Convergence analysis for sparse Pi-sigma neural network model with entropy error function
As a high-order neural network, the Pi-sigma neural network has demonstrated its capacities for fast learning and strong nonlinear processing. In this paper, a new algorithm is proposed for Pi-sigma neural networks with entropy error functions based on L 0 regularization. One of the key features of...
Saved in:
| Published in | International journal of machine learning and cybernetics Vol. 14; no. 12; pp. 4405 - 4416 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2023
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1868-8071 1868-808X |
| DOI | 10.1007/s13042-023-01901-x |
Cover
| Abstract | As a high-order neural network, the Pi-sigma neural network has demonstrated its capacities for fast learning and strong nonlinear processing. In this paper, a new algorithm is proposed for Pi-sigma neural networks with entropy error functions based on
L
0
regularization. One of the key features of the proposed algorithm is the use of an entropy error function instead of the more common square error function, which is different from those in most existing literature. At the same time, the proposed algorithm also employs
L
0
regularization as a means of ensuring the efficiency of the network. Based on the gradient method, the monotonicity, and strong and weak convergence of the network are strictly proved by theoretical analysis and experimental verification. Experiments on applying the proposed algorithm to both classification and regression problems have demonstrated the improved performance of the algorithm. |
|---|---|
| AbstractList | As a high-order neural network, the Pi-sigma neural network has demonstrated its capacities for fast learning and strong nonlinear processing. In this paper, a new algorithm is proposed for Pi-sigma neural networks with entropy error functions based on
L
0
regularization. One of the key features of the proposed algorithm is the use of an entropy error function instead of the more common square error function, which is different from those in most existing literature. At the same time, the proposed algorithm also employs
L
0
regularization as a means of ensuring the efficiency of the network. Based on the gradient method, the monotonicity, and strong and weak convergence of the network are strictly proved by theoretical analysis and experimental verification. Experiments on applying the proposed algorithm to both classification and regression problems have demonstrated the improved performance of the algorithm. As a high-order neural network, the Pi-sigma neural network has demonstrated its capacities for fast learning and strong nonlinear processing. In this paper, a new algorithm is proposed for Pi-sigma neural networks with entropy error functions based on L0 regularization. One of the key features of the proposed algorithm is the use of an entropy error function instead of the more common square error function, which is different from those in most existing literature. At the same time, the proposed algorithm also employs L0 regularization as a means of ensuring the efficiency of the network. Based on the gradient method, the monotonicity, and strong and weak convergence of the network are strictly proved by theoretical analysis and experimental verification. Experiments on applying the proposed algorithm to both classification and regression problems have demonstrated the improved performance of the algorithm. |
| Author | Huang, Xiaodi Zheng, Fengjiao Xu, Dongpo Fan, Qinwei |
| Author_xml | – sequence: 1 givenname: Qinwei orcidid: 0000-0002-1017-3496 surname: Fan fullname: Fan, Qinwei email: qinweifan@xpu.edu.cn organization: School of Science, Xi’an Polytechnic University, School of Mathematics and Information Science, Guangzhou University – sequence: 2 givenname: Fengjiao surname: Zheng fullname: Zheng, Fengjiao organization: School of Science, Xi’an Polytechnic University – sequence: 3 givenname: Xiaodi surname: Huang fullname: Huang, Xiaodi organization: School of Computing, Mathematics and Engineering, Charles Sturt University – sequence: 4 givenname: Dongpo surname: Xu fullname: Xu, Dongpo organization: School of Mathematics and Statistics, Northeast Normal University |
| BookMark | eNp9kE1PwzAMhiMEEmPsD3CKxLngpF_JEU18SZPgABKcoqx1R0eXlKRl278nowgkDvPFluXH9vuekENjDRJyxuCCAeSXnsWQ8Ah4HAGTwKLNARkxkYlIgHg5_K1zdkwm3i8hRAZxDHxEXqfWfKJboCmQaqObra89rayjvtXOI32sI18vVpoa7J1uQurW1r3TlS2xoeu6e6NoOmfbLUXnAlf1puhqa07JUaUbj5OfPCbPN9dP07to9nB7P72aRUXMZBeVrGCVkEnBS1kmeZbOZYl5AgnDInTTVKdVngueMKhQaswEm4sYyqwCTBI-j8fkfNjbOvvRo-_U0vYuKPGKSw5pyrmUYYoPU4Wz3jusVOvqlXZbxUDtXFSDiyq4qL5dVJsAiX9QUXd6J65zum72o_GA-nDHLND9fbWH-gLo5Yoe |
| CitedBy_id | crossref_primary_10_1007_s10462_024_10790_7 crossref_primary_10_1016_j_engappai_2024_109909 crossref_primary_10_1002_adts_202300662 |
| Cites_doi | 10.1016/j.neucom.2013.10.023 10.1007/s13042-019-00948-z 10.1007/s13042-020-01091-w 10.1016/j.ins.2020.12.014 10.1186/1471-2105-14-198 10.1016/j.neucom.2017.06.057 10.1109/TCYB.2019.2950105 10.2174/157488407781668811 10.1007/s00521-018-3933-z 10.1007/s11063-016-9535-9 10.1109/TNSE.2021.3114426 10.1515/jip-2012-0030 10.1007/s11063-019-10135-4 10.1016/S0377-0427(01)00571-4 10.14311/NNW.2017.27.032 10.1109/TSA.2005.851927 10.7551/mitpress/4923.001.0001 10.1016/j.jbi.2019.103271 10.3390/e19030101 10.1007/s13042-022-01511-z 10.1109/ACCESS.2020.3048235 10.3390/e22050535 10.1109/LGRS.2019.2937872 10.1016/j.neucom.2020.02.113 10.1016/j.neunet.2013.11.006 10.1007/s11063-018-9835-3 10.1016/j.ins.2021.11.044 10.1109/72.572117 10.1016/j.neucom.2013.03.053 10.1007/s11063-020-10374-w 10.1016/S0925-2312(02)00629-X 10.1109/FOCI.2007.371528 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS |
| DOI | 10.1007/s13042-023-01901-x |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection (ProQuest) ProQuest Central Advanced Technologies & Aerospace Collection (ProQuest) ProQuest Central Essentials Local Electronic Collection Information ProQuest Central ProQuest Technology Collection (LUT) ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database (ProQuest) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection (ProQuest) |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 1868-808X |
| EndPage | 4416 |
| ExternalDocumentID | 10_1007_s13042_023_01901_x |
| GrantInformation_xml | – fundername: Natural Science Basic Research Program of Shaanxi Province grantid: No.2021JM-446 funderid: http://dx.doi.org/10.13039/501100017596 – fundername: National Science Foundation of China grantid: No.62176051 |
| GroupedDBID | -EM 06D 0R~ 0VY 1N0 203 29~ 2JY 2VQ 30V 4.4 406 408 409 40D 96X AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ARAPS AUKKA AXYYD AYJHY BENPR BGLVJ BGNMA CCPQU CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 H13 HCIFZ HMJXF HQYDN HRMNR HZ~ I0C IKXTQ IWAJR IXD IZIGR J-C J0Z JBSCW JCJTX JZLTJ K7- KOV LLZTM M4Y M7S NPVJJ NQJWS NU0 O9- O93 O9J P2P P9P PT4 PTHSS QOS R89 R9I RLLFE ROL RSV S27 S3B SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z7X Z83 Z88 ZMTXR ~A9 AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c319t-d1c1f894c2d9d4765b9de74041ec94c55a5f7782410fe9ae681b830d6f0e442b3 |
| IEDL.DBID | U2A |
| ISSN | 1868-8071 |
| IngestDate | Sat Aug 23 13:56:40 EDT 2025 Wed Oct 01 04:29:34 EDT 2025 Thu Apr 24 22:51:22 EDT 2025 Fri Feb 21 02:42:29 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | Entropy error function Pi-sigma neural network Regularization Convergence |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-d1c1f894c2d9d4765b9de74041ec94c55a5f7782410fe9ae681b830d6f0e442b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1017-3496 |
| PQID | 2920552299 |
| PQPubID | 2043904 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_2920552299 crossref_primary_10_1007_s13042_023_01901_x crossref_citationtrail_10_1007_s13042_023_01901_x springer_journals_10_1007_s13042_023_01901_x |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20231200 2023-12-00 20231201 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: 20231200 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | International journal of machine learning and cybernetics |
| PublicationTitleAbbrev | Int. J. Mach. Learn. & Cyber |
| PublicationYear | 2023 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Hussain, Liatsis (CR6) 2003; 55 Oh (CR22) 1997; 8 Bosman, Engelbrecht, Helbig (CR28) 2020; 400 Mohamed, Wu, Liu (CR13) 2017; 27 Martin (CR29) 2005; 13 Zhang, Wang, Wang (CR44) 2020; 32 CR38 Liu, Dai, Chen (CR31) 2020; 11 Shin, Ghosh (CR1) 1991; 1 Wang, Wang, Tian (CR8) 2019; 98 Falas, Stafylopatis (CR16) 1999; 3 De Ridder, Duin, Egmont-Petersen (CR4) 2003; 126 CR33 Nigrin (CR3) 1993 Fan, Zurada, Wu (CR40) 2014; 131 Xu, Dong, Zhang (CR19) 2017; 45 Ma, Bian (CR34) 2021; 8 Zhang, Jiang, Wang (CR30) 2022; 13 Wang, Liu, Li (CR37) 2013; 21 Lin, Balamurali, Koh (CR24) 2020; 32 Li, Qiao, Long (CR17) 2020; 51 Khan, Yang, Wu (CR36) 2014; 128 Karayiannis, Venetsanopoulos, Karayiannis (CR21) 1993; 20 Liu, Yang, Zhang (CR42) 2018; 272 CR2 Wang, Chen, Dong (CR27) 2019; 10 Fan, Kang, Zurada (CR15) 2022; 585 Song, Zhang, Shan (CR20) 2017; 19 Liu, Yang, Yang (CR12) 2014; 34 Kang, Fan, Zurada (CR14) 2021; 553 Sun, Yuan (CR45) 2006 Jiang (CR7) 2005; 20 Xiong, Tong (CR23) 2020; 52 Wu, Xu (CR11) 2002; 144 Bahri, Majelan, Mohammadi (CR26) 2019; 17 Fan, Peng, Li, Lin (CR10) 2021; 9 Shan, Fang (CR25) 2020; 22 Babic, Marina, Mrvar (CR9) 2019; 20 Liang, Liu, Luan (CR35) 2013; 14 Xie, Zhang, Wang (CR43) 2019; 50 Woeginger (CR39) 2003 Wu, Fan, Zurada (CR41) 2014; 50 Goodfellow, Bengio, Courville (CR32) 2016 Patel, Goyal (CR5) 2007; 2 Huang, Liu, Tian (CR18) 2019; 49 M Babic (1901_CR9) 2019; 20 T Falas (1901_CR16) 1999; 3 D Xu (1901_CR19) 2017; 45 D De Ridder (1901_CR4) 2003; 126 SH Oh (1901_CR22) 1997; 8 Y Wang (1901_CR27) 2019; 10 R Martin (1901_CR29) 2005; 13 A Nigrin (1901_CR3) 1993 Y Shin (1901_CR1) 1991; 1 AJ Hussain (1901_CR6) 2003; 55 D Song (1901_CR20) 2017; 19 Q Kang (1901_CR14) 2021; 553 Y Liu (1901_CR12) 2014; 34 A Bahri (1901_CR26) 2019; 17 A Khan (1901_CR36) 2014; 128 KWE Lin (1901_CR24) 2020; 32 W Sun (1901_CR45) 2006 Y Xiong (1901_CR23) 2020; 52 Y Wang (1901_CR37) 2013; 21 AS Bosman (1901_CR28) 2020; 400 GJ Woeginger (1901_CR39) 2003 Y Liu (1901_CR42) 2018; 272 X Xie (1901_CR43) 2019; 50 W Wu (1901_CR11) 2002; 144 H Zhang (1901_CR30) 2022; 13 Q Fan (1901_CR40) 2014; 131 1901_CR2 I Goodfellow (1901_CR32) 2016 F Wang (1901_CR8) 2019; 98 Y Liang (1901_CR35) 2013; 14 X Liu (1901_CR31) 2020; 11 H Zhang (1901_CR44) 2020; 32 C Huang (1901_CR18) 2019; 49 1901_CR38 LJ Jiang (1901_CR7) 2005; 20 Q Fan (1901_CR10) 2021; 9 KS Mohamed (1901_CR13) 2017; 27 NB Karayiannis (1901_CR21) 1993; 20 Q Fan (1901_CR15) 2022; 585 W Wu (1901_CR41) 2014; 50 1901_CR33 JL Patel (1901_CR5) 2007; 2 L Li (1901_CR17) 2020; 51 B Shan (1901_CR25) 2020; 22 L Ma (1901_CR34) 2021; 8 |
| References_xml | – volume: 131 start-page: 208 year: 2014 end-page: 216 ident: CR40 article-title: Convergence of online gradient method for feedforward neural networks with smoothing regularization penalty publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.10.023 – volume: 10 start-page: 3619 year: 2019 end-page: 3634 ident: CR27 article-title: Attribute reduction via local conditional entropy publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-019-00948-z – volume: 20 start-page: 20 year: 2019 ident: CR9 article-title: A new method for biostatistical miRNA pattern recognition with topological properties of visibility graphs in 3D space publication-title: J Healthc Eng – volume: 3 start-page: 1799 year: 1999 end-page: 1804 ident: CR16 article-title: The impact of the error function selection in neural network-based classifiers publication-title: IEEE – volume: 11 start-page: 2021 issue: 9 year: 2020 end-page: 2038 ident: CR31 article-title: Unsupervised attribute reduction based on -approximate equal relation in interval-valued information systems publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-020-01091-w – volume: 553 start-page: 66 year: 2021 end-page: 82 ident: CR14 article-title: Deterministic convergence analysis via smoothing group Lasso regularization and adaptive momentum for sigma-pi-sigma neural network publication-title: Inf Sci doi: 10.1016/j.ins.2020.12.014 – ident: CR2 – volume: 14 start-page: 1 issue: 1 year: 2013 end-page: 12 ident: CR35 article-title: Sparse logistic regression with a penalty for gene selection in cancer classification publication-title: BMC Bioinform doi: 10.1186/1471-2105-14-198 – volume: 272 start-page: 163 year: 2018 end-page: 169 ident: CR42 article-title: Relaxed conditions for convergence analysis of online back-propagation algorithm with regularizer for Sigma-Pi-Sigma neural network publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.06.057 – volume: 50 start-page: 1333 issue: 3 year: 2019 end-page: 1346 ident: CR43 article-title: Learning optimized structure of neural networks by hidden node pruning with regularization publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2019.2950105 – volume: 2 start-page: 217 issue: 3 year: 2007 end-page: 226 ident: CR5 article-title: Applications of artificial neural networks in medical science publication-title: Curr Clin Pharmacol doi: 10.2174/157488407781668811 – volume: 32 start-page: 1037 issue: 4 year: 2020 end-page: 1050 ident: CR24 article-title: Singing voice separation using a deep convolutional neural network trained by ideal binary mask and cross entropy publication-title: Neural Comput Appl doi: 10.1007/s00521-018-3933-z – volume: 45 start-page: 445 year: 2017 end-page: 456 ident: CR19 article-title: Deterministic convergence of Wirtinger-gradient methods for complex-valued neural networks publication-title: Neural Process Lett doi: 10.1007/s11063-016-9535-9 – volume: 8 start-page: 3430 issue: 4 year: 2021 end-page: 3442 ident: CR34 article-title: A simple neural network for sparse optimization with regularization publication-title: IEEE Trans Netw Sci Eng doi: 10.1109/TNSE.2021.3114426 – ident: CR33 – year: 2006 ident: CR45 publication-title: Optimization theory and methods: nonlinear programming – volume: 21 start-page: 1 issue: 1 year: 2013 end-page: 23 ident: CR37 article-title: Data regularization using Gaussian beams decomposition and sparse norms publication-title: J Inverse Ill-Posed Probl doi: 10.1515/jip-2012-0030 – volume: 20 start-page: 20 year: 2005 ident: CR7 article-title: Application of Pi-Sigma neural network to real-time classification of seafloor sediments publication-title: Appl Acoust – volume: 51 start-page: 1093 year: 2020 end-page: 1109 ident: CR17 article-title: A smoothing algorithm with constant learning rate for training two kinds of fuzzy neural networks and its convergence publication-title: Neural Process Lett doi: 10.1007/s11063-019-10135-4 – volume: 144 start-page: 335 issue: 1–2 year: 2002 end-page: 347 ident: CR11 article-title: Deterministic convergence of an online gradient method for neural networks publication-title: J Comput Appl Math doi: 10.1016/S0377-0427(01)00571-4 – start-page: 185 year: 2003 end-page: 207 ident: CR39 publication-title: Exact algorithms for NP-hard problems: a survey – volume: 27 start-page: 577 issue: 6 year: 2017 end-page: 592 ident: CR13 article-title: A modified higher-order feed forward neural network with smoothing regularization publication-title: Neural Netw World doi: 10.14311/NNW.2017.27.032 – volume: 13 start-page: 845 issue: 5 year: 2005 end-page: 856 ident: CR29 article-title: Speech enhancement based on minimum mean-square error estimation and supergaussian priors publication-title: IEEE Trans Speech Audio Process doi: 10.1109/TSA.2005.851927 – volume: 34 start-page: 114 issue: 1 year: 2014 end-page: 126 ident: CR12 article-title: A modified gradient based neuro fuzzy learning algorithm for Pi-Sigma network based on first order takagi sugeno system publication-title: J Math Res Appl – year: 1993 ident: CR3 publication-title: Neural networks for pattern recognition doi: 10.7551/mitpress/4923.001.0001 – volume: 98 year: 2019 ident: CR8 article-title: Pattern recognition and prognostic analysis of longitudinal blood pressure records in hemodialysis treatment based on a convolutional neural network[J] publication-title: J Biomed Inform doi: 10.1016/j.jbi.2019.103271 – volume: 19 start-page: 101 issue: 3 year: 2017 ident: CR20 article-title: Over-learning phenomenon of wavelet neural networks in remote sensing image classifications with different entropy error functions publication-title: Entropy doi: 10.3390/e19030101 – volume: 13 start-page: 2135 issue: 8 year: 2022 end-page: 2152 ident: CR30 article-title: Bilateral sensitivity analysis: a better understanding of a neural network and its application to reservoir engineering publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-022-01511-z – volume: 9 start-page: 28742 year: 2021 end-page: 28752 ident: CR10 article-title: Convergence of a gradient-based learning algorithm with penalty for ridge polynomial neural networks publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3048235 – volume: 22 start-page: 535 issue: 5 year: 2020 ident: CR25 article-title: A cross entropy based deep neural network model for road extraction from satellite images publication-title: Entropy doi: 10.3390/e22050535 – year: 2016 ident: CR32 publication-title: Deep learning – volume: 17 start-page: 1087 issue: 6 year: 2019 end-page: 1091 ident: CR26 article-title: Remote sensing image classification via improved cross-entropy loss and transfer learning strategy based on deep convolutional neural networks publication-title: IEEE Geosci Remote Sens Lett doi: 10.1109/LGRS.2019.2937872 – volume: 400 start-page: 113 year: 2020 end-page: 136 ident: CR28 article-title: Visualising basins of attraction for the cross-entropy and the squared error neural network loss functions publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.02.113 – volume: 126 start-page: 351 year: 2003 end-page: 450 ident: CR4 article-title: Nonlinear image processing using artificial neural networks publication-title: Elsevier – ident: CR38 – volume: 32 start-page: 1110 issue: 3 year: 2020 end-page: 1123 ident: CR44 article-title: Feature selection using a neural network with group lasso regularization and controlled redundancy publication-title: IEEE Trans Neural Netw Learn Syst – volume: 50 start-page: 72 year: 2014 end-page: 78 ident: CR41 article-title: Batch gradient method with smoothing regularization for training of feedforward neural networks publication-title: Neural Netw doi: 10.1016/j.neunet.2013.11.006 – volume: 49 start-page: 625 year: 2019 end-page: 641 ident: CR18 article-title: Global convergence on asymptotically almost periodic SICNNs with nonlinear decay functions publication-title: Neural Process Lett doi: 10.1007/s11063-018-9835-3 – volume: 585 start-page: 70 year: 2022 end-page: 88 ident: CR15 article-title: Convergence analysis for sigma-pi-sigma neural network based on some relaxed conditions publication-title: Inf Sci doi: 10.1016/j.ins.2021.11.044 – volume: 8 start-page: 799 issue: 3 year: 1997 end-page: 803 ident: CR22 article-title: Improving the error backpropagation algorithm with a modified error function publication-title: IEEE Trans Neural Netw doi: 10.1109/72.572117 – volume: 128 start-page: 113 year: 2014 end-page: 118 ident: CR36 article-title: Double parallel feedforward neural network based on extreme learning machine with regularizer publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.03.053 – volume: 1 start-page: 13 year: 1991 end-page: 18 ident: CR1 article-title: The pi-sigma network: an efficient higher-order neural network for pattern classification and function approximation publication-title: IEEE – volume: 52 start-page: 2687 issue: 3 year: 2020 end-page: 2695 ident: CR23 article-title: Convergence of batch gradient method based on the entropy error function for feedforward neural networks publication-title: Neural Process Lett doi: 10.1007/s11063-020-10374-w – volume: 55 start-page: 363 issue: 1–2 year: 2003 end-page: 382 ident: CR6 article-title: Recurrent pi-sigma networks for DPCM image coding publication-title: Neurocomputing doi: 10.1016/S0925-2312(02)00629-X – volume: 20 start-page: 141 year: 1993 end-page: 193 ident: CR21 article-title: Fast learning algorithms for neural networks publication-title: Artif Neural Netw Learn Algorithms Perform Eval Appl – volume: 126 start-page: 351 year: 2003 ident: 1901_CR4 publication-title: Elsevier – volume: 20 start-page: 20 year: 2005 ident: 1901_CR7 publication-title: Appl Acoust – volume: 45 start-page: 445 year: 2017 ident: 1901_CR19 publication-title: Neural Process Lett doi: 10.1007/s11063-016-9535-9 – volume-title: Optimization theory and methods: nonlinear programming year: 2006 ident: 1901_CR45 – ident: 1901_CR33 – volume: 10 start-page: 3619 year: 2019 ident: 1901_CR27 publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-019-00948-z – volume: 14 start-page: 1 issue: 1 year: 2013 ident: 1901_CR35 publication-title: BMC Bioinform doi: 10.1186/1471-2105-14-198 – volume: 17 start-page: 1087 issue: 6 year: 2019 ident: 1901_CR26 publication-title: IEEE Geosci Remote Sens Lett doi: 10.1109/LGRS.2019.2937872 – volume: 20 start-page: 141 year: 1993 ident: 1901_CR21 publication-title: Artif Neural Netw Learn Algorithms Perform Eval Appl – volume: 8 start-page: 3430 issue: 4 year: 2021 ident: 1901_CR34 publication-title: IEEE Trans Netw Sci Eng doi: 10.1109/TNSE.2021.3114426 – volume: 55 start-page: 363 issue: 1–2 year: 2003 ident: 1901_CR6 publication-title: Neurocomputing doi: 10.1016/S0925-2312(02)00629-X – volume: 11 start-page: 2021 issue: 9 year: 2020 ident: 1901_CR31 publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-020-01091-w – volume: 34 start-page: 114 issue: 1 year: 2014 ident: 1901_CR12 publication-title: J Math Res Appl – start-page: 185 volume-title: Exact algorithms for NP-hard problems: a survey year: 2003 ident: 1901_CR39 – volume: 52 start-page: 2687 issue: 3 year: 2020 ident: 1901_CR23 publication-title: Neural Process Lett doi: 10.1007/s11063-020-10374-w – volume: 19 start-page: 101 issue: 3 year: 2017 ident: 1901_CR20 publication-title: Entropy doi: 10.3390/e19030101 – volume: 50 start-page: 72 year: 2014 ident: 1901_CR41 publication-title: Neural Netw doi: 10.1016/j.neunet.2013.11.006 – volume-title: Deep learning year: 2016 ident: 1901_CR32 – volume: 128 start-page: 113 year: 2014 ident: 1901_CR36 publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.03.053 – volume: 144 start-page: 335 issue: 1–2 year: 2002 ident: 1901_CR11 publication-title: J Comput Appl Math doi: 10.1016/S0377-0427(01)00571-4 – volume: 32 start-page: 1037 issue: 4 year: 2020 ident: 1901_CR24 publication-title: Neural Comput Appl doi: 10.1007/s00521-018-3933-z – volume: 272 start-page: 163 year: 2018 ident: 1901_CR42 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.06.057 – volume: 32 start-page: 1110 issue: 3 year: 2020 ident: 1901_CR44 publication-title: IEEE Trans Neural Netw Learn Syst – volume: 51 start-page: 1093 year: 2020 ident: 1901_CR17 publication-title: Neural Process Lett doi: 10.1007/s11063-019-10135-4 – volume: 585 start-page: 70 year: 2022 ident: 1901_CR15 publication-title: Inf Sci doi: 10.1016/j.ins.2021.11.044 – volume: 553 start-page: 66 year: 2021 ident: 1901_CR14 publication-title: Inf Sci doi: 10.1016/j.ins.2020.12.014 – volume: 22 start-page: 535 issue: 5 year: 2020 ident: 1901_CR25 publication-title: Entropy doi: 10.3390/e22050535 – volume: 13 start-page: 2135 issue: 8 year: 2022 ident: 1901_CR30 publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-022-01511-z – volume: 98 year: 2019 ident: 1901_CR8 publication-title: J Biomed Inform doi: 10.1016/j.jbi.2019.103271 – volume: 3 start-page: 1799 year: 1999 ident: 1901_CR16 publication-title: IEEE – volume: 2 start-page: 217 issue: 3 year: 2007 ident: 1901_CR5 publication-title: Curr Clin Pharmacol doi: 10.2174/157488407781668811 – volume: 27 start-page: 577 issue: 6 year: 2017 ident: 1901_CR13 publication-title: Neural Netw World doi: 10.14311/NNW.2017.27.032 – volume: 50 start-page: 1333 issue: 3 year: 2019 ident: 1901_CR43 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2019.2950105 – volume-title: Neural networks for pattern recognition year: 1993 ident: 1901_CR3 doi: 10.7551/mitpress/4923.001.0001 – volume: 9 start-page: 28742 year: 2021 ident: 1901_CR10 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3048235 – volume: 49 start-page: 625 year: 2019 ident: 1901_CR18 publication-title: Neural Process Lett doi: 10.1007/s11063-018-9835-3 – volume: 13 start-page: 845 issue: 5 year: 2005 ident: 1901_CR29 publication-title: IEEE Trans Speech Audio Process doi: 10.1109/TSA.2005.851927 – volume: 20 start-page: 20 year: 2019 ident: 1901_CR9 publication-title: J Healthc Eng – volume: 131 start-page: 208 year: 2014 ident: 1901_CR40 publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.10.023 – ident: 1901_CR2 doi: 10.1109/FOCI.2007.371528 – volume: 8 start-page: 799 issue: 3 year: 1997 ident: 1901_CR22 publication-title: IEEE Trans Neural Netw doi: 10.1109/72.572117 – volume: 400 start-page: 113 year: 2020 ident: 1901_CR28 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.02.113 – ident: 1901_CR38 – volume: 21 start-page: 1 issue: 1 year: 2013 ident: 1901_CR37 publication-title: J Inverse Ill-Posed Probl doi: 10.1515/jip-2012-0030 – volume: 1 start-page: 13 year: 1991 ident: 1901_CR1 publication-title: IEEE |
| SSID | ssj0000603302 ssib031263576 ssib033405570 |
| Score | 2.3217726 |
| Snippet | As a high-order neural network, the Pi-sigma neural network has demonstrated its capacities for fast learning and strong nonlinear processing. In this paper, a... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4405 |
| SubjectTerms | Algorithms Artificial Intelligence Complex Systems Computational Intelligence Control Convergence Engineering Entropy Error functions Expected values Image coding Mechatronics Neural networks Optimization Original Article Pattern Recognition Regularization Regularization methods Robotics Sparsity Systems Biology |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB50vXgR1weuL3LwoGiw2aavg4guu4jgsoiCnkqbpLKgu2u7gv57Z9rUouBemyaHyTy-JDPfABw5qUTQrx2uUhcPKJEKeeKqiKMphW6ms0CkVO98N_RvHuXtk_e0BMO6FobSKmufWDpqPVV0R35OXZU8BAtRdDl759Q1il5X6xYaiW2toC9KirFlWOkSM1YLVq77w9F9rWGuIO6VJgC7riw5qH5uZRwfv1WJiqEfElOvsJU2Vb0dHf45hjlOJdiCf_6OZg1E_fOqWgarwTqsWZTJriq1aMOSmWxA29pxwY4t2fTJJjz3KO28rMA0LLEMJQyRLENXkxeGjca8GL-8JYyYL3HNSZU3zsoWOoyucRldEE9nX8zkOc6jSEm7vQWPg_5D74bbdgtcoR3OuRZKZGEkVVdHWga-l0baBNKRwij86nmJlwUIKKRwMhMlxkfEG7qO9jPHSNlN3W1oTaYTswMMQYFKQ0QGOCg9k6QBOhKdIZr3EaBlqgOiFlusLBc5tcR4jRsWZRJ1jKKOS1HHnx04_Zkzq5g4Fv69X-9GbK2yiBsd6sBZvUPN8P-r7S5ebQ9WqQt9leWyD615_mEOEKvM00OrgN-BKuGZ priority: 102 providerName: ProQuest |
| Title | Convergence analysis for sparse Pi-sigma neural network model with entropy error function |
| URI | https://link.springer.com/article/10.1007/s13042-023-01901-x https://www.proquest.com/docview/2920552299 |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1868-808X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000603302 issn: 1868-8071 databaseCode: AFBBN dateStart: 20101201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1868-808X dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0000603302 issn: 1868-8071 databaseCode: BENPR dateStart: 20101201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1868-808X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000603302 issn: 1868-8071 databaseCode: AGYKE dateStart: 20100101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1868-808X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000603302 issn: 1868-8071 databaseCode: U2A dateStart: 20101201 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90vuiD-InTOfLgg6KBZk2_HrexKYpDxIE-lTZNZaDbaCfof-9dm1oVFXwq5KOBuyT3S3L3O4AjK5YI-hOLq9jGA0qgfB7ZKuC4lHw7TVJPxBTvfD1yL8by8t65N0FheeXtXj1JFjt1HexGJ2-ONoZT_LPgiBxXHKLzwlk87nSrWWQL4lepjaxty4Jn6uPmxXKxrHRG9F2f2HiFiab5eZivFquGod9eTguDNNyAdYMkWbdU_SYs6ekWrH3iF9yCTbNyc3Zs6KVPtuGhT47mRcylZpHhJGGIXRluLlmu2c2E55PH54gR1yWOMC09xVmRNIfRxS2jK-HZ_I3pLMN-ZBtJvzswHg7u-hfcJFjgClfegidCidQPpOokQSI914mDRHvSkkIrLHWcyEk9hBBSWKkOIu0ixvVtK3FTS0vZie1daExnU70HDGGAin3EAlgpHR3FHm4dSYr43UVIlqomiEqIoTLs45QE4ymseZNJ8CEKPiwEH7424fSjz7zk3vizdavSTWjWYR5SLi4HIWYQNOGs0ldd_fvf9v_X_ABWKQ996efSgsYie9GHiFYWcRuW_eF5G1a6w15vRN_zh6sBfnuD0c1tu5i67-qI4no |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fTxQxEJ6c3IO-EE8lnqD2ARKNNm633R99IEYRcghciIEEnpbdtmtI4O68PSP8c_5tzux22Wgib_fabvswnZ35Op35BmAzKBSCfhtwU0i8oGiT8lwazfFXSmVpy0QUVO98NI5Hp-rrWXTWg99tLQylVbY2sTbUdmooRv6BuipFCBa0_jj7walrFL2uti00ct9awW7XFGO-sOPA3f7CK1y1vf8Fz3srDPd2T3ZG3HcZ4AbVb8GtMKJMtTKh1VYlcVRo6xIVKOEMjkZRHpUJ-lElgtLp3MUI9FIZ2LgMnFJhIXHfB9BXUmm8_PU_746Pv7UaLQVxvXQOX0pVc17dRYGCGMeaxMg0TokZWPjKnqa-j4INHN0qp5JvwW_-9p4dJP7nFbd2jnuPYdWjWvapUcMB9NzkCQy83ajYG09u_fYpnO9Qmntd8elY7hlRGCJnhqZtXjl2fMmry-_XOSOmTdxz0uSps7plD6OwMaOA9HR2y9x8juvIM5N2PYPTpQh-DVYm04l7DgxBiClSRCI4qSKXFwkaLlvi7SFGQFiaIYhWbJnx3OfUguMq61ibSdQZijqrRZ3dDOHd3ZpZw_xx79cb7Wlk3gpUWaezQ3jfnlA3_f_dXty_22t4ODo5OswO98cH6_AoJAWpM2w2YGUx_-leIk5aFK-8MjK4WLb-_wGxkB4q |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SQfQg1gdWq-bgQdHQTTf7OpZqqa_Sg4V6WnbzkIJuS1tB_70z--hWUcFrstnAZCbzJZn5hpBTKxYA-pXFZGzDASWQPotsGTAwJd82yng8xnznh57bHYjboTNcyuJPo92LJ8kspwFZmpJ5Y6JMo0x8w1M4A3_DMBeaM0CRqwKJEkCjB81WoVE2R66V0uHatkg5pxa3MJYLbVlgou_6yMzL88yan6f56r1KSPrtFTV1Tp0tspmjStrK1KBKVnSyTTaWuAa3STW34hk9y6mmz3fIUxuDztP8S02jnJ-EAo6lsNFMZ5r2R2w2en6NKPJewgxJFjVO0wI6FC9xKV4PjycfVE-nMA79JK71Lhl0rh_bXZYXW2ASrHDOFJfc-IGQTRUo4blOHCjtCUtwLaHVcSLHeAAnBLeMDiLtAt71bUu5xtJCNGN7j1SScaL3CQVIIGMfcAF0CkdHsQfbiDKA5V2AZ0bWCC-EGMqciRwLYryEJYcyCj4EwYep4MP3GrlYjJlkPBx_fl0v1ibMbXIWYl0uB-BmENTIZbFeZffvfzv43-cnZK1_1Qnvb3p3h2Qdy9Nn4S91UplP3_QRgJh5fJzq6SdybuQS |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convergence+analysis+for+sparse+Pi-sigma+neural+network+model+with+entropy+error+function&rft.jtitle=International+journal+of+machine+learning+and+cybernetics&rft.au=Fan%2C+Qinwei&rft.au=Zheng%2C+Fengjiao&rft.au=Huang%2C+Xiaodi&rft.au=Xu%2C+Dongpo&rft.date=2023-12-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1868-8071&rft.eissn=1868-808X&rft.volume=14&rft.issue=12&rft.spage=4405&rft.epage=4416&rft_id=info:doi/10.1007%2Fs13042-023-01901-x&rft.externalDocID=10_1007_s13042_023_01901_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-8071&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-8071&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-8071&client=summon |