Experimental investigation and optimization of manufacturing processes of Ni–P–Y2O3 composite coatings by multiple linear regression method based on genetic algorithm
The nature and complexity of the manufacturing process for composite coatings make it difficult to predict or even measure the technical and economic performance of manufacturing, which is why great attention has been paid to the manufacturing methodologies of these coatings and their properties, in...
Saved in:
| Published in | International journal of advanced manufacturing technology Vol. 126; no. 9-10; pp. 3995 - 4019 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Springer London
01.06.2023
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0268-3768 1433-3015 |
| DOI | 10.1007/s00170-023-11342-z |
Cover
| Abstract | The nature and complexity of the manufacturing process for composite coatings make it difficult to predict or even measure the technical and economic performance of manufacturing, which is why great attention has been paid to the manufacturing methodologies of these coatings and their properties, in particular the mechanical properties. In this work, an experimental approach for the manufacture of Ni–P–Y
2
O
3
composite coatings by cathode process from sulfate-based electrodeposition baths was presented. This approach can improve the mechanical properties of the coating and the rate of deposition exhibited by the cathode current efficiency. A new technique for identifying processing parameters using a multi-input–output system based on the technique of multiple linear regression has been proposed. The objective was to determine the influence of the electrodeposition parameters on the quality of the coatings developed in order to conduct an optimization based on the genetic algorithm of these parameters that ensures the obtaining of a high micro-hardness coating, with the maximum possible efficiency of the electrodeposition cell. It is shown that the elaborated model is able to give results providing a very good correlation between the real and predicted values, and the experimental results were found to be close to the predicted values within 1.95% error range for cathode current efficiency and 1.58% error range for micro-hardness. The values used for the validation of the elaborated models differ from the values used for the construction of the fuzzy rules. The new optimization strategy used in this study made it possible to determine the optimal values that allow obtaining a coating with high micro-hardness (592 Hv) compared to other coatings of the same family with a high efficiency of electrodeposition cell. |
|---|---|
| AbstractList | The nature and complexity of the manufacturing process for composite coatings make it difficult to predict or even measure the technical and economic performance of manufacturing, which is why great attention has been paid to the manufacturing methodologies of these coatings and their properties, in particular the mechanical properties. In this work, an experimental approach for the manufacture of Ni–P–Y
2
O
3
composite coatings by cathode process from sulfate-based electrodeposition baths was presented. This approach can improve the mechanical properties of the coating and the rate of deposition exhibited by the cathode current efficiency. A new technique for identifying processing parameters using a multi-input–output system based on the technique of multiple linear regression has been proposed. The objective was to determine the influence of the electrodeposition parameters on the quality of the coatings developed in order to conduct an optimization based on the genetic algorithm of these parameters that ensures the obtaining of a high micro-hardness coating, with the maximum possible efficiency of the electrodeposition cell. It is shown that the elaborated model is able to give results providing a very good correlation between the real and predicted values, and the experimental results were found to be close to the predicted values within 1.95% error range for cathode current efficiency and 1.58% error range for micro-hardness. The values used for the validation of the elaborated models differ from the values used for the construction of the fuzzy rules. The new optimization strategy used in this study made it possible to determine the optimal values that allow obtaining a coating with high micro-hardness (592 Hv) compared to other coatings of the same family with a high efficiency of electrodeposition cell. The nature and complexity of the manufacturing process for composite coatings make it difficult to predict or even measure the technical and economic performance of manufacturing, which is why great attention has been paid to the manufacturing methodologies of these coatings and their properties, in particular the mechanical properties. In this work, an experimental approach for the manufacture of Ni–P–Y2O3 composite coatings by cathode process from sulfate-based electrodeposition baths was presented. This approach can improve the mechanical properties of the coating and the rate of deposition exhibited by the cathode current efficiency. A new technique for identifying processing parameters using a multi-input–output system based on the technique of multiple linear regression has been proposed. The objective was to determine the influence of the electrodeposition parameters on the quality of the coatings developed in order to conduct an optimization based on the genetic algorithm of these parameters that ensures the obtaining of a high micro-hardness coating, with the maximum possible efficiency of the electrodeposition cell. It is shown that the elaborated model is able to give results providing a very good correlation between the real and predicted values, and the experimental results were found to be close to the predicted values within 1.95% error range for cathode current efficiency and 1.58% error range for micro-hardness. The values used for the validation of the elaborated models differ from the values used for the construction of the fuzzy rules. The new optimization strategy used in this study made it possible to determine the optimal values that allow obtaining a coating with high micro-hardness (592 Hv) compared to other coatings of the same family with a high efficiency of electrodeposition cell. |
| Author | Mezoudj, Mourad Rezgui, Imane Belloufi, Abderrahim Zerrouki, Djamal Naoun, Mahiedine Abdesselam, Yassine |
| Author_xml | – sequence: 1 givenname: Yassine surname: Abdesselam fullname: Abdesselam, Yassine organization: Laboratoire de Mécanique Appliquée et Systèmes Energétiques, Faculté des Sciences Appliquées, Université Kasdi Merbah Ouargla – sequence: 2 givenname: Imane surname: Rezgui fullname: Rezgui, Imane organization: Laboratoire de Mécanique Appliquée et Systèmes Energétiques, Faculté des Sciences Appliquées, Université Kasdi Merbah Ouargla – sequence: 3 givenname: Mahiedine surname: Naoun fullname: Naoun, Mahiedine organization: Laboratoire de Corrosion, Département de Mécanique, Faculté de Technologie, Université Batna 2 – sequence: 4 givenname: Abderrahim surname: Belloufi fullname: Belloufi, Abderrahim email: abelloufi@yahoo.fr organization: Laboratoire de Mécanique Appliquée et Systèmes Energétiques, Faculté des Sciences Appliquées, Université Kasdi Merbah Ouargla – sequence: 5 givenname: Mourad surname: Mezoudj fullname: Mezoudj, Mourad organization: Laboratoire de Mécanique Appliquée et Systèmes Energétiques, Faculté des Sciences Appliquées, Université Kasdi Merbah Ouargla – sequence: 6 givenname: Djamal surname: Zerrouki fullname: Zerrouki, Djamal organization: Laboratoire de Dynamique Interaction et Réactivités des Systèmes, Faculté des Sciences Appliquées, Université Kasdi Merbah Ouargla |
| BookMark | eNp9Uctu1TAUtFCRuC38ACtLrAN-pLazRFV5SBVlAQtW1rnOSeoqsYPtIHpX_AN_wWfxJfg2SEgsurCOjz0zx545JSchBiTkOWcvOWP6VWaMa9YwIRvOZSuawyOy462UjWT8_ITsmFCmkVqZJ-Q059sKV1yZHfl1-X3B5GcMBSbqwzfMxY9QfAwUQk_jUvzsD9tBHOgMYR3AlTX5MNIlRYc5Yz5effC_f_z8WNcXcS2pi_MSsy9Yd5Udxkz3d3Rep-KXCenkA0KiCcdUBY7iM5ab2NM9ZKxjAx0xYPGOwjTG5MvN_JQ8HmDK-OxvPSOf31x-unjXXF2_fX_x-qpxknel6dng9KDaWvcdmj0MjvVc4SBdyxwI45Rh0AGARtcb7IXTQivAtvZd6-QZebHp1t99Xasf9jauKdSRVhgu9bnqtKwos6FcijknHKzz5d6mksBPljN7TMZuydiajL1Pxh4qVfxHXWoCkO4eJsmNlJej9Zj-veoB1h_vnawC |
| CitedBy_id | crossref_primary_10_1016_j_jallcom_2023_171677 crossref_primary_10_1007_s00170_024_13642_4 crossref_primary_10_1007_s00170_025_15360_x |
| Cites_doi | 10.3390/ma11071124 10.1016/j.measurement.2021.109423 10.1007/s11998-012-9411-0 10.1007/s11661-019-05559-5 10.1016/j.matchemphys.2005.12.016 10.1016/j.surfcoat.2005.11.123 10.1016/j.ijhydene.2012.12.009 10.1016/s1003-6326(11)61417-9 10.1149/1.1901064 10.1016/j.jallcom.2010.01.057 10.1080/02670844.2020.1715543 10.1016/j.surfcoat.2012.10.011 10.1016/j.apsusc.2018.06.241 10.1016/j.surfcoat.2019.05.058 10.1016/s1003-6326(16)64428-x 10.4152/pea.pea.20150524 10.1016/j.jallcom.2013.01.122 10.1016/j.ceramint.2014.06.123 10.1016/j.colsurfa.2013.02.067 10.1016/j.surfcoat.2013.08.020 10.1515/corrrev.1996.14.3-4.323 10.1149/1.2069233 10.1080/00202967.1986.11870744 10.1016/j.jallcom.2013.03.107 10.1016/j.surfcoat.2019.03.055 10.1149/1.2803516 10.1016/j.electacta.2008.07.027 10.1016/0013-4686(96)00173-9 10.1016/j.ceramint.2019.02.177 10.1016/s1003-6326(08)60192-2 10.1016/j.jallcom.2010.05.154 10.4152/pea.201101023 10.1149/1.2404383 10.1016/j.apsusc.2011.03.140 10.1016/j.jcis.2015.11.023 10.1016/j.surfcoat.2004.10.016 10.1007/s40544-017-0183-5 10.1016/j.vacuum.2020.109665 10.1080/17515831.2020.1838097 10.4152/pea.201201001 10.1088/1757-899x/149/1/012110 10.4028/www.scientific.net/amr.97-101.1235 10.1179/095066003225008482 10.1023/a:1018416927715 10.1016/j.jallcom.2020.153888 10.1179/0020296713z.000000000161 10.1016/s0257-8972(02)00180-9 10.1016/S1452-3981(23)14339-2 10.1002/9780470602638.ch3 10.1201/b18311 10.21203/rs.3.rs-937785/v1 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s00170-023-11342-z |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
| DatabaseTitleList | Engineering Database |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1433-3015 |
| EndPage | 4019 |
| ExternalDocumentID | 10_1007_s00170_023_11342_z |
