Low-time complexity and low-cost binary particle swarm optimization algorithm for task scheduling and load balancing in cloud computing
With the increasing large number of cloud users, the number of tasks is growing exponentially. Scheduling and balancing these tasks amongst different heterogeneous virtual machines (VMs) under constraints such as, low makespan, high resource utilization rate, low execution cost and low scheduling ti...
Saved in:
| Published in | Applied intelligence (Dordrecht, Netherlands) Vol. 49; no. 9; pp. 3308 - 3330 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.09.2019
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0924-669X 1573-7497 |
| DOI | 10.1007/s10489-019-01448-x |
Cover
| Abstract | With the increasing large number of cloud users, the number of tasks is growing exponentially. Scheduling and balancing these tasks amongst different heterogeneous virtual machines (VMs) under constraints such as, low makespan, high resource utilization rate, low execution cost and low scheduling time, become NP-hard optimization problem. So, due to the inefficiency of heuristic algorithms, many meta-heuristic algorithms, such as particle swarm optimization (PSO) have been introduced to solve the said problem. However, these algorithms do not guarantee that the optimal solution can be found, if they are not combined with other heuristic or meta-heuristic algorithms. Further, these algorithms have high time complexity, making them less useful in realistic scenarios. To solve the said NP-problem effectively, we propose an efficient binary version of PSO algorithm with low time complexity and low cost for scheduling and balancing tasks in cloud computing. Specifically, we define an objective function which calculates the maximum completion time difference among heterogeneous VMs subject to updating and optimization constraints introduced in this paper. Then, we devise a particle position updating with respect to load balancing strategy. The experimental results show that the proposed algorithm achieves task scheduling and load balancing better than existing meta-heuristic and heuristic algorithms. |
|---|---|
| AbstractList | With the increasing large number of cloud users, the number of tasks is growing exponentially. Scheduling and balancing these tasks amongst different heterogeneous virtual machines (VMs) under constraints such as, low makespan, high resource utilization rate, low execution cost and low scheduling time, become NP-hard optimization problem. So, due to the inefficiency of heuristic algorithms, many meta-heuristic algorithms, such as particle swarm optimization (PSO) have been introduced to solve the said problem. However, these algorithms do not guarantee that the optimal solution can be found, if they are not combined with other heuristic or meta-heuristic algorithms. Further, these algorithms have high time complexity, making them less useful in realistic scenarios. To solve the said NP-problem effectively, we propose an efficient binary version of PSO algorithm with low time complexity and low cost for scheduling and balancing tasks in cloud computing. Specifically, we define an objective function which calculates the maximum completion time difference among heterogeneous VMs subject to updating and optimization constraints introduced in this paper. Then, we devise a particle position updating with respect to load balancing strategy. The experimental results show that the proposed algorithm achieves task scheduling and load balancing better than existing meta-heuristic and heuristic algorithms. |
| Author | Kong, Lingfu Chen, Zhen Mapetu, Jean Pepe Buanga |
| Author_xml | – sequence: 1 givenname: Jean Pepe Buanga surname: Mapetu fullname: Mapetu, Jean Pepe Buanga organization: Colleague of Information Science and Engineering, Yanshan, University, The Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province – sequence: 2 givenname: Zhen surname: Chen fullname: Chen, Zhen email: zhenchen@ysu.edu.cn organization: Colleague of Information Science and Engineering, Yanshan, University, The Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province – sequence: 3 givenname: Lingfu surname: Kong fullname: Kong, Lingfu organization: Colleague of Information Science and Engineering, Yanshan, University, The Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province |
| BookMark | eNp9kMtKxDAUhoMoOF5ewFXAdfWk6TTtUsQbDLhRcBfSJB2jaVKTFEdfwNc2MyMILlyEwM_5zn_4DtCu804jdELgjACw80igatoCyPpVVVOsdtCMzBktWNWyXTSDtqyKum6f9tFBjC8AQCmQGfpa-PcimUFj6YfR6pVJH1g4hW3OpY8Jd8aJ8IFHEZKRVuP4LsKA_Zgh8ymS8Q4Lu_TBpOcB9z7gJOIrjvJZq8kat_zZJhTuhBVOriPjsLR-UpvSKeXoCO31wkZ9_PMfosfrq4fL22Jxf3N3ebEoJCVtKqSaw7zVqmIt9LRVREDHFIBuGNBONdBrDZVkUpddQ8qedYLWrNI9LQFUX9NDdLrdOwb_NumY-IufgsuVvCyzvnlD6_VUuZ2SwccYdM_HYIasgRPga-F8K5xngm-E81WGmj-QNGkjKAVh7P8o3aIx97ilDr9X_UN9A7D_m7A |
| CitedBy_id | crossref_primary_10_3390_app131910850 crossref_primary_10_3934_mine_2024023 crossref_primary_10_1007_s10489_021_02413_3 crossref_primary_10_2298_CSIS210512059P crossref_primary_10_32604_iasc_2024_050681 crossref_primary_10_1016_j_ijcce_2024_05_002 crossref_primary_10_1007_s10586_020_03075_5 crossref_primary_10_1016_j_simpat_2021_102485 crossref_primary_10_1016_j_asoc_2024_112579 crossref_primary_10_3390_en15249648 crossref_primary_10_1016_j_future_2024_01_002 crossref_primary_10_1007_s13198_023_02217_3 crossref_primary_10_3390_sym15051025 crossref_primary_10_1109_ACCESS_2020_2997037 crossref_primary_10_32604_iasc_2023_033703 crossref_primary_10_1016_j_jksuci_2020_12_001 crossref_primary_10_1109_ACCESS_2019_2949863 crossref_primary_10_1007_s10489_020_01875_1 crossref_primary_10_1016_j_asoc_2021_107914 crossref_primary_10_1109_TCC_2023_3315014 crossref_primary_10_3390_electronics10212718 crossref_primary_10_1007_s11042_023_15687_1 crossref_primary_10_1142_S1793962322500428 crossref_primary_10_1007_s41870_023_01227_5 crossref_primary_10_1016_j_scs_2023_105155 crossref_primary_10_1007_s10489_021_02362_x crossref_primary_10_1007_s10586_024_04625_x crossref_primary_10_1007_s41870_023_01340_5 crossref_primary_10_3390_electronics13132578 crossref_primary_10_1007_s10489_021_02267_9 crossref_primary_10_1007_s10586_022_03650_y crossref_primary_10_1007_s10586_024_04605_1 crossref_primary_10_1002_cpe_7762 crossref_primary_10_11948_20230266 crossref_primary_10_1007_s00500_020_05360_2 crossref_primary_10_1109_ACCESS_2020_2990500 crossref_primary_10_1109_ACCESS_2025_3544775 crossref_primary_10_1016_j_compbiomed_2024_108447 crossref_primary_10_36548_jismac_2019_1_006 crossref_primary_10_1016_j_ins_2021_03_060 crossref_primary_10_1007_s11277_022_10099_0 crossref_primary_10_1007_s11227_021_03695_7 crossref_primary_10_1109_ACCESS_2023_3343877 crossref_primary_10_1109_TII_2022_3148288 crossref_primary_10_36548_jsws_2019_3_003 crossref_primary_10_1109_TCYB_2022_3153964 crossref_primary_10_1007_s12652_020_02730_4 crossref_primary_10_3390_s23187710 crossref_primary_10_1007_s12652_021_03598_8 crossref_primary_10_1016_j_asoc_2023_110017 crossref_primary_10_4018_IJITWE_295964 crossref_primary_10_1007_s11277_023_10520_2 crossref_primary_10_1007_s10586_021_03245_z crossref_primary_10_1007_s42979_024_03577_8 crossref_primary_10_32604_cmc_2024_050380 crossref_primary_10_1007_s11227_023_05270_8 crossref_primary_10_1515_comp_2020_0215 crossref_primary_10_1002_cpe_7112 crossref_primary_10_1002_cpe_6425 crossref_primary_10_1109_ACCESS_2024_3352078 crossref_primary_10_1080_1448837X_2024_2355004 crossref_primary_10_1007_s00607_021_01049_y crossref_primary_10_52547_jstpi_20823_16_64_26 crossref_primary_10_1007_s11227_020_03494_6 crossref_primary_10_1016_j_iswa_2023_200219 crossref_primary_10_1016_j_eswa_2023_121984 crossref_primary_10_32604_cmes_2023_022287 crossref_primary_10_1007_s10489_021_02605_x crossref_primary_10_1007_s41060_025_00718_x crossref_primary_10_1016_j_eswa_2025_126398 crossref_primary_10_1109_TCC_2021_3078795 |
| Cites_doi | 10.1016/j.future.2017.10.035 10.1007/978-981-10-1627-1_16 10.17485/ijst/2016/v9i4/80561 10.1002/cpe.4368 10.1109/COMST.2017.2647981 10.1007/s13369-015-1626-9 10.1007/978-3-319-31854-7_57 10.1016/j.compeleceng.2017.02.006 10.6138/JIT.2015.16.7.20151103c 10.1016/j.jksuci.2018.01.003 10.15242/IIE.E0114078. 10.1016/j.jksuci.2016.01.003 10.1109/CSNT.2015.252 10.1016/j.protcy.2013.12.369 10.1007/s10115-017-1044-2 10.1007/978-3-319-14977-6_37. 10.1109/MED.2007.4433821. 10.1109/ICCES.2013.6707172 10.1007/978-3-319-50463-6_2 10.1109/ICNC.2008.63 10.1016/j.future.2016.10.014 10.1002/spe.995 10.1007/s10766-013-0275-4 10.1007/978-81-322-2135-7_31 10.14257/ijunesst.2016.9.1.36 10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.196. 10.1109/ICACCI.2016.7732249 10.1109/AINA.2010.31 10.1007/s10922-016-9385-9 10.1109/TEVC.2015.2504420 10.2991/icicci-15.2015.3 10.1109/ICSMC.1997.637339 10.1007/978-3-319-31277-4_2 10.1016/j.jnca.2017.04.007 10.1016/j.procs.2015.09.064 10.1109/ICCCT2.2017.7972253 10.1007/s00607-016-0494-9 10.1109/ICSTM.2015.7225415 10.1016/j.jnca.2017.08.020 10.1007/978-3-642-00405-6_14 10.3837/tiis.2017.12.006 10.1016/j.future.2015.07.021 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 Applied Intelligence is a copyright of Springer, (2019). All Rights Reserved. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: Applied Intelligence is a copyright of Springer, (2019). All Rights Reserved. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS Q9U |
| DOI | 10.1007/s10489-019-01448-x |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection (Proquest) ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business (UW System Shared) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest One Psychology Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7497 |
| EndPage | 3330 |
| ExternalDocumentID | 10_1007_s10489_019_01448_x |
| GrantInformation_xml | – fundername: National Science and Technology Major Project of the Ministry of Science and Technology of China grantid: 2017ZX05019001-011 – fundername: National Natural Science Foundation of China grantid: 61772450 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Hebei Postdoctoral Research Program grantid: B2018003009 – fundername: China Postdoctoral Science Foundation grantid: 2018M631764 – fundername: Doctoral Fund of Yanshan University grantid: BL18003 |
| GroupedDBID | -4Z -59 -5G -BR -EM -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 203 23M 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 77K 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CCPQU CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV L6V LAK LLZTM M0C M0N M4Y M7S MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PSYQQ PT4 PT5 PTHSS Q2X QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8M Z8N Z8R Z8T Z8U Z8W Z92 ZMTXR ~A9 ~EX -Y2 1SB 2.D 28- 2P1 2VQ 5QI 77I AAAVM AAOBN AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABQSL ABRTQ ABULA ACBXY ACSTC ADHKG ADKFA AEBTG AEFIE AEKMD AEZWR AFDZB AFEXP AFGCZ AFHIU AFOHR AGGDS AGQPQ AHPBZ AHWEU AIXLP AJBLW ATHPR AYFIA BBWZM CAG CITATION COF H13 KOW N2Q NDZJH O9- OVD PHGZM PHGZT PQGLB PUEGO R4E RNI RZC RZE RZK S1Z S26 S28 SCJ SCLPG T16 TEORI ZY4 3V. 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c319t-cd5059ed4790f39d1a0b7d00e8703bd80fee04c7ce2b812f7ba3674ef3200df63 |
| IEDL.DBID | BENPR |
| ISSN | 0924-669X |
| IngestDate | Fri Jul 25 12:18:06 EDT 2025 Wed Oct 01 04:09:44 EDT 2025 Thu Apr 24 23:03:20 EDT 2025 Fri Feb 21 02:26:51 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Task scheduling Binary particle swarm optimization Cloud computing Load balancing Time complexity Completion time |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-cd5059ed4790f39d1a0b7d00e8703bd80fee04c7ce2b812f7ba3674ef3200df63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2201958366 |
| PQPubID | 326365 |
| PageCount | 23 |
| ParticipantIDs | proquest_journals_2201958366 crossref_primary_10_1007_s10489_019_01448_x crossref_citationtrail_10_1007_s10489_019_01448_x springer_journals_10_1007_s10489_019_01448_x |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-09-01 |
| PublicationDateYYYYMMDD | 2019-09-01 |
| PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Boston |
| PublicationSubtitle | The International Journal of Research on Intelligent Systems for Real Life Complex Problems |
| PublicationTitle | Applied intelligence (Dordrecht, Netherlands) |
| PublicationTitleAbbrev | Appl Intell |
| PublicationYear | 2019 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | AdhikariMAmgothTHeuristic-based load balancing algorithm for IaaS cloudFutur Gener Comput Syst20188115616510.1016/j.future.2017.10.035 NZanywayingomaFYangYEffective task scheduling and dynamic resource optimization based on heuristic algorithms in cloud computing environmentKSII Transactions on Internet and Information Systems20171157805802 AllaHBAllaSBEzzatiAMouhsenAA novel architecture with dynamic queues based on fuzzy logic and particle swarm optimization algorithm for task scheduling in cloud computingAdvances in Ubiquitous Networking2017220521710.1007/978-981-10-1627-1_16 RashidiSSharifianSA hybrid heuristic queue based algorithm for task assignment in mobile cloudFutur Gener Comput Syst20176833134510.1016/j.future.2016.10.014 ZhuYZhaoDWangWHeHA novel load balancing algorithm based on improved particle swarm optimization in cloud computing environmentACM/second international conference on human centered2016634645 Chapin SJ, Cirne W, Feitelson DG (1999) Benchmarks and standards for the evaluation of parallel job schedulers. In job scheduling strategies for parallel processing, D. G. Feitelson and L. Rudolph (Eds.), Springer-Verlag, Lect. Notes Comput. Sci., 1659:66–89. [Online]. Available: http://www.cs.huji.ac.il/labs/parallel/workload/logs.html (accessed on 12-09-2018) Pandey S, Wu L, Guru SM, Buyya R (2010) Particle swarm optimization-based heuristic for scheduling workflow applications in cloud computing environments, 24th IEEE International Conference on Advanced Information Networking and Applications, pp 400–407. https://doi.org/10.1109/AINA.2010.31. KangQHeHWangHRJiangCJA novel discrete particle swarm optimization algorithm for job scheduling in gridsFourth international conference on natural computation200840140510.1109/ICNC.2008.63 XueBZhangMBrowneWNYaoXA survey on evolutionary computation approaches to feature selectionIEEE Trans Evol Comput20162060662610.1109/TEVC.2015.2504420 MadniSHHLatiffMSACoulibalyYAbdulhamidSMAn appraisal of meta-heuristic resource allocation techniques for IaaS cloudIndian J Sci Technol2016911410.17485/ijst/2016/v9i4/80561 Humane P, Varshapriya JN (2015) Simulation of cloud infrastructure using CloudSim simulator: a practical approach for researchers, International Conference on Smart Technologies and Management for Computing, Communication, Controls, Energy and Materials, pp 207–211. https://doi.org/10.1109/ICSTM.2015.7225415. HoangHNVanSLMaueHNBienCPNAdmission control and scheduling algorithms based on ACO and PSO heuristic for optimizing cost in cloud computingRecent Dev Intelligent Inform Database Systems SCI201664215283647628 Xu AQ, Yang Y, Mi ZQ, Xiong ZQ (2015) Task scheduling algorithm based on PSO in cloud environment, 12th Intl Conf on ubiquitous intelligence and computing. IEEE:1055–1061. https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.196. Roy S, Banerjee S, Chowdhury KR, Biswas (2017) U. Development and analysis of a three phase cloudlet allocation algorithm, Journal of King Saud University - Computer and Information Sciences, 29:473–483. https://doi.org/10.1016/j.jksuci.2016.01.003 . SaramuKAJaganathanSIntensified scheduling algorithm for virtual machine tasks in cloud computingArtificial Intelligence and Evolutionary Algorithms in Engineering Systems201532528329010.1007/978-81-322-2135-7_31 ZhanSBHuoHYImproved PSO-based task scheduling algorithm in cloud computingJournal of Information & Computational Science201291338213829 ThakurAGorayaMSA taxonomic survey on load balancing in cloudJ Netw Comput Appl201798435710.1016/j.jnca.2017.08.020 SinghPDuttaMAggarwaNA review of task scheduling based on meta-heuristics approach in cloud computingKnowl Inf Syst20175215110.1007/s10115-017-1044-2 Kennedy J, Eberhart R (1997) A discrete binary version of the particle swarm algorithm, in: Proceedings of the IEEE International Conference on Computational Cybernetics and Simulation, 5:4104–4108. https://doi.org/10.1109/ICSMC.1997.637339. Valarmathi R, Sheela T (2017) A comprehensive survey on task scheduling for parallel workloads based on particle swarm optimization under cloud environment, 2nd Intl Conference on Computing and Communications Technologies (ICCCT), pp 81–86. https://doi.org/10.1109/ICCCT2.2017.7972253. GhomiJRahmaniAMQaderNNLoad-balancing algorithms in cloud computing: a surveyJ Netw Comput Appl201788507110.1016/j.jnca.2017.04.007 AwadAIEl-HefnawyNAAbdel-kaderHMEnhanced particle swarm optimization for task scheduling in cloud computing environments, International Conference on Communication, Management and Information Technology (ICCMIT2015)Procedia Computer Science20156592092910.1016/j.procs.2015.09.064 Al-OlimatHSAlamMGreenRLeeJKCloudlet scheduling with particle swarm optimizationIEEE international conference on communication systems and network technologies2015991995 YingGJiajieDWannengSNovel ant optimization algorithm for task scheduling and resource allocation in cloud computing environmentJournal of Internet Technology20151613291338 BanerjeeSAdhikariMKarSBiswasUDevelopment and analysis of a new cloudlet allocation strategy for QoS improvement in cloudArab J Sci Eng20154014091425333755110.1007/s13369-015-1626-9 Kumar S, Sahoo B, Parida PP (2018) Load balancing in cloud computing: a big picture. J King Saud University – Comp Informat Sci:1–31. https://doi.org/10.1016/j.jksuci.2018.01.003 Panda SK, Jana PK (2015) An efficient resource allocation algorithm for IaaS cloud, ACM/ 11th International Conference on Distributed Computing and Internet. Technology:351–355. https://doi.org/10.1007/978-3-319-14977-6_37. Khanesar MA, Teshnehlab M, Shoorehdeli MA (2007) A novel binary particle swarm optimization, Proceedings of the 16th Mediteranean conference on control & automation. IEEE:1–6. https://doi.org/10.1109/MED.2007.4433821. RamezaniFJieLHussainKFTask-based system load balancing in cloud computing using particle swarm optimizationInt J Parallel Prog20144273975410.1007/s10766-013-0275-4 ArabnejadHBarbosaJGProdanRLow-time complexity budget–deadline constrained workflow scheduling on heterogeneous resourcesFutur Gener Comput Syst201655294010.1016/j.future.2015.07.021 Izakian H, Ladani BT, Zamanifar K, Abraham A (2009) A novel particle swarm optimization approach for grid job scheduling. International Conference on Information Systems, Technology and Management:100–109. https://doi.org/10.1007/978-3-642-00405-6_14 PughJMartinoliADiscrete multi-valued particle swarm optimizationProceedings of IEEE swarm intelligence symposium200618 DjebbarEIBelalenGTasks scheduling and resource allocation for high data management in scientific cloud computing environmentSpringer International Conference on Mobile, Secure and Programmable Networking201610026162710.1007/978-3-319-50463-6_2 LuongNCWangPNiyatoDWenYHanZResource management in cloud networking using economic analysis and pricing models: a surveyIEEE Communications Surveys Tutorials201719954100110.1109/COMST.2017.2647981 Abdi S, Motamedi SA, Sharifian S (2014) Task scheduling using modified PSO algorithm in cloud computing environment, International Conference on Machine Learning. Electrical and Mechanical Engineering:37–41. https://doi.org/10.15242/IIE.E0114078. EbadifardFBabamirSMA PSO-based task scheduling algorithm improved using a load balancing technique for the cloud computing environmentConcurrency Computation Practice and Experience20183011610.1002/cpe.4368 XueSJLingshiWXuXA heuristic scheduling algorithm based on PSO in the cloud computing environmentInternational Journal of u- and e- Service, Science and Technology2016934936210.14257/ijunesst.2016.9.1.36 Shishira SR, Kandasamy A, Chandrasekaran K (2016) Survey on Meta heuristic optimization techniques in cloud computing, Intl. Conference on Advances in Computing, Communications and Informatics (ICACCI), IEEE, 1434–1440. https://doi.org/10.1109/ICACCI.2016.7732249. TawfeekMAshrafEArabiKFawzyTCloud task scheduling based on ant colony optimizationInter Arab J Informat Technol201512129137 Xu J, Tang Y (2015) Improved particle optimization algorithm solving hadoop task scheduling problem, 2nd International Conference on Intelligent Computing and Cognitive Informatics, pp 11–14. https://doi.org/10.2991/icicci-15.2015.3. MasdariMSalehiFJalaliMBidakiMA survey of PSO-based scheduling algorithms in cloud computingJ Netw Syst Manag20172512215810.1007/s10922-016-9385-9 Dasgupta K, Mandal B, Dutta P, Mandal JK, Dam S (2013) A Genetic algorithm (GA) based load balancing strategy for cloud computing, 1st International Conference on Computational Intelligence - Modeling Techniques and Applications (CIMTA), pp 340–347. https://doi.org/10.1016/j.protcy.2013.12.369. VigneshwaranPUmamakeswariGSShaileshDheepGA study of various meta- heuristic algorithms for scheduling in cloud, IntlJournal of Pure and Applied Mathematics2017115205208 NirmalaSJBhanuSMSCatfish-PSO based scheduling of scientific workflows in IaaS cloudComputing20169810911109356180210.1007/s00607-016-0494-9 AlexMEKishoreRForensics framework for cloud computingComput Electr Eng2017609320510.1016/j.compeleceng.2017.02.006 CalheirosRNRanjanRBeloglazovADe-roseCAFBuyyaRCloudsim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithmsACM Software Practice and Experience201141235010.1002/spe.995 HB Alla (1448_CR37) 2017; 2 1448_CR41 1448_CR42 1448_CR21 A Thakur (1448_CR8) 2017; 98 Y Zhu (1448_CR23) 2016 EI Djebbar (1448_CR13) 2016; 10026 1448_CR40 SJ Nirmala (1448_CR36) 2016; 98 1448_CR7 P Singh (1448_CR19) 2017; 52 1448_CR45 1448_CR24 1448_CR46 1448_CR25 S Banerjee (1448_CR32) 2015; 40 1448_CR1 S Rashidi (1448_CR17) 2017; 68 HS Al-Olimat (1448_CR27) 2015 H Arabnejad (1448_CR30) 2016; 55 1448_CR5 F Ebadifard (1448_CR28) 2018; 30 M Adhikari (1448_CR14) 2018; 81 B Xue (1448_CR26) 2016; 20 RN Calheiros (1448_CR44) 2011; 41 F Ramezani (1448_CR20) 2014; 42 AI Awad (1448_CR39) 2015; 65 ME Alex (1448_CR2) 2017; 60 KA Saramu (1448_CR31) 2015; 325 M Masdari (1448_CR4) 2017; 25 J Pugh (1448_CR43) 2006 M Tawfeek (1448_CR15) 2015; 12 1448_CR33 SHH Madni (1448_CR11) 2016; 9 1448_CR38 1448_CR18 1448_CR12 SJ Xue (1448_CR35) 2016; 9 G Ying (1448_CR16) 2015; 16 F NZanywayingoma (1448_CR29) 2017; 11 HN Hoang (1448_CR6) 2016; 642 SB Zhan (1448_CR34) 2012; 9 P Vigneshwaran (1448_CR10) 2017; 115 J Ghomi (1448_CR9) 2017; 88 Q Kang (1448_CR22) 2008 NC Luong (1448_CR3) 2017; 19 |
| References_xml | – reference: RashidiSSharifianSA hybrid heuristic queue based algorithm for task assignment in mobile cloudFutur Gener Comput Syst20176833134510.1016/j.future.2016.10.014 – reference: KangQHeHWangHRJiangCJA novel discrete particle swarm optimization algorithm for job scheduling in gridsFourth international conference on natural computation200840140510.1109/ICNC.2008.63 – reference: Roy S, Banerjee S, Chowdhury KR, Biswas (2017) U. Development and analysis of a three phase cloudlet allocation algorithm, Journal of King Saud University - Computer and Information Sciences, 29:473–483. https://doi.org/10.1016/j.jksuci.2016.01.003 . – reference: XueBZhangMBrowneWNYaoXA survey on evolutionary computation approaches to feature selectionIEEE Trans Evol Comput20162060662610.1109/TEVC.2015.2504420 – reference: CalheirosRNRanjanRBeloglazovADe-roseCAFBuyyaRCloudsim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithmsACM Software Practice and Experience201141235010.1002/spe.995 – reference: HoangHNVanSLMaueHNBienCPNAdmission control and scheduling algorithms based on ACO and PSO heuristic for optimizing cost in cloud computingRecent Dev Intelligent Inform Database Systems SCI201664215283647628 – reference: Al-OlimatHSAlamMGreenRLeeJKCloudlet scheduling with particle swarm optimizationIEEE international conference on communication systems and network technologies2015991995 – reference: Humane P, Varshapriya JN (2015) Simulation of cloud infrastructure using CloudSim simulator: a practical approach for researchers, International Conference on Smart Technologies and Management for Computing, Communication, Controls, Energy and Materials, pp 207–211. https://doi.org/10.1109/ICSTM.2015.7225415. – reference: AdhikariMAmgothTHeuristic-based load balancing algorithm for IaaS cloudFutur Gener Comput Syst20188115616510.1016/j.future.2017.10.035 – reference: Xu J, Tang Y (2015) Improved particle optimization algorithm solving hadoop task scheduling problem, 2nd International Conference on Intelligent Computing and Cognitive Informatics, pp 11–14. https://doi.org/10.2991/icicci-15.2015.3. – reference: Khanesar MA, Teshnehlab M, Shoorehdeli MA (2007) A novel binary particle swarm optimization, Proceedings of the 16th Mediteranean conference on control & automation. IEEE:1–6. https://doi.org/10.1109/MED.2007.4433821. – reference: RamezaniFJieLHussainKFTask-based system load balancing in cloud computing using particle swarm optimizationInt J Parallel Prog20144273975410.1007/s10766-013-0275-4 – reference: ZhuYZhaoDWangWHeHA novel load balancing algorithm based on improved particle swarm optimization in cloud computing environmentACM/second international conference on human centered2016634645 – reference: SinghPDuttaMAggarwaNA review of task scheduling based on meta-heuristics approach in cloud computingKnowl Inf Syst20175215110.1007/s10115-017-1044-2 – reference: BanerjeeSAdhikariMKarSBiswasUDevelopment and analysis of a new cloudlet allocation strategy for QoS improvement in cloudArab J Sci Eng20154014091425333755110.1007/s13369-015-1626-9 – reference: Kumar S, Sahoo B, Parida PP (2018) Load balancing in cloud computing: a big picture. J King Saud University – Comp Informat Sci:1–31. https://doi.org/10.1016/j.jksuci.2018.01.003 – reference: EbadifardFBabamirSMA PSO-based task scheduling algorithm improved using a load balancing technique for the cloud computing environmentConcurrency Computation Practice and Experience20183011610.1002/cpe.4368 – reference: PughJMartinoliADiscrete multi-valued particle swarm optimizationProceedings of IEEE swarm intelligence symposium200618 – reference: AlexMEKishoreRForensics framework for cloud computingComput Electr Eng2017609320510.1016/j.compeleceng.2017.02.006 – reference: MadniSHHLatiffMSACoulibalyYAbdulhamidSMAn appraisal of meta-heuristic resource allocation techniques for IaaS cloudIndian J Sci Technol2016911410.17485/ijst/2016/v9i4/80561 – reference: Panda SK, Jana PK (2015) An efficient resource allocation algorithm for IaaS cloud, ACM/ 11th International Conference on Distributed Computing and Internet. Technology:351–355. https://doi.org/10.1007/978-3-319-14977-6_37. – reference: XueSJLingshiWXuXA heuristic scheduling algorithm based on PSO in the cloud computing environmentInternational Journal of u- and e- Service, Science and Technology2016934936210.14257/ijunesst.2016.9.1.36 – reference: ZhanSBHuoHYImproved PSO-based task scheduling algorithm in cloud computingJournal of Information & Computational Science201291338213829 – reference: VigneshwaranPUmamakeswariGSShaileshDheepGA study of various meta- heuristic algorithms for scheduling in cloud, IntlJournal of Pure and Applied Mathematics2017115205208 – reference: Izakian H, Ladani BT, Zamanifar K, Abraham A (2009) A novel particle swarm optimization approach for grid job scheduling. International Conference on Information Systems, Technology and Management:100–109. https://doi.org/10.1007/978-3-642-00405-6_14 – reference: TawfeekMAshrafEArabiKFawzyTCloud task scheduling based on ant colony optimizationInter Arab J Informat Technol201512129137 – reference: Xu AQ, Yang Y, Mi ZQ, Xiong ZQ (2015) Task scheduling algorithm based on PSO in cloud environment, 12th Intl Conf on ubiquitous intelligence and computing. IEEE:1055–1061. https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.196. – reference: NZanywayingomaFYangYEffective task scheduling and dynamic resource optimization based on heuristic algorithms in cloud computing environmentKSII Transactions on Internet and Information Systems20171157805802 – reference: ThakurAGorayaMSA taxonomic survey on load balancing in cloudJ Netw Comput Appl201798435710.1016/j.jnca.2017.08.020 – reference: YingGJiajieDWannengSNovel ant optimization algorithm for task scheduling and resource allocation in cloud computing environmentJournal of Internet Technology20151613291338 – reference: Abdi S, Motamedi SA, Sharifian S (2014) Task scheduling using modified PSO algorithm in cloud computing environment, International Conference on Machine Learning. Electrical and Mechanical Engineering:37–41. https://doi.org/10.15242/IIE.E0114078. – reference: AwadAIEl-HefnawyNAAbdel-kaderHMEnhanced particle swarm optimization for task scheduling in cloud computing environments, International Conference on Communication, Management and Information Technology (ICCMIT2015)Procedia Computer Science20156592092910.1016/j.procs.2015.09.064 – reference: Valarmathi R, Sheela T (2017) A comprehensive survey on task scheduling for parallel workloads based on particle swarm optimization under cloud environment, 2nd Intl Conference on Computing and Communications Technologies (ICCCT), pp 81–86. https://doi.org/10.1109/ICCCT2.2017.7972253. – reference: DjebbarEIBelalenGTasks scheduling and resource allocation for high data management in scientific cloud computing environmentSpringer International Conference on Mobile, Secure and Programmable Networking201610026162710.1007/978-3-319-50463-6_2 – reference: GhomiJRahmaniAMQaderNNLoad-balancing algorithms in cloud computing: a surveyJ Netw Comput Appl201788507110.1016/j.jnca.2017.04.007 – reference: NirmalaSJBhanuSMSCatfish-PSO based scheduling of scientific workflows in IaaS cloudComputing20169810911109356180210.1007/s00607-016-0494-9 – reference: ArabnejadHBarbosaJGProdanRLow-time complexity budget–deadline constrained workflow scheduling on heterogeneous resourcesFutur Gener Comput Syst201655294010.1016/j.future.2015.07.021 – reference: Kennedy J, Eberhart R (1997) A discrete binary version of the particle swarm algorithm, in: Proceedings of the IEEE International Conference on Computational Cybernetics and Simulation, 5:4104–4108. https://doi.org/10.1109/ICSMC.1997.637339. – reference: Pandey S, Wu L, Guru SM, Buyya R (2010) Particle swarm optimization-based heuristic for scheduling workflow applications in cloud computing environments, 24th IEEE International Conference on Advanced Information Networking and Applications, pp 400–407. https://doi.org/10.1109/AINA.2010.31. – reference: LuongNCWangPNiyatoDWenYHanZResource management in cloud networking using economic analysis and pricing models: a surveyIEEE Communications Surveys Tutorials201719954100110.1109/COMST.2017.2647981 – reference: MasdariMSalehiFJalaliMBidakiMA survey of PSO-based scheduling algorithms in cloud computingJ Netw Syst Manag20172512215810.1007/s10922-016-9385-9 – reference: AllaHBAllaSBEzzatiAMouhsenAA novel architecture with dynamic queues based on fuzzy logic and particle swarm optimization algorithm for task scheduling in cloud computingAdvances in Ubiquitous Networking2017220521710.1007/978-981-10-1627-1_16 – reference: SaramuKAJaganathanSIntensified scheduling algorithm for virtual machine tasks in cloud computingArtificial Intelligence and Evolutionary Algorithms in Engineering Systems201532528329010.1007/978-81-322-2135-7_31 – reference: Shishira SR, Kandasamy A, Chandrasekaran K (2016) Survey on Meta heuristic optimization techniques in cloud computing, Intl. Conference on Advances in Computing, Communications and Informatics (ICACCI), IEEE, 1434–1440. https://doi.org/10.1109/ICACCI.2016.7732249. – reference: Dasgupta K, Mandal B, Dutta P, Mandal JK, Dam S (2013) A Genetic algorithm (GA) based load balancing strategy for cloud computing, 1st International Conference on Computational Intelligence - Modeling Techniques and Applications (CIMTA), pp 340–347. https://doi.org/10.1016/j.protcy.2013.12.369. – reference: Chapin SJ, Cirne W, Feitelson DG (1999) Benchmarks and standards for the evaluation of parallel job schedulers. In job scheduling strategies for parallel processing, D. G. Feitelson and L. Rudolph (Eds.), Springer-Verlag, Lect. Notes Comput. Sci., 1659:66–89. [Online]. Available: http://www.cs.huji.ac.il/labs/parallel/workload/logs.html (accessed on 12-09-2018) – volume: 81 start-page: 156 year: 2018 ident: 1448_CR14 publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2017.10.035 – volume: 2 start-page: 205 year: 2017 ident: 1448_CR37 publication-title: Advances in Ubiquitous Networking doi: 10.1007/978-981-10-1627-1_16 – volume: 9 start-page: 1 year: 2016 ident: 1448_CR11 publication-title: Indian J Sci Technol doi: 10.17485/ijst/2016/v9i4/80561 – volume: 30 start-page: 1 year: 2018 ident: 1448_CR28 publication-title: Concurrency Computation Practice and Experience doi: 10.1002/cpe.4368 – volume: 19 start-page: 954 year: 2017 ident: 1448_CR3 publication-title: IEEE Communications Surveys Tutorials doi: 10.1109/COMST.2017.2647981 – volume: 115 start-page: 205 year: 2017 ident: 1448_CR10 publication-title: Journal of Pure and Applied Mathematics – volume: 40 start-page: 1409 year: 2015 ident: 1448_CR32 publication-title: Arab J Sci Eng doi: 10.1007/s13369-015-1626-9 – start-page: 634 volume-title: ACM/second international conference on human centered year: 2016 ident: 1448_CR23 doi: 10.1007/978-3-319-31854-7_57 – volume: 60 start-page: 93 year: 2017 ident: 1448_CR2 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2017.02.006 – volume: 16 start-page: 1329 year: 2015 ident: 1448_CR16 publication-title: Journal of Internet Technology doi: 10.6138/JIT.2015.16.7.20151103c – ident: 1448_CR5 doi: 10.1016/j.jksuci.2018.01.003 – ident: 1448_CR42 doi: 10.15242/IIE.E0114078. – ident: 1448_CR12 doi: 10.1016/j.jksuci.2016.01.003 – start-page: 991 volume-title: IEEE international conference on communication systems and network technologies year: 2015 ident: 1448_CR27 doi: 10.1109/CSNT.2015.252 – ident: 1448_CR18 doi: 10.1016/j.protcy.2013.12.369 – volume: 52 start-page: 1 year: 2017 ident: 1448_CR19 publication-title: Knowl Inf Syst doi: 10.1007/s10115-017-1044-2 – ident: 1448_CR1 doi: 10.1007/978-3-319-14977-6_37. – ident: 1448_CR41 doi: 10.1109/MED.2007.4433821. – volume: 12 start-page: 129 year: 2015 ident: 1448_CR15 publication-title: Inter Arab J Informat Technol doi: 10.1109/ICCES.2013.6707172 – volume: 9 start-page: 3821 issue: 13 year: 2012 ident: 1448_CR34 publication-title: Journal of Information & Computational Science – start-page: 1 volume-title: Proceedings of IEEE swarm intelligence symposium year: 2006 ident: 1448_CR43 – ident: 1448_CR46 – volume: 10026 start-page: 16 year: 2016 ident: 1448_CR13 publication-title: Springer International Conference on Mobile, Secure and Programmable Networking doi: 10.1007/978-3-319-50463-6_2 – start-page: 401 volume-title: Fourth international conference on natural computation year: 2008 ident: 1448_CR22 doi: 10.1109/ICNC.2008.63 – volume: 68 start-page: 331 year: 2017 ident: 1448_CR17 publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2016.10.014 – volume: 41 start-page: 23 year: 2011 ident: 1448_CR44 publication-title: ACM Software Practice and Experience doi: 10.1002/spe.995 – volume: 42 start-page: 739 year: 2014 ident: 1448_CR20 publication-title: Int J Parallel Prog doi: 10.1007/s10766-013-0275-4 – volume: 325 start-page: 283 year: 2015 ident: 1448_CR31 publication-title: Artificial Intelligence and Evolutionary Algorithms in Engineering Systems doi: 10.1007/978-81-322-2135-7_31 – volume: 9 start-page: 349 year: 2016 ident: 1448_CR35 publication-title: International Journal of u- and e- Service, Science and Technology doi: 10.14257/ijunesst.2016.9.1.36 – ident: 1448_CR33 doi: 10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.196. – ident: 1448_CR7 doi: 10.1109/ICACCI.2016.7732249 – ident: 1448_CR21 doi: 10.1109/AINA.2010.31 – volume: 25 start-page: 122 year: 2017 ident: 1448_CR4 publication-title: J Netw Syst Manag doi: 10.1007/s10922-016-9385-9 – volume: 20 start-page: 606 year: 2016 ident: 1448_CR26 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2015.2504420 – ident: 1448_CR38 doi: 10.2991/icicci-15.2015.3 – ident: 1448_CR40 doi: 10.1109/ICSMC.1997.637339 – volume: 642 start-page: 15 year: 2016 ident: 1448_CR6 publication-title: Recent Dev Intelligent Inform Database Systems SCI doi: 10.1007/978-3-319-31277-4_2 – volume: 88 start-page: 50 year: 2017 ident: 1448_CR9 publication-title: J Netw Comput Appl doi: 10.1016/j.jnca.2017.04.007 – volume: 65 start-page: 920 year: 2015 ident: 1448_CR39 publication-title: Procedia Computer Science doi: 10.1016/j.procs.2015.09.064 – ident: 1448_CR25 doi: 10.1109/ICCCT2.2017.7972253 – volume: 98 start-page: 1091 year: 2016 ident: 1448_CR36 publication-title: Computing doi: 10.1007/s00607-016-0494-9 – ident: 1448_CR45 doi: 10.1109/ICSTM.2015.7225415 – volume: 98 start-page: 43 year: 2017 ident: 1448_CR8 publication-title: J Netw Comput Appl doi: 10.1016/j.jnca.2017.08.020 – ident: 1448_CR24 doi: 10.1007/978-3-642-00405-6_14 – volume: 11 start-page: 5780 year: 2017 ident: 1448_CR29 publication-title: KSII Transactions on Internet and Information Systems doi: 10.3837/tiis.2017.12.006 – volume: 55 start-page: 29 year: 2016 ident: 1448_CR30 publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2015.07.021 |
| SSID | ssj0003301 |
| Score | 2.5205061 |
| Snippet | With the increasing large number of cloud users, the number of tasks is growing exponentially. Scheduling and balancing these tasks amongst different... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3308 |
| SubjectTerms | Algorithms Artificial Intelligence Cloud computing Completion time Computer Science Computing costs Heuristic Heuristic methods Heuristic task scheduling Load balancing Low cost Machines Manufacturing Mechanical Engineering Optimization Particle swarm optimization Processes Production scheduling Scheduling Task complexity Virtual environments |
| SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVQuXBhR-zygRsYOUud-ogQi9hOVCqnyCsg2qRqUoH4AX6bsetQQIDE1XEmjj1jv5HnzSC017aSay4EEW1tSKoiS4QUEYkzFVFDuY65YyNf37DzbnrRa_cCKaxqot2bK0m_U38iu6UuvMeRbsAL6BBAjrM-31YLzR6d3V2efOzA4KP7SnngWxDGeC-QZX6W8vVAmqLMbxej_rw5XUDdZqSTMJOnw3EtD9XrtySO__2VRTQfACg-mmjMEpoxxTJaaIo74GDrK-jtqnwmrvI89lHn5gXgOhaFxn1oV2VVY-mpvHgYlA9Xz2I0wCXsQYNA7sSif1-OHuuHAQZsjGtRPWHwpuF0cyT4IE1oLF18pXJNjwVW_XKs_UfHLiR7FXVPT26Pz0mo2kAUmHNNlAZQxY1OM05twnUkqMw0pQZ2hkTqDrXG0FRlysQS0IXNpEhYlhqbgMFqy5I11CrKwqwjzKm0UgLiBCmp7XARG8Ha3DImpAWsuoGiZulyFVKau8oa_XyajNnNdA4znfuZzl820P7HO8NJQo8_e283GpEH467yOHYsy07CYAAHzQJPH_8ubfN_3bfQXOx1xKnJNmrVo7HZAQhUy92g8e_YhgEW priority: 102 providerName: Springer Nature |
| Title | Low-time complexity and low-cost binary particle swarm optimization algorithm for task scheduling and load balancing in cloud computing |
| URI | https://link.springer.com/article/10.1007/s10489-019-01448-x https://www.proquest.com/docview/2201958366 |
| Volume | 49 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7497 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-7497 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7497 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7497 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB7tthcuvBFll8oHbmDhPOrEB4Ra1O6KR4UQlcop8hMQbdLdptr-A_42Y6-zFUjsKZKTTCTPw5_j-WYAXoycEkZISeXIWJrrxFGpZELTQifMMmFS4dnIn-b8fJG_X46WRzDvuDA-rbKLiSFQm0b7f-Sv09RT28qM87ebC-q7RvnT1a6FhoytFcybUGLsGPqpr4zVg_5kOv_85SY24-499NDDXQflXCwjjSaS6XKfPuRJPbjLKOn-76XqgD__OTINK9HsPtyNEJKMr3X-AI5s_RDude0ZSPTWR_D7Y3NFfe94EvLG7R4BN5G1ISsc1822JSqQcckmmg_ZXsnLNWkwiqwjPZPI1XechfbHmiC6Ja3c_iK4H8b1ydPYozRpiPIZktoP_ayJXjU7Ez6680nVj2Exm359d05j3wWq0SFbqg3CImFNXgjmMmESyVRhGLPo25kyJXPWslwX2qYK8YErlMx4kVuXocsZx7Mn0Kub2j4FIphySiFmRCm5K4VMreQj4TiXyiHaHEDSTXGlY1Fy3xtjVR3KKXu1VKiWKqil2g_g5c07m-uSHLc-fdpproruua0OxjSAV502D7f_L-3Z7dJO4E4aDMjb0Cn02sudfY6gpVVDOC5nZ0Poj2eTydxfz759mA6jfeLdRTr-A6qa8Zw |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKe4ALb9SlBXyAE1g4jtdZHyrEo9WWblcItdLegp-A2E22TVa7_AL-Fb-Nset0BRK99eokE8nzZR7xfDMIPe97La1Uiqi-dYSbzBOlVUZYYTLqqLRMBjby8VgMT_nHSX-ygX53XJhQVtnZxGiobW3CP_LXjAVq2yAX4s38jISpUeF0tRuhodJoBbsXW4wlYseR-7mEFK7ZO_wA-n7B2MH-yfshSVMGiAH4tcRYCAKks7yQ1OfSZorqwlLqAMm5tgPqnaPcFMYxDd7QF1rlouDO5wAw60UOcm-gLZ5zCcnf1rv98afPl74gz-MAZgpZDhFCThJtJ5H3eChXCiQiyGoGZPW3a1zHu_8c0UbPd3AX3U4hK357gbF7aMNV99GdbhwETtbhAfo1qpckzKrHsU7drSDAx6qyeArrpm5arCP5F88TXHGzVOczXIPVmiU6KFbTr7Dr7bcZhmgat6r5gSH_Bn8YaPNJmrJYh4pME5a-V9hM64WNL12EIu6H6PRaNPAIbVZ15bYRllR7rSFGBSncD6RiTom-9EIo7SG67aGs2-LSpCboYRbHtFy3bw5qKUEtZVRLueqhl5fPzC9agFx5926nuTKZg6Zcg7eHXnXaXF_-v7THV0t7hm4OT45H5ehwfLSDbrEIpoCnXbTZni_cEwiYWv00oRKjL9f9IfwBRtoqNg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiEuvFEXCvgAJ7DqOFlnfUAIUZaWlooDlfYW_ATEbrI0We3yC_hP_DrGXqcrkOitVyeZSJ4v84jnmwF4OvRaWqkUVUPraGEyT5VWGeWlyZhj0nIZ2MgfTsTBafF-Mpxswe-eCxPKKnubGA21bUz4R77HeaC2jXIh9nwqi_i4P341_0HDBKlw0tqP01hD5Mj9XGL61r483EddP-N8_PbTmwOaJgxQg9DrqLEYAEhni1Iyn0ubKaZLy5hDFOfajph3jhWmNI5r9IS-1CoXZeF8juCyXuQo9wpcLUMX98BSH7879wJ5HkcvM8xvqBBykgg7ibZXhEKlQB_CfGZEV387xU2k-8_hbPR541twIwWr5PUaXbdhy9V34GY_CIIku3AXfh03Sxqm1JNYoe5WGNoTVVsyxXXTtB3RkfZL5gmopF2qsxlp0F7NEhGUqOkX3OPu64xgHE061X4nmHmjJwyE-SRNWaJDLaYJS99qYqbNwsaXLkL59j04vZT9vw_bdVO7HSCSaa81RqcopfAjqbhTYii9EEp7jGsHkPVbXJnU_jxM4ZhWm8bNQS0VqqWKaqlWA3h-_sx83fzjwrt3e81VyRC01Qa2A3jRa3Nz-f_SHlws7QlcQ_hXx4cnRw_hOo9YCnDahe3ubOEeYaTU6ccRkgQ-X_Y38AciVCfQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-time+complexity+and+low-cost+binary+particle+swarm+optimization+algorithm+for+task+scheduling+and+load+balancing+in+cloud+computing&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Mapetu%2C+Jean+Pepe+Buanga&rft.au=Chen%2C+Zhen&rft.au=Kong%2C+Lingfu&rft.date=2019-09-01&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=49&rft.issue=9&rft.spage=3308&rft.epage=3330&rft_id=info:doi/10.1007%2Fs10489-019-01448-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10489_019_01448_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon |