWrcnqrsKg-Ng8U-XxZDJOT-T0Gw_kf6WxBisOw5JWrnTrsKCHG7A8x2y4Ce0W6dFnjXaQ2H-OqM_EuLzUJ93JdPpBDCkInuvnWegEoTNxMSPSzrP_HkZbMOh2bs8uqGvYQCWu5DFVTDZTwaWvPF-xRiaFEolx4TKeeAplmYVBhrohmOZRYlqK-57kEUK4MFSJUGwbKsOXod4BknqpUiKQ6KGjB9tApwbVKOJMhoHQaTOsgVeIPJaOzdw01XiKSx5mK6EYJRRbCcXvNTgq73nNuTz-HF0vZjJ263oUIzhCTREIs2pwXEzM7PLvT9v93_A9WPLN3NqswTpUxm8TvY_oZ5wewGLUPT9wKo_H007_-uYTWY7y8w |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOACHqlCqLqXgQzkVi43tZOMDQsCyWrqwQggkbmliO1KldnnsogI_rr-NGa-TBSS4cc3DSsZjz3yemW8AvrccZbYnjgsdOa5KW_I01TFHLFSiP57LoqRC4eN-0j1XPy_iiyn4X9XCUFpltSf6jdpeGjoj30KzJNHZRwO3c3XNqWsURVerFhp5aK1gtz3FWCjs6Ln7fwjhhtuHbZzvDSE6B2f7XR66DHCD6jfiVppWoZURNhJWNkujrc4Jd5QqjyzCmzKJS_whLZ1Kc-qDLSKjUvQ7ksTm2kocdxpmlVQawd_s3kH_5LTWaKKze1JJit4HUbbVK0hGxAUzIcDC3Yf-UtWnRNRFqOlbreGHCC5US4fKH1__p9CgU-6d5hRxa_K759Z14jK_iPJ649n5CB-C18t2x2q6CFNusAQLT7gQP0F7l_X4X4eWk_lTSlwBjEAyF6xz-_Bwz4hGBK_1x3nrDJ1tFqJMrD3OF_w9XIbzdxH-Z5gZXA7cF2BFVFirY4OYHjFvE2EQKl6qpEli7YpW0oCoEk1mAv85teH4k9XMzV6cGYoz8-LM7hrwo37nasz-8ebTq5XEs7ATDLOJ3jZgs5qFye3XR1t5e7R1mOueHR9lR4f93leYF6QEPsdwFWZGN7fuG_pKo2ItKCSDX--9Bh4BnnEX-w |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4YSIwefBtR1D140wXa3T72SAR8oMSDJHhq2n0kRkUiJVF-vbN9gURNjNd227SzM51vOjPfIHTiKVPZ7ipic0sRpqUmvs8dArGQBjwe0kibRuHbnnvZZ9cDZzDXxZ9Uu-cpybSnwbA0DeP6SOp60fjGwJOZojNOTKqpQQBFliE08UDTy82Lh2670ClDKDfXywn-35CmFTpMLcPGMqOgAvunNHNZydfczPFpJMPOINKxic08nvXefP8gX_3bDLQu5FkT99VZR2H-4mnVylNtEkc1MV3ghPyPZDbQWoZtcTNVxk20pIZbaHWO8XAbtZq4S14U-Eec_IsEPccmFCY27kym0w9syELgWC-tTscAqXGWS8KttCrwcbyD-p32_fklyQY5EAEWHhNJhRdxJmxp2ZI2tOCShya00yy0JMhVu44GneFUMT80o8ZtSzAfoJ3rypBLuotKw9eh2kM4siIpuSMgcofItgHBDqiXz6hwHa4iz60gKxd_IDKWczNs4zko-JkTCQUgoSCRUPBeQafFNaOU4-PX1dV8V4PM3scBgCbQGg7wq4LO8k2anf75bvt_W36Mlu9aneDmqtc9QCu22eaksLCKSvHbRB0CQIqjo8wGPgFFP_w2 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+K-means+Interval+Type-2+Fuzzy+Neural+Network+for+Medical+Diagnosis&rft.jtitle=International+journal+of+fuzzy+systems&rft.au=Le%2C+Tien-Loc&rft.au=Huynh%2C+Tuan-Tu&rft.au=Lin%2C+Lo-Yi&rft.au=Lin%2C+Chih-Min&rft.date=2019-10-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1562-2479&rft.eissn=2199-3211&rft.volume=21&rft.issue=7&rft.spage=2258&rft.epage=2269&rft_id=info:doi/10.1007%2Fs40815-019-00730-x&rft.externalDocID=10_1007_s40815_019_00730_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1562-2479&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1562-2479&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1562-2479&client=summon |