| GroupedDBID | -5B -5G -BR -EM -XW -XX -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 203 28- 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X 9M8 AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAS LLZTM M4Y M7S MA- ML~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9P PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8V Z8W Z8Z Z92 ZMTXR ZY4 _50 ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-d0fc7f64d0fb9e8bafc0d16ef3c40ca28c680a9aaa7ecd8ed2c7276ae47ec94c3 |
| IEDL.DBID | U2A |
| ISSN | 0268-3768 |
| IngestDate | Fri Jul 25 11:05:04 EDT 2025 Thu Apr 24 23:04:24 EDT 2025 Wed Oct 01 02:42:37 EDT 2025 Fri Feb 21 02:45:14 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9-10 |
| Keywords | Ni–P–Y Genetic algorithm nano-composite coating Electrodeposition Cathode current efficiency Microhardness Optimization O |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-d0fc7f64d0fb9e8bafc0d16ef3c40ca28c680a9aaa7ecd8ed2c7276ae47ec94c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2813756973 |
| PQPubID | 2044010 |
| PageCount | 25 |
| ParticipantIDs | proquest_journals_2813756973 crossref_citationtrail_10_1007_s00170_023_11342_z crossref_primary_10_1007_s00170_023_11342_z springer_journals_10_1007_s00170_023_11342_z |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20230600 2023-06-00 20230601 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 6 year: 2023 text: 20230600 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | International journal of advanced manufacturing technology |
| PublicationTitleAbbrev | Int J Adv Manuf Technol |
| PublicationYear | 2023 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | Chang, Chen, Fang (CR49) 2008; 155 Bahadormanesh, Dolati (CR32) 2010; 504 Berçot, Peña-Muñoz, Pagetti (CR34) 2002; 157 Aruna, Srikanth, Ahamad, Latha, Rajam (CR37) 2011; 29 Wang, Gao, Xue, Liu, Xu (CR7) 2006; 200 CR35 Lin, Lee, Chen, Li (CR48) 2005; 152 Kutilek, Miksovsky (CR56) 2011; 13 Berkh, Zahavi (CR8) 1996; 14 Jeyaraj, Sudhambarish, Karthik, Arulshri (CR40) 2015; 3 Gierlotka, Ro’winski, Budniok, Lagiewka (CR20) 1997; 27 Zhou, Wang, Liang, Jin (CR23) 2018; 11 Sudagar, Lian, Sha (CR2) 2013; 571 Zoikis-Karathanasis, Pavlatou, Spyrellis (CR22) 2009; 54 Fathi, Safavi, Mirzazadeh, Ansariyan, Ahadzadeh (CR24) 2019; 51 Fransaer, Celis, Roos (CR46) 1992; 139 Guglielmi (CR55) 1972; 119 CR6 Raghavendra, Basavarajappa, Sogalad (CR36) 2016; 149 Shibli, Sebeelamol (CR52) 2013; 38 Dehestani, Khayati, Sharafi (CR43) 2021; 179 BahgatRadwan, Ali, Shakoor, Mohammed, Alsalama, Kahraman, Yusuf, Abdullah, Fatima Montemor, Helal (CR17) 2018; 457 Walsh, Ponce De Leon (CR29) 2014; 92 Narasimman, Pushpavanama, Periasamy (CR54) 2012; 30 CR45 Sheu, Huang, Tsai, Hou (CR31) 2013; 235 Hou, Hwu, Ke, Ger (CR18) 2006; 100 CR41 Xue, Shen, Li, Li, Si (CR16) 2010; 97–101 Safavi, Rasooli (CR21) 2019; 372 Raghavendra, Basavarajappa, Sogalad (CR39) 2020; 15 Khedekar, Gosavi, Gogte, Brahmankar (CR42) 2016; 137 Luke (CR5) 1986; 64 Tian, Xu (CR14) 2011; 257 Safavi, Fathi, Mirzazadeh, Ansarian, Ahadzadeh (CR26) 2020; 37 Xing, Wang, Jiang, Liu, Zhu, Ji (CR53) 2020; 181 Lelevic, Walsh (CR3) 2019; 369 CR13 Low, Wills, Walsh (CR28) 2006; 201 Bakhit, Akbari (CR33) 2013; 560 Zhou, Zhang, Nie, Zhu, Zhang, Cao, Zhang (CR19) 2016; 26 Zhou, Zhang, Wang (CR15) 2008; 18 Li, Zhang, Mei, Miao (CR27) 2020; 823 Pillai, Rajendra, Sharma (CR10) 2012; 9 Pouladi, Shariat, Bahrololoom (CR12) 2012; 213 Safavi, Babaei, Ansarian, Ahadzadeh (CR25) 2019; 45 Nava, Davalos, Martinez-Hernandez, Manriquez, Meas, Ortega-Borges, Pérez-Bueno, Trejo (CR9) 2013; 8 Cai, Jiang, Zhang, Ji (CR50) 2014; 40 Zoikis-Karathanasis, Pavlatou, Spyrellis (CR30) 2010; 494 Sharifalhoseini, Entezari, Shahidi (CR44) 2016; 464 Holmberg, Erdemir (CR1) 2017; 5 Jeyaraj, Arulshri, Sivasakthivel (CR38) 2015; 33 Morikawa, Nakade, Yokoi, Fukumoto, Iwakura (CR47) 1997; 42 Daly, Barry (CR4) 2003; 48 Yu, Zeng, Zhao, Li, Wu, Xue (CR11) 2013; 427 Zhou, Shen, Jin, Zheng (CR51) 2012; 22 11342_CR6 11342_CR13 FC Walsh (11342_CR29) 2014; 92 S Pouladi (11342_CR12) 2012; 213 S Jeyaraj (11342_CR38) 2015; 33 T Morikawa (11342_CR47) 1997; 42 D Khedekar (11342_CR42) 2016; 137 O Berkh (11342_CR8) 1996; 14 ST Aruna (11342_CR37) 2011; 29 B Bahadormanesh (11342_CR32) 2010; 504 CR Raghavendra (11342_CR36) 2016; 149 C Low (11342_CR28) 2006; 201 MS Safavi (11342_CR26) 2020; 37 Z Sharifalhoseini (11342_CR44) 2016; 464 BP Daly (11342_CR4) 2003; 48 K Holmberg (11342_CR1) 2017; 5 YR Zhou (11342_CR19) 2016; 26 J Fransaer (11342_CR46) 1992; 139 A Zoikis-Karathanasis (11342_CR30) 2010; 494 11342_CR45 P Narasimman (11342_CR54) 2012; 30 L Chang (11342_CR49) 2008; 155 11342_CR41 L Tian (11342_CR14) 2011; 257 P Kutilek (11342_CR56) 2011; 13 D Gierlotka (11342_CR20) 1997; 27 M Dehestani (11342_CR43) 2021; 179 YB Zhou (11342_CR15) 2008; 18 N Guglielmi (11342_CR55) 1972; 119 XW Zhou (11342_CR51) 2012; 22 HH Sheu (11342_CR31) 2013; 235 11342_CR35 S Jeyaraj (11342_CR40) 2015; 3 L Wang (11342_CR7) 2006; 200 B Li (11342_CR27) 2020; 823 DA Luke (11342_CR5) 1986; 64 X Zhou (11342_CR23) 2018; 11 P Berçot (11342_CR34) 2002; 157 M Fathi (11342_CR24) 2019; 51 YJ Xue (11342_CR16) 2010; 97–101 F Cai (11342_CR50) 2014; 40 MS Safavi (11342_CR21) 2019; 372 CR Raghavendra (11342_CR39) 2020; 15 A Lelevic (11342_CR3) 2019; 369 Q Yu (11342_CR11) 2013; 427 S Shibli (11342_CR52) 2013; 38 A BahgatRadwan (11342_CR17) 2018; 457 S Xing (11342_CR53) 2020; 181 CS Lin (11342_CR48) 2005; 152 J Sudagar (11342_CR2) 2013; 571 KH Hou (11342_CR18) 2006; 100 A Zoikis-Karathanasis (11342_CR22) 2009; 54 B Bakhit (11342_CR33) 2013; 560 D Nava (11342_CR9) 2013; 8 AM Pillai (11342_CR10) 2012; 9 MS Safavi (11342_CR25) 2019; 45 |
| References_xml | – ident: CR45 – volume: 11 start-page: 1124 issue: 7 year: 2018 ident: CR23 article-title: Electrochemical deposition and nucleation/growth mechanism of Ni–Co–Y O multiple coatings publication-title: Materials doi: 10.3390/ma11071124 – volume: 179 start-page: 109423 year: 2021 ident: CR43 article-title: An improved optimization model to predict the microhardness of Ni/Al O nanocomposite coatings prepared by electrodeposition: a hybrid artificial neural network-modified particle swarm optimization approach publication-title: Measurement doi: 10.1016/j.measurement.2021.109423 – volume: 9 start-page: 785 issue: 6 year: 2012 end-page: 797 ident: CR10 article-title: Electrodeposited nickel–phosphorous (Ni– P) alloy coating: an in-depth study of its preparation, properties, and structural transitions publication-title: J Coat Technol Res doi: 10.1007/s11998-012-9411-0 – volume: 51 start-page: 897 issue: 2 year: 2019 end-page: 908 ident: CR24 article-title: A promising horizon in mechanical and corrosion properties improvement of Ni-Mo coatings through incorporation of Y O nanoparticles publication-title: Metall Mater Trans A doi: 10.1007/s11661-019-05559-5 – volume: 100 start-page: 54 issue: 1 year: 2006 end-page: 59 ident: CR18 article-title: Ni–P–SiC composite produced by pulse and direct current plating publication-title: Mater Chem Phys doi: 10.1016/j.matchemphys.2005.12.016 – volume: 201 start-page: 371 issue: 1–2 year: 2006 end-page: 383 ident: CR28 article-title: Electrodeposition of composite coatings containing nanoparticles in a metal deposit publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2005.11.123 – volume: 38 start-page: 2271 issue: 5 year: 2013 end-page: 2282 ident: CR52 article-title: Development of Fe O –TiO mixed oxide incorporated Ni–P coating for electrocatalytic hydrogen evolution reaction publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2012.12.009 – volume: 22 start-page: 1981 issue: 8 year: 2012 end-page: 1988 ident: CR51 article-title: Microstructure and depositional mechanism of Ni–P coatings with nano-ceria particles by pulse electrodeposition publication-title: Trans Nonferrous Metals Soc China doi: 10.1016/s1003-6326(11)61417-9 – volume: 152 start-page: C370 issue: 6 year: 2005 ident: CR48 article-title: Structural evolution and internal stress of nickel-phosphorus electrodeposits publication-title: J Electrochem Soc doi: 10.1149/1.1901064 – ident: CR35 – volume: 494 start-page: 396 issue: 1–2 year: 2010 end-page: 403 ident: CR30 article-title: Pulse electrodeposition of Ni–P matrix composite coatings reinforced by SiC particles publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2010.01.057 – volume: 37 start-page: 226 issue: 2 year: 2020 end-page: 235 ident: CR26 article-title: Perspectives in corrosion-performance of Ni–Cu coatings by adding Y2O3 nanoparticles publication-title: Surf Eng doi: 10.1080/02670844.2020.1715543 – volume: 213 start-page: 33 year: 2012 end-page: 40 ident: CR12 article-title: Electrodeposition and characterization of Ni–Zn–P and Ni–Zn–P/nano-SiC coatings publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2012.10.011 – volume: 457 start-page: 956 year: 2018 end-page: 967 ident: CR17 article-title: Properties enhancement of Ni-P electrodeposited coatings by the incorporation of nanoscale Y O particles publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2018.06.241 – volume: 372 start-page: 252 year: 2019 end-page: 259 ident: CR21 article-title: Ni-P-TiO nanocomposite coatings with uniformly dispersed Ni Ti intermetallics: effects of current density and post heat treatment publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2019.05.058 – volume: 26 start-page: 2976 issue: 11 year: 2016 end-page: 2987 ident: CR19 article-title: Electrodeposition and corrosion resistance of Ni–P–TiN composite coating on AZ91D magnesium alloy publication-title: Trans Nonferr Metals Soc China doi: 10.1016/s1003-6326(16)64428-x – volume: 33 start-page: 249 issue: 5 year: 2015 end-page: 264 ident: CR38 article-title: Effects of process parameters on microhardness of electrodeposited Ni-Al composite coating using Taguchi method publication-title: Port Electrochim Acta doi: 10.4152/pea.pea.20150524 – volume: 560 start-page: 92 year: 2013 end-page: 104 ident: CR33 article-title: Synthesis and characterization of Ni–Co/SiC nanocomposite coatings using sediment co-deposition technique publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2013.01.122 – volume: 40 start-page: 15105 issue: 9 year: 2014 end-page: 15111 ident: CR50 article-title: Synthesis and characterization of Ni–Al–Y O composite coatings with different Y O particle content publication-title: Ceram Int doi: 10.1016/j.ceramint.2014.06.123 – volume: 427 start-page: 1 year: 2013 end-page: 6 ident: CR11 article-title: Fabrication of adhesive superhydrophobic Ni-Cu-P alloy coatings with high mechanical strength by one step electrodeposition publication-title: Colloids Surfaces A : Physicochem Eng Aspects doi: 10.1016/j.colsurfa.2013.02.067 – volume: 235 start-page: 529 year: 2013 end-page: 535 ident: CR31 article-title: Effects of plating parameters on the Ni–P–Al O composite coatings prepared by pulse and direct current plating publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2013.08.020 – volume: 14 start-page: 323 issue: 3–4 year: 1996 end-page: 342 ident: CR8 article-title: Electrodeposition and properties of Ni-P alloys and their composites - a literature survey publication-title: Corros Rev doi: 10.1515/corrrev.1996.14.3-4.323 – volume: 139 start-page: 413 issue: 2 year: 1992 end-page: 425 ident: CR46 article-title: Analysis of the electrolytic code position of non-Brownian particles with metals publication-title: J Electrochem Soc doi: 10.1149/1.2069233 – volume: 64 start-page: 99 issue: 1 year: 1986 end-page: 104 ident: CR5 article-title: Nickel-phosphorus electrodeposits publication-title: Transactions of the IMF doi: 10.1080/00202967.1986.11870744 – volume: 571 start-page: 183 year: 2013 end-page: 204 ident: CR2 article-title: Electroless nickel, alloy, composite and nano coatings – a critical review publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2013.03.107 – volume: 369 start-page: 198 year: 2019 end-page: 220 ident: CR3 article-title: Electrodeposition of Ni P alloy coatings: a review publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2019.03.055 – volume: 155 start-page: D57 issue: 1 year: 2008 ident: CR49 article-title: Electrodeposition of Ni–P alloys from a sulfamate electrolyte publication-title: J Electrochem Soc doi: 10.1149/1.2803516 – volume: 54 start-page: 2563 issue: 9 year: 2009 end-page: 2570 ident: CR22 article-title: The effect of heat treatment on the structure and hardness of pulse electrodeposited Ni-P–WC composite coatings publication-title: Electrochim Acta doi: 10.1016/j.electacta.2008.07.027 – volume: 42 start-page: 115 issue: 1 year: 1997 end-page: 118 ident: CR47 article-title: Electrodeposition of Ni-P alloys from Ni-citrate bath publication-title: Electrochim Acta doi: 10.1016/0013-4686(96)00173-9 – volume: 45 start-page: 10951 issue: 8 year: 2019 end-page: 10960 ident: CR25 article-title: Incorporation of Y2O3 nanoparticles and glycerol as an appropriate approach for corrosion resistance improvement of Ni-Fe alloy coatings publication-title: Ceram Int doi: 10.1016/j.ceramint.2019.02.177 – volume: 18 start-page: 1122 issue: 5 year: 2008 end-page: 1127 ident: CR15 article-title: Effect of Y O on microstructure and oxidation of chromizing coating publication-title: Trans Nonferr Metals Soc China doi: 10.1016/s1003-6326(08)60192-2 – volume: 504 start-page: 514 issue: 2 year: 2010 end-page: 518 ident: CR32 article-title: The kinetics of Ni–Co/SiC composite coatings electrodeposition publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2010.05.154 – ident: CR6 – volume: 29 start-page: 23 issue: 1 year: 2011 end-page: 37 ident: CR37 article-title: Optimization of the properties of electrodeposited Ni-YSZ composites using Taguchi method and regression analysis publication-title: Port Electrochim Acta doi: 10.4152/pea.201101023 – volume: 3 start-page: 283 issue: 3 year: 2015 end-page: 288 ident: CR40 article-title: Effects of process parameters on microhardness of electrodeopsited Ni-Fly ash-SiC composite coatings using Taguchi approach publication-title: Int J Eng Tech Res – volume: 119 start-page: 1009 issue: 8 year: 1972 ident: CR55 article-title: Kinetics of the deposition of inert particles from electrolytic baths publication-title: J Electrochem Soc doi: 10.1149/1.2404383 – volume: 13 start-page: 87 issue: 3 year: 2011 end-page: 94 ident: CR56 article-title: The Procedure of Evalu- ating the Practical Adhesion Strength of New Biocompatible Nano-and Micro-Thin Films in Accordance with International Standards publication-title: Acta of Bioengineering and Biomechanics – volume: 257 start-page: 7615 issue: 17 year: 2011 end-page: 7620 ident: CR14 article-title: Electrodeposition and characterization of Ni–Y O composite publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2011.03.140 – volume: 464 start-page: 291 year: 2016 end-page: 300 ident: CR44 article-title: Mechanistic investigation of the influence of phosphoric and boric acids in the formation of homogeneous Ni–P/ZnO-SiO coatings publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2015.11.023 – volume: 200 start-page: 3719 issue: 12–13 year: 2006 end-page: 3726 ident: CR7 article-title: A novel electrodeposited Ni–P gradient deposit for replacement of conventional hard chromium publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2004.10.016 – volume: 5 start-page: 263 issue: 3 year: 2017 end-page: 284 ident: CR1 article-title: Influence of tribology on global energy consumption, costs and emissions publication-title: Friction doi: 10.1007/s40544-017-0183-5 – volume: 181 start-page: 109665 year: 2020 ident: CR53 article-title: Influence of Y O nanoparticles on microstructures and properties of electrodeposited Ni–W–Y O nanocrystalline coatings publication-title: Vacuum doi: 10.1016/j.vacuum.2020.109665 – volume: 15 start-page: 201 issue: 3 year: 2020 end-page: 212 ident: CR39 article-title: Study on dry sliding wear behaviour of nanocomposite coatings – an extended Taguchi’s method publication-title: Tribol Mater Surfaces Interfaces doi: 10.1080/17515831.2020.1838097 – volume: 30 start-page: 1 issue: 1 year: 2012 end-page: 14 ident: CR54 article-title: Effect of surfactants on the electrodeposition of Ni-SiC composites publication-title: Port Electrochim Acta doi: 10.4152/pea.201201001 – volume: 8 start-page: 2670 issue: 2 year: 2013 end-page: 2681 ident: CR9 article-title: Effects of heat treatment on the tribological and corrosion properties of electrodeposited Ni-P alloys publication-title: Int J Electrochem Sci – volume: 149 start-page: 012110 year: 2016 ident: CR36 article-title: Electrodeposition of Ni-Al O nano composite coating and evaluation of wear characteristics publication-title: IOP Conf Ser: Mater Sci Eng doi: 10.1088/1757-899x/149/1/012110 – volume: 97–101 start-page: 1235 year: 2010 end-page: 1238 ident: CR16 article-title: Corrosion resistance of Ni-Y O composite coating prepared by electrodeposition under ultrasonic condition publication-title: Adv Mater Res doi: 10.4028/www.scientific.net/amr.97-101.1235 – ident: CR13 – volume: 48 start-page: 326 issue: 5 year: 2003 end-page: 338 ident: CR4 article-title: Electrochemical nickel–phosphorus alloy formation publication-title: Int Mater Rev doi: 10.1179/095066003225008482 – volume: 137 start-page: 41 year: 2016 end-page: 47 ident: CR42 article-title: Optimization of process parameters of nickel – chromium electroplating for thickness variation using genetic algorithm publication-title: Adv Intell Syst Res – ident: CR41 – volume: 27 start-page: 1349 issue: 12 year: 1997 end-page: 1354 ident: CR20 article-title: Production and properties of electrolytic Ni-P-TiO composite layers publication-title: Journal of Applied Electrochemistry doi: 10.1023/a:1018416927715 – volume: 823 start-page: 153888 year: 2020 ident: CR27 article-title: Fabrication of Ni–B/TiC–Y2O3 nanocomposites by one-step electrodeposition at different duty cycle and evaluation of structural, surface and performance as protective coating publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2020.153888 – volume: 92 start-page: 83 issue: 2 year: 2014 end-page: 98 ident: CR29 article-title: A review of the electrodeposition of metal matrix composite coatings by inclusion of particles in a metal layer: an established and diversifying technology publication-title: Trans IMF doi: 10.1179/0020296713z.000000000161 – volume: 157 start-page: 282 issue: 2–3 year: 2002 end-page: 289 ident: CR34 article-title: Electrolytic composite Ni–PTFE coatings: an adaptation of Guglielmi’s model for the phenomena of incorporation publication-title: Surf Coat Technol doi: 10.1016/s0257-8972(02)00180-9 – volume: 9 start-page: 785 issue: 6 year: 2012 ident: 11342_CR10 publication-title: J Coat Technol Res doi: 10.1007/s11998-012-9411-0 – volume: 372 start-page: 252 year: 2019 ident: 11342_CR21 publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2019.05.058 – volume: 48 start-page: 326 issue: 5 year: 2003 ident: 11342_CR4 publication-title: Int Mater Rev doi: 10.1179/095066003225008482 – volume: 152 start-page: C370 issue: 6 year: 2005 ident: 11342_CR48 publication-title: J Electrochem Soc doi: 10.1149/1.1901064 – volume: 15 start-page: 201 issue: 3 year: 2020 ident: 11342_CR39 publication-title: Tribol Mater Surfaces Interfaces doi: 10.1080/17515831.2020.1838097 – volume: 27 start-page: 1349 issue: 12 year: 1997 ident: 11342_CR20 publication-title: Journal of Applied Electrochemistry doi: 10.1023/a:1018416927715 – volume: 179 start-page: 109423 year: 2021 ident: 11342_CR43 publication-title: Measurement doi: 10.1016/j.measurement.2021.109423 – volume: 37 start-page: 226 issue: 2 year: 2020 ident: 11342_CR26 publication-title: Surf Eng doi: 10.1080/02670844.2020.1715543 – volume: 97–101 start-page: 1235 year: 2010 ident: 11342_CR16 publication-title: Adv Mater Res doi: 10.4028/www.scientific.net/amr.97-101.1235 – volume: 8 start-page: 2670 issue: 2 year: 2013 ident: 11342_CR9 publication-title: Int J Electrochem Sci doi: 10.1016/S1452-3981(23)14339-2 – volume: 235 start-page: 529 year: 2013 ident: 11342_CR31 publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2013.08.020 – volume: 201 start-page: 371 issue: 1–2 year: 2006 ident: 11342_CR28 publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2005.11.123 – ident: 11342_CR45 doi: 10.1002/9780470602638.ch3 – volume: 64 start-page: 99 issue: 1 year: 1986 ident: 11342_CR5 publication-title: Transactions of the IMF doi: 10.1080/00202967.1986.11870744 – volume: 42 start-page: 115 issue: 1 year: 1997 ident: 11342_CR47 publication-title: Electrochim Acta doi: 10.1016/0013-4686(96)00173-9 – volume: 823 start-page: 153888 year: 2020 ident: 11342_CR27 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2020.153888 – volume: 11 start-page: 1124 issue: 7 year: 2018 ident: 11342_CR23 publication-title: Materials doi: 10.3390/ma11071124 – volume: 157 start-page: 282 issue: 2–3 year: 2002 ident: 11342_CR34 publication-title: Surf Coat Technol doi: 10.1016/s0257-8972(02)00180-9 – volume: 137 start-page: 41 year: 2016 ident: 11342_CR42 publication-title: Adv Intell Syst Res – volume: 571 start-page: 183 year: 2013 ident: 11342_CR2 publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2013.03.107 – volume: 119 start-page: 1009 issue: 8 year: 1972 ident: 11342_CR55 publication-title: J Electrochem Soc doi: 10.1149/1.2404383 – volume: 560 start-page: 92 year: 2013 ident: 11342_CR33 publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2013.01.122 – volume: 213 start-page: 33 year: 2012 ident: 11342_CR12 publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2012.10.011 – ident: 11342_CR35 – volume: 22 start-page: 1981 issue: 8 year: 2012 ident: 11342_CR51 publication-title: Trans Nonferrous Metals Soc China doi: 10.1016/s1003-6326(11)61417-9 – volume: 369 start-page: 198 year: 2019 ident: 11342_CR3 publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2019.03.055 – ident: 11342_CR6 doi: 10.1201/b18311 – volume: 494 start-page: 396 issue: 1–2 year: 2010 ident: 11342_CR30 publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2010.01.057 – volume: 92 start-page: 83 issue: 2 year: 2014 ident: 11342_CR29 publication-title: Trans IMF doi: 10.1179/0020296713z.000000000161 – volume: 3 start-page: 283 issue: 3 year: 2015 ident: 11342_CR40 publication-title: Int J Eng Tech Res – volume: 100 start-page: 54 issue: 1 year: 2006 ident: 11342_CR18 publication-title: Mater Chem Phys doi: 10.1016/j.matchemphys.2005.12.016 – volume: 464 start-page: 291 year: 2016 ident: 11342_CR44 publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2015.11.023 – volume: 45 start-page: 10951 issue: 8 year: 2019 ident: 11342_CR25 publication-title: Ceram Int doi: 10.1016/j.ceramint.2019.02.177 – volume: 181 start-page: 109665 year: 2020 ident: 11342_CR53 publication-title: Vacuum doi: 10.1016/j.vacuum.2020.109665 – volume: 149 start-page: 012110 year: 2016 ident: 11342_CR36 publication-title: IOP Conf Ser: Mater Sci Eng doi: 10.1088/1757-899x/149/1/012110 – volume: 200 start-page: 3719 issue: 12–13 year: 2006 ident: 11342_CR7 publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2004.10.016 – volume: 5 start-page: 263 issue: 3 year: 2017 ident: 11342_CR1 publication-title: Friction doi: 10.1007/s40544-017-0183-5 – ident: 11342_CR13 – volume: 38 start-page: 2271 issue: 5 year: 2013 ident: 11342_CR52 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2012.12.009 – volume: 29 start-page: 23 issue: 1 year: 2011 ident: 11342_CR37 publication-title: Port Electrochim Acta doi: 10.4152/pea.201101023 – volume: 40 start-page: 15105 issue: 9 year: 2014 ident: 11342_CR50 publication-title: Ceram Int doi: 10.1016/j.ceramint.2014.06.123 – volume: 14 start-page: 323 issue: 3–4 year: 1996 ident: 11342_CR8 publication-title: Corros Rev doi: 10.1515/corrrev.1996.14.3-4.323 – volume: 427 start-page: 1 year: 2013 ident: 11342_CR11 publication-title: Colloids Surfaces A : Physicochem Eng Aspects doi: 10.1016/j.colsurfa.2013.02.067 – volume: 51 start-page: 897 issue: 2 year: 2019 ident: 11342_CR24 publication-title: Metall Mater Trans A doi: 10.1007/s11661-019-05559-5 – volume: 155 start-page: D57 issue: 1 year: 2008 ident: 11342_CR49 publication-title: J Electrochem Soc doi: 10.1149/1.2803516 – volume: 457 start-page: 956 year: 2018 ident: 11342_CR17 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2018.06.241 – volume: 13 start-page: 87 issue: 3 year: 2011 ident: 11342_CR56 publication-title: Acta of Bioengineering and Biomechanics – volume: 26 start-page: 2976 issue: 11 year: 2016 ident: 11342_CR19 publication-title: Trans Nonferr Metals Soc China doi: 10.1016/s1003-6326(16)64428-x – volume: 30 start-page: 1 issue: 1 year: 2012 ident: 11342_CR54 publication-title: Port Electrochim Acta doi: 10.4152/pea.201201001 – volume: 504 start-page: 514 issue: 2 year: 2010 ident: 11342_CR32 publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2010.05.154 – volume: 257 start-page: 7615 issue: 17 year: 2011 ident: 11342_CR14 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2011.03.140 – ident: 11342_CR41 doi: 10.21203/rs.3.rs-937785/v1 – volume: 18 start-page: 1122 issue: 5 year: 2008 ident: 11342_CR15 publication-title: Trans Nonferr Metals Soc China doi: 10.1016/s1003-6326(08)60192-2 – volume: 33 start-page: 249 issue: 5 year: 2015 ident: 11342_CR38 publication-title: Port Electrochim Acta doi: 10.4152/pea.pea.20150524 – volume: 139 start-page: 413 issue: 2 year: 1992 ident: 11342_CR46 publication-title: J Electrochem Soc doi: 10.1149/1.2069233 – volume: 54 start-page: 2563 issue: 9 year: 2009 ident: 11342_CR22 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2008.07.027 |
| SSID | ssj0016168 ssib034539549 ssib019759004 ssib029851711 |
| Score | 2.4081042 |
| Snippet | The nature and complexity of the manufacturing process for composite coatings make it difficult to predict or even measure the technical and economic... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3995 |
| SubjectTerms | CAE) and Design Cathodes Coatings Computer-Aided Engineering (CAD Current efficiency Efficiency Electrodeposition Engineering Genetic algorithms Industrial and Production Engineering Manufacturing Mathematical models Mechanical Engineering Mechanical properties Media Management Microhardness Optimization Original Article Parameter identification Process parameters Regression analysis Yttrium oxide |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwELbK9gIHxK9YKMgHbmCR2I5jHxACtFWFxFIhKpVTNPFPW6mbLLvbAz3xDrwFj8WT4HGSTUGihyiJkjiHGXsmmfm-j5Dn3FhjQxGYlUEymQfNNCjOjA8WMlFqMIhG_jhXB0fyw3FxvEPmAxYG2yqHNTEt1K61-I_8Fde5KAtlSvFm-Y2hahRWVwcJDeilFdzrRDF2g-xyZMaakN13s_nh58HDclOiSubWA7lBafrRw4UsRFf36usQKk9guvihonEq6h52k8B3iXqGxZjH8lxIzi7_Dm1jvvpPiTVFrv075HafctK3nY_cJTu-uUduXSEivE9-za4Q_dOzkXujbSg0jrZxYVn0iE3aBrqA5gIhEQnjSJcd2MCv8dL87PePn4dx-8o_CYod69gW5uMRYIf1mtbf6dDFSDHHhRVd-ZOuHbehnaI1xeAaX9vQ6N8Is6RwfhKtsTldPCBH-7Mv7w9Yr-LAbJzeG-ayYMugZNzXxusags1crnwQVmYWuLZKZ2AAoPTWae-4jTmVAi_juZFWPCSTpm38I0K1y2rpvYhJYCowQwa8cKp2hhegizAl-WCAyvYU56i0cV5tyZmT0apotCoZrbqckhfbZ5Ydwce1d-8Ndq36yb6uRteckpeDrcfL_x_t8fWjPSE3Udy-a0zbI5PN6sI_jSnQpn7W-_UfafEFYA priority: 102 providerName: ProQuest |
| Title | Experimental investigation and optimization of manufacturing processes of Ni–P–Y2O3 composite coatings by multiple linear regression method based on genetic algorithm |
| URI | https://link.springer.com/article/10.1007/s00170-023-11342-z https://www.proquest.com/docview/2813756973 |
| Volume | 126 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1433-3015 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: ABDBF dateStart: 20030501 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1433-3015 dateEnd: 20241103 omitProxy: false ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: ADMLS dateStart: 19850901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-3015 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-3015 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1433-3015 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: 8FG dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-3015 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-3015 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB7R9gIHxK_YUlY-cANLie049nEX7bYCsVSIldpTNHHsslI3qXa3B3riHXgLHosnwXaS3YIAiUPkRHbiw8x4Jpr5vgF4ybTRxmWOGuEEFalTVKFkVFtnMOG5Qh3QyO9n8mQu3p5lZx0obN1Xu_cpyXhSb8FukeqFeh9D05QLRm_24CALdF5ei-ds1GtRqvPQCXOrZUyH9vM7LeYi421uq8s1yDQC5vzPiArmpjpozZ_3_NV97WLS39Ko0TtNH8D9Lqwko1YPHsIdWz-Ce7fIBh_D98ktMn-y2PFrNDXBuiKNPzyWHSqTNI4ssb4OsIeIYyRXLaDArsPUbPHj67dTf52zD5yEqvRQ-mX9HYYq6jUpv5C-UpGEOBZXZGUv2pLbmrRdq0lwoH7bmngdDlBKgpcXzWqx-bx8AvPp5NObE9p1aqDGm_CGVokzuZPCj6W2qkRnkiqV1nEjEoNMGakS1IiYW1MpWzHj4yaJVvhnLQx_Cvt1U9tnQFSVlMJa7gO9mETGBFlWybLSLEOVuQGkvQAK09GYh24al8WWgDkKrfBCK6LQipsBvNq-c9WSePxz9VEv16Iz6HXBVMrzTOqcD-B1L-vd9N-_dvh_y5_D3dDQvi1GO4L9zeravvBhz6Ycwp6aHg_hYDQdj2dhPD5_N_HjeDI7_TiMNvATaEMBrA |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKewAOiF-xUMAHOIFFYjuJfagQha22tF0q1ErlFBz_lErdZNndCrUn3oG34CH6MDwJY8fZLUj01kOUREmcwzfjGXvmm0HoOZVaapc5ornjhKdOEKFySqR1WiWsEEp6NvLOMB_s8w8H2cESOu-4MD6tspsTw0RtGu33yF9TkbIiy2XB3oy_Ed81ykdXuxYaKrZWMGuhxFgkdmzZ0--whJuubb4HvF9QutHfezcgscsA0SB-M2ISpwuXczhX0opKOZ2YNLeOaZ5oRYXORaKkUqqw2ghrqAabnyvL4V5yzWDca2iFMy5h8bey3h_ufuokOpWF78o5l3gqwcEpFhrFeMbaOFuMe-RpIO_Bwkh41ReR5hPIfqHUDQEbS9KUcUrO_jalC__4n5BusJQbt9Gt6OLit61M3kFLtr6Lbl4ofHgP_epfaCyAjxa1Ppoaq9rgBiayUWSI4sbhkapPPAUjcCrxuCU32Kl_NDz6_ePnLhyf6UeGfYa8T0OzcKV8RvcUV6e4y5rE3qdWEzyxh236b43bDtrYG3P4bY1BnzytE6vjQ0B_9nV0H-1fCZ4P0HLd1PYhwsIkFbeWgdMZAtoqUTQzeWUkzZTIXA-lHQCljiXVfWeP43JeDDqAVgJoZQCtPOuhl_Nvxm1BkUvfXu1wLePkMi0XqtBDrzqsF4__P9qjy0d7hq4P9na2y-3N4dZjdIN6UQv7TatoeTY5sU_A_ZpVT6OMY_TlqtXqDy32ReI |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELagSAgOiF-xtIAP3MBqYjuOfaygq_K39MBK5RRN_NOu1HVWu-mBnvoOvAWPxZNgO8nuggCJQ5REduLDjDMTzfd9g9ALqrTSrnBEc8cJz50kEgQlyjoNGSslqMhG_jgRR1P-7qQ42WLxJ7T7UJLsOA1Rpcm3-wvj9tfEtyT7QkK8IXnOOCWX19ENHoUSgkdP6cHgUbkqY1fMtcdRFVvRbzya8YJ1da6-7iDyRJ4LPyYybj3Z02z-vOavoWyTn_5WUk2RanwX3elTTHzQ-cQ9dM36--j2lvDgA_T9cEvYH882WhuNx-ANbsKHZN4zNHHj8Bz8RaRAJE4jXnTkAruKQ5PZj6tvx-H4Qj8xHBHqEQZmwxVERPUK11_xgFrEMaeFJV7a0w5-63HXwRrHYBqW9Tj4c6RVYjg_bZaz9mz-EE3Hh59fH5G-awPRYTu3xGROl07wcK6VlTU4nZlcWMc0zzRQqYXMQAFAabWR1lAdcigBlod7xTV7hHZ84-1jhKXJam4tC0lfKihDBrQwojaKFiALN0L5YIBK95LmsbPGebUWY05Gq4LRqmS06nKEXq6fWXSCHv-cvTfYteo396qiMmdlIVTJRujVYOvN8N_f9uT_pj9HN4_fjKsPbyfvd9Gt2Oe-w6jtoZ12eWGfhmyorZ8lh_8J7ycDRA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+investigation+and+optimization+of+manufacturing+processes+of+Ni%E2%80%93P%E2%80%93Y2O3+composite+coatings+by+multiple+linear+regression+method+based+on+genetic+algorithm&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Abdesselam%2C+Yassine&rft.au=Rezgui%2C+Imane&rft.au=Naoun%2C+Mahiedine&rft.au=Belloufi%2C+Abderrahim&rft.date=2023-06-01&rft.pub=Springer+London&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=126&rft.issue=9-10&rft.spage=3995&rft.epage=4019&rft_id=info:doi/10.1007%2Fs00170-023-11342-z&rft.externalDocID=10_1007_s00170_023_11342_z |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon |