Convergence analysis for sparse Pi-sigma neural network model with entropy error function

As a high-order neural network, the Pi-sigma neural network has demonstrated its capacities for fast learning and strong nonlinear processing. In this paper, a new algorithm is proposed for Pi-sigma neural networks with entropy error functions based on L 0 regularization. One of the key features of...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of machine learning and cybernetics Vol. 14; no. 12; pp. 4405 - 4416
Main Authors Fan, Qinwei, Zheng, Fengjiao, Huang, Xiaodi, Xu, Dongpo
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1868-8071
1868-808X
DOI10.1007/s13042-023-01901-x

Cover

Abstract As a high-order neural network, the Pi-sigma neural network has demonstrated its capacities for fast learning and strong nonlinear processing. In this paper, a new algorithm is proposed for Pi-sigma neural networks with entropy error functions based on L 0 regularization. One of the key features of the proposed algorithm is the use of an entropy error function instead of the more common square error function, which is different from those in most existing literature. At the same time, the proposed algorithm also employs L 0 regularization as a means of ensuring the efficiency of the network. Based on the gradient method, the monotonicity, and strong and weak convergence of the network are strictly proved by theoretical analysis and experimental verification. Experiments on applying the proposed algorithm to both classification and regression problems have demonstrated the improved performance of the algorithm.
AbstractList As a high-order neural network, the Pi-sigma neural network has demonstrated its capacities for fast learning and strong nonlinear processing. In this paper, a new algorithm is proposed for Pi-sigma neural networks with entropy error functions based on L 0 regularization. One of the key features of the proposed algorithm is the use of an entropy error function instead of the more common square error function, which is different from those in most existing literature. At the same time, the proposed algorithm also employs L 0 regularization as a means of ensuring the efficiency of the network. Based on the gradient method, the monotonicity, and strong and weak convergence of the network are strictly proved by theoretical analysis and experimental verification. Experiments on applying the proposed algorithm to both classification and regression problems have demonstrated the improved performance of the algorithm.
As a high-order neural network, the Pi-sigma neural network has demonstrated its capacities for fast learning and strong nonlinear processing. In this paper, a new algorithm is proposed for Pi-sigma neural networks with entropy error functions based on L0 regularization. One of the key features of the proposed algorithm is the use of an entropy error function instead of the more common square error function, which is different from those in most existing literature. At the same time, the proposed algorithm also employs L0 regularization as a means of ensuring the efficiency of the network. Based on the gradient method, the monotonicity, and strong and weak convergence of the network are strictly proved by theoretical analysis and experimental verification. Experiments on applying the proposed algorithm to both classification and regression problems have demonstrated the improved performance of the algorithm.
Author Huang, Xiaodi
Zheng, Fengjiao
Xu, Dongpo
Fan, Qinwei
Author_xml – sequence: 1
  givenname: Qinwei
  orcidid: 0000-0002-1017-3496
  surname: Fan
  fullname: Fan, Qinwei
  email: qinweifan@xpu.edu.cn
  organization: School of Science, Xi’an Polytechnic University, School of Mathematics and Information Science, Guangzhou University
– sequence: 2
  givenname: Fengjiao
  surname: Zheng
  fullname: Zheng, Fengjiao
  organization: School of Science, Xi’an Polytechnic University
– sequence: 3
  givenname: Xiaodi
  surname: Huang
  fullname: Huang, Xiaodi
  organization: School of Computing, Mathematics and Engineering, Charles Sturt University
– sequence: 4
  givenname: Dongpo
  surname: Xu
  fullname: Xu, Dongpo
  organization: School of Mathematics and Statistics, Northeast Normal University
BookMark eNp9kE1PwzAMhiMEEmPsD3CKxLngpF_JEU18SZPgABKcoqx1R0eXlKRl278nowgkDvPFluXH9vuekENjDRJyxuCCAeSXnsWQ8Ah4HAGTwKLNARkxkYlIgHg5_K1zdkwm3i8hRAZxDHxEXqfWfKJboCmQaqObra89rayjvtXOI32sI18vVpoa7J1uQurW1r3TlS2xoeu6e6NoOmfbLUXnAlf1puhqa07JUaUbj5OfPCbPN9dP07to9nB7P72aRUXMZBeVrGCVkEnBS1kmeZbOZYl5AgnDInTTVKdVngueMKhQaswEm4sYyqwCTBI-j8fkfNjbOvvRo-_U0vYuKPGKSw5pyrmUYYoPU4Wz3jusVOvqlXZbxUDtXFSDiyq4qL5dVJsAiX9QUXd6J65zum72o_GA-nDHLND9fbWH-gLo5Yoe
CitedBy_id crossref_primary_10_1007_s10462_024_10790_7
crossref_primary_10_1016_j_engappai_2024_109909
crossref_primary_10_1002_adts_202300662
Cites_doi 10.1016/j.neucom.2013.10.023
10.1007/s13042-019-00948-z
10.1007/s13042-020-01091-w
10.1016/j.ins.2020.12.014
10.1186/1471-2105-14-198
10.1016/j.neucom.2017.06.057
10.1109/TCYB.2019.2950105
10.2174/157488407781668811
10.1007/s00521-018-3933-z
10.1007/s11063-016-9535-9
10.1109/TNSE.2021.3114426
10.1515/jip-2012-0030
10.1007/s11063-019-10135-4
10.1016/S0377-0427(01)00571-4
10.14311/NNW.2017.27.032
10.1109/TSA.2005.851927
10.7551/mitpress/4923.001.0001
10.1016/j.jbi.2019.103271
10.3390/e19030101
10.1007/s13042-022-01511-z
10.1109/ACCESS.2020.3048235
10.3390/e22050535
10.1109/LGRS.2019.2937872
10.1016/j.neucom.2020.02.113
10.1016/j.neunet.2013.11.006
10.1007/s11063-018-9835-3
10.1016/j.ins.2021.11.044
10.1109/72.572117
10.1016/j.neucom.2013.03.053
10.1007/s11063-020-10374-w
10.1016/S0925-2312(02)00629-X
10.1109/FOCI.2007.371528
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOI 10.1007/s13042-023-01901-x
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection (ProQuest)
ProQuest Central
Advanced Technologies & Aerospace Collection (ProQuest)
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
ProQuest Technology Collection (LUT)
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database (ProQuest)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection (ProQuest)
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 1868-808X
EndPage 4416
ExternalDocumentID 10_1007_s13042_023_01901_x
GrantInformation_xml – fundername: Natural Science Basic Research Program of Shaanxi Province
  grantid: No.2021JM-446
  funderid: http://dx.doi.org/10.13039/501100017596
– fundername: National Science Foundation of China
  grantid: No.62176051
GroupedDBID -EM
06D
0R~
0VY
1N0
203
29~
2JY
2VQ
30V
4.4
406
408
409
40D
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ARAPS
AUKKA
AXYYD
AYJHY
BENPR
BGLVJ
BGNMA
CCPQU
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
H13
HCIFZ
HMJXF
HQYDN
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KOV
LLZTM
M4Y
M7S
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9P
PT4
PTHSS
QOS
R89
R9I
RLLFE
ROL
RSV
S27
S3B
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z7X
Z83
Z88
ZMTXR
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-d1c1f894c2d9d4765b9de74041ec94c55a5f7782410fe9ae681b830d6f0e442b3
IEDL.DBID U2A
ISSN 1868-8071
IngestDate Sat Aug 23 13:56:40 EDT 2025
Wed Oct 01 04:29:34 EDT 2025
Thu Apr 24 22:51:22 EDT 2025
Fri Feb 21 02:42:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Entropy error function
Pi-sigma neural network
Regularization
Convergence
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-d1c1f894c2d9d4765b9de74041ec94c55a5f7782410fe9ae681b830d6f0e442b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1017-3496
PQID 2920552299
PQPubID 2043904
PageCount 12
ParticipantIDs proquest_journals_2920552299
crossref_primary_10_1007_s13042_023_01901_x
crossref_citationtrail_10_1007_s13042_023_01901_x
springer_journals_10_1007_s13042_023_01901_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231200
2023-12-00
20231201
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 20231200
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle International journal of machine learning and cybernetics
PublicationTitleAbbrev Int. J. Mach. Learn. & Cyber
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Hussain, Liatsis (CR6) 2003; 55
Oh (CR22) 1997; 8
Bosman, Engelbrecht, Helbig (CR28) 2020; 400
Mohamed, Wu, Liu (CR13) 2017; 27
Martin (CR29) 2005; 13
Zhang, Wang, Wang (CR44) 2020; 32
CR38
Liu, Dai, Chen (CR31) 2020; 11
Shin, Ghosh (CR1) 1991; 1
Wang, Wang, Tian (CR8) 2019; 98
Falas, Stafylopatis (CR16) 1999; 3
De Ridder, Duin, Egmont-Petersen (CR4) 2003; 126
CR33
Nigrin (CR3) 1993
Fan, Zurada, Wu (CR40) 2014; 131
Xu, Dong, Zhang (CR19) 2017; 45
Ma, Bian (CR34) 2021; 8
Zhang, Jiang, Wang (CR30) 2022; 13
Wang, Liu, Li (CR37) 2013; 21
Lin, Balamurali, Koh (CR24) 2020; 32
Li, Qiao, Long (CR17) 2020; 51
Khan, Yang, Wu (CR36) 2014; 128
Karayiannis, Venetsanopoulos, Karayiannis (CR21) 1993; 20
Liu, Yang, Zhang (CR42) 2018; 272
CR2
Wang, Chen, Dong (CR27) 2019; 10
Fan, Kang, Zurada (CR15) 2022; 585
Song, Zhang, Shan (CR20) 2017; 19
Liu, Yang, Yang (CR12) 2014; 34
Kang, Fan, Zurada (CR14) 2021; 553
Sun, Yuan (CR45) 2006
Jiang (CR7) 2005; 20
Xiong, Tong (CR23) 2020; 52
Wu, Xu (CR11) 2002; 144
Bahri, Majelan, Mohammadi (CR26) 2019; 17
Fan, Peng, Li, Lin (CR10) 2021; 9
Shan, Fang (CR25) 2020; 22
Babic, Marina, Mrvar (CR9) 2019; 20
Liang, Liu, Luan (CR35) 2013; 14
Xie, Zhang, Wang (CR43) 2019; 50
Woeginger (CR39) 2003
Wu, Fan, Zurada (CR41) 2014; 50
Goodfellow, Bengio, Courville (CR32) 2016
Patel, Goyal (CR5) 2007; 2
Huang, Liu, Tian (CR18) 2019; 49
M Babic (1901_CR9) 2019; 20
T Falas (1901_CR16) 1999; 3
D Xu (1901_CR19) 2017; 45
D De Ridder (1901_CR4) 2003; 126
SH Oh (1901_CR22) 1997; 8
Y Wang (1901_CR27) 2019; 10
R Martin (1901_CR29) 2005; 13
A Nigrin (1901_CR3) 1993
Y Shin (1901_CR1) 1991; 1
AJ Hussain (1901_CR6) 2003; 55
D Song (1901_CR20) 2017; 19
Q Kang (1901_CR14) 2021; 553
Y Liu (1901_CR12) 2014; 34
A Bahri (1901_CR26) 2019; 17
A Khan (1901_CR36) 2014; 128
KWE Lin (1901_CR24) 2020; 32
W Sun (1901_CR45) 2006
Y Xiong (1901_CR23) 2020; 52
Y Wang (1901_CR37) 2013; 21
AS Bosman (1901_CR28) 2020; 400
GJ Woeginger (1901_CR39) 2003
Y Liu (1901_CR42) 2018; 272
X Xie (1901_CR43) 2019; 50
W Wu (1901_CR11) 2002; 144
H Zhang (1901_CR30) 2022; 13
Q Fan (1901_CR40) 2014; 131
1901_CR2
I Goodfellow (1901_CR32) 2016
F Wang (1901_CR8) 2019; 98
Y Liang (1901_CR35) 2013; 14
X Liu (1901_CR31) 2020; 11
H Zhang (1901_CR44) 2020; 32
C Huang (1901_CR18) 2019; 49
1901_CR38
LJ Jiang (1901_CR7) 2005; 20
Q Fan (1901_CR10) 2021; 9
KS Mohamed (1901_CR13) 2017; 27
NB Karayiannis (1901_CR21) 1993; 20
Q Fan (1901_CR15) 2022; 585
W Wu (1901_CR41) 2014; 50
1901_CR33
JL Patel (1901_CR5) 2007; 2
L Li (1901_CR17) 2020; 51
B Shan (1901_CR25) 2020; 22
L Ma (1901_CR34) 2021; 8
References_xml – volume: 131
  start-page: 208
  year: 2014
  end-page: 216
  ident: CR40
  article-title: Convergence of online gradient method for feedforward neural networks with smoothing regularization penalty
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.10.023
– volume: 10
  start-page: 3619
  year: 2019
  end-page: 3634
  ident: CR27
  article-title: Attribute reduction via local conditional entropy
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-019-00948-z
– volume: 20
  start-page: 20
  year: 2019
  ident: CR9
  article-title: A new method for biostatistical miRNA pattern recognition with topological properties of visibility graphs in 3D space
  publication-title: J Healthc Eng
– volume: 3
  start-page: 1799
  year: 1999
  end-page: 1804
  ident: CR16
  article-title: The impact of the error function selection in neural network-based classifiers
  publication-title: IEEE
– volume: 11
  start-page: 2021
  issue: 9
  year: 2020
  end-page: 2038
  ident: CR31
  article-title: Unsupervised attribute reduction based on -approximate equal relation in interval-valued information systems
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-020-01091-w
– volume: 553
  start-page: 66
  year: 2021
  end-page: 82
  ident: CR14
  article-title: Deterministic convergence analysis via smoothing group Lasso regularization and adaptive momentum for sigma-pi-sigma neural network
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2020.12.014
– ident: CR2
– volume: 14
  start-page: 1
  issue: 1
  year: 2013
  end-page: 12
  ident: CR35
  article-title: Sparse logistic regression with a penalty for gene selection in cancer classification
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-14-198
– volume: 272
  start-page: 163
  year: 2018
  end-page: 169
  ident: CR42
  article-title: Relaxed conditions for convergence analysis of online back-propagation algorithm with regularizer for Sigma-Pi-Sigma neural network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.06.057
– volume: 50
  start-page: 1333
  issue: 3
  year: 2019
  end-page: 1346
  ident: CR43
  article-title: Learning optimized structure of neural networks by hidden node pruning with regularization
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2019.2950105
– volume: 2
  start-page: 217
  issue: 3
  year: 2007
  end-page: 226
  ident: CR5
  article-title: Applications of artificial neural networks in medical science
  publication-title: Curr Clin Pharmacol
  doi: 10.2174/157488407781668811
– volume: 32
  start-page: 1037
  issue: 4
  year: 2020
  end-page: 1050
  ident: CR24
  article-title: Singing voice separation using a deep convolutional neural network trained by ideal binary mask and cross entropy
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-018-3933-z
– volume: 45
  start-page: 445
  year: 2017
  end-page: 456
  ident: CR19
  article-title: Deterministic convergence of Wirtinger-gradient methods for complex-valued neural networks
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-016-9535-9
– volume: 8
  start-page: 3430
  issue: 4
  year: 2021
  end-page: 3442
  ident: CR34
  article-title: A simple neural network for sparse optimization with regularization
  publication-title: IEEE Trans Netw Sci Eng
  doi: 10.1109/TNSE.2021.3114426
– ident: CR33
– year: 2006
  ident: CR45
  publication-title: Optimization theory and methods: nonlinear programming
– volume: 21
  start-page: 1
  issue: 1
  year: 2013
  end-page: 23
  ident: CR37
  article-title: Data regularization using Gaussian beams decomposition and sparse norms
  publication-title: J Inverse Ill-Posed Probl
  doi: 10.1515/jip-2012-0030
– volume: 20
  start-page: 20
  year: 2005
  ident: CR7
  article-title: Application of Pi-Sigma neural network to real-time classification of seafloor sediments
  publication-title: Appl Acoust
– volume: 51
  start-page: 1093
  year: 2020
  end-page: 1109
  ident: CR17
  article-title: A smoothing algorithm with constant learning rate for training two kinds of fuzzy neural networks and its convergence
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-019-10135-4
– volume: 144
  start-page: 335
  issue: 1–2
  year: 2002
  end-page: 347
  ident: CR11
  article-title: Deterministic convergence of an online gradient method for neural networks
  publication-title: J Comput Appl Math
  doi: 10.1016/S0377-0427(01)00571-4
– start-page: 185
  year: 2003
  end-page: 207
  ident: CR39
  publication-title: Exact algorithms for NP-hard problems: a survey
– volume: 27
  start-page: 577
  issue: 6
  year: 2017
  end-page: 592
  ident: CR13
  article-title: A modified higher-order feed forward neural network with smoothing regularization
  publication-title: Neural Netw World
  doi: 10.14311/NNW.2017.27.032
– volume: 13
  start-page: 845
  issue: 5
  year: 2005
  end-page: 856
  ident: CR29
  article-title: Speech enhancement based on minimum mean-square error estimation and supergaussian priors
  publication-title: IEEE Trans Speech Audio Process
  doi: 10.1109/TSA.2005.851927
– volume: 34
  start-page: 114
  issue: 1
  year: 2014
  end-page: 126
  ident: CR12
  article-title: A modified gradient based neuro fuzzy learning algorithm for Pi-Sigma network based on first order takagi sugeno system
  publication-title: J Math Res Appl
– year: 1993
  ident: CR3
  publication-title: Neural networks for pattern recognition
  doi: 10.7551/mitpress/4923.001.0001
– volume: 98
  year: 2019
  ident: CR8
  article-title: Pattern recognition and prognostic analysis of longitudinal blood pressure records in hemodialysis treatment based on a convolutional neural network[J]
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2019.103271
– volume: 19
  start-page: 101
  issue: 3
  year: 2017
  ident: CR20
  article-title: Over-learning phenomenon of wavelet neural networks in remote sensing image classifications with different entropy error functions
  publication-title: Entropy
  doi: 10.3390/e19030101
– volume: 13
  start-page: 2135
  issue: 8
  year: 2022
  end-page: 2152
  ident: CR30
  article-title: Bilateral sensitivity analysis: a better understanding of a neural network and its application to reservoir engineering
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-022-01511-z
– volume: 9
  start-page: 28742
  year: 2021
  end-page: 28752
  ident: CR10
  article-title: Convergence of a gradient-based learning algorithm with penalty for ridge polynomial neural networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3048235
– volume: 22
  start-page: 535
  issue: 5
  year: 2020
  ident: CR25
  article-title: A cross entropy based deep neural network model for road extraction from satellite images
  publication-title: Entropy
  doi: 10.3390/e22050535
– year: 2016
  ident: CR32
  publication-title: Deep learning
– volume: 17
  start-page: 1087
  issue: 6
  year: 2019
  end-page: 1091
  ident: CR26
  article-title: Remote sensing image classification via improved cross-entropy loss and transfer learning strategy based on deep convolutional neural networks
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2019.2937872
– volume: 400
  start-page: 113
  year: 2020
  end-page: 136
  ident: CR28
  article-title: Visualising basins of attraction for the cross-entropy and the squared error neural network loss functions
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.02.113
– volume: 126
  start-page: 351
  year: 2003
  end-page: 450
  ident: CR4
  article-title: Nonlinear image processing using artificial neural networks
  publication-title: Elsevier
– ident: CR38
– volume: 32
  start-page: 1110
  issue: 3
  year: 2020
  end-page: 1123
  ident: CR44
  article-title: Feature selection using a neural network with group lasso regularization and controlled redundancy
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 50
  start-page: 72
  year: 2014
  end-page: 78
  ident: CR41
  article-title: Batch gradient method with smoothing regularization for training of feedforward neural networks
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2013.11.006
– volume: 49
  start-page: 625
  year: 2019
  end-page: 641
  ident: CR18
  article-title: Global convergence on asymptotically almost periodic SICNNs with nonlinear decay functions
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-018-9835-3
– volume: 585
  start-page: 70
  year: 2022
  end-page: 88
  ident: CR15
  article-title: Convergence analysis for sigma-pi-sigma neural network based on some relaxed conditions
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2021.11.044
– volume: 8
  start-page: 799
  issue: 3
  year: 1997
  end-page: 803
  ident: CR22
  article-title: Improving the error backpropagation algorithm with a modified error function
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.572117
– volume: 128
  start-page: 113
  year: 2014
  end-page: 118
  ident: CR36
  article-title: Double parallel feedforward neural network based on extreme learning machine with regularizer
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.03.053
– volume: 1
  start-page: 13
  year: 1991
  end-page: 18
  ident: CR1
  article-title: The pi-sigma network: an efficient higher-order neural network for pattern classification and function approximation
  publication-title: IEEE
– volume: 52
  start-page: 2687
  issue: 3
  year: 2020
  end-page: 2695
  ident: CR23
  article-title: Convergence of batch gradient method based on the entropy error function for feedforward neural networks
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-020-10374-w
– volume: 55
  start-page: 363
  issue: 1–2
  year: 2003
  end-page: 382
  ident: CR6
  article-title: Recurrent pi-sigma networks for DPCM image coding
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(02)00629-X
– volume: 20
  start-page: 141
  year: 1993
  end-page: 193
  ident: CR21
  article-title: Fast learning algorithms for neural networks
  publication-title: Artif Neural Netw Learn Algorithms Perform Eval Appl
– volume: 126
  start-page: 351
  year: 2003
  ident: 1901_CR4
  publication-title: Elsevier
– volume: 20
  start-page: 20
  year: 2005
  ident: 1901_CR7
  publication-title: Appl Acoust
– volume: 45
  start-page: 445
  year: 2017
  ident: 1901_CR19
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-016-9535-9
– volume-title: Optimization theory and methods: nonlinear programming
  year: 2006
  ident: 1901_CR45
– ident: 1901_CR33
– volume: 10
  start-page: 3619
  year: 2019
  ident: 1901_CR27
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-019-00948-z
– volume: 14
  start-page: 1
  issue: 1
  year: 2013
  ident: 1901_CR35
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-14-198
– volume: 17
  start-page: 1087
  issue: 6
  year: 2019
  ident: 1901_CR26
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2019.2937872
– volume: 20
  start-page: 141
  year: 1993
  ident: 1901_CR21
  publication-title: Artif Neural Netw Learn Algorithms Perform Eval Appl
– volume: 8
  start-page: 3430
  issue: 4
  year: 2021
  ident: 1901_CR34
  publication-title: IEEE Trans Netw Sci Eng
  doi: 10.1109/TNSE.2021.3114426
– volume: 55
  start-page: 363
  issue: 1–2
  year: 2003
  ident: 1901_CR6
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(02)00629-X
– volume: 11
  start-page: 2021
  issue: 9
  year: 2020
  ident: 1901_CR31
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-020-01091-w
– volume: 34
  start-page: 114
  issue: 1
  year: 2014
  ident: 1901_CR12
  publication-title: J Math Res Appl
– start-page: 185
  volume-title: Exact algorithms for NP-hard problems: a survey
  year: 2003
  ident: 1901_CR39
– volume: 52
  start-page: 2687
  issue: 3
  year: 2020
  ident: 1901_CR23
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-020-10374-w
– volume: 19
  start-page: 101
  issue: 3
  year: 2017
  ident: 1901_CR20
  publication-title: Entropy
  doi: 10.3390/e19030101
– volume: 50
  start-page: 72
  year: 2014
  ident: 1901_CR41
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2013.11.006
– volume-title: Deep learning
  year: 2016
  ident: 1901_CR32
– volume: 128
  start-page: 113
  year: 2014
  ident: 1901_CR36
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.03.053
– volume: 144
  start-page: 335
  issue: 1–2
  year: 2002
  ident: 1901_CR11
  publication-title: J Comput Appl Math
  doi: 10.1016/S0377-0427(01)00571-4
– volume: 32
  start-page: 1037
  issue: 4
  year: 2020
  ident: 1901_CR24
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-018-3933-z
– volume: 272
  start-page: 163
  year: 2018
  ident: 1901_CR42
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.06.057
– volume: 32
  start-page: 1110
  issue: 3
  year: 2020
  ident: 1901_CR44
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 51
  start-page: 1093
  year: 2020
  ident: 1901_CR17
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-019-10135-4
– volume: 585
  start-page: 70
  year: 2022
  ident: 1901_CR15
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2021.11.044
– volume: 553
  start-page: 66
  year: 2021
  ident: 1901_CR14
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2020.12.014
– volume: 22
  start-page: 535
  issue: 5
  year: 2020
  ident: 1901_CR25
  publication-title: Entropy
  doi: 10.3390/e22050535
– volume: 13
  start-page: 2135
  issue: 8
  year: 2022
  ident: 1901_CR30
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-022-01511-z
– volume: 98
  year: 2019
  ident: 1901_CR8
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2019.103271
– volume: 3
  start-page: 1799
  year: 1999
  ident: 1901_CR16
  publication-title: IEEE
– volume: 2
  start-page: 217
  issue: 3
  year: 2007
  ident: 1901_CR5
  publication-title: Curr Clin Pharmacol
  doi: 10.2174/157488407781668811
– volume: 27
  start-page: 577
  issue: 6
  year: 2017
  ident: 1901_CR13
  publication-title: Neural Netw World
  doi: 10.14311/NNW.2017.27.032
– volume: 50
  start-page: 1333
  issue: 3
  year: 2019
  ident: 1901_CR43
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2019.2950105
– volume-title: Neural networks for pattern recognition
  year: 1993
  ident: 1901_CR3
  doi: 10.7551/mitpress/4923.001.0001
– volume: 9
  start-page: 28742
  year: 2021
  ident: 1901_CR10
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3048235
– volume: 49
  start-page: 625
  year: 2019
  ident: 1901_CR18
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-018-9835-3
– volume: 13
  start-page: 845
  issue: 5
  year: 2005
  ident: 1901_CR29
  publication-title: IEEE Trans Speech Audio Process
  doi: 10.1109/TSA.2005.851927
– volume: 20
  start-page: 20
  year: 2019
  ident: 1901_CR9
  publication-title: J Healthc Eng
– volume: 131
  start-page: 208
  year: 2014
  ident: 1901_CR40
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.10.023
– ident: 1901_CR2
  doi: 10.1109/FOCI.2007.371528
– volume: 8
  start-page: 799
  issue: 3
  year: 1997
  ident: 1901_CR22
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.572117
– volume: 400
  start-page: 113
  year: 2020
  ident: 1901_CR28
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.02.113
– ident: 1901_CR38
– volume: 21
  start-page: 1
  issue: 1
  year: 2013
  ident: 1901_CR37
  publication-title: J Inverse Ill-Posed Probl
  doi: 10.1515/jip-2012-0030
– volume: 1
  start-page: 13
  year: 1991
  ident: 1901_CR1
  publication-title: IEEE
SSID ssj0000603302
ssib031263576
ssib033405570
Score 2.3217726
Snippet As a high-order neural network, the Pi-sigma neural network has demonstrated its capacities for fast learning and strong nonlinear processing. In this paper, a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4405
SubjectTerms Algorithms
Artificial Intelligence
Complex Systems
Computational Intelligence
Control
Convergence
Engineering
Entropy
Error functions
Expected values
Image coding
Mechatronics
Neural networks
Optimization
Original Article
Pattern Recognition
Regularization
Regularization methods
Robotics
Sparsity
Systems Biology
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB50vXgR1weuL3LwoGiw2aavg4guu4jgsoiCnkqbpLKgu2u7gv57Z9rUouBemyaHyTy-JDPfABw5qUTQrx2uUhcPKJEKeeKqiKMphW6ms0CkVO98N_RvHuXtk_e0BMO6FobSKmufWDpqPVV0R35OXZU8BAtRdDl759Q1il5X6xYaiW2toC9KirFlWOkSM1YLVq77w9F9rWGuIO6VJgC7riw5qH5uZRwfv1WJiqEfElOvsJU2Vb0dHf45hjlOJdiCf_6OZg1E_fOqWgarwTqsWZTJriq1aMOSmWxA29pxwY4t2fTJJjz3KO28rMA0LLEMJQyRLENXkxeGjca8GL-8JYyYL3HNSZU3zsoWOoyucRldEE9nX8zkOc6jSEm7vQWPg_5D74bbdgtcoR3OuRZKZGEkVVdHWga-l0baBNKRwij86nmJlwUIKKRwMhMlxkfEG7qO9jPHSNlN3W1oTaYTswMMQYFKQ0QGOCg9k6QBOhKdIZr3EaBlqgOiFlusLBc5tcR4jRsWZRJ1jKKOS1HHnx04_Zkzq5g4Fv69X-9GbK2yiBsd6sBZvUPN8P-r7S5ebQ9WqQt9leWyD615_mEOEKvM00OrgN-BKuGZ
  priority: 102
  providerName: ProQuest
Title Convergence analysis for sparse Pi-sigma neural network model with entropy error function
URI https://link.springer.com/article/10.1007/s13042-023-01901-x
https://www.proquest.com/docview/2920552299
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1868-808X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000603302
  issn: 1868-8071
  databaseCode: AFBBN
  dateStart: 20101201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1868-808X
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0000603302
  issn: 1868-8071
  databaseCode: BENPR
  dateStart: 20101201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1868-808X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000603302
  issn: 1868-8071
  databaseCode: AGYKE
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1868-808X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000603302
  issn: 1868-8071
  databaseCode: U2A
  dateStart: 20101201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90vuiD-InTOfLgg6KBZk2_HrexKYpDxIE-lTZNZaDbaCfof-9dm1oVFXwq5KOBuyT3S3L3O4AjK5YI-hOLq9jGA0qgfB7ZKuC4lHw7TVJPxBTvfD1yL8by8t65N0FheeXtXj1JFjt1HexGJ2-ONoZT_LPgiBxXHKLzwlk87nSrWWQL4lepjaxty4Jn6uPmxXKxrHRG9F2f2HiFiab5eZivFquGod9eTguDNNyAdYMkWbdU_SYs6ekWrH3iF9yCTbNyc3Zs6KVPtuGhT47mRcylZpHhJGGIXRluLlmu2c2E55PH54gR1yWOMC09xVmRNIfRxS2jK-HZ_I3pLMN-ZBtJvzswHg7u-hfcJFjgClfegidCidQPpOokQSI914mDRHvSkkIrLHWcyEk9hBBSWKkOIu0ixvVtK3FTS0vZie1daExnU70HDGGAin3EAlgpHR3FHm4dSYr43UVIlqomiEqIoTLs45QE4ymseZNJ8CEKPiwEH7424fSjz7zk3vizdavSTWjWYR5SLi4HIWYQNOGs0ldd_fvf9v_X_ABWKQ996efSgsYie9GHiFYWcRuW_eF5G1a6w15vRN_zh6sBfnuD0c1tu5i67-qI4no
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fTxQxEJ6c3IO-EE8lnqD2ARKNNm633R99IEYRcghciIEEnpbdtmtI4O68PSP8c_5tzux22Wgib_fabvswnZ35Op35BmAzKBSCfhtwU0i8oGiT8lwazfFXSmVpy0QUVO98NI5Hp-rrWXTWg99tLQylVbY2sTbUdmooRv6BuipFCBa0_jj7walrFL2uti00ct9awW7XFGO-sOPA3f7CK1y1vf8Fz3srDPd2T3ZG3HcZ4AbVb8GtMKJMtTKh1VYlcVRo6xIVKOEMjkZRHpUJ-lElgtLp3MUI9FIZ2LgMnFJhIXHfB9BXUmm8_PU_746Pv7UaLQVxvXQOX0pVc17dRYGCGMeaxMg0TokZWPjKnqa-j4INHN0qp5JvwW_-9p4dJP7nFbd2jnuPYdWjWvapUcMB9NzkCQy83ajYG09u_fYpnO9Qmntd8elY7hlRGCJnhqZtXjl2fMmry-_XOSOmTdxz0uSps7plD6OwMaOA9HR2y9x8juvIM5N2PYPTpQh-DVYm04l7DgxBiClSRCI4qSKXFwkaLlvi7SFGQFiaIYhWbJnx3OfUguMq61ibSdQZijqrRZ3dDOHd3ZpZw_xx79cb7Wlk3gpUWaezQ3jfnlA3_f_dXty_22t4ODo5OswO98cH6_AoJAWpM2w2YGUx_-leIk5aFK-8MjK4WLb-_wGxkB4q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SQfQg1gdWq-bgQdHQTTf7OpZqqa_Sg4V6WnbzkIJuS1tB_70z--hWUcFrstnAZCbzJZn5hpBTKxYA-pXFZGzDASWQPotsGTAwJd82yng8xnznh57bHYjboTNcyuJPo92LJ8kspwFZmpJ5Y6JMo0x8w1M4A3_DMBeaM0CRqwKJEkCjB81WoVE2R66V0uHatkg5pxa3MJYLbVlgou_6yMzL88yan6f56r1KSPrtFTV1Tp0tspmjStrK1KBKVnSyTTaWuAa3STW34hk9y6mmz3fIUxuDztP8S02jnJ-EAo6lsNFMZ5r2R2w2en6NKPJewgxJFjVO0wI6FC9xKV4PjycfVE-nMA79JK71Lhl0rh_bXZYXW2ASrHDOFJfc-IGQTRUo4blOHCjtCUtwLaHVcSLHeAAnBLeMDiLtAt71bUu5xtJCNGN7j1SScaL3CQVIIGMfcAF0CkdHsQfbiDKA5V2AZ0bWCC-EGMqciRwLYryEJYcyCj4EwYep4MP3GrlYjJlkPBx_fl0v1ibMbXIWYl0uB-BmENTIZbFeZffvfzv43-cnZK1_1Qnvb3p3h2Qdy9Nn4S91UplP3_QRgJh5fJzq6SdybuQS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convergence+analysis+for+sparse+Pi-sigma+neural+network+model+with+entropy+error+function&rft.jtitle=International+journal+of+machine+learning+and+cybernetics&rft.au=Fan%2C+Qinwei&rft.au=Zheng%2C+Fengjiao&rft.au=Huang%2C+Xiaodi&rft.au=Xu%2C+Dongpo&rft.date=2023-12-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1868-8071&rft.eissn=1868-808X&rft.volume=14&rft.issue=12&rft.spage=4405&rft.epage=4416&rft_id=info:doi/10.1007%2Fs13042-023-01901-x&rft.externalDocID=10_1007_s13042_023_01901_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-8071&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-8071&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-8071&client=summon