Low-time complexity and low-cost binary particle swarm optimization algorithm for task scheduling and load balancing in cloud computing

With the increasing large number of cloud users, the number of tasks is growing exponentially. Scheduling and balancing these tasks amongst different heterogeneous virtual machines (VMs) under constraints such as, low makespan, high resource utilization rate, low execution cost and low scheduling ti...

Full description

Saved in:
Bibliographic Details
Published inApplied intelligence (Dordrecht, Netherlands) Vol. 49; no. 9; pp. 3308 - 3330
Main Authors Mapetu, Jean Pepe Buanga, Chen, Zhen, Kong, Lingfu
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0924-669X
1573-7497
DOI10.1007/s10489-019-01448-x

Cover

Abstract With the increasing large number of cloud users, the number of tasks is growing exponentially. Scheduling and balancing these tasks amongst different heterogeneous virtual machines (VMs) under constraints such as, low makespan, high resource utilization rate, low execution cost and low scheduling time, become NP-hard optimization problem. So, due to the inefficiency of heuristic algorithms, many meta-heuristic algorithms, such as particle swarm optimization (PSO) have been introduced to solve the said problem. However, these algorithms do not guarantee that the optimal solution can be found, if they are not combined with other heuristic or meta-heuristic algorithms. Further, these algorithms have high time complexity, making them less useful in realistic scenarios. To solve the said NP-problem effectively, we propose an efficient binary version of PSO algorithm with low time complexity and low cost for scheduling and balancing tasks in cloud computing. Specifically, we define an objective function which calculates the maximum completion time difference among heterogeneous VMs subject to updating and optimization constraints introduced in this paper. Then, we devise a particle position updating with respect to load balancing strategy. The experimental results show that the proposed algorithm achieves task scheduling and load balancing better than existing meta-heuristic and heuristic algorithms.
AbstractList With the increasing large number of cloud users, the number of tasks is growing exponentially. Scheduling and balancing these tasks amongst different heterogeneous virtual machines (VMs) under constraints such as, low makespan, high resource utilization rate, low execution cost and low scheduling time, become NP-hard optimization problem. So, due to the inefficiency of heuristic algorithms, many meta-heuristic algorithms, such as particle swarm optimization (PSO) have been introduced to solve the said problem. However, these algorithms do not guarantee that the optimal solution can be found, if they are not combined with other heuristic or meta-heuristic algorithms. Further, these algorithms have high time complexity, making them less useful in realistic scenarios. To solve the said NP-problem effectively, we propose an efficient binary version of PSO algorithm with low time complexity and low cost for scheduling and balancing tasks in cloud computing. Specifically, we define an objective function which calculates the maximum completion time difference among heterogeneous VMs subject to updating and optimization constraints introduced in this paper. Then, we devise a particle position updating with respect to load balancing strategy. The experimental results show that the proposed algorithm achieves task scheduling and load balancing better than existing meta-heuristic and heuristic algorithms.
Author Kong, Lingfu
Chen, Zhen
Mapetu, Jean Pepe Buanga
Author_xml – sequence: 1
  givenname: Jean Pepe Buanga
  surname: Mapetu
  fullname: Mapetu, Jean Pepe Buanga
  organization: Colleague of Information Science and Engineering, Yanshan, University, The Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province
– sequence: 2
  givenname: Zhen
  surname: Chen
  fullname: Chen, Zhen
  email: zhenchen@ysu.edu.cn
  organization: Colleague of Information Science and Engineering, Yanshan, University, The Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province
– sequence: 3
  givenname: Lingfu
  surname: Kong
  fullname: Kong, Lingfu
  organization: Colleague of Information Science and Engineering, Yanshan, University, The Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province
BookMark eNp9kMtKxDAUhoMoOF5ewFXAdfWk6TTtUsQbDLhRcBfSJB2jaVKTFEdfwNc2MyMILlyEwM_5zn_4DtCu804jdELgjACw80igatoCyPpVVVOsdtCMzBktWNWyXTSDtqyKum6f9tFBjC8AQCmQGfpa-PcimUFj6YfR6pVJH1g4hW3OpY8Jd8aJ8IFHEZKRVuP4LsKA_Zgh8ymS8Q4Lu_TBpOcB9z7gJOIrjvJZq8kat_zZJhTuhBVOriPjsLR-UpvSKeXoCO31wkZ9_PMfosfrq4fL22Jxf3N3ebEoJCVtKqSaw7zVqmIt9LRVREDHFIBuGNBONdBrDZVkUpddQ8qedYLWrNI9LQFUX9NDdLrdOwb_NumY-IufgsuVvCyzvnlD6_VUuZ2SwccYdM_HYIasgRPga-F8K5xngm-E81WGmj-QNGkjKAVh7P8o3aIx97ilDr9X_UN9A7D_m7A
CitedBy_id crossref_primary_10_3390_app131910850
crossref_primary_10_3934_mine_2024023
crossref_primary_10_1007_s10489_021_02413_3
crossref_primary_10_2298_CSIS210512059P
crossref_primary_10_32604_iasc_2024_050681
crossref_primary_10_1016_j_ijcce_2024_05_002
crossref_primary_10_1007_s10586_020_03075_5
crossref_primary_10_1016_j_simpat_2021_102485
crossref_primary_10_1016_j_asoc_2024_112579
crossref_primary_10_3390_en15249648
crossref_primary_10_1016_j_future_2024_01_002
crossref_primary_10_1007_s13198_023_02217_3
crossref_primary_10_3390_sym15051025
crossref_primary_10_1109_ACCESS_2020_2997037
crossref_primary_10_32604_iasc_2023_033703
crossref_primary_10_1016_j_jksuci_2020_12_001
crossref_primary_10_1109_ACCESS_2019_2949863
crossref_primary_10_1007_s10489_020_01875_1
crossref_primary_10_1016_j_asoc_2021_107914
crossref_primary_10_1109_TCC_2023_3315014
crossref_primary_10_3390_electronics10212718
crossref_primary_10_1007_s11042_023_15687_1
