An attentive-based generative model for medical image synthesis

Magnetic resonance (MR) and computer tomography (CT) imaging are valuable tools for diagnosing diseases and planning treatment. However, limitations such as radiation exposure and cost can restrict access to certain imaging modalities. To address this issue, medical image synthesis can generate one...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of machine learning and cybernetics Vol. 14; no. 11; pp. 3897 - 3910
Main Authors Wang, Jiayuan, Wu, Q. M. Jonathan, Pourpanah, Farhad
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1868-8071
1868-808X
DOI10.1007/s13042-023-01871-0

Cover

Abstract Magnetic resonance (MR) and computer tomography (CT) imaging are valuable tools for diagnosing diseases and planning treatment. However, limitations such as radiation exposure and cost can restrict access to certain imaging modalities. To address this issue, medical image synthesis can generate one modality from another, but many existing models struggle with high-quality image synthesis when multiple slices are present in the dataset. This study proposes an attention-based dual contrast generative model, called ADC-cycleGAN, which can synthesize medical images from unpaired data with multiple slices. The model integrates a dual contrast loss term with the CycleGAN loss to ensure that the synthesized images are distinguishable from the source domain. Additionally, an attention mechanism is incorporated into the generators to extract informative features from both channel and spatial domains. To improve performance when dealing with multiple slices, the K -means algorithm is used to cluster the dataset into K groups, and each group is used to train a separate ADC-cycleGAN. Experimental results demonstrate that the proposed ADC-cycleGAN model produces comparable samples to other state-of-the-art generative models, achieving the highest PSNR and SSIM values of 19.04385 and 0.68551, respectively. We publish the code at https://github.com/JiayuanWang-JW/ADC-cycleGAN .
AbstractList Magnetic resonance (MR) and computer tomography (CT) imaging are valuable tools for diagnosing diseases and planning treatment. However, limitations such as radiation exposure and cost can restrict access to certain imaging modalities. To address this issue, medical image synthesis can generate one modality from another, but many existing models struggle with high-quality image synthesis when multiple slices are present in the dataset. This study proposes an attention-based dual contrast generative model, called ADC-cycleGAN, which can synthesize medical images from unpaired data with multiple slices. The model integrates a dual contrast loss term with the CycleGAN loss to ensure that the synthesized images are distinguishable from the source domain. Additionally, an attention mechanism is incorporated into the generators to extract informative features from both channel and spatial domains. To improve performance when dealing with multiple slices, the K -means algorithm is used to cluster the dataset into K groups, and each group is used to train a separate ADC-cycleGAN. Experimental results demonstrate that the proposed ADC-cycleGAN model produces comparable samples to other state-of-the-art generative models, achieving the highest PSNR and SSIM values of 19.04385 and 0.68551, respectively. We publish the code at https://github.com/JiayuanWang-JW/ADC-cycleGAN .
Magnetic resonance (MR) and computer tomography (CT) imaging are valuable tools for diagnosing diseases and planning treatment. However, limitations such as radiation exposure and cost can restrict access to certain imaging modalities. To address this issue, medical image synthesis can generate one modality from another, but many existing models struggle with high-quality image synthesis when multiple slices are present in the dataset. This study proposes an attention-based dual contrast generative model, called ADC-cycleGAN, which can synthesize medical images from unpaired data with multiple slices. The model integrates a dual contrast loss term with the CycleGAN loss to ensure that the synthesized images are distinguishable from the source domain. Additionally, an attention mechanism is incorporated into the generators to extract informative features from both channel and spatial domains. To improve performance when dealing with multiple slices, the K-means algorithm is used to cluster the dataset into K groups, and each group is used to train a separate ADC-cycleGAN. Experimental results demonstrate that the proposed ADC-cycleGAN model produces comparable samples to other state-of-the-art generative models, achieving the highest PSNR and SSIM values of 19.04385 and 0.68551, respectively. We publish the code at https://github.com/JiayuanWang-JW/ADC-cycleGAN.
Author Pourpanah, Farhad
Wang, Jiayuan
Wu, Q. M. Jonathan
Author_xml – sequence: 1
  givenname: Jiayuan
  surname: Wang
  fullname: Wang, Jiayuan
  organization: Department of Electrical and Computer Engineering, Centre for Computer Vision and Deep Learning, University of Windsor
– sequence: 2
  givenname: Q. M. Jonathan
  surname: Wu
  fullname: Wu, Q. M. Jonathan
  email: jwu@uwindsor.ca
  organization: Department of Electrical and Computer Engineering, Centre for Computer Vision and Deep Learning, University of Windsor
– sequence: 3
  givenname: Farhad
  surname: Pourpanah
  fullname: Pourpanah, Farhad
  organization: Department of Electrical and Computer Engineering, Queens University
BookMark eNp9kE1LAzEQhoNUsNb-AU8LnqOTTTebPUkpfkHBi4K3kOxO6pZttiap0H9v6oqCh85lhmGeeWfeczJyvUNCLhlcM4DyJjAOs5xCzikwWTIKJ2TMpJBUgnwb_dYlOyPTENaQQgDnkI_J7dxlOkZ0sf1EanTAJluhQ68PjWzTN9hltvfZBpu21l3WbvQKs7B38R1DGy7IqdVdwOlPnpDX-7uXxSNdPj88LeZLWnNWRVobYYQQUPJG2ApMUucarCnsTFR5ahSIueW6ZKZohOElSmEbqRtj8sYWjE_I1bB36_uPHYao1v3OuySp8opVFVSyKNJUPkzVvg_Bo1Vbnw72e8VAHbxSg1cqeaW-vVKQIPkPqtuY3u9d9LrtjqN8QEPScSv0f1cdob4A9gl_gg
CitedBy_id crossref_primary_10_1016_j_sigpro_2024_109818
crossref_primary_10_1088_1361_6560_adb2d7
crossref_primary_10_1145_3670854
crossref_primary_10_1007_s00500_025_10509_y
crossref_primary_10_1109_TMI_2024_3354408
crossref_primary_10_3390_bioengineering11080805
crossref_primary_10_1038_s41598_024_61492_7
Cites_doi 10.1016/j.neunet.2020.05.001
10.1109/TMI.2020.3015379
10.3389/fonc.2016.00178
10.1109/TMI.2021.3069874
10.1109/TMI.2020.3018560
10.1016/j.ijrobp.2011.11.056
10.1109/TMI.2021.3101363
10.1007/s11036-020-01678-1
10.1109/JSEN.2021.3062442
10.1109/TMI.2021.3059265
10.1109/TMI.2019.2935409
10.1016/j.neucom.2019.01.078
10.1007/s11263-020-01321-2
10.1007/s11042-019-7556-x
10.1016/j.bspc.2022.104445
10.1088/0031-9155/58/23/8419
10.1109/TMI.2020.3008871
10.2967/jnumed.111.092577
10.1002/mp.14121
10.1002/mp.12155
10.1016/j.compbiomed.2021.104763
10.1109/TBME.2018.2814538
10.1088/0031-9155/60/2/825
10.1109/TMI.2018.2876633
10.2967/jnumed.107.049353
10.1109/TMI.2020.2975344
10.1109/ACCESS.2019.2946264
10.1109/TCI.2020.3012928
10.1002/acm2.13121
10.1109/TIP.2003.819861
10.2967/jnumed.113.136341
10.3340/jkns.2019.0084
10.1109/TMI.2014.2340135
10.1007/978-3-030-32486-5_18
10.1609/aaai.v34i07.6619
10.1109/CVPR.2017.613
10.1007/978-3-030-32251-9_85
10.1109/BIBM47256.2019.8982932
10.1109/TMI.2022.3167808
10.1109/CVPR.2016.90
10.1109/ICCV48922.2021.00041
10.1007/978-3-030-00928-1_33
10.1109/CVPR.2019.01096
10.1109/ISBI.2015.7164145
10.1016/j.neucom.2022.05.113
10.1109/ICCV.2017.244
10.1109/CVPR42600.2020.00819
10.1109/ICIP.2017.8297089
10.1007/978-3-030-01234-2_1
10.1007/s11063-022-11023-0
10.1109/CVPR.2019.00326
10.1007/978-3-319-46630-9_13
10.1117/12.2082373
10.1007/978-3-319-10443-0_39
10.1016/j.compmedimag.2023.102249
10.1109/ICMIPE47306.2019.9098219
10.1109/WACV48630.2021.00318
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOI 10.1007/s13042-023-01871-0
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database (Proquest)
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 1868-808X
EndPage 3910
ExternalDocumentID 10_1007_s13042_023_01871_0
GroupedDBID -EM
06D
0R~
0VY
1N0
203
29~
2JY
2VQ
30V
4.4
406
408
409
40D
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ARAPS
AUKKA
AXYYD
AYJHY
BENPR
BGLVJ
BGNMA
CCPQU
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
H13
HCIFZ
HMJXF
HQYDN
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KOV
LLZTM
M4Y
M7S
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9P
PT4
PTHSS
QOS
R89
R9I
RLLFE
ROL
RSV
S27
S3B
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z7X
Z83
Z88
ZMTXR
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-cb6b666073d6f90b0333a0fb5f469290b5ee2f3a71b5d6b37e86fd8adbb2df513
IEDL.DBID BENPR
ISSN 1868-8071
IngestDate Fri Jul 25 11:03:13 EDT 2025
Thu Apr 24 22:58:58 EDT 2025
Wed Oct 01 04:29:34 EDT 2025
Fri Feb 21 02:41:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Deep learning
Medical image synthesis
Attention mechanism
Unpaired data
CycleGAN
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-cb6b666073d6f90b0333a0fb5f469290b5ee2f3a71b5d6b37e86fd8adbb2df513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2919909855
PQPubID 2043904
PageCount 14
ParticipantIDs proquest_journals_2919909855
crossref_primary_10_1007_s13042_023_01871_0
crossref_citationtrail_10_1007_s13042_023_01871_0
springer_journals_10_1007_s13042_023_01871_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231100
2023-11-00
20231101
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 20231100
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle International journal of machine learning and cybernetics
PublicationTitleAbbrev Int. J. Mach. Learn. & Cyber
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Liu, Zhang, Liu, Han, Shi, Guan, He (CR21) 2021; 40
Tomar, Lortkipanidze, Vray, Bozorgtabar, Thiran (CR5) 2021; 40
Dowling, Lambert, Parker, Salvado, Fripp, Capp, Wratten, Denham, Greer (CR35) 2012; 83
Huo, Xu, Moon, Bao, Assad, Moyo, Savona, Abramson, Landman (CR22) 2018; 38
CR34
Delpon, Escande, Ruef, Darréon, Fontaine, Noblet, Supiot, Lacornerie, Pasquier (CR37) 2016; 6
Yang, Lu, Wang, Lu, Yao, Jiang, Qian (CR2) 2021; 26
CR31
Burgos, Cardoso, Thielemans, Modat, Pedemonte, Dickson, Barnes, Ahmed, Mahoney, Schott (CR39) 2014; 33
Liu, Guo (CR54) 2019; 337
Wang, Fernandes, Zhu, Zhang (CR59) 2021; 22
Li, Jia, Islam, Yu, Xing (CR8) 2020; 39
CR6
CR7
CR49
CR47
CR45
CR44
CR43
CR42
CR40
Yang, Sun, Carass, Zhao, Lee, Prince, Xu (CR27) 2020; 39
Abu-Srhan, Almallahi, Abushariah, Mahafza, Al-Kadi (CR30) 2021; 136
Hsu, Cao, Huang, Feng, Balter (CR38) 2013; 58
Yang, Sun, Carass, Zhao, Lee, Prince, Xu (CR46) 2020; 39
Berker, Franke, Salomon, Palmowski, Donker, Temur, Mottaghy, Kuhl, Izquierdo-Garcia, Fayad (CR10) 2012; 53
Liu, Lei, Wang, Fu, Tang, Curran, Liu, Patel, Yang (CR23) 2020; 47
Wang, Lei, Fu, Wynne, Curran, Liu, Yang (CR32) 2021; 22
CR19
CR17
Nie, Shen (CR26) 2020; 128
CR16
CR15
CR14
CR58
CR57
CR12
CR56
CR55
Zhong, Liu, Zhao, Li (CR63) 2020; 79
CR53
CR52
CR51
CR50
Wang, Bovik, Sheikh, Simoncelli (CR64) 2004; 13
Chen, Lian, Wang, Deng, Fung, Nie, Thung, Yap, Gateno, Xia (CR3) 2019; 39
Bhosale, Patnaik (CR13) 2023; 81
Huang, Chen, Zhang, Quan, Ji, Zhang, Yang, Liu, Liang, Zheng (CR24) 2020; 6
Jiao, Namburete, Papageorghiou, Noble (CR9) 2020; 39
Hofmann, Steinke, Scheel, Charpiat, Farquhar, Aschoff, Brady, Schölkopf, Pichler (CR33) 2008; 49
Sjölund, Forsberg, Andersson, Knutsson (CR11) 2015; 60
Xu, Zeng, Zhang, Li, Lei, Huang (CR1) 2020; 128
CR28
Zhou, Wang, Zhang, Zhu, Zheng, Wu (CR62) 2019; 7
CR25
CR20
CR61
Lee, Gu, Ye (CR48) 2021; 40
CR60
Nie, Trullo, Lian, Wang, Petitjean, Ruan, Wang, Shen (CR18) 2018; 65
Zhou, Fu, Chen, Shen, Shao (CR41) 2020; 39
Lee, Han, Kim, Yu, Lee, Song, Joo, Jin, Kim (CR4) 2020; 63
Izquierdo-Garcia, Hansen, Förster, Benoit, Schachoff, Fürst, Chen, Chonde, Catana (CR36) 2014; 55
Han (CR29) 2017; 44
1871_CR31
Y Berker (1871_CR10) 2012; 53
JA Dowling (1871_CR35) 2012; 83
H Yang (1871_CR2) 2021; 26
1871_CR7
1871_CR6
1871_CR34
Y Huo (1871_CR22) 2018; 38
Z Wang (1871_CR64) 2004; 13
H Yang (1871_CR27) 2020; 39
X Han (1871_CR29) 2017; 44
D Nie (1871_CR18) 2018; 65
J Sjölund (1871_CR11) 2015; 60
H Yang (1871_CR46) 2020; 39
D Tomar (1871_CR5) 2021; 40
1871_CR40
1871_CR42
X Chen (1871_CR3) 2019; 39
1871_CR44
1871_CR43
Y Liu (1871_CR23) 2020; 47
S-H Hsu (1871_CR38) 2013; 58
1871_CR45
S Liu (1871_CR21) 2021; 40
G Liu (1871_CR54) 2019; 337
YH Bhosale (1871_CR13) 2023; 81
L Xu (1871_CR1) 2020; 128
1871_CR47
1871_CR49
1871_CR51
1871_CR50
1871_CR53
1871_CR52
S-H Wang (1871_CR59) 2021; 22
1871_CR55
1871_CR57
1871_CR12
N Burgos (1871_CR39) 2014; 33
1871_CR56
J Lee (1871_CR48) 2021; 40
J Jiao (1871_CR9) 2020; 39
T Zhou (1871_CR41) 2020; 39
Y Zhong (1871_CR63) 2020; 79
D Izquierdo-Garcia (1871_CR36) 2014; 55
X Li (1871_CR8) 2020; 39
1871_CR15
1871_CR14
1871_CR58
1871_CR17
1871_CR16
1871_CR19
Y Zhou (1871_CR62) 2019; 7
T Wang (1871_CR32) 2021; 22
M Hofmann (1871_CR33) 2008; 49
1871_CR61
1871_CR20
A Abu-Srhan (1871_CR30) 2021; 136
1871_CR60
D Nie (1871_CR26) 2020; 128
Z Huang (1871_CR24) 2020; 6
1871_CR25
1871_CR28
G Delpon (1871_CR37) 2016; 6
JH Lee (1871_CR4) 2020; 63
References_xml – ident: CR45
– volume: 128
  start-page: 82
  year: 2020
  end-page: 96
  ident: CR1
  article-title: Bpgan: Bidirectional ct-to-mri prediction using multi-generative multi-adversarial nets with spectral normalization and localization
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2020.05.001
– ident: CR49
– ident: CR16
– ident: CR51
– ident: CR12
– ident: CR61
– volume: 39
  start-page: 4249
  issue: 12
  year: 2020
  end-page: 4261
  ident: CR46
  article-title: Unsupervised mr-to-ct synthesis using structure-constrained cyclegan
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2020.3015379
– ident: CR58
– ident: CR25
– ident: CR42
– volume: 6
  start-page: 178
  year: 2016
  ident: CR37
  article-title: Comparison of automated atlas-based segmentation software for postoperative prostate cancer radiotherapy
  publication-title: Front Oncology
  doi: 10.3389/fonc.2016.00178
– ident: CR19
– volume: 40
  start-page: 1977
  issue: 8
  year: 2021
  end-page: 1989
  ident: CR21
  article-title: Unpaired stain transfer using pathology-consistent constrained generative adversarial networks
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2021.3069874
– volume: 39
  start-page: 4413
  issue: 12
  year: 2020
  end-page: 4424
  ident: CR9
  article-title: Self-supervised ultrasound to mri fetal brain image synthesis
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2020.3018560
– volume: 83
  start-page: 5
  issue: 1
  year: 2012
  end-page: 11
  ident: CR35
  article-title: An atlas-based electron density mapping method for magnetic resonance imaging (mri)-alone treatment planning and adaptive mri-based prostate radiation therapy
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2011.11.056
– ident: CR15
– ident: CR50
– volume: 40
  start-page: 3932
  issue: 12
  year: 2021
  end-page: 3944
  ident: CR48
  article-title: Unsupervised ct metal artifact learning using attention-guided -cyclegan
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2021.3101363
– ident: CR57
– volume: 26
  start-page: 415
  issue: 1
  year: 2021
  end-page: 424
  ident: CR2
  article-title: Synthesizing multi-contrast mr images via novel 3d conditional variational auto-encoding gan
  publication-title: Mobile Netw Appl
  doi: 10.1007/s11036-020-01678-1
– ident: CR60
– volume: 22
  start-page: 17431
  issue: 18
  year: 2021
  end-page: 17438
  ident: CR59
  article-title: Avnc: attention-based vgg-style network for covid-19 diagnosis by cbam
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2021.3062442
– volume: 40
  start-page: 2926
  issue: 10
  year: 2021
  end-page: 2938
  ident: CR5
  article-title: Self-attentive spatial adaptive normalization for cross-modality domain adaptation
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2021.3059265
– volume: 39
  start-page: 787
  issue: 3
  year: 2019
  end-page: 796
  ident: CR3
  article-title: One-shot generative adversarial learning for mri segmentation of craniomaxillofacial bony structures
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2019.2935409
– volume: 337
  start-page: 325
  year: 2019
  end-page: 338
  ident: CR54
  article-title: Bidirectional lstm with attention mechanism and convolutional layer for text classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.01.078
– volume: 128
  start-page: 2494
  issue: 10
  year: 2020
  end-page: 2513
  ident: CR26
  article-title: Adversarial confidence learning for medical image segmentation and synthesis
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-020-01321-2
– volume: 79
  start-page: 16517
  issue: 23
  year: 2020
  end-page: 16529
  ident: CR63
  article-title: A generative adversarial network for image denoising
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-019-7556-x
– volume: 81
  year: 2023
  ident: CR13
  article-title: Puldi-covid: chronic obstructive pulmonary (lung) diseases with covid-19 classification using ensemble deep convolutional neural network from chest x-ray images to minimize severity and mortality rates
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2022.104445
– volume: 58
  start-page: 8419
  issue: 23
  year: 2013
  ident: CR38
  article-title: Investigation of a method for generating synthetic ct models from mri scans of the head and neck for radiation therapy
  publication-title: Physics Med Biol
  doi: 10.1088/0031-9155/58/23/8419
– ident: CR43
– volume: 39
  start-page: 4023
  issue: 12
  year: 2020
  end-page: 4033
  ident: CR8
  article-title: Self-supervised feature learning via exploiting multi-modal data for retinal disease diagnosis
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2020.3008871
– ident: CR47
– ident: CR14
– volume: 53
  start-page: 796
  issue: 5
  year: 2012
  end-page: 804
  ident: CR10
  article-title: Mri-based attenuation correction for hybrid pet/mri systems: a 4-class tissue segmentation technique using a combined ultrashort-echo-time/dixon mri sequence
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.111.092577
– volume: 39
  start-page: 4249
  issue: 12
  year: 2020
  end-page: 4261
  ident: CR27
  article-title: Unsupervised mr-to-ct synthesis using structure-constrained cyclegan
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2020.3015379
– ident: CR53
– volume: 47
  start-page: 2472
  issue: 6
  year: 2020
  end-page: 2483
  ident: CR23
  article-title: Cbct-based synthetic ct generation using deep-attention cyclegan for pancreatic adaptive radiotherapy
  publication-title: Med Phys
  doi: 10.1002/mp.14121
– volume: 44
  start-page: 1408
  issue: 4
  year: 2017
  end-page: 1419
  ident: CR29
  article-title: Mr-based synthetic ct generation using a deep convolutional neural network method
  publication-title: Med Phys
  doi: 10.1002/mp.12155
– volume: 136
  year: 2021
  ident: CR30
  article-title: Paired-unpaired unsupervised attention guided gan with transfer learning for bidirectional brain mr-ct synthesis
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.104763
– ident: CR6
– ident: CR56
– ident: CR40
– volume: 65
  start-page: 2720
  issue: 12
  year: 2018
  end-page: 2730
  ident: CR18
  article-title: Medical image synthesis with deep convolutional adversarial networks
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2018.2814538
– volume: 60
  start-page: 825
  issue: 2
  year: 2015
  ident: CR11
  article-title: Generating patient specific pseudo-ct of the head from mr using atlas-based regression
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/60/2/825
– volume: 38
  start-page: 1016
  issue: 4
  year: 2018
  end-page: 1025
  ident: CR22
  article-title: Synseg-net: synthetic segmentation without target modality ground truth
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2018.2876633
– volume: 49
  start-page: 1875
  issue: 11
  year: 2008
  end-page: 1883
  ident: CR33
  article-title: Mri-based attenuation correction for pet/mri: a novel approach combining pattern recognition and atlas registration
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.107.049353
– volume: 39
  start-page: 2772
  issue: 9
  year: 2020
  end-page: 2781
  ident: CR41
  article-title: Hi-net: hybrid-fusion network for multi-modal mr image synthesis
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2020.2975344
– ident: CR44
– volume: 7
  start-page: 146331
  year: 2019
  end-page: 146341
  ident: CR62
  article-title: Mpce: a maximum probability based cross entropy loss function for neural network classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2946264
– volume: 6
  start-page: 1203
  year: 2020
  end-page: 1218
  ident: CR24
  article-title: Cagan: a cycle-consistent generative adversarial network with attention for low-dose ct imaging
  publication-title: IEEE Trans Comput Imaging
  doi: 10.1109/TCI.2020.3012928
– ident: CR52
– ident: CR17
– ident: CR31
– volume: 22
  start-page: 11
  issue: 1
  year: 2021
  end-page: 36
  ident: CR32
  article-title: A review on medical imaging synthesis using deep learning and its clinical applications
  publication-title: J Appl Clin Med Phys
  doi: 10.1002/acm2.13121
– ident: CR34
– ident: CR55
– ident: CR7
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  end-page: 612
  ident: CR64
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2003.819861
– ident: CR28
– volume: 55
  start-page: 1825
  issue: 11
  year: 2014
  end-page: 1830
  ident: CR36
  article-title: An spm8-based approach for attenuation correction combining segmentation and nonrigid template formation: application to simultaneous pet/mr brain imaging
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.113.136341
– ident: CR20
– volume: 63
  start-page: 386
  issue: 3
  year: 2020
  end-page: 396
  ident: CR4
  article-title: Spine computed tomography to magnetic resonance image synthesis using generative adversarial networks: a preliminary study
  publication-title: J Korean Neurosurg Soc
  doi: 10.3340/jkns.2019.0084
– volume: 33
  start-page: 2332
  issue: 12
  year: 2014
  end-page: 2341
  ident: CR39
  article-title: Attenuation correction synthesis for hybrid pet-mr scanners: application to brain studies
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2014.2340135
– volume: 22
  start-page: 17431
  issue: 18
  year: 2021
  ident: 1871_CR59
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2021.3062442
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  ident: 1871_CR64
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2003.819861
– ident: 1871_CR45
  doi: 10.1007/978-3-030-32486-5_18
– ident: 1871_CR42
  doi: 10.1609/aaai.v34i07.6619
– volume: 337
  start-page: 325
  year: 2019
  ident: 1871_CR54
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.01.078
– ident: 1871_CR15
  doi: 10.1109/CVPR.2017.613
– volume: 55
  start-page: 1825
  issue: 11
  year: 2014
  ident: 1871_CR36
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.113.136341
– volume: 26
  start-page: 415
  issue: 1
  year: 2021
  ident: 1871_CR2
  publication-title: Mobile Netw Appl
  doi: 10.1007/s11036-020-01678-1
– volume: 47
  start-page: 2472
  issue: 6
  year: 2020
  ident: 1871_CR23
  publication-title: Med Phys
  doi: 10.1002/mp.14121
– ident: 1871_CR43
  doi: 10.1007/978-3-030-32251-9_85
– volume: 136
  year: 2021
  ident: 1871_CR30
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.104763
– volume: 60
  start-page: 825
  issue: 2
  year: 2015
  ident: 1871_CR11
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/60/2/825
– ident: 1871_CR25
  doi: 10.1109/BIBM47256.2019.8982932
– ident: 1871_CR19
  doi: 10.1109/TMI.2022.3167808
– ident: 1871_CR60
  doi: 10.1109/CVPR.2016.90
– volume: 39
  start-page: 4249
  issue: 12
  year: 2020
  ident: 1871_CR27
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2020.3015379
– ident: 1871_CR56
  doi: 10.1109/ICCV48922.2021.00041
– volume: 39
  start-page: 787
  issue: 3
  year: 2019
  ident: 1871_CR3
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2019.2935409
– ident: 1871_CR16
  doi: 10.1007/978-3-030-00928-1_33
– ident: 1871_CR52
  doi: 10.1109/CVPR.2019.01096
– ident: 1871_CR6
  doi: 10.1109/ISBI.2015.7164145
– volume: 39
  start-page: 4023
  issue: 12
  year: 2020
  ident: 1871_CR8
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2020.3008871
– volume: 40
  start-page: 3932
  issue: 12
  year: 2021
  ident: 1871_CR48
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2021.3101363
– volume: 7
  start-page: 146331
  year: 2019
  ident: 1871_CR62
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2946264
– ident: 1871_CR7
  doi: 10.1016/j.neucom.2022.05.113
– volume: 33
  start-page: 2332
  issue: 12
  year: 2014
  ident: 1871_CR39
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2014.2340135
– ident: 1871_CR57
– ident: 1871_CR20
  doi: 10.1109/ICCV.2017.244
– ident: 1871_CR47
  doi: 10.1109/CVPR42600.2020.00819
– ident: 1871_CR50
– volume: 39
  start-page: 2772
  issue: 9
  year: 2020
  ident: 1871_CR41
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2020.2975344
– ident: 1871_CR61
  doi: 10.1109/ICIP.2017.8297089
– volume: 39
  start-page: 4413
  issue: 12
  year: 2020
  ident: 1871_CR9
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2020.3018560
– volume: 40
  start-page: 1977
  issue: 8
  year: 2021
  ident: 1871_CR21
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2021.3069874
– ident: 1871_CR31
  doi: 10.1007/978-3-030-01234-2_1
– volume: 6
  start-page: 178
  year: 2016
  ident: 1871_CR37
  publication-title: Front Oncology
  doi: 10.3389/fonc.2016.00178
– ident: 1871_CR12
  doi: 10.1007/s11063-022-11023-0
– volume: 49
  start-page: 1875
  issue: 11
  year: 2008
  ident: 1871_CR33
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.107.049353
– volume: 58
  start-page: 8419
  issue: 23
  year: 2013
  ident: 1871_CR38
  publication-title: Physics Med Biol
  doi: 10.1088/0031-9155/58/23/8419
– volume: 65
  start-page: 2720
  issue: 12
  year: 2018
  ident: 1871_CR18
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2018.2814538
– ident: 1871_CR53
  doi: 10.1109/CVPR.2019.00326
– ident: 1871_CR49
– ident: 1871_CR51
– volume: 81
  year: 2023
  ident: 1871_CR13
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2022.104445
– volume: 6
  start-page: 1203
  year: 2020
  ident: 1871_CR24
  publication-title: IEEE Trans Comput Imaging
  doi: 10.1109/TCI.2020.3012928
– ident: 1871_CR40
  doi: 10.1007/978-3-319-46630-9_13
– volume: 128
  start-page: 82
  year: 2020
  ident: 1871_CR1
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2020.05.001
– volume: 128
  start-page: 2494
  issue: 10
  year: 2020
  ident: 1871_CR26
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-020-01321-2
– volume: 39
  start-page: 4249
  issue: 12
  year: 2020
  ident: 1871_CR46
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2020.3015379
– ident: 1871_CR55
– volume: 53
  start-page: 796
  issue: 5
  year: 2012
  ident: 1871_CR10
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.111.092577
– ident: 1871_CR34
  doi: 10.1117/12.2082373
– volume: 40
  start-page: 2926
  issue: 10
  year: 2021
  ident: 1871_CR5
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2021.3059265
– ident: 1871_CR14
  doi: 10.1007/978-3-319-10443-0_39
– ident: 1871_CR28
  doi: 10.1016/j.compmedimag.2023.102249
– volume: 22
  start-page: 11
  issue: 1
  year: 2021
  ident: 1871_CR32
  publication-title: J Appl Clin Med Phys
  doi: 10.1002/acm2.13121
– ident: 1871_CR17
– volume: 83
  start-page: 5
  issue: 1
  year: 2012
  ident: 1871_CR35
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2011.11.056
– volume: 79
  start-page: 16517
  issue: 23
  year: 2020
  ident: 1871_CR63
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-019-7556-x
– volume: 44
  start-page: 1408
  issue: 4
  year: 2017
  ident: 1871_CR29
  publication-title: Med Phys
  doi: 10.1002/mp.12155
– ident: 1871_CR44
  doi: 10.1109/ICMIPE47306.2019.9098219
– volume: 38
  start-page: 1016
  issue: 4
  year: 2018
  ident: 1871_CR22
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2018.2876633
– ident: 1871_CR58
  doi: 10.1109/WACV48630.2021.00318
– volume: 63
  start-page: 386
  issue: 3
  year: 2020
  ident: 1871_CR4
  publication-title: J Korean Neurosurg Soc
  doi: 10.3340/jkns.2019.0084
SSID ssj0000603302
ssib031263576
ssib033405570
Score 2.3748894
Snippet Magnetic resonance (MR) and computer tomography (CT) imaging are valuable tools for diagnosing diseases and planning treatment. However, limitations such as...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3897
SubjectTerms Algorithms
Artificial Intelligence
Complex Systems
Computational Intelligence
Computed tomography
Control
Datasets
Engineering
Image contrast
Image quality
Learning
Magnetic resonance
Mechatronics
Medical imaging
Original Article
Pattern Recognition
Performance evaluation
Radiation
Radiation effects
Robotics
Synthesis
Systems Biology
Tomography
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8AAtIAoFOSBAQRBSRy7yYQq1FKBYKJSmaI4dlAFDYi0A_x6zonTQAVIXc9OIt_Z98j5vgM4ZsyPbeFwi0kfAxSGshDUlpZCZzmykygQQmd07-75YOjdjNjIFIVl5W33MiWZa-qq2E1H3hbaGEs3ksMgeBXqOd5WDerd68fbXrmPqKMRViozS6mXI03N_73YHGnFdUSf-xqP1zH1NL9_6KfNqhzRhdxpbpL6mzAsF1PcRHm-mE3FRfy5gPO47Gq3YMP4qKRbbKoGrKi0CevfkAub0DA6ISMnBrj6dBsuuynRcJ2pVqGWto-SPOWjmkDypjsEnWQyKbJDZDxBbUayjxS90Gyc7cCw33u4GlimQYMV48mdWrHgAsMf1BKSJ4GtOU1RwIIlGHS7SGBKuQmNOo5gkgvaUT5PpB9JIVyZMIfuQi19TdUeEDeIGPccV9AApSUxxEdHlXaQSD3l-aoFTimCMDbo5bqJxktY4S5rjoXIsTDnWGi34Gz-zFuB3fHv7HYp2dCc4yx0AwfNdeAz1oLzUlDV8N9v219u-gGs6T72RZFjG2rT95k6RG9nKo7M5v4C5C3tbQ
  priority: 102
  providerName: Springer Nature
Title An attentive-based generative model for medical image synthesis
URI https://link.springer.com/article/10.1007/s13042-023-01871-0
https://www.proquest.com/docview/2919909855
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1868-808X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000603302
  issn: 1868-8071
  databaseCode: AFBBN
  dateStart: 20101201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1868-808X
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0000603302
  issn: 1868-8071
  databaseCode: BENPR
  dateStart: 20101201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1868-808X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000603302
  issn: 1868-8071
  databaseCode: AGYKE
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1868-808X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000603302
  issn: 1868-8071
  databaseCode: U2A
  dateStart: 20101201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT9swFH-C9rILWoGJQql82AHELJI4dp0DQu3UgjZRIbRKcIri2EFIENjSHfbf773EIRrSOEV6Tnx4fp95fr8H8FlKnQcmVFxajQmKxLMwIrDcYbCcBUWWGEMV3aululzF327l7QYs214YulbZ2sTaUNvnnP6Rn0ZJiIYz0VKev_zkNDWKqqvtCI3Mj1awZzXE2Cb0I0LG6kF_Nl9e37QSJkLCXukcsBBxjUH1-lcmUEhrLipqpQmpN_SdNk2_HSX_HN0cp1l2mIf_6826EPVNVbV2VouPsOWjTDZtxGIAG67choHX44odebDp4x04n5aMIDZLMnucfJpl9_UqEVg9KIdhYMuemooOe3hCC8SqPyVGjtVDtQurxfzH10vuhyrwHLVtzXOjDKYsqNlWFUlAPBB4KEYWmChHSJDORYXIJqGRVhkxcVoVVmfWmMgWMhSfoFc-l24PWJRkUsVhZESCfLSYlmNwKSZIFLGLtRtC2DInzT3iOA2-eEw7rGRiaIoMTWuGpsEQTl6_eWnwNt59e9TyPPW6V6WdpAzhS3sO3fL_d9t_f7cD-ECz5ptGxBH01r9-u0OMSNZmDJt6cTGG_nQxmy3peXH3fT72woerq2j6F6wC2qI
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JS8QwFH64HPQijguOaw4Kigbbpsm0h2EYN8ZtEFHwVpsmlQGtS0fEP-dv86VNLQp685q0oby8viUv7_sA1jkPEke6gnIVYILCcS8kcxTVGCzHThqHUpqK7nlf9K79kxt-MwIfVS-MuVZZ2cTCUKvHxJyR73qhi4YzDDjvPD1TwxplqqsVhUZsqRVUu4AYs40dp_r9DVO4vH18gPu94XlHh1f7PWpZBmiC6jekiRQSY3hUdSXS0JEOYwy_UvIUM0cPB7jWXsriliu5EpK1dCBSFcRKSk-l3GW47iiM-8wPMfkb3zvsX1xWGs1cg_VSO3zG_ALz6usUyBE4Vl6MDERgkIFd29lT9veZwwaKbpUa7jzM-797zzok_lHFLZzj0TRM2aiWdEs1bMCIzmagYe1GTjYtuPXWLHS6GTGQnpkxs9T4UEXuilkzQApiHoKBNHkoK0hk8IAWj-TvGUaq-SCfg-t_Ee88jGWPmV4A4oUxF77rSRaiHJWWDINZ1sJB5ms_0E1wK-FEiUU4N0Qb91GNzWwEGqFAo0KgkdOE7a93nkp8jz-fXq5kHtl_PY9qzWzCTrUP9fTvqy3-vdoaTPSuzs-is-P-6RJMGp77sglyGcaGL696BaOhoVy1Kkfg9r-1_BOEXxOq
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60guhBbFWsVt2DB0WXJtnsNjlJUUt9FQ8WegvZ7kYKNhYTD_57Z_NoqqjgdXaTwDx2ZjI73wAcc-6NLWkLypWHCQpHWUhmKaoxWA6tKPSlNBXdh4HoD93bER8tdPFnt93LkmTe02BQmuK0PVNRu2p8M1k4RX9DzVA5TIiXYcU1QAmo0UOnW2oUsw3WSuVwGXMzzKn5XxhLIC2_mOgJzyDz2kVnzc-f-eq9qpD0WxU1c069TdgookrSzdWgDks6bsD6AtZgA-qFFSfkpICaPt2Ci25MDMBmbA49ajyaIs_ZqiGQbEwOwbCWTPN6DplM8fwhyUeMcWMySbZh2Lt-uuzTYqQCHaOtpXQshcSEBe1aici3DEcYikTyCNNkBwlcaydiYceWXAnJOtoTkfJCJaWjIm6zHajFr7HeBeL4IRfIc8l85KrCpBxDS9ZBInO16-km2CWrgnGBN27GXrwEFVKyYW-A7A0y9gZWE87mz8xytI0_d7dKCQSF5SWB49voYH2P8yacl1Kpln9_297_th_B6uNVL7i_Gdztw5oZQp93KLaglr696wMMVVJ5mGnjJ1nN16A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+attentive-based+generative+model+for+medical+image+synthesis&rft.jtitle=International+journal+of+machine+learning+and+cybernetics&rft.au=Wang%2C+Jiayuan&rft.au=Wu%2C+Q.+M.+Jonathan&rft.au=Pourpanah%2C+Farhad&rft.date=2023-11-01&rft.pub=Springer+Nature+B.V&rft.issn=1868-8071&rft.eissn=1868-808X&rft.volume=14&rft.issue=11&rft.spage=3897&rft.epage=3910&rft_id=info:doi/10.1007%2Fs13042-023-01871-0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-8071&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-8071&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-8071&client=summon