Imagined word pairs recognition from non-invasive brain signals using Hilbert transform

With the advent of new algorithms, brain-computer interfacing has been extensively used in medical and non-medical fields. In this regard, an experiment was conducted by the authors to recognize the imagined speech, the results of which are reported in this paper. This work can act as a speech prost...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of system assurance engineering and management Vol. 13; no. 1; pp. 385 - 394
Main Authors Agarwal, Prabhakar, Kumar, Sandeep
Format Journal Article
LanguageEnglish
Published New Delhi Springer India 01.02.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0975-6809
0976-4348
DOI10.1007/s13198-021-01283-9

Cover

Abstract With the advent of new algorithms, brain-computer interfacing has been extensively used in medical and non-medical fields. In this regard, an experiment was conducted by the authors to recognize the imagined speech, the results of which are reported in this paper. This work can act as a speech prosthesis for completely paralyzed patients who cannot communicate normally. Thirteen subjects imagined five English words (sos, stop, medicine, comehere, washroom) while their electroencephalogram (EEG) signals were recorded simultaneously. The word pairs were analyzed in six natural frequencies of the brain. The envelopes of analytical signals acquired from Hilbert transform were calculated for all the frequency bands and the resulting features were classified using seven classifiers. The maximum accuracy reached up to 88.36%. The experimental study showed that alpha and theta frequency bands were able to classify the highest amount of imagined speech with a maximum average accuracy of 72.73% and 69.41% respectively. The results were comparable to state-of-the-art methods. The findings reported in this work will encourage the research community to use non-invasive modalities like EEG for exploring more in this area.
AbstractList With the advent of new algorithms, brain-computer interfacing has been extensively used in medical and non-medical fields. In this regard, an experiment was conducted by the authors to recognize the imagined speech, the results of which are reported in this paper. This work can act as a speech prosthesis for completely paralyzed patients who cannot communicate normally. Thirteen subjects imagined five English words (sos, stop, medicine, comehere, washroom) while their electroencephalogram (EEG) signals were recorded simultaneously. The word pairs were analyzed in six natural frequencies of the brain. The envelopes of analytical signals acquired from Hilbert transform were calculated for all the frequency bands and the resulting features were classified using seven classifiers. The maximum accuracy reached up to 88.36%. The experimental study showed that alpha and theta frequency bands were able to classify the highest amount of imagined speech with a maximum average accuracy of 72.73% and 69.41% respectively. The results were comparable to state-of-the-art methods. The findings reported in this work will encourage the research community to use non-invasive modalities like EEG for exploring more in this area.
Author Agarwal, Prabhakar
Kumar, Sandeep
Author_xml – sequence: 1
  givenname: Prabhakar
  surname: Agarwal
  fullname: Agarwal, Prabhakar
  organization: Department of Electronics and Communication Engineering, National Institute of Technology
– sequence: 2
  givenname: Sandeep
  orcidid: 0000-0001-9922-2663
  surname: Kumar
  fullname: Kumar, Sandeep
  email: sandeep@nitdelhi.ac.in
  organization: Department of Electronics and Communication Engineering, National Institute of Technology
BookMark eNp9kM1KAzEURoNUsNa-gKuA6-hNMn9ZSlFbKLgpuAyZTGZI6SQ1mVZ8e9OOILjoKoF7TvLd7xZNnHcGoXsKjxSgfIqUU1ERYJQAZRUn4gpNQZQFyXhWTc73nBQViBs0j3ELkDCasQym6GPVq8460-AvHxq8VzZEHIz2nbOD9Q63wfc4fUisO6pojwbXQVmHo-2c2kV8iNZ1eGl3tQkDHoJysfWhv0PXbRqb-e85Q5vXl81iSdbvb6vF85rolHkgugUGhpvKcEXzptSZoIrXgoGuGyGaps4hzRilhchpQrK6Lkta1RqMoAWfoYfx2X3wnwcTB7n1h3AKJlnBMlHxnEOiqpHSwccYTCu1HdRpvZTX7iQFeSpSjkXKVKQ8FylFUtk_dR9sr8L3ZYmPUkyw60z4S3XB-gF85YgO
CitedBy_id crossref_primary_10_46387_bjesr_1286044
crossref_primary_10_3390_life14111501
crossref_primary_10_1007_s13198_022_01799_8
Cites_doi 10.1016/S1388-2457(98)00038-8
10.1038/214975a0
10.1097/00001756-199306000-00018
10.1088/1741-2560/7/4/046006
10.1300/J184v03n02_01
10.1109/INDICON47234.2019.9028925
10.1007/s13534-020-00152-x
10.1109/ICASSP.2015.7178118
10.3389/fnins.2020.00290
10.1109/78.782222
10.1016/j.neunet.2009.05.008
10.1109/SPIN48934.2020.9070969
10.1007/978-3-319-47653-7
10.1142/S0219477520500352
10.1038/srep25803
10.1016/j.eswa.2016.04.011
10.1109/TBME.2017.2786251
10.1016/j.neucom.2016.10.024
10.1007/s00779-017-1083-4
10.1023/A:1012450327387
10.1088/1741-2552/aa8235
10.1007/s41133-016-0001-z
10.1109/ICPR.2008.4761297
ContentType Journal Article
Copyright The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2021
The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2021.
Copyright_xml – notice: The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2021
– notice: The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2021.
DBID AAYXX
CITATION
DOI 10.1007/s13198-021-01283-9
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 0976-4348
EndPage 394
ExternalDocumentID 10_1007_s13198_021_01283_9
GroupedDBID -EM
06D
0R~
203
29~
2JY
30V
406
40D
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACGFS
ACHSB
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AUKKA
AXYYD
AYJHY
CSCUP
DNIVK
DPUIP
EBLON
EIOEI
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
HG6
HMJXF
HQYDN
HRMNR
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
NPVJJ
NQJWS
O93
O9J
PT4
R89
RLLFE
ROL
RSV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
Z5O
Z7R
Z7X
Z7Z
Z88
ZMTXR
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c319t-cf020e3e8e3a15d7c491a3b920cbd99ddb508e32116951a154bb7718bc0e9163
IEDL.DBID AGYKE
ISSN 0975-6809
IngestDate Wed Sep 17 23:54:54 EDT 2025
Wed Oct 01 03:41:40 EDT 2025
Thu Apr 24 22:52:34 EDT 2025
Fri Feb 21 02:46:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Hilbert transform
Brain-computer interfacing
Imagined speech
Electroencephalogram
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-cf020e3e8e3a15d7c491a3b920cbd99ddb508e32116951a154bb7718bc0e9163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9922-2663
PQID 2624983530
PQPubID 2043907
PageCount 10
ParticipantIDs proquest_journals_2624983530
crossref_citationtrail_10_1007_s13198_021_01283_9
crossref_primary_10_1007_s13198_021_01283_9
springer_journals_10_1007_s13198_021_01283_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New Delhi
PublicationPlace_xml – name: New Delhi
– name: Dordrecht
PublicationTitle International journal of system assurance engineering and management
PublicationTitleAbbrev Int J Syst Assur Eng Manag
PublicationYear 2022
Publisher Springer India
Springer Nature B.V
Publisher_xml – name: Springer India
– name: Springer Nature B.V
References Agarwal P, Kumar S (2021) Transforming imagined thoughts into speech using a covariance-based subset selection method. Indian J Pure Appl Phys 59:180–183. http://nopr.niscair.res.in/handle/123456789/56517
DEWAN EMOccipital alpha rhythm eye position and lens accommodationNature196721497597710.1038/214975a0
Panachakel JT, Ramakrishnan AG, Ananthapadmanabha TV (2019) Decoding imagined speech using wavelet features and deep neural networks. In: 2019 IEEE 16th India council international conference (INDICON). IEEE, Rajkot, India, pp 1–4
DaSallaCSKambaraHSatoMKoikeYSingle-trial classification of vowel speech imagery using common spatial patternsNeural Netw2009221334133910.1016/j.neunet.2009.05.008
Freund Y, Schapire R (1996) Experiments with a new boosting algorithm. In: Proceedings of the thirteenth international conference on machine learning. pp 148–156
Agarwal P, Kale RK, Kumar M, Kumar S (2020) Silent speech classification based upon various feature extraction methods. In: 2020 7th International conference on signal processing and integrated networks (SPIN). IEEE, Noida, India, pp 16–20
DengSSrinivasanRLappasTD’ZmuraMEEG classification of imagined syllable rhythm using Hilbert spectrum methodsJ Neural Eng2010710.1088/1741-2560/7/4/046006
KumarPSainiRRoyPPEnvisioned speech recognition using EEG sensorsPers Ubiquit Comput20182218519910.1007/s00779-017-1083-4
ChapelleOVapnikVBousquetOMukherjeeSChoosing multiple parameters for support vector machinesMach Learn20024613115910.1023/A:10124503273870998.68101
Cooney C, Korik A, Raffaella F, Coyle D (2019) Classification of imagined spoken word-pairs using convolutional neural networks. In: Proceedings of the 8th Graz brain computer interface conference 2019: bridging science and application. Graz University of Technology, Graz, Austria, pp 338–343
MohanchandraKSahaSA communication paradigm using subvocalized speech: translating brain signals into speechAugm Human Res20161310.1007/s41133-016-0001-z
Agarwal P, Kumar S, Singh S (2019) Closed form solutions of various window functions in fractional fourier transform domain. In: 2019 6th International conference on computing for sustainable global development (INDIACom). IEEE, New Delhi, India, pp 64–68
MarpleLComputing the discrete-time “analytic” signal via FFTIEEE Trans Signal Process1999472600260310.1109/78.7822220990.94502
Müller-GerkingJPfurtschellerGFlyvbjergHDesigning optimal spatial filters for single-trial EEG classification in a movement taskClin Neurophysiol199911078779810.1016/S1388-2457(98)00038-8
KumarSDirected searching optimization-based speech enhancement techniqueFluct Noise Lett202019205003510.1142/S0219477520500352
QureshiMNIMinBParkHMulticlass classification of word imagination speech with hybrid connectivity featuresIEEE Trans Biomed Eng2018652168217710.1109/TBME.2017.2786251
Torres-GarcíaAAReyes-GarcíaCAVillaseñor-PinedaLGarcía-AguilarGImplementing a fuzzy inference system in a multi-objective EEG channel selection model for imagined speech classificationExpert Syst Appl20165911210.1016/j.eswa.2016.04.011
Siuly S, Li Y, Zhang Y (2016) EEG signal analysis and classification: techniques and applications, 1st edn. Springer Nature, Cham, Switzerland
HinkeRMHuXStillmanAEFunctional magnetic resonance imaging of Broca’s area during internal speechNeuroReport1993467567810.1097/00001756-199306000-00018
DashDFerrariPWangJDecoding imagined and spoken phrases from non-invasive neural (MEG) signalsFront Neurosci20201429010.3389/fnins.2020.00290
La VaqueTJThe History of EEG Hans Berger: psychophysiologist. A historical vignetteJ Neurotherapy199931910.1300/J184v03n02_01
MartinSBrunnerPIturrateIWord pair classification during imagined speech using direct brain recordingsSci Rep201662580310.1038/srep25803
HuangNEAttoh-OkineNOThe Hilbert-Huang transform in engineering20051Boca RatonCRC Press1073.44001
Zhao S, Rudzicz F (2015) Classifying phonological categories in imagined and articulated speech. In: 2015 IEEE International conference on acoustics, speech and signal processing (ICASSP). IEEE, South Brisbane, QLD, Australia, pp 992–996
NguyenCHKaravasGKArtemiadisPInferring imagined speech using EEG signals: a new approach using Riemannian manifold featuresJ Neural Eng20171510.1088/1741-2552/aa8235
RamadanRAVasilakosAVBrain computer interface: control signals reviewNeurocomputing2017223264410.1016/j.neucom.2016.10.024
KlemGHLüdersHOJasperHHElgerCThe ten-twenty electrode system of the International Federation. The international federation of clinical neurophysiologyElectroencephalogr Clin Neurophysiol Suppl19995236
Seiffert C, Khoshgoftaar TM, Hulse JV, Napolitano A (2008) RUSBoost: Improving classification performance when training data is skewed. In: 2008 19th International conference on pattern recognition. IEEE, Tampa, FL, USA, pp 1–4
PawarDDhageSMulticlass covert speech classification using extreme learning machineBiomed Eng Lett20201021722610.1007/s13534-020-00152-x
D Pawar (1283_CR23) 2020; 10
1283_CR10
RA Ramadan (1283_CR25) 2017; 223
AA Torres-García (1283_CR28) 2016; 59
(1283_CR12) 2005
DEWAN EM (1283_CR9) 1967; 214
1283_CR5
1283_CR3
1283_CR2
O Chapelle (1283_CR4) 2002; 46
1283_CR22
CS DaSalla (1283_CR6) 2009; 22
1283_CR1
1283_CR26
J Müller-Gerking (1283_CR20) 1999; 110
1283_CR27
GH Klem (1283_CR13) 1999; 52
L Marple (1283_CR17) 1999; 47
1283_CR29
S Martin (1283_CR18) 2016; 6
K Mohanchandra (1283_CR19) 2016; 1
CH Nguyen (1283_CR21) 2017; 15
RM Hinke (1283_CR11) 1993; 4
S Deng (1283_CR8) 2010; 7
P Kumar (1283_CR15) 2018; 22
S Kumar (1283_CR14) 2020; 19
D Dash (1283_CR7) 2020; 14
TJ La Vaque (1283_CR16) 1999; 3
MNI Qureshi (1283_CR24) 2018; 65
References_xml – reference: ChapelleOVapnikVBousquetOMukherjeeSChoosing multiple parameters for support vector machinesMach Learn20024613115910.1023/A:10124503273870998.68101
– reference: KumarSDirected searching optimization-based speech enhancement techniqueFluct Noise Lett202019205003510.1142/S0219477520500352
– reference: PawarDDhageSMulticlass covert speech classification using extreme learning machineBiomed Eng Lett20201021722610.1007/s13534-020-00152-x
– reference: DEWAN EMOccipital alpha rhythm eye position and lens accommodationNature196721497597710.1038/214975a0
– reference: HinkeRMHuXStillmanAEFunctional magnetic resonance imaging of Broca’s area during internal speechNeuroReport1993467567810.1097/00001756-199306000-00018
– reference: Müller-GerkingJPfurtschellerGFlyvbjergHDesigning optimal spatial filters for single-trial EEG classification in a movement taskClin Neurophysiol199911078779810.1016/S1388-2457(98)00038-8
– reference: Torres-GarcíaAAReyes-GarcíaCAVillaseñor-PinedaLGarcía-AguilarGImplementing a fuzzy inference system in a multi-objective EEG channel selection model for imagined speech classificationExpert Syst Appl20165911210.1016/j.eswa.2016.04.011
– reference: RamadanRAVasilakosAVBrain computer interface: control signals reviewNeurocomputing2017223264410.1016/j.neucom.2016.10.024
– reference: Freund Y, Schapire R (1996) Experiments with a new boosting algorithm. In: Proceedings of the thirteenth international conference on machine learning. pp 148–156
– reference: MartinSBrunnerPIturrateIWord pair classification during imagined speech using direct brain recordingsSci Rep201662580310.1038/srep25803
– reference: HuangNEAttoh-OkineNOThe Hilbert-Huang transform in engineering20051Boca RatonCRC Press1073.44001
– reference: DaSallaCSKambaraHSatoMKoikeYSingle-trial classification of vowel speech imagery using common spatial patternsNeural Netw2009221334133910.1016/j.neunet.2009.05.008
– reference: Panachakel JT, Ramakrishnan AG, Ananthapadmanabha TV (2019) Decoding imagined speech using wavelet features and deep neural networks. In: 2019 IEEE 16th India council international conference (INDICON). IEEE, Rajkot, India, pp 1–4
– reference: DashDFerrariPWangJDecoding imagined and spoken phrases from non-invasive neural (MEG) signalsFront Neurosci20201429010.3389/fnins.2020.00290
– reference: MarpleLComputing the discrete-time “analytic” signal via FFTIEEE Trans Signal Process1999472600260310.1109/78.7822220990.94502
– reference: Agarwal P, Kale RK, Kumar M, Kumar S (2020) Silent speech classification based upon various feature extraction methods. In: 2020 7th International conference on signal processing and integrated networks (SPIN). IEEE, Noida, India, pp 16–20
– reference: QureshiMNIMinBParkHMulticlass classification of word imagination speech with hybrid connectivity featuresIEEE Trans Biomed Eng2018652168217710.1109/TBME.2017.2786251
– reference: NguyenCHKaravasGKArtemiadisPInferring imagined speech using EEG signals: a new approach using Riemannian manifold featuresJ Neural Eng20171510.1088/1741-2552/aa8235
– reference: Siuly S, Li Y, Zhang Y (2016) EEG signal analysis and classification: techniques and applications, 1st edn. Springer Nature, Cham, Switzerland
– reference: Zhao S, Rudzicz F (2015) Classifying phonological categories in imagined and articulated speech. In: 2015 IEEE International conference on acoustics, speech and signal processing (ICASSP). IEEE, South Brisbane, QLD, Australia, pp 992–996
– reference: La VaqueTJThe History of EEG Hans Berger: psychophysiologist. A historical vignetteJ Neurotherapy199931910.1300/J184v03n02_01
– reference: KumarPSainiRRoyPPEnvisioned speech recognition using EEG sensorsPers Ubiquit Comput20182218519910.1007/s00779-017-1083-4
– reference: Agarwal P, Kumar S (2021) Transforming imagined thoughts into speech using a covariance-based subset selection method. Indian J Pure Appl Phys 59:180–183. http://nopr.niscair.res.in/handle/123456789/56517
– reference: DengSSrinivasanRLappasTD’ZmuraMEEG classification of imagined syllable rhythm using Hilbert spectrum methodsJ Neural Eng2010710.1088/1741-2560/7/4/046006
– reference: KlemGHLüdersHOJasperHHElgerCThe ten-twenty electrode system of the International Federation. The international federation of clinical neurophysiologyElectroencephalogr Clin Neurophysiol Suppl19995236
– reference: Agarwal P, Kumar S, Singh S (2019) Closed form solutions of various window functions in fractional fourier transform domain. In: 2019 6th International conference on computing for sustainable global development (INDIACom). IEEE, New Delhi, India, pp 64–68
– reference: MohanchandraKSahaSA communication paradigm using subvocalized speech: translating brain signals into speechAugm Human Res20161310.1007/s41133-016-0001-z
– reference: Seiffert C, Khoshgoftaar TM, Hulse JV, Napolitano A (2008) RUSBoost: Improving classification performance when training data is skewed. In: 2008 19th International conference on pattern recognition. IEEE, Tampa, FL, USA, pp 1–4
– reference: Cooney C, Korik A, Raffaella F, Coyle D (2019) Classification of imagined spoken word-pairs using convolutional neural networks. In: Proceedings of the 8th Graz brain computer interface conference 2019: bridging science and application. Graz University of Technology, Graz, Austria, pp 338–343
– volume: 110
  start-page: 787
  year: 1999
  ident: 1283_CR20
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(98)00038-8
– volume: 214
  start-page: 975
  year: 1967
  ident: 1283_CR9
  publication-title: Nature
  doi: 10.1038/214975a0
– volume: 4
  start-page: 675
  year: 1993
  ident: 1283_CR11
  publication-title: NeuroReport
  doi: 10.1097/00001756-199306000-00018
– volume: 7
  year: 2010
  ident: 1283_CR8
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/7/4/046006
– volume: 3
  start-page: 1
  year: 1999
  ident: 1283_CR16
  publication-title: J Neurotherapy
  doi: 10.1300/J184v03n02_01
– ident: 1283_CR22
  doi: 10.1109/INDICON47234.2019.9028925
– ident: 1283_CR1
– ident: 1283_CR5
– volume: 10
  start-page: 217
  year: 2020
  ident: 1283_CR23
  publication-title: Biomed Eng Lett
  doi: 10.1007/s13534-020-00152-x
– ident: 1283_CR29
  doi: 10.1109/ICASSP.2015.7178118
– volume: 14
  start-page: 290
  year: 2020
  ident: 1283_CR7
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2020.00290
– volume: 47
  start-page: 2600
  year: 1999
  ident: 1283_CR17
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/78.782222
– volume: 22
  start-page: 1334
  year: 2009
  ident: 1283_CR6
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2009.05.008
– ident: 1283_CR3
  doi: 10.1109/SPIN48934.2020.9070969
– ident: 1283_CR27
  doi: 10.1007/978-3-319-47653-7
– volume: 52
  start-page: 3
  year: 1999
  ident: 1283_CR13
  publication-title: Electroencephalogr Clin Neurophysiol Suppl
– volume: 19
  start-page: 2050035
  year: 2020
  ident: 1283_CR14
  publication-title: Fluct Noise Lett
  doi: 10.1142/S0219477520500352
– volume: 6
  start-page: 25803
  year: 2016
  ident: 1283_CR18
  publication-title: Sci Rep
  doi: 10.1038/srep25803
– volume: 59
  start-page: 1
  year: 2016
  ident: 1283_CR28
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.04.011
– volume: 65
  start-page: 2168
  year: 2018
  ident: 1283_CR24
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2017.2786251
– volume: 223
  start-page: 26
  year: 2017
  ident: 1283_CR25
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.10.024
– volume: 22
  start-page: 185
  year: 2018
  ident: 1283_CR15
  publication-title: Pers Ubiquit Comput
  doi: 10.1007/s00779-017-1083-4
– volume-title: The Hilbert-Huang transform in engineering
  year: 2005
  ident: 1283_CR12
– ident: 1283_CR10
– ident: 1283_CR2
– volume: 46
  start-page: 131
  year: 2002
  ident: 1283_CR4
  publication-title: Mach Learn
  doi: 10.1023/A:1012450327387
– volume: 15
  year: 2017
  ident: 1283_CR21
  publication-title: J Neural Eng
  doi: 10.1088/1741-2552/aa8235
– volume: 1
  start-page: 3
  year: 2016
  ident: 1283_CR19
  publication-title: Augm Human Res
  doi: 10.1007/s41133-016-0001-z
– ident: 1283_CR26
  doi: 10.1109/ICPR.2008.4761297
SSID ssj0001214240
Score 2.2423446
Snippet With the advent of new algorithms, brain-computer interfacing has been extensively used in medical and non-medical fields. In this regard, an experiment was...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 385
SubjectTerms Algorithms
Electroencephalography
Engineering
Engineering Economics
Hilbert transformation
Human-computer interface
Logistics
Marketing
Organization
Original Article
Prostheses
Quality Control
Reliability
Resonant frequencies
Safety and Risk
Speech
Washrooms
Title Imagined word pairs recognition from non-invasive brain signals using Hilbert transform
URI https://link.springer.com/article/10.1007/s13198-021-01283-9
https://www.proquest.com/docview/2624983530
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 0976-4348
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001214240
  issn: 0975-6809
  databaseCode: AFBBN
  dateStart: 20100301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 0976-4348
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001214240
  issn: 0975-6809
  databaseCode: AGYKE
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5RuOjB30YUTQ_etGS021iPxIio0RNEPC39hSHqIDI08a_3dWyCRE04r2u69q3ve-33vQdwypj2LNOahggWqN8XIVVGelSzyGMmlA0TOXHy3X3Y7vo3vaCXi8LGBdu9uJLMduqZ2A2tJaKOUuA2VU7FKpQDF6CUoNy8erydP1tx-q3seEU0AhpGnsj1Mr939NMnzYDmwt1o5nJam9AtBjtlmjzXJqmq6c-FPI7Lfs0WbOQYlDSnRrMNKzbZgfW5zIS78HD96soXWUM-MDolI3frQ77JRsOEOFkKSYYJHSTv0lHgiXLFJojjg6BFE8enfyLtgUuhlZK0gMd70Glddi7aNK_BQDUOMKW6j3jSchtZLuuBaWhf1CVXgnlaGSGMUYjwLMcwMkSshk18pRro7xSaACJPvg8lHIs9AOLzfhBJJj0t0SNyJT3f9C0GqCISSgtdgXqxCLHO85O7Mhkv8SyzspuzGOcszuYsFhU4-35nNM3O8W_rarG2cf6njmMWYgCKMJR7FTgvlmr2-O_eDpdrfgRrzCknMsJ3FUrp28QeI55J1Uluvl-EIuny
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BOwAD34hCAQ9sYJTaaWqPCFFaoExFwBT5qwgBoaIBJH495zRpCwKkznEsx7743tnv3QHsM2YCx4yhEYIFGvZkRLVVATVMBMxGqmGFFyd3rqLWdXh-W7_NRWGDgu1eXElmO_VY7IbWIqinFPhNlVM5C-WwJkRYgvLx2d3F5NmK129lxyuyUaeRCGSul_m9o-8-aQw0f9yNZi6nuQTXxWCHTJPHo7dUH5nPH3kcp_2aZVjMMSg5HhrNCsy4ZBUWJjITrsFN-9mXL3KWfGB0Svr-1oeMyEYvCfGyFJK8JPQheVeeAk-0LzZBPB8ELZp4Pv09aT34FFopSQt4vA7d5mn3pEXzGgzU4ABTanqIJx13wnFVq9uGCWVNcS1ZYLSV0lqNCM9xDCMjxGrYJNS6gf5Oowkg8uQbUMKxuE0gIe_VhWIqMAo9ItcqCG3PYYAqhdRGmgrUikWITZ6f3JfJeIrHmZX9nMU4Z3E2Z7GswMHonf4wO8e_ravF2sb5nzqIWYQBKMJQHlTgsFiq8eO_e9uarvkezLW6ncv4sn11sQ3zzKsoMvJ3FUrp65vbQWyT6t3clL8Ar9Hs4w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BKyE4sCPK6gM3MKR2ksZHBJSyVRyKKKfIWxACQgUBJL6ecZrQggAJcY5jOfY488Z-bwZggzHtWaY1DREsUD8RIVVGelSzyGMmlA0TOXHyWTtsXfjH3aA7pOLP2e7llWRf0-CyNKXZTs8kOwPhG1pORB29wP1gORWjUPXRuwUVqO4eXp0Mn7M4LVd-1CIaAQ0jTxTame87-uyfBqDzyz1p7n6aUyDLgfdZJ7fbz5na1m9fcjr-58umYbLApmS3b0wzMGLTWZgYylg4B5dH966skTXkFaNW0nO3QeSDhPSQEidXIelDSm_SF-mo8US5IhTE8UTQ0onj2V-T1o1LrZWRrITN89BpHnT2WrSozUA1DjCjOkGcabmNLJf1wDS0L-qSK8E8rYwQxihEfpZjeBkihsMmvlIN9IMKTQMRKV-ACo7FLgLxeRJEkklPS_SUXEnPN4nFwFVEQmmha1AvFyTWRd5yVz7jLh5kXHZzFuOcxfmcxaIGmx_v9PpZO35tvVKuc1zs4KeYhRiYIjzlXg22ymUbPP65t6W_NV-HsfP9Znx61D5ZhnHmxBU5J3wFKtnjs11FyJOptcKq3wFIfPW-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Imagined+word+pairs+recognition+from+non-invasive+brain+signals+using+Hilbert+transform&rft.jtitle=International+journal+of+system+assurance+engineering+and+management&rft.au=Agarwal+Prabhakar&rft.au=Kumar%2C+Sandeep&rft.date=2022-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0975-6809&rft.eissn=0976-4348&rft.volume=13&rft.spage=385&rft.epage=394&rft_id=info:doi/10.1007%2Fs13198-021-01283-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0975-6809&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0975-6809&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0975-6809&client=summon