crossref_primary_10_1142_S1793962322500428
crossref_primary_10_1007_s41870_023_01227_5
crossref_primary_10_1016_j_scs_2023_105155
crossref_primary_10_1007_s10489_021_02362_x
crossref_primary_10_1007_s10586_024_04625_x
crossref_primary_10_1007_s41870_023_01340_5
crossref_primary_10_3390_electronics13132578
crossref_primary_10_1007_s10489_021_02267_9
crossref_primary_10_1007_s10586_022_03650_y
crossref_primary_10_1007_s10586_024_04605_1
crossref_primary_10_1002_cpe_7762
crossref_primary_10_11948_20230266
crossref_primary_10_1007_s00500_020_05360_2
crossref_primary_10_1109_ACCESS_2020_2990500
crossref_primary_10_1109_ACCESS_2025_3544775
crossref_primary_10_1016_j_compbiomed_2024_108447
crossref_primary_10_36548_jismac_2019_1_006
crossref_primary_10_1016_j_ins_2021_03_060
crossref_primary_10_1007_s11277_022_10099_0
crossref_primary_10_1007_s11227_021_03695_7
crossref_primary_10_1109_ACCESS_2023_3343877
crossref_primary_10_1109_TII_2022_3148288
crossref_primary_10_36548_jsws_2019_3_003
crossref_primary_10_1109_TCYB_2022_3153964
crossref_primary_10_1007_s12652_020_02730_4
crossref_primary_10_3390_s23187710
crossref_primary_10_1007_s12652_021_03598_8
crossref_primary_10_1016_j_asoc_2023_110017
crossref_primary_10_4018_IJITWE_295964
crossref_primary_10_1007_s11277_023_10520_2
crossref_primary_10_1007_s10586_021_03245_z
crossref_primary_10_1007_s42979_024_03577_8
crossref_primary_10_32604_cmc_2024_050380
crossref_primary_10_1007_s11227_023_05270_8
crossref_primary_10_1515_comp_2020_0215
crossref_primary_10_1002_cpe_7112
crossref_primary_10_1002_cpe_6425
crossref_primary_10_1109_ACCESS_2024_3352078
crossref_primary_10_1080_1448837X_2024_2355004
crossref_primary_10_1007_s00607_021_01049_y
crossref_primary_10_52547_jstpi_20823_16_64_26
crossref_primary_10_1007_s11227_020_03494_6
crossref_primary_10_1016_j_iswa_2023_200219
crossref_primary_10_1016_j_eswa_2023_121984
crossref_primary_10_32604_cmes_2023_022287
crossref_primary_10_1007_s10489_021_02605_x
crossref_primary_10_1007_s41060_025_00718_x
crossref_primary_10_1016_j_eswa_2025_126398
crossref_primary_10_1109_TCC_2021_3078795
Cites_doi 10.1016/j.future.2017.10.035
10.1007/978-981-10-1627-1_16
10.17485/ijst/2016/v9i4/80561
10.1002/cpe.4368
10.1109/COMST.2017.2647981
10.1007/s13369-015-1626-9
10.1007/978-3-319-31854-7_57
10.1016/j.compeleceng.2017.02.006
10.6138/JIT.2015.16.7.20151103c
10.1016/j.jksuci.2018.01.003
10.15242/IIE.E0114078.
10.1016/j.jksuci.2016.01.003
10.1109/CSNT.2015.252
10.1016/j.protcy.2013.12.369
10.1007/s10115-017-1044-2
10.1007/978-3-319-14977-6_37.
10.1109/MED.2007.4433821.
10.1109/ICCES.2013.6707172
10.1007/978-3-319-50463-6_2
10.1109/ICNC.2008.63
10.1016/j.future.2016.10.014
10.1002/spe.995
10.1007/s10766-013-0275-4
10.1007/978-81-322-2135-7_31
10.14257/ijunesst.2016.9.1.36
10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.196.
10.1109/ICACCI.2016.7732249
10.1109/AINA.2010.31
10.1007/s10922-016-9385-9
10.1109/TEVC.2015.2504420
10.2991/icicci-15.2015.3
10.1109/ICSMC.1997.637339
10.1007/978-3-319-31277-4_2
10.1016/j.jnca.2017.04.007
10.1016/j.procs.2015.09.064
10.1109/ICCCT2.2017.7972253
10.1007/s00607-016-0494-9
10.1109/ICSTM.2015.7225415
10.1016/j.jnca.2017.08.020
10.1007/978-3-642-00405-6_14
10.3837/tiis.2017.12.006
10.1016/j.future.2015.07.021
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Applied Intelligence is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Applied Intelligence is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
Q9U
DOI 10.1007/s10489-019-01448-x
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection (Proquest)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7497
EndPage 3330
ExternalDocumentID 10_1007_s10489_019_01448_x
GrantInformation_xml – fundername: National Science and Technology Major Project of the Ministry of Science and Technology of China
  grantid: 2017ZX05019001-011
– fundername: National Natural Science Foundation of China
  grantid: 61772450
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Hebei Postdoctoral Research Program
  grantid: B2018003009
– fundername: China Postdoctoral Science Foundation
  grantid: 2018M631764
– fundername: Doctoral Fund of Yanshan University
  grantid: BL18003
GroupedDBID -4Z
-59
-5G
-BR
-EM
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
203
23M
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
77K
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CCPQU
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
L6V
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT4
PT5
PTHSS
Q2X
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
~A9
~EX
-Y2
1SB
2.D
28-
2P1
2VQ
5QI
77I
AAAVM
AAOBN
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABRTQ
ABULA
ACBXY
ACSTC
ADHKG
ADKFA
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFGCZ
AFHIU
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
H13
KOW
N2Q
NDZJH
O9-
OVD
PHGZM
PHGZT
PQGLB
PUEGO
R4E
RNI
RZC
RZE
RZK
S1Z
S26
S28
SCJ
SCLPG
T16
TEORI
ZY4
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-cd5059ed4790f39d1a0b7d00e8703bd80fee04c7ce2b812f7ba3674ef3200df63
IEDL.DBID BENPR
ISSN 0924-669X
IngestDate Fri Jul 25 12:18:06 EDT 2025
Wed Oct 01 04:09:44 EDT 2025
Thu Apr 24 23:03:20 EDT 2025
Fri Feb 21 02:26:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Task scheduling
Binary particle swarm optimization
Cloud computing
Load balancing
Time complexity
Completion time
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-cd5059ed4790f39d1a0b7d00e8703bd80fee04c7ce2b812f7ba3674ef3200df63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2201958366
PQPubID 326365
PageCount 23
ParticipantIDs proquest_journals_2201958366
crossref_primary_10_1007_s10489_019_01448_x
crossref_citationtrail_10_1007_s10489_019_01448_x
springer_journals_10_1007_s10489_019_01448_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Boston
PublicationSubtitle The International Journal of Research on Intelligent Systems for Real Life Complex Problems
PublicationTitle Applied intelligence (Dordrecht, Netherlands)
PublicationTitleAbbrev Appl Intell
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References AdhikariMAmgothTHeuristic-based load balancing algorithm for IaaS cloudFutur Gener Comput Syst20188115616510.1016/j.future.2017.10.035
NZanywayingomaFYangYEffective task scheduling and dynamic resource optimization based on heuristic algorithms in cloud computing environmentKSII Transactions on Internet and Information Systems20171157805802
AllaHBAllaSBEzzatiAMouhsenAA novel architecture with dynamic queues based on fuzzy logic and particle swarm optimization algorithm for task scheduling in cloud computingAdvances in Ubiquitous Networking2017220521710.1007/978-981-10-1627-1_16
RashidiSSharifianSA hybrid heuristic queue based algorithm for task assignment in mobile cloudFutur Gener Comput Syst20176833134510.1016/j.future.2016.10.014
ZhuYZhaoDWangWHeHA novel load balancing algorithm based on improved particle swarm optimization in cloud computing environmentACM/second international conference on human centered2016634645
Chapin SJ, Cirne W, Feitelson DG (1999) Benchmarks and standards for the evaluation of parallel job schedulers. In job scheduling strategies for parallel processing, D. G. Feitelson and L. Rudolph (Eds.), Springer-Verlag, Lect. Notes Comput. Sci., 1659:66–89. [Online]. Available: http://www.cs.huji.ac.il/labs/parallel/workload/logs.html (accessed on 12-09-2018)
Pandey S, Wu L, Guru SM, Buyya R (2010) Particle swarm optimization-based heuristic for scheduling workflow applications in cloud computing environments, 24th IEEE International Conference on Advanced Information Networking and Applications, pp 400–407. https://doi.org/10.1109/AINA.2010.31.
KangQHeHWangHRJiangCJA novel discrete particle swarm optimization algorithm for job scheduling in gridsFourth international conference on natural computation200840140510.1109/ICNC.2008.63
XueBZhangMBrowneWNYaoXA survey on evolutionary computation approaches to feature selectionIEEE Trans Evol Comput20162060662610.1109/TEVC.2015.2504420
MadniSHHLatiffMSACoulibalyYAbdulhamidSMAn appraisal of meta-heuristic resource allocation techniques for IaaS cloudIndian J Sci Technol2016911410.17485/ijst/2016/v9i4/80561
Humane P, Varshapriya JN (2015) Simulation of cloud infrastructure using CloudSim simulator: a practical approach for researchers, International Conference on Smart Technologies and Management for Computing, Communication, Controls, Energy and Materials, pp 207–211. https://doi.org/10.1109/ICSTM.2015.7225415.
HoangHNVanSLMaueHNBienCPNAdmission control and scheduling algorithms based on ACO and PSO heuristic for optimizing cost in cloud computingRecent Dev Intelligent Inform Database Systems SCI201664215283647628
Xu AQ, Yang Y, Mi ZQ, Xiong ZQ (2015) Task scheduling algorithm based on PSO in cloud environment, 12th Intl Conf on ubiquitous intelligence and computing. IEEE:1055–1061. https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.196.
Roy S, Banerjee S, Chowdhury KR, Biswas (2017) U. Development and analysis of a three phase cloudlet allocation algorithm, Journal of King Saud University - Computer and Information Sciences, 29:473–483. https://doi.org/10.1016/j.jksuci.2016.01.003 .
SaramuKAJaganathanSIntensified scheduling algorithm for virtual machine tasks in cloud computingArtificial Intelligence and Evolutionary Algorithms in Engineering Systems201532528329010.1007/978-81-322-2135-7_31
ZhanSBHuoHYImproved PSO-based task scheduling algorithm in cloud computingJournal of Information & Computational Science201291338213829
ThakurAGorayaMSA taxonomic survey on load balancing in cloudJ Netw Comput Appl201798435710.1016/j.jnca.2017.08.020
SinghPDuttaMAggarwaNA review of task scheduling based on meta-heuristics approach in cloud computingKnowl Inf Syst20175215110.1007/s10115-017-1044-2
Kennedy J, Eberhart R (1997) A discrete binary version of the particle swarm algorithm, in: Proceedings of the IEEE International Conference on Computational Cybernetics and Simulation, 5:4104–4108. https://doi.org/10.1109/ICSMC.1997.637339.
Valarmathi R, Sheela T (2017) A comprehensive survey on task scheduling for parallel workloads based on particle swarm optimization under cloud environment, 2nd Intl Conference on Computing and Communications Technologies (ICCCT), pp 81–86. https://doi.org/10.1109/ICCCT2.2017.7972253.
GhomiJRahmaniAMQaderNNLoad-balancing algorithms in cloud computing: a surveyJ Netw Comput Appl201788507110.1016/j.jnca.2017.04.007
AwadAIEl-HefnawyNAAbdel-kaderHMEnhanced particle swarm optimization for task scheduling in cloud computing environments, International Conference on Communication, Management and Information Technology (ICCMIT2015)Procedia Computer Science20156592092910.1016/j.procs.2015.09.064
Al-OlimatHSAlamMGreenRLeeJKCloudlet scheduling with particle swarm optimizationIEEE international conference on communication systems and network technologies2015991995
YingGJiajieDWannengSNovel ant optimization algorithm for task scheduling and resource allocation in cloud computing environmentJournal of Internet Technology20151613291338
BanerjeeSAdhikariMKarSBiswasUDevelopment and analysis of a new cloudlet allocation strategy for QoS improvement in cloudArab J Sci Eng20154014091425333755110.1007/s13369-015-1626-9
Kumar S, Sahoo B, Parida PP (2018) Load balancing in cloud computing: a big picture. J King Saud University – Comp Informat Sci:1–31. https://doi.org/10.1016/j.jksuci.2018.01.003
Panda SK, Jana PK (2015) An efficient resource allocation algorithm for IaaS cloud, ACM/ 11th International Conference on Distributed Computing and Internet. Technology:351–355. https://doi.org/10.1007/978-3-319-14977-6_37.
Khanesar MA, Teshnehlab M, Shoorehdeli MA (2007) A novel binary particle swarm optimization, Proceedings of the 16th Mediteranean conference on control & automation. IEEE:1–6. https://doi.org/10.1109/MED.2007.4433821.
RamezaniFJieLHussainKFTask-based system load balancing in cloud computing using particle swarm optimizationInt J Parallel Prog20144273975410.1007/s10766-013-0275-4
ArabnejadHBarbosaJGProdanRLow-time complexity budget–deadline constrained workflow scheduling on heterogeneous resourcesFutur Gener Comput Syst201655294010.1016/j.future.2015.07.021
Izakian H, Ladani BT, Zamanifar K, Abraham A (2009) A novel particle swarm optimization approach for grid job scheduling. International Conference on Information Systems, Technology and Management:100–109. https://doi.org/10.1007/978-3-642-00405-6_14
PughJMartinoliADiscrete multi-valued particle swarm optimizationProceedings of IEEE swarm intelligence symposium200618
DjebbarEIBelalenGTasks scheduling and resource allocation for high data management in scientific cloud computing environmentSpringer International Conference on Mobile, Secure and Programmable Networking201610026162710.1007/978-3-319-50463-6_2
LuongNCWangPNiyatoDWenYHanZResource management in cloud networking using economic analysis and pricing models: a surveyIEEE Communications Surveys Tutorials201719954100110.1109/COMST.2017.2647981
Abdi S, Motamedi SA, Sharifian S (2014) Task scheduling using modified PSO algorithm in cloud computing environment, International Conference on Machine Learning. Electrical and Mechanical Engineering:37–41. https://doi.org/10.15242/IIE.E0114078.
EbadifardFBabamirSMA PSO-based task scheduling algorithm improved using a load balancing technique for the cloud computing environmentConcurrency Computation Practice and Experience20183011610.1002/cpe.4368
XueSJLingshiWXuXA heuristic scheduling algorithm based on PSO in the cloud computing environmentInternational Journal of u- and e- Service, Science and Technology2016934936210.14257/ijunesst.2016.9.1.36
Shishira SR, Kandasamy A, Chandrasekaran K (2016) Survey on Meta heuristic optimization techniques in cloud computing, Intl. Conference on Advances in Computing, Communications and Informatics (ICACCI), IEEE, 1434–1440. https://doi.org/10.1109/ICACCI.2016.7732249.
TawfeekMAshrafEArabiKFawzyTCloud task scheduling based on ant colony optimizationInter Arab J Informat Technol201512129137
Xu J, Tang Y (2015) Improved particle optimization algorithm solving hadoop task scheduling problem, 2nd International Conference on Intelligent Computing and Cognitive Informatics, pp 11–14. https://doi.org/10.2991/icicci-15.2015.3.
MasdariMSalehiFJalaliMBidakiMA survey of PSO-based scheduling algorithms in cloud computingJ Netw Syst Manag20172512215810.1007/s10922-016-9385-9
Dasgupta K, Mandal B, Dutta P, Mandal JK, Dam S (2013) A Genetic algorithm (GA) based load balancing strategy for cloud computing, 1st International Conference on Computational Intelligence - Modeling Techniques and Applications (CIMTA), pp 340–347. https://doi.org/10.1016/j.protcy.2013.12.369.
VigneshwaranPUmamakeswariGSShaileshDheepGA study of various meta- heuristic algorithms for scheduling in cloud, IntlJournal of Pure and Applied Mathematics2017115205208
NirmalaSJBhanuSMSCatfish-PSO based scheduling of scientific workflows in IaaS cloudComputing20169810911109356180210.1007/s00607-016-0494-9
AlexMEKishoreRForensics framework for cloud computingComput Electr Eng2017609320510.1016/j.compeleceng.2017.02.006
CalheirosRNRanjanRBeloglazovADe-roseCAFBuyyaRCloudsim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithmsACM Software Practice and Experience201141235010.1002/spe.995
HB Alla (1448_CR37) 2017; 2
1448_CR41
1448_CR42
1448_CR21
A Thakur (1448_CR8) 2017; 98
Y Zhu (1448_CR23) 2016
EI Djebbar (1448_CR13) 2016; 10026
1448_CR40
SJ Nirmala (1448_CR36) 2016; 98
1448_CR7
P Singh (1448_CR19) 2017; 52
1448_CR45
1448_CR24
1448_CR46
1448_CR25
S Banerjee (1448_CR32) 2015; 40
1448_CR1
S Rashidi (1448_CR17) 2017; 68
HS Al-Olimat (1448_CR27) 2015
H Arabnejad (1448_CR30) 2016; 55
1448_CR5
F Ebadifard (1448_CR28) 2018; 30
M Adhikari (1448_CR14) 2018; 81
B Xue (1448_CR26) 2016; 20
RN Calheiros (1448_CR44) 2011; 41
F Ramezani (1448_CR20) 2014; 42
AI Awad (1448_CR39) 2015; 65
ME Alex (1448_CR2) 2017; 60
KA Saramu (1448_CR31) 2015; 325
M Masdari (1448_CR4) 2017; 25
J Pugh (1448_CR43) 2006
M Tawfeek (1448_CR15) 2015; 12
1448_CR33
SHH Madni (1448_CR11) 2016; 9
1448_CR38
1448_CR18
1448_CR12
SJ Xue (1448_CR35) 2016; 9
G Ying (1448_CR16) 2015; 16
F NZanywayingoma (1448_CR29) 2017; 11
HN Hoang (1448_CR6) 2016; 642
SB Zhan (1448_CR34) 2012; 9
P Vigneshwaran (1448_CR10) 2017; 115
J Ghomi (1448_CR9) 2017; 88
Q Kang (1448_CR22) 2008
NC Luong (1448_CR3) 2017; 19
References_xml – reference: RashidiSSharifianSA hybrid heuristic queue based algorithm for task assignment in mobile cloudFutur Gener Comput Syst20176833134510.1016/j.future.2016.10.014
– reference: KangQHeHWangHRJiangCJA novel discrete particle swarm optimization algorithm for job scheduling in gridsFourth international conference on natural computation200840140510.1109/ICNC.2008.63
– reference: Roy S, Banerjee S, Chowdhury KR, Biswas (2017) U. Development and analysis of a three phase cloudlet allocation algorithm, Journal of King Saud University - Computer and Information Sciences, 29:473–483. https://doi.org/10.1016/j.jksuci.2016.01.003 .
– reference: XueBZhangMBrowneWNYaoXA survey on evolutionary computation approaches to feature selectionIEEE Trans Evol Comput20162060662610.1109/TEVC.2015.2504420
– reference: CalheirosRNRanjanRBeloglazovADe-roseCAFBuyyaRCloudsim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithmsACM Software Practice and Experience201141235010.1002/spe.995
– reference: HoangHNVanSLMaueHNBienCPNAdmission control and scheduling algorithms based on ACO and PSO heuristic for optimizing cost in cloud computingRecent Dev Intelligent Inform Database Systems SCI201664215283647628
– reference: Al-OlimatHSAlamMGreenRLeeJKCloudlet scheduling with particle swarm optimizationIEEE international conference on communication systems and network technologies2015991995
– reference: Humane P, Varshapriya JN (2015) Simulation of cloud infrastructure using CloudSim simulator: a practical approach for researchers, International Conference on Smart Technologies and Management for Computing, Communication, Controls, Energy and Materials, pp 207–211. https://doi.org/10.1109/ICSTM.2015.7225415.
– reference: AdhikariMAmgothTHeuristic-based load balancing algorithm for IaaS cloudFutur Gener Comput Syst20188115616510.1016/j.future.2017.10.035
– reference: Xu J, Tang Y (2015) Improved particle optimization algorithm solving hadoop task scheduling problem, 2nd International Conference on Intelligent Computing and Cognitive Informatics, pp 11–14. https://doi.org/10.2991/icicci-15.2015.3.
– reference: Khanesar MA, Teshnehlab M, Shoorehdeli MA (2007) A novel binary particle swarm optimization, Proceedings of the 16th Mediteranean conference on control & automation. IEEE:1–6. https://doi.org/10.1109/MED.2007.4433821.
– reference: RamezaniFJieLHussainKFTask-based system load balancing in cloud computing using particle swarm optimizationInt J Parallel Prog20144273975410.1007/s10766-013-0275-4
– reference: ZhuYZhaoDWangWHeHA novel load balancing algorithm based on improved particle swarm optimization in cloud computing environmentACM/second international conference on human centered2016634645
– reference: SinghPDuttaMAggarwaNA review of task scheduling based on meta-heuristics approach in cloud computingKnowl Inf Syst20175215110.1007/s10115-017-1044-2
– reference: BanerjeeSAdhikariMKarSBiswasUDevelopment and analysis of a new cloudlet allocation strategy for QoS improvement in cloudArab J Sci Eng20154014091425333755110.1007/s13369-015-1626-9
– reference: Kumar S, Sahoo B, Parida PP (2018) Load balancing in cloud computing: a big picture. J King Saud University – Comp Informat Sci:1–31. https://doi.org/10.1016/j.jksuci.2018.01.003
– reference: EbadifardFBabamirSMA PSO-based task scheduling algorithm improved using a load balancing technique for the cloud computing environmentConcurrency Computation Practice and Experience20183011610.1002/cpe.4368
– reference: PughJMartinoliADiscrete multi-valued particle swarm optimizationProceedings of IEEE swarm intelligence symposium200618
– reference: AlexMEKishoreRForensics framework for cloud computingComput Electr Eng2017609320510.1016/j.compeleceng.2017.02.006
– reference: MadniSHHLatiffMSACoulibalyYAbdulhamidSMAn appraisal of meta-heuristic resource allocation techniques for IaaS cloudIndian J Sci Technol2016911410.17485/ijst/2016/v9i4/80561
– reference: Panda SK, Jana PK (2015) An efficient resource allocation algorithm for IaaS cloud, ACM/ 11th International Conference on Distributed Computing and Internet. Technology:351–355. https://doi.org/10.1007/978-3-319-14977-6_37.
– reference: XueSJLingshiWXuXA heuristic scheduling algorithm based on PSO in the cloud computing environmentInternational Journal of u- and e- Service, Science and Technology2016934936210.14257/ijunesst.2016.9.1.36
– reference: ZhanSBHuoHYImproved PSO-based task scheduling algorithm in cloud computingJournal of Information & Computational Science201291338213829
– reference: VigneshwaranPUmamakeswariGSShaileshDheepGA study of various meta- heuristic algorithms for scheduling in cloud, IntlJournal of Pure and Applied Mathematics2017115205208
– reference: Izakian H, Ladani BT, Zamanifar K, Abraham A (2009) A novel particle swarm optimization approach for grid job scheduling. International Conference on Information Systems, Technology and Management:100–109. https://doi.org/10.1007/978-3-642-00405-6_14
– reference: TawfeekMAshrafEArabiKFawzyTCloud task scheduling based on ant colony optimizationInter Arab J Informat Technol201512129137
– reference: Xu AQ, Yang Y, Mi ZQ, Xiong ZQ (2015) Task scheduling algorithm based on PSO in cloud environment, 12th Intl Conf on ubiquitous intelligence and computing. IEEE:1055–1061. https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.196.
– reference: NZanywayingomaFYangYEffective task scheduling and dynamic resource optimization based on heuristic algorithms in cloud computing environmentKSII Transactions on Internet and Information Systems20171157805802
– reference: ThakurAGorayaMSA taxonomic survey on load balancing in cloudJ Netw Comput Appl201798435710.1016/j.jnca.2017.08.020
– reference: YingGJiajieDWannengSNovel ant optimization algorithm for task scheduling and resource allocation in cloud computing environmentJournal of Internet Technology20151613291338
– reference: Abdi S, Motamedi SA, Sharifian S (2014) Task scheduling using modified PSO algorithm in cloud computing environment, International Conference on Machine Learning. Electrical and Mechanical Engineering:37–41. https://doi.org/10.15242/IIE.E0114078.
– reference: AwadAIEl-HefnawyNAAbdel-kaderHMEnhanced particle swarm optimization for task scheduling in cloud computing environments, International Conference on Communication, Management and Information Technology (ICCMIT2015)Procedia Computer Science20156592092910.1016/j.procs.2015.09.064
– reference: Valarmathi R, Sheela T (2017) A comprehensive survey on task scheduling for parallel workloads based on particle swarm optimization under cloud environment, 2nd Intl Conference on Computing and Communications Technologies (ICCCT), pp 81–86. https://doi.org/10.1109/ICCCT2.2017.7972253.
– reference: DjebbarEIBelalenGTasks scheduling and resource allocation for high data management in scientific cloud computing environmentSpringer International Conference on Mobile, Secure and Programmable Networking201610026162710.1007/978-3-319-50463-6_2
– reference: GhomiJRahmaniAMQaderNNLoad-balancing algorithms in cloud computing: a surveyJ Netw Comput Appl201788507110.1016/j.jnca.2017.04.007
– reference: NirmalaSJBhanuSMSCatfish-PSO based scheduling of scientific workflows in IaaS cloudComputing20169810911109356180210.1007/s00607-016-0494-9
– reference: ArabnejadHBarbosaJGProdanRLow-time complexity budget–deadline constrained workflow scheduling on heterogeneous resourcesFutur Gener Comput Syst201655294010.1016/j.future.2015.07.021
– reference: Kennedy J, Eberhart R (1997) A discrete binary version of the particle swarm algorithm, in: Proceedings of the IEEE International Conference on Computational Cybernetics and Simulation, 5:4104–4108. https://doi.org/10.1109/ICSMC.1997.637339.
– reference: Pandey S, Wu L, Guru SM, Buyya R (2010) Particle swarm optimization-based heuristic for scheduling workflow applications in cloud computing environments, 24th IEEE International Conference on Advanced Information Networking and Applications, pp 400–407. https://doi.org/10.1109/AINA.2010.31.
– reference: LuongNCWangPNiyatoDWenYHanZResource management in cloud networking using economic analysis and pricing models: a surveyIEEE Communications Surveys Tutorials201719954100110.1109/COMST.2017.2647981
– reference: MasdariMSalehiFJalaliMBidakiMA survey of PSO-based scheduling algorithms in cloud computingJ Netw Syst Manag20172512215810.1007/s10922-016-9385-9
– reference: AllaHBAllaSBEzzatiAMouhsenAA novel architecture with dynamic queues based on fuzzy logic and particle swarm optimization algorithm for task scheduling in cloud computingAdvances in Ubiquitous Networking2017220521710.1007/978-981-10-1627-1_16
– reference: SaramuKAJaganathanSIntensified scheduling algorithm for virtual machine tasks in cloud computingArtificial Intelligence and Evolutionary Algorithms in Engineering Systems201532528329010.1007/978-81-322-2135-7_31
– reference: Shishira SR, Kandasamy A, Chandrasekaran K (2016) Survey on Meta heuristic optimization techniques in cloud computing, Intl. Conference on Advances in Computing, Communications and Informatics (ICACCI), IEEE, 1434–1440. https://doi.org/10.1109/ICACCI.2016.7732249.
– reference: Dasgupta K, Mandal B, Dutta P, Mandal JK, Dam S (2013) A Genetic algorithm (GA) based load balancing strategy for cloud computing, 1st International Conference on Computational Intelligence - Modeling Techniques and Applications (CIMTA), pp 340–347. https://doi.org/10.1016/j.protcy.2013.12.369.
– reference: Chapin SJ, Cirne W, Feitelson DG (1999) Benchmarks and standards for the evaluation of parallel job schedulers. In job scheduling strategies for parallel processing, D. G. Feitelson and L. Rudolph (Eds.), Springer-Verlag, Lect. Notes Comput. Sci., 1659:66–89. [Online]. Available: http://www.cs.huji.ac.il/labs/parallel/workload/logs.html (accessed on 12-09-2018)
– volume: 81
  start-page: 156
  year: 2018
  ident: 1448_CR14
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2017.10.035
– volume: 2
  start-page: 205
  year: 2017
  ident: 1448_CR37
  publication-title: Advances in Ubiquitous Networking
  doi: 10.1007/978-981-10-1627-1_16
– volume: 9
  start-page: 1
  year: 2016
  ident: 1448_CR11
  publication-title: Indian J Sci Technol
  doi: 10.17485/ijst/2016/v9i4/80561
– volume: 30
  start-page: 1
  year: 2018
  ident: 1448_CR28
  publication-title: Concurrency Computation Practice and Experience
  doi: 10.1002/cpe.4368
– volume: 19
  start-page: 954
  year: 2017
  ident: 1448_CR3
  publication-title: IEEE Communications Surveys Tutorials
  doi: 10.1109/COMST.2017.2647981
– volume: 115
  start-page: 205
  year: 2017
  ident: 1448_CR10
  publication-title: Journal of Pure and Applied Mathematics
– volume: 40
  start-page: 1409
  year: 2015
  ident: 1448_CR32
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-015-1626-9
– start-page: 634
  volume-title: ACM/second international conference on human centered
  year: 2016
  ident: 1448_CR23
  doi: 10.1007/978-3-319-31854-7_57
– volume: 60
  start-page: 93
  year: 2017
  ident: 1448_CR2
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2017.02.006
– volume: 16
  start-page: 1329
  year: 2015
  ident: 1448_CR16
  publication-title: Journal of Internet Technology
  doi: 10.6138/JIT.2015.16.7.20151103c
– ident: 1448_CR5
  doi: 10.1016/j.jksuci.2018.01.003
– ident: 1448_CR42
  doi: 10.15242/IIE.E0114078.
– ident: 1448_CR12
  doi: 10.1016/j.jksuci.2016.01.003
– start-page: 991
  volume-title: IEEE international conference on communication systems and network technologies
  year: 2015
  ident: 1448_CR27
  doi: 10.1109/CSNT.2015.252
– ident: 1448_CR18
  doi: 10.1016/j.protcy.2013.12.369
– volume: 52
  start-page: 1
  year: 2017
  ident: 1448_CR19
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-017-1044-2
– ident: 1448_CR1
  doi: 10.1007/978-3-319-14977-6_37.
– ident: 1448_CR41
  doi: 10.1109/MED.2007.4433821.
– volume: 12
  start-page: 129
  year: 2015
  ident: 1448_CR15
  publication-title: Inter Arab J Informat Technol
  doi: 10.1109/ICCES.2013.6707172
– volume: 9
  start-page: 3821
  issue: 13
  year: 2012
  ident: 1448_CR34
  publication-title: Journal of Information & Computational Science
– start-page: 1
  volume-title: Proceedings of IEEE swarm intelligence symposium
  year: 2006
  ident: 1448_CR43
– ident: 1448_CR46
– volume: 10026
  start-page: 16
  year: 2016
  ident: 1448_CR13
  publication-title: Springer International Conference on Mobile, Secure and Programmable Networking
  doi: 10.1007/978-3-319-50463-6_2
– start-page: 401
  volume-title: Fourth international conference on natural computation
  year: 2008
  ident: 1448_CR22
  doi: 10.1109/ICNC.2008.63
– volume: 68
  start-page: 331
  year: 2017
  ident: 1448_CR17
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2016.10.014
– volume: 41
  start-page: 23
  year: 2011
  ident: 1448_CR44
  publication-title: ACM Software Practice and Experience
  doi: 10.1002/spe.995
– volume: 42
  start-page: 739
  year: 2014
  ident: 1448_CR20
  publication-title: Int J Parallel Prog
  doi: 10.1007/s10766-013-0275-4
– volume: 325
  start-page: 283
  year: 2015
  ident: 1448_CR31
  publication-title: Artificial Intelligence and Evolutionary Algorithms in Engineering Systems
  doi: 10.1007/978-81-322-2135-7_31
– volume: 9
  start-page: 349
  year: 2016
  ident: 1448_CR35
  publication-title: International Journal of u- and e- Service, Science and Technology
  doi: 10.14257/ijunesst.2016.9.1.36
– ident: 1448_CR33
  doi: 10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.196.
– ident: 1448_CR7
  doi: 10.1109/ICACCI.2016.7732249
– ident: 1448_CR21
  doi: 10.1109/AINA.2010.31
– volume: 25
  start-page: 122
  year: 2017
  ident: 1448_CR4
  publication-title: J Netw Syst Manag
  doi: 10.1007/s10922-016-9385-9
– volume: 20
  start-page: 606
  year: 2016
  ident: 1448_CR26
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2015.2504420
– ident: 1448_CR38
  doi: 10.2991/icicci-15.2015.3
– ident: 1448_CR40
  doi: 10.1109/ICSMC.1997.637339
– volume: 642
  start-page: 15
  year: 2016
  ident: 1448_CR6
  publication-title: Recent Dev Intelligent Inform Database Systems SCI
  doi: 10.1007/978-3-319-31277-4_2
– volume: 88
  start-page: 50
  year: 2017
  ident: 1448_CR9
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2017.04.007
– volume: 65
  start-page: 920
  year: 2015
  ident: 1448_CR39
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2015.09.064
– ident: 1448_CR25
  doi: 10.1109/ICCCT2.2017.7972253
– volume: 98
  start-page: 1091
  year: 2016
  ident: 1448_CR36
  publication-title: Computing
  doi: 10.1007/s00607-016-0494-9
– ident: 1448_CR45
  doi: 10.1109/ICSTM.2015.7225415
– volume: 98
  start-page: 43
  year: 2017
  ident: 1448_CR8
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2017.08.020
– ident: 1448_CR24
  doi: 10.1007/978-3-642-00405-6_14
– volume: 11
  start-page: 5780
  year: 2017
  ident: 1448_CR29
  publication-title: KSII Transactions on Internet and Information Systems
  doi: 10.3837/tiis.2017.12.006
– volume: 55
  start-page: 29
  year: 2016
  ident: 1448_CR30
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2015.07.021
SSID ssj0003301
Score 2.5205061
Snippet With the increasing large number of cloud users, the number of tasks is growing exponentially. Scheduling and balancing these tasks amongst different...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3308
SubjectTerms Algorithms
Artificial Intelligence
Cloud computing
Completion time
Computer Science
Computing costs
Heuristic
Heuristic methods
Heuristic task scheduling
Load balancing
Low cost
Machines
Manufacturing
Mechanical Engineering
Optimization
Particle swarm optimization
Processes
Production scheduling
Scheduling
Task complexity
Virtual environments
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVQuXBhR-zygRsYOUud-ogQi9hOVCqnyCsg2qRqUoH4AX6bsetQQIDE1XEmjj1jv5HnzSC017aSay4EEW1tSKoiS4QUEYkzFVFDuY65YyNf37DzbnrRa_cCKaxqot2bK0m_U38iu6UuvMeRbsAL6BBAjrM-31YLzR6d3V2efOzA4KP7SnngWxDGeC-QZX6W8vVAmqLMbxej_rw5XUDdZqSTMJOnw3EtD9XrtySO__2VRTQfACg-mmjMEpoxxTJaaIo74GDrK-jtqnwmrvI89lHn5gXgOhaFxn1oV2VVY-mpvHgYlA9Xz2I0wCXsQYNA7sSif1-OHuuHAQZsjGtRPWHwpuF0cyT4IE1oLF18pXJNjwVW_XKs_UfHLiR7FXVPT26Pz0mo2kAUmHNNlAZQxY1OM05twnUkqMw0pQZ2hkTqDrXG0FRlysQS0IXNpEhYlhqbgMFqy5I11CrKwqwjzKm0UgLiBCmp7XARG8Ha3DImpAWsuoGiZulyFVKau8oa_XyajNnNdA4znfuZzl820P7HO8NJQo8_e283GpEH467yOHYsy07CYAAHzQJPH_8ubfN_3bfQXOx1xKnJNmrVo7HZAQhUy92g8e_YhgEW
  priority: 102
  providerName: Springer Nature
Title Low-time complexity and low-cost binary particle swarm optimization algorithm for task scheduling and load balancing in cloud computing
URI https://link.springer.com/article/10.1007/s10489-019-01448-x
https://www.proquest.com/docview/2201958366
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB7tthcuvBFll8oHbmDhPOrEB4Ra1O6KR4UQlcop8hMQbdLdptr-A_42Y6-zFUjsKZKTTCTPw5_j-WYAXoycEkZISeXIWJrrxFGpZELTQifMMmFS4dnIn-b8fJG_X46WRzDvuDA-rbKLiSFQm0b7f-Sv09RT28qM87ebC-q7RvnT1a6FhoytFcybUGLsGPqpr4zVg_5kOv_85SY24-499NDDXQflXCwjjSaS6XKfPuRJPbjLKOn-76XqgD__OTINK9HsPtyNEJKMr3X-AI5s_RDude0ZSPTWR_D7Y3NFfe94EvLG7R4BN5G1ISsc1822JSqQcckmmg_ZXsnLNWkwiqwjPZPI1XechfbHmiC6Ja3c_iK4H8b1ydPYozRpiPIZktoP_ayJXjU7Ez6680nVj2Exm359d05j3wWq0SFbqg3CImFNXgjmMmESyVRhGLPo25kyJXPWslwX2qYK8YErlMx4kVuXocsZx7Mn0Kub2j4FIphySiFmRCm5K4VMreQj4TiXyiHaHEDSTXGlY1Fy3xtjVR3KKXu1VKiWKqil2g_g5c07m-uSHLc-fdpproruua0OxjSAV502D7f_L-3Z7dJO4E4aDMjb0Cn02sudfY6gpVVDOC5nZ0Poj2eTydxfz759mA6jfeLdRTr-A6qa8Zw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKe4ALb9SlBXyAE1g4jtdZHyrEo9WWblcItdLegp-A2E22TVa7_AL-Fb-Nset0BRK99eokE8nzZR7xfDMIPe97La1Uiqi-dYSbzBOlVUZYYTLqqLRMBjby8VgMT_nHSX-ygX53XJhQVtnZxGiobW3CP_LXjAVq2yAX4s38jISpUeF0tRuhodJoBbsXW4wlYseR-7mEFK7ZO_wA-n7B2MH-yfshSVMGiAH4tcRYCAKks7yQ1OfSZorqwlLqAMm5tgPqnaPcFMYxDd7QF1rlouDO5wAw60UOcm-gLZ5zCcnf1rv98afPl74gz-MAZgpZDhFCThJtJ5H3eChXCiQiyGoGZPW3a1zHu_8c0UbPd3AX3U4hK357gbF7aMNV99GdbhwETtbhAfo1qpckzKrHsU7drSDAx6qyeArrpm5arCP5F88TXHGzVOczXIPVmiU6KFbTr7Dr7bcZhmgat6r5gSH_Bn8YaPNJmrJYh4pME5a-V9hM64WNL12EIu6H6PRaNPAIbVZ15bYRllR7rSFGBSncD6RiTom-9EIo7SG67aGs2-LSpCboYRbHtFy3bw5qKUEtZVRLueqhl5fPzC9agFx5926nuTKZg6Zcg7eHXnXaXF_-v7THV0t7hm4OT45H5ehwfLSDbrEIpoCnXbTZni_cEwiYWv00oRKjL9f9IfwBRtoqNg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiEuvFEXCvgAJ7DqOFlnfUAIUZaWlooDlfYW_ATEbrI0We3yC_hP_DrGXqcrkOitVyeZSJ4v84jnmwF4OvRaWqkUVUPraGEyT5VWGeWlyZhj0nIZ2MgfTsTBafF-Mpxswe-eCxPKKnubGA21bUz4R77HeaC2jXIh9nwqi_i4P341_0HDBKlw0tqP01hD5Mj9XGL61r483EddP-N8_PbTmwOaJgxQg9DrqLEYAEhni1Iyn0ubKaZLy5hDFOfajph3jhWmNI5r9IS-1CoXZeF8juCyXuQo9wpcLUMX98BSH7879wJ5HkcvM8xvqBBykgg7ibZXhEKlQB_CfGZEV387xU2k-8_hbPR541twIwWr5PUaXbdhy9V34GY_CIIku3AXfh03Sxqm1JNYoe5WGNoTVVsyxXXTtB3RkfZL5gmopF2qsxlp0F7NEhGUqOkX3OPu64xgHE061X4nmHmjJwyE-SRNWaJDLaYJS99qYqbNwsaXLkL59j04vZT9vw_bdVO7HSCSaa81RqcopfAjqbhTYii9EEp7jGsHkPVbXJnU_jxM4ZhWm8bNQS0VqqWKaqlWA3h-_sx83fzjwrt3e81VyRC01Qa2A3jRa3Nz-f_SHlws7QlcQ_hXx4cnRw_hOo9YCnDahe3ubOEeYaTU6ccRkgQ-X_Y38AciVCfQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-time+complexity+and+low-cost+binary+particle+swarm+optimization+algorithm+for+task+scheduling+and+load+balancing+in+cloud+computing&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Mapetu%2C+Jean+Pepe+Buanga&rft.au=Chen%2C+Zhen&rft.au=Kong%2C+Lingfu&rft.date=2019-09-01&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=49&rft.issue=9&rft.spage=3308&rft.epage=3330&rft_id=info:doi/10.1007%2Fs10489-019-01448-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10489_019_01448_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon