An attentive-based generative model for medical image synthesis
Magnetic resonance (MR) and computer tomography (CT) imaging are valuable tools for diagnosing diseases and planning treatment. However, limitations such as radiation exposure and cost can restrict access to certain imaging modalities. To address this issue, medical image synthesis can generate one...
Saved in:
| Published in | International journal of machine learning and cybernetics Vol. 14; no. 11; pp. 3897 - 3910 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2023
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1868-8071 1868-808X |
| DOI | 10.1007/s13042-023-01871-0 |
Cover
| Abstract | Magnetic resonance (MR) and computer tomography (CT) imaging are valuable tools for diagnosing diseases and planning treatment. However, limitations such as radiation exposure and cost can restrict access to certain imaging modalities. To address this issue, medical image synthesis can generate one modality from another, but many existing models struggle with high-quality image synthesis when multiple slices are present in the dataset. This study proposes an attention-based dual contrast generative model, called ADC-cycleGAN, which can synthesize medical images from unpaired data with multiple slices. The model integrates a dual contrast loss term with the CycleGAN loss to ensure that the synthesized images are distinguishable from the source domain. Additionally, an attention mechanism is incorporated into the generators to extract informative features from both channel and spatial domains. To improve performance when dealing with multiple slices, the
K
-means algorithm is used to cluster the dataset into
K
groups, and each group is used to train a separate ADC-cycleGAN. Experimental results demonstrate that the proposed ADC-cycleGAN model produces comparable samples to other state-of-the-art generative models, achieving the highest PSNR and SSIM values of 19.04385 and 0.68551, respectively. We publish the code at
https://github.com/JiayuanWang-JW/ADC-cycleGAN
. |
|---|---|
| AbstractList | Magnetic resonance (MR) and computer tomography (CT) imaging are valuable tools for diagnosing diseases and planning treatment. However, limitations such as radiation exposure and cost can restrict access to certain imaging modalities. To address this issue, medical image synthesis can generate one modality from another, but many existing models struggle with high-quality image synthesis when multiple slices are present in the dataset. This study proposes an attention-based dual contrast generative model, called ADC-cycleGAN, which can synthesize medical images from unpaired data with multiple slices. The model integrates a dual contrast loss term with the CycleGAN loss to ensure that the synthesized images are distinguishable from the source domain. Additionally, an attention mechanism is incorporated into the generators to extract informative features from both channel and spatial domains. To improve performance when dealing with multiple slices, the
K
-means algorithm is used to cluster the dataset into
K
groups, and each group is used to train a separate ADC-cycleGAN. Experimental results demonstrate that the proposed ADC-cycleGAN model produces comparable samples to other state-of-the-art generative models, achieving the highest PSNR and SSIM values of 19.04385 and 0.68551, respectively. We publish the code at
https://github.com/JiayuanWang-JW/ADC-cycleGAN
. Magnetic resonance (MR) and computer tomography (CT) imaging are valuable tools for diagnosing diseases and planning treatment. However, limitations such as radiation exposure and cost can restrict access to certain imaging modalities. To address this issue, medical image synthesis can generate one modality from another, but many existing models struggle with high-quality image synthesis when multiple slices are present in the dataset. This study proposes an attention-based dual contrast generative model, called ADC-cycleGAN, which can synthesize medical images from unpaired data with multiple slices. The model integrates a dual contrast loss term with the CycleGAN loss to ensure that the synthesized images are distinguishable from the source domain. Additionally, an attention mechanism is incorporated into the generators to extract informative features from both channel and spatial domains. To improve performance when dealing with multiple slices, the K-means algorithm is used to cluster the dataset into K groups, and each group is used to train a separate ADC-cycleGAN. Experimental results demonstrate that the proposed ADC-cycleGAN model produces comparable samples to other state-of-the-art generative models, achieving the highest PSNR and SSIM values of 19.04385 and 0.68551, respectively. We publish the code at https://github.com/JiayuanWang-JW/ADC-cycleGAN. |
| Author | Pourpanah, Farhad Wang, Jiayuan Wu, Q. M. Jonathan |
| Author_xml | – sequence: 1 givenname: Jiayuan surname: Wang fullname: Wang, Jiayuan organization: Department of Electrical and Computer Engineering, Centre for Computer Vision and Deep Learning, University of Windsor – sequence: 2 givenname: Q. M. Jonathan surname: Wu fullname: Wu, Q. M. Jonathan email: jwu@uwindsor.ca organization: Department of Electrical and Computer Engineering, Centre for Computer Vision and Deep Learning, University of Windsor – sequence: 3 givenname: Farhad surname: Pourpanah fullname: Pourpanah, Farhad organization: Department of Electrical and Computer Engineering, Queens University |
| BookMark | eNp9kE1LAzEQhoNUsNb-AU8LnqOTTTebPUkpfkHBi4K3kOxO6pZttiap0H9v6oqCh85lhmGeeWfeczJyvUNCLhlcM4DyJjAOs5xCzikwWTIKJ2TMpJBUgnwb_dYlOyPTENaQQgDnkI_J7dxlOkZ0sf1EanTAJluhQ68PjWzTN9hltvfZBpu21l3WbvQKs7B38R1DGy7IqdVdwOlPnpDX-7uXxSNdPj88LeZLWnNWRVobYYQQUPJG2ApMUucarCnsTFR5ahSIueW6ZKZohOElSmEbqRtj8sYWjE_I1bB36_uPHYao1v3OuySp8opVFVSyKNJUPkzVvg_Bo1Vbnw72e8VAHbxSg1cqeaW-vVKQIPkPqtuY3u9d9LrtjqN8QEPScSv0f1cdob4A9gl_gg |
| CitedBy_id | crossref_primary_10_1016_j_sigpro_2024_109818 crossref_primary_10_1088_1361_6560_adb2d7 crossref_primary_10_1145_3670854 crossref_primary_10_1007_s00500_025_10509_y crossref_primary_10_1109_TMI_2024_3354408 crossref_primary_10_3390_bioengineering11080805 crossref_primary_10_1038_s41598_024_61492_7 |
| Cites_doi | 10.1016/j.neunet.2020.05.001 10.1109/TMI.2020.3015379 10.3389/fonc.2016.00178 10.1109/TMI.2021.3069874 10.1109/TMI.2020.3018560 10.1016/j.ijrobp.2011.11.056 10.1109/TMI.2021.3101363 10.1007/s11036-020-01678-1 10.1109/JSEN.2021.3062442 10.1109/TMI.2021.3059265 10.1109/TMI.2019.2935409 10.1016/j.neucom.2019.01.078 10.1007/s11263-020-01321-2 10.1007/s11042-019-7556-x 10.1016/j.bspc.2022.104445 10.1088/0031-9155/58/23/8419 10.1109/TMI.2020.3008871 10.2967/jnumed.111.092577 10.1002/mp.14121 10.1002/mp.12155 10.1016/j.compbiomed.2021.104763 10.1109/TBME.2018.2814538 10.1088/0031-9155/60/2/825 10.1109/TMI.2018.2876633 10.2967/jnumed.107.049353 10.1109/TMI.2020.2975344 10.1109/ACCESS.2019.2946264 10.1109/TCI.2020.3012928 10.1002/acm2.13121 10.1109/TIP.2003.819861 10.2967/jnumed.113.136341 10.3340/jkns.2019.0084 10.1109/TMI.2014.2340135 10.1007/978-3-030-32486-5_18 10.1609/aaai.v34i07.6619 10.1109/CVPR.2017.613 10.1007/978-3-030-32251-9_85 10.1109/BIBM47256.2019.8982932 10.1109/TMI.2022.3167808 10.1109/CVPR.2016.90 10.1109/ICCV48922.2021.00041 10.1007/978-3-030-00928-1_33 10.1109/CVPR.2019.01096 10.1109/ISBI.2015.7164145 10.1016/j.neucom.2022.05.113 10.1109/ICCV.2017.244 10.1109/CVPR42600.2020.00819 10.1109/ICIP.2017.8297089 10.1007/978-3-030-01234-2_1 10.1007/s11063-022-11023-0 10.1109/CVPR.2019.00326 10.1007/978-3-319-46630-9_13 10.1117/12.2082373 10.1007/978-3-319-10443-0_39 10.1016/j.compmedimag.2023.102249 10.1109/ICMIPE47306.2019.9098219 10.1109/WACV48630.2021.00318 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS |
| DOI | 10.1007/s13042-023-01871-0 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database (Proquest) Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 1868-808X |
| EndPage | 3910 |
| ExternalDocumentID | 10_1007_s13042_023_01871_0 |
| GroupedDBID | -EM 06D 0R~ 0VY 1N0 203 29~ 2JY 2VQ 30V 4.4 406 408 409 40D 96X AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ARAPS AUKKA AXYYD AYJHY BENPR BGLVJ BGNMA CCPQU CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 H13 HCIFZ HMJXF HQYDN HRMNR HZ~ I0C IKXTQ IWAJR IXD IZIGR J-C J0Z JBSCW JCJTX JZLTJ K7- KOV LLZTM M4Y M7S NPVJJ NQJWS NU0 O9- O93 O9J P2P P9P PT4 PTHSS QOS R89 R9I RLLFE ROL RSV S27 S3B SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z7X Z83 Z88 ZMTXR ~A9 AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c319t-cb6b666073d6f90b0333a0fb5f469290b5ee2f3a71b5d6b37e86fd8adbb2df513 |
| IEDL.DBID | BENPR |
| ISSN | 1868-8071 |
| IngestDate | Fri Jul 25 11:03:13 EDT 2025 Thu Apr 24 22:58:58 EDT 2025 Wed Oct 01 04:29:34 EDT 2025 Fri Feb 21 02:41:37 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Deep learning Medical image synthesis Attention mechanism Unpaired data CycleGAN |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-cb6b666073d6f90b0333a0fb5f469290b5ee2f3a71b5d6b37e86fd8adbb2df513 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2919909855 |
| PQPubID | 2043904 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_2919909855 crossref_primary_10_1007_s13042_023_01871_0 crossref_citationtrail_10_1007_s13042_023_01871_0 springer_journals_10_1007_s13042_023_01871_0 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20231100 2023-11-00 20231101 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: 20231100 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | International journal of machine learning and cybernetics |
| PublicationTitleAbbrev | Int. J. Mach. Learn. & Cyber |
| PublicationYear | 2023 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Liu, Zhang, Liu, Han, Shi, Guan, He (CR21) 2021; 40 Tomar, Lortkipanidze, Vray, Bozorgtabar, Thiran (CR5) 2021; 40 Dowling, Lambert, Parker, Salvado, Fripp, Capp, Wratten, Denham, Greer (CR35) 2012; 83 Huo, Xu, Moon, Bao, Assad, Moyo, Savona, Abramson, Landman (CR22) 2018; 38 CR34 Delpon, Escande, Ruef, Darréon, Fontaine, Noblet, Supiot, Lacornerie, Pasquier (CR37) 2016; 6 Yang, Lu, Wang, Lu, Yao, Jiang, Qian (CR2) 2021; 26 CR31 Burgos, Cardoso, Thielemans, Modat, Pedemonte, Dickson, Barnes, Ahmed, Mahoney, Schott (CR39) 2014; 33 Liu, Guo (CR54) 2019; 337 Wang, Fernandes, Zhu, Zhang (CR59) 2021; 22 Li, Jia, Islam, Yu, Xing (CR8) 2020; 39 CR6 CR7 CR49 CR47 CR45 CR44 CR43 CR42 CR40 Yang, Sun, Carass, Zhao, Lee, Prince, Xu (CR27) 2020; 39 Abu-Srhan, Almallahi, Abushariah, Mahafza, Al-Kadi (CR30) 2021; 136 Hsu, Cao, Huang, Feng, Balter (CR38) 2013; 58 Yang, Sun, Carass, Zhao, Lee, Prince, Xu (CR46) 2020; 39 Berker, Franke, Salomon, Palmowski, Donker, Temur, Mottaghy, Kuhl, Izquierdo-Garcia, Fayad (CR10) 2012; 53 Liu, Lei, Wang, Fu, Tang, Curran, Liu, Patel, Yang (CR23) 2020; 47 Wang, Lei, Fu, Wynne, Curran, Liu, Yang (CR32) 2021; 22 CR19 CR17 Nie, Shen (CR26) 2020; 128 CR16 CR15 CR14 CR58 CR57 CR12 CR56 CR55 Zhong, Liu, Zhao, Li (CR63) 2020; 79 CR53 CR52 CR51 CR50 Wang, Bovik, Sheikh, Simoncelli (CR64) 2004; 13 Chen, Lian, Wang, Deng, Fung, Nie, Thung, Yap, Gateno, Xia (CR3) 2019; 39 Bhosale, Patnaik (CR13) 2023; 81 Huang, Chen, Zhang, Quan, Ji, Zhang, Yang, Liu, Liang, Zheng (CR24) 2020; 6 Jiao, Namburete, Papageorghiou, Noble (CR9) 2020; 39 Hofmann, Steinke, Scheel, Charpiat, Farquhar, Aschoff, Brady, Schölkopf, Pichler (CR33) 2008; 49 Sjölund, Forsberg, Andersson, Knutsson (CR11) 2015; 60 Xu, Zeng, Zhang, Li, Lei, Huang (CR1) 2020; 128 CR28 Zhou, Wang, Zhang, Zhu, Zheng, Wu (CR62) 2019; 7 CR25 CR20 CR61 Lee, Gu, Ye (CR48) 2021; 40 CR60 Nie, Trullo, Lian, Wang, Petitjean, Ruan, Wang, Shen (CR18) 2018; 65 Zhou, Fu, Chen, Shen, Shao (CR41) 2020; 39 Lee, Han, Kim, Yu, Lee, Song, Joo, Jin, Kim (CR4) 2020; 63 Izquierdo-Garcia, Hansen, Förster, Benoit, Schachoff, Fürst, Chen, Chonde, Catana (CR36) 2014; 55 Han (CR29) 2017; 44 1871_CR31 Y Berker (1871_CR10) 2012; 53 JA Dowling (1871_CR35) 2012; 83 H Yang (1871_CR2) 2021; 26 1871_CR7 1871_CR6 1871_CR34 Y Huo (1871_CR22) 2018; 38 Z Wang (1871_CR64) 2004; 13 H Yang (1871_CR27) 2020; 39 X Han (1871_CR29) 2017; 44 D Nie (1871_CR18) 2018; 65 J Sjölund (1871_CR11) 2015; 60 H Yang (1871_CR46) 2020; 39 D Tomar (1871_CR5) 2021; 40 1871_CR40 1871_CR42 X Chen (1871_CR3) 2019; 39 1871_CR44 1871_CR43 Y Liu (1871_CR23) 2020; 47 S-H Hsu (1871_CR38) 2013; 58 1871_CR45 S Liu (1871_CR21) 2021; 40 G Liu (1871_CR54) 2019; 337 YH Bhosale (1871_CR13) 2023; 81 L Xu (1871_CR1) 2020; 128 1871_CR47 1871_CR49 1871_CR51 1871_CR50 1871_CR53 1871_CR52 S-H Wang (1871_CR59) 2021; 22 1871_CR55 1871_CR57 1871_CR12 N Burgos (1871_CR39) 2014; 33 1871_CR56 J Lee (1871_CR48) 2021; 40 J Jiao (1871_CR9) 2020; 39 T Zhou (1871_CR41) 2020; 39 Y Zhong (1871_CR63) 2020; 79 D Izquierdo-Garcia (1871_CR36) 2014; 55 X Li (1871_CR8) 2020; 39 1871_CR15 1871_CR14 1871_CR58 1871_CR17 1871_CR16 1871_CR19 Y Zhou (1871_CR62) 2019; 7 T Wang (1871_CR32) 2021; 22 M Hofmann (1871_CR33) 2008; 49 1871_CR61 1871_CR20 A Abu-Srhan (1871_CR30) 2021; 136 1871_CR60 D Nie (1871_CR26) 2020; 128 Z Huang (1871_CR24) 2020; 6 1871_CR25 1871_CR28 G Delpon (1871_CR37) 2016; 6 JH Lee (1871_CR4) 2020; 63 |
| References_xml | – ident: CR45 – volume: 128 start-page: 82 year: 2020 end-page: 96 ident: CR1 article-title: Bpgan: Bidirectional ct-to-mri prediction using multi-generative multi-adversarial nets with spectral normalization and localization publication-title: Neural Netw doi: 10.1016/j.neunet.2020.05.001 – ident: CR49 – ident: CR16 – ident: CR51 – ident: CR12 – ident: CR61 – volume: 39 start-page: 4249 issue: 12 year: 2020 end-page: 4261 ident: CR46 article-title: Unsupervised mr-to-ct synthesis using structure-constrained cyclegan publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2020.3015379 – ident: CR58 – ident: CR25 – ident: CR42 – volume: 6 start-page: 178 year: 2016 ident: CR37 article-title: Comparison of automated atlas-based segmentation software for postoperative prostate cancer radiotherapy publication-title: Front Oncology doi: 10.3389/fonc.2016.00178 – ident: CR19 – volume: 40 start-page: 1977 issue: 8 year: 2021 end-page: 1989 ident: CR21 article-title: Unpaired stain transfer using pathology-consistent constrained generative adversarial networks publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2021.3069874 – volume: 39 start-page: 4413 issue: 12 year: 2020 end-page: 4424 ident: CR9 article-title: Self-supervised ultrasound to mri fetal brain image synthesis publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2020.3018560 – volume: 83 start-page: 5 issue: 1 year: 2012 end-page: 11 ident: CR35 article-title: An atlas-based electron density mapping method for magnetic resonance imaging (mri)-alone treatment planning and adaptive mri-based prostate radiation therapy publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2011.11.056 – ident: CR15 – ident: CR50 – volume: 40 start-page: 3932 issue: 12 year: 2021 end-page: 3944 ident: CR48 article-title: Unsupervised ct metal artifact learning using attention-guided -cyclegan publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2021.3101363 – ident: CR57 – volume: 26 start-page: 415 issue: 1 year: 2021 end-page: 424 ident: CR2 article-title: Synthesizing multi-contrast mr images via novel 3d conditional variational auto-encoding gan publication-title: Mobile Netw Appl doi: 10.1007/s11036-020-01678-1 – ident: CR60 – volume: 22 start-page: 17431 issue: 18 year: 2021 end-page: 17438 ident: CR59 article-title: Avnc: attention-based vgg-style network for covid-19 diagnosis by cbam publication-title: IEEE Sens J doi: 10.1109/JSEN.2021.3062442 – volume: 40 start-page: 2926 issue: 10 year: 2021 end-page: 2938 ident: CR5 article-title: Self-attentive spatial adaptive normalization for cross-modality domain adaptation publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2021.3059265 – volume: 39 start-page: 787 issue: 3 year: 2019 end-page: 796 ident: CR3 article-title: One-shot generative adversarial learning for mri segmentation of craniomaxillofacial bony structures publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2019.2935409 – volume: 337 start-page: 325 year: 2019 end-page: 338 ident: CR54 article-title: Bidirectional lstm with attention mechanism and convolutional layer for text classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.01.078 – volume: 128 start-page: 2494 issue: 10 year: 2020 end-page: 2513 ident: CR26 article-title: Adversarial confidence learning for medical image segmentation and synthesis publication-title: Int J Comput Vis doi: 10.1007/s11263-020-01321-2 – volume: 79 start-page: 16517 issue: 23 year: 2020 end-page: 16529 ident: CR63 article-title: A generative adversarial network for image denoising publication-title: Multimed Tools Appl doi: 10.1007/s11042-019-7556-x – volume: 81 year: 2023 ident: CR13 article-title: Puldi-covid: chronic obstructive pulmonary (lung) diseases with covid-19 classification using ensemble deep convolutional neural network from chest x-ray images to minimize severity and mortality rates publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2022.104445 – volume: 58 start-page: 8419 issue: 23 year: 2013 ident: CR38 article-title: Investigation of a method for generating synthetic ct models from mri scans of the head and neck for radiation therapy publication-title: Physics Med Biol doi: 10.1088/0031-9155/58/23/8419 – ident: CR43 – volume: 39 start-page: 4023 issue: 12 year: 2020 end-page: 4033 ident: CR8 article-title: Self-supervised feature learning via exploiting multi-modal data for retinal disease diagnosis publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2020.3008871 – ident: CR47 – ident: CR14 – volume: 53 start-page: 796 issue: 5 year: 2012 end-page: 804 ident: CR10 article-title: Mri-based attenuation correction for hybrid pet/mri systems: a 4-class tissue segmentation technique using a combined ultrashort-echo-time/dixon mri sequence publication-title: J Nucl Med doi: 10.2967/jnumed.111.092577 – volume: 39 start-page: 4249 issue: 12 year: 2020 end-page: 4261 ident: CR27 article-title: Unsupervised mr-to-ct synthesis using structure-constrained cyclegan publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2020.3015379 – ident: CR53 – volume: 47 start-page: 2472 issue: 6 year: 2020 end-page: 2483 ident: CR23 article-title: Cbct-based synthetic ct generation using deep-attention cyclegan for pancreatic adaptive radiotherapy publication-title: Med Phys doi: 10.1002/mp.14121 – volume: 44 start-page: 1408 issue: 4 year: 2017 end-page: 1419 ident: CR29 article-title: Mr-based synthetic ct generation using a deep convolutional neural network method publication-title: Med Phys doi: 10.1002/mp.12155 – volume: 136 year: 2021 ident: CR30 article-title: Paired-unpaired unsupervised attention guided gan with transfer learning for bidirectional brain mr-ct synthesis publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.104763 – ident: CR6 – ident: CR56 – ident: CR40 – volume: 65 start-page: 2720 issue: 12 year: 2018 end-page: 2730 ident: CR18 article-title: Medical image synthesis with deep convolutional adversarial networks publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2018.2814538 – volume: 60 start-page: 825 issue: 2 year: 2015 ident: CR11 article-title: Generating patient specific pseudo-ct of the head from mr using atlas-based regression publication-title: Phys Med Biol doi: 10.1088/0031-9155/60/2/825 – volume: 38 start-page: 1016 issue: 4 year: 2018 end-page: 1025 ident: CR22 article-title: Synseg-net: synthetic segmentation without target modality ground truth publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2018.2876633 – volume: 49 start-page: 1875 issue: 11 year: 2008 end-page: 1883 ident: CR33 article-title: Mri-based attenuation correction for pet/mri: a novel approach combining pattern recognition and atlas registration publication-title: J Nucl Med doi: 10.2967/jnumed.107.049353 – volume: 39 start-page: 2772 issue: 9 year: 2020 end-page: 2781 ident: CR41 article-title: Hi-net: hybrid-fusion network for multi-modal mr image synthesis publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2020.2975344 – ident: CR44 – volume: 7 start-page: 146331 year: 2019 end-page: 146341 ident: CR62 article-title: Mpce: a maximum probability based cross entropy loss function for neural network classification publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2946264 – volume: 6 start-page: 1203 year: 2020 end-page: 1218 ident: CR24 article-title: Cagan: a cycle-consistent generative adversarial network with attention for low-dose ct imaging publication-title: IEEE Trans Comput Imaging doi: 10.1109/TCI.2020.3012928 – ident: CR52 – ident: CR17 – ident: CR31 – volume: 22 start-page: 11 issue: 1 year: 2021 end-page: 36 ident: CR32 article-title: A review on medical imaging synthesis using deep learning and its clinical applications publication-title: J Appl Clin Med Phys doi: 10.1002/acm2.13121 – ident: CR34 – ident: CR55 – ident: CR7 – volume: 13 start-page: 600 issue: 4 year: 2004 end-page: 612 ident: CR64 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2003.819861 – ident: CR28 – volume: 55 start-page: 1825 issue: 11 year: 2014 end-page: 1830 ident: CR36 article-title: An spm8-based approach for attenuation correction combining segmentation and nonrigid template formation: application to simultaneous pet/mr brain imaging publication-title: J Nucl Med doi: 10.2967/jnumed.113.136341 – ident: CR20 – volume: 63 start-page: 386 issue: 3 year: 2020 end-page: 396 ident: CR4 article-title: Spine computed tomography to magnetic resonance image synthesis using generative adversarial networks: a preliminary study publication-title: J Korean Neurosurg Soc doi: 10.3340/jkns.2019.0084 – volume: 33 start-page: 2332 issue: 12 year: 2014 end-page: 2341 ident: CR39 article-title: Attenuation correction synthesis for hybrid pet-mr scanners: application to brain studies publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2014.2340135 – volume: 22 start-page: 17431 issue: 18 year: 2021 ident: 1871_CR59 publication-title: IEEE Sens J doi: 10.1109/JSEN.2021.3062442 – volume: 13 start-page: 600 issue: 4 year: 2004 ident: 1871_CR64 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2003.819861 – ident: 1871_CR45 doi: 10.1007/978-3-030-32486-5_18 – ident: 1871_CR42 doi: 10.1609/aaai.v34i07.6619 – volume: 337 start-page: 325 year: 2019 ident: 1871_CR54 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.01.078 – ident: 1871_CR15 doi: 10.1109/CVPR.2017.613 – volume: 55 start-page: 1825 issue: 11 year: 2014 ident: 1871_CR36 publication-title: J Nucl Med doi: 10.2967/jnumed.113.136341 – volume: 26 start-page: 415 issue: 1 year: 2021 ident: 1871_CR2 publication-title: Mobile Netw Appl doi: 10.1007/s11036-020-01678-1 – volume: 47 start-page: 2472 issue: 6 year: 2020 ident: 1871_CR23 publication-title: Med Phys doi: 10.1002/mp.14121 – ident: 1871_CR43 doi: 10.1007/978-3-030-32251-9_85 – volume: 136 year: 2021 ident: 1871_CR30 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.104763 – volume: 60 start-page: 825 issue: 2 year: 2015 ident: 1871_CR11 publication-title: Phys Med Biol doi: 10.1088/0031-9155/60/2/825 – ident: 1871_CR25 doi: 10.1109/BIBM47256.2019.8982932 – ident: 1871_CR19 doi: 10.1109/TMI.2022.3167808 – ident: 1871_CR60 doi: 10.1109/CVPR.2016.90 – volume: 39 start-page: 4249 issue: 12 year: 2020 ident: 1871_CR27 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2020.3015379 – ident: 1871_CR56 doi: 10.1109/ICCV48922.2021.00041 – volume: 39 start-page: 787 issue: 3 year: 2019 ident: 1871_CR3 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2019.2935409 – ident: 1871_CR16 doi: 10.1007/978-3-030-00928-1_33 – ident: 1871_CR52 doi: 10.1109/CVPR.2019.01096 – ident: 1871_CR6 doi: 10.1109/ISBI.2015.7164145 – volume: 39 start-page: 4023 issue: 12 year: 2020 ident: 1871_CR8 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2020.3008871 – volume: 40 start-page: 3932 issue: 12 year: 2021 ident: 1871_CR48 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2021.3101363 – volume: 7 start-page: 146331 year: 2019 ident: 1871_CR62 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2946264 – ident: 1871_CR7 doi: 10.1016/j.neucom.2022.05.113 – volume: 33 start-page: 2332 issue: 12 year: 2014 ident: 1871_CR39 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2014.2340135 – ident: 1871_CR57 – ident: 1871_CR20 doi: 10.1109/ICCV.2017.244 – ident: 1871_CR47 doi: 10.1109/CVPR42600.2020.00819 – ident: 1871_CR50 – volume: 39 start-page: 2772 issue: 9 year: 2020 ident: 1871_CR41 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2020.2975344 – ident: 1871_CR61 doi: 10.1109/ICIP.2017.8297089 – volume: 39 start-page: 4413 issue: 12 year: 2020 ident: 1871_CR9 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2020.3018560 – volume: 40 start-page: 1977 issue: 8 year: 2021 ident: 1871_CR21 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2021.3069874 – ident: 1871_CR31 doi: 10.1007/978-3-030-01234-2_1 – volume: 6 start-page: 178 year: 2016 ident: 1871_CR37 publication-title: Front Oncology doi: 10.3389/fonc.2016.00178 – ident: 1871_CR12 doi: 10.1007/s11063-022-11023-0 – volume: 49 start-page: 1875 issue: 11 year: 2008 ident: 1871_CR33 publication-title: J Nucl Med doi: 10.2967/jnumed.107.049353 – volume: 58 start-page: 8419 issue: 23 year: 2013 ident: 1871_CR38 publication-title: Physics Med Biol doi: 10.1088/0031-9155/58/23/8419 – volume: 65 start-page: 2720 issue: 12 year: 2018 ident: 1871_CR18 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2018.2814538 – ident: 1871_CR53 doi: 10.1109/CVPR.2019.00326 – ident: 1871_CR49 – ident: 1871_CR51 – volume: 81 year: 2023 ident: 1871_CR13 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2022.104445 – volume: 6 start-page: 1203 year: 2020 ident: 1871_CR24 publication-title: IEEE Trans Comput Imaging doi: 10.1109/TCI.2020.3012928 – ident: 1871_CR40 doi: 10.1007/978-3-319-46630-9_13 – volume: 128 start-page: 82 year: 2020 ident: 1871_CR1 publication-title: Neural Netw doi: 10.1016/j.neunet.2020.05.001 – volume: 128 start-page: 2494 issue: 10 year: 2020 ident: 1871_CR26 publication-title: Int J Comput Vis doi: 10.1007/s11263-020-01321-2 – volume: 39 start-page: 4249 issue: 12 year: 2020 ident: 1871_CR46 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2020.3015379 – ident: 1871_CR55 – volume: 53 start-page: 796 issue: 5 year: 2012 ident: 1871_CR10 publication-title: J Nucl Med doi: 10.2967/jnumed.111.092577 – ident: 1871_CR34 doi: 10.1117/12.2082373 – volume: 40 start-page: 2926 issue: 10 year: 2021 ident: 1871_CR5 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2021.3059265 – ident: 1871_CR14 doi: 10.1007/978-3-319-10443-0_39 – ident: 1871_CR28 doi: 10.1016/j.compmedimag.2023.102249 – volume: 22 start-page: 11 issue: 1 year: 2021 ident: 1871_CR32 publication-title: J Appl Clin Med Phys doi: 10.1002/acm2.13121 – ident: 1871_CR17 – volume: 83 start-page: 5 issue: 1 year: 2012 ident: 1871_CR35 publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2011.11.056 – volume: 79 start-page: 16517 issue: 23 year: 2020 ident: 1871_CR63 publication-title: Multimed Tools Appl doi: 10.1007/s11042-019-7556-x – volume: 44 start-page: 1408 issue: 4 year: 2017 ident: 1871_CR29 publication-title: Med Phys doi: 10.1002/mp.12155 – ident: 1871_CR44 doi: 10.1109/ICMIPE47306.2019.9098219 – volume: 38 start-page: 1016 issue: 4 year: 2018 ident: 1871_CR22 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2018.2876633 – ident: 1871_CR58 doi: 10.1109/WACV48630.2021.00318 – volume: 63 start-page: 386 issue: 3 year: 2020 ident: 1871_CR4 publication-title: J Korean Neurosurg Soc doi: 10.3340/jkns.2019.0084 |
| SSID | ssj0000603302 ssib031263576 ssib033405570 |
| Score | 2.3748894 |
| Snippet | Magnetic resonance (MR) and computer tomography (CT) imaging are valuable tools for diagnosing diseases and planning treatment. However, limitations such as... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3897 |
| SubjectTerms | Algorithms Artificial Intelligence Complex Systems Computational Intelligence Computed tomography Control Datasets Engineering Image contrast Image quality Learning Magnetic resonance Mechatronics Medical imaging Original Article Pattern Recognition Performance evaluation Radiation Radiation effects Robotics Synthesis Systems Biology Tomography |
| SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8AAtIAoFOSBAQRBSRy7yYQq1FKBYKJSmaI4dlAFDYi0A_x6zonTQAVIXc9OIt_Z98j5vgM4ZsyPbeFwi0kfAxSGshDUlpZCZzmykygQQmd07-75YOjdjNjIFIVl5W33MiWZa-qq2E1H3hbaGEs3ksMgeBXqOd5WDerd68fbXrmPqKMRViozS6mXI03N_73YHGnFdUSf-xqP1zH1NL9_6KfNqhzRhdxpbpL6mzAsF1PcRHm-mE3FRfy5gPO47Gq3YMP4qKRbbKoGrKi0CevfkAub0DA6ISMnBrj6dBsuuynRcJ2pVqGWto-SPOWjmkDypjsEnWQyKbJDZDxBbUayjxS90Gyc7cCw33u4GlimQYMV48mdWrHgAsMf1BKSJ4GtOU1RwIIlGHS7SGBKuQmNOo5gkgvaUT5PpB9JIVyZMIfuQi19TdUeEDeIGPccV9AApSUxxEdHlXaQSD3l-aoFTimCMDbo5bqJxktY4S5rjoXIsTDnWGi34Gz-zFuB3fHv7HYp2dCc4yx0AwfNdeAz1oLzUlDV8N9v219u-gGs6T72RZFjG2rT95k6RG9nKo7M5v4C5C3tbQ priority: 102 providerName: Springer Nature |
| Title | An attentive-based generative model for medical image synthesis |
| URI | https://link.springer.com/article/10.1007/s13042-023-01871-0 https://www.proquest.com/docview/2919909855 |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1868-808X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000603302 issn: 1868-8071 databaseCode: AFBBN dateStart: 20101201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1868-808X dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0000603302 issn: 1868-8071 databaseCode: BENPR dateStart: 20101201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1868-808X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000603302 issn: 1868-8071 databaseCode: AGYKE dateStart: 20100101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1868-808X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000603302 issn: 1868-8071 databaseCode: U2A dateStart: 20101201 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT9swFH-C9rILWoGJQql82AHELJI4dp0DQu3UgjZRIbRKcIri2EFIENjSHfbf773EIRrSOEV6Tnx4fp95fr8H8FlKnQcmVFxajQmKxLMwIrDcYbCcBUWWGEMV3aululzF327l7QYs214YulbZ2sTaUNvnnP6Rn0ZJiIYz0VKev_zkNDWKqqvtCI3Mj1awZzXE2Cb0I0LG6kF_Nl9e37QSJkLCXukcsBBxjUH1-lcmUEhrLipqpQmpN_SdNk2_HSX_HN0cp1l2mIf_6826EPVNVbV2VouPsOWjTDZtxGIAG67choHX44odebDp4x04n5aMIDZLMnucfJpl9_UqEVg9KIdhYMuemooOe3hCC8SqPyVGjtVDtQurxfzH10vuhyrwHLVtzXOjDKYsqNlWFUlAPBB4KEYWmChHSJDORYXIJqGRVhkxcVoVVmfWmMgWMhSfoFc-l24PWJRkUsVhZESCfLSYlmNwKSZIFLGLtRtC2DInzT3iOA2-eEw7rGRiaIoMTWuGpsEQTl6_eWnwNt59e9TyPPW6V6WdpAzhS3sO3fL_d9t_f7cD-ECz5ptGxBH01r9-u0OMSNZmDJt6cTGG_nQxmy3peXH3fT72woerq2j6F6wC2qI |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JS8QwFH64HPQijguOaw4Kigbbpsm0h2EYN8ZtEFHwVpsmlQGtS0fEP-dv86VNLQp685q0oby8viUv7_sA1jkPEke6gnIVYILCcS8kcxTVGCzHThqHUpqK7nlf9K79kxt-MwIfVS-MuVZZ2cTCUKvHxJyR73qhi4YzDDjvPD1TwxplqqsVhUZsqRVUu4AYs40dp_r9DVO4vH18gPu94XlHh1f7PWpZBmiC6jekiRQSY3hUdSXS0JEOYwy_UvIUM0cPB7jWXsriliu5EpK1dCBSFcRKSk-l3GW47iiM-8wPMfkb3zvsX1xWGs1cg_VSO3zG_ALz6usUyBE4Vl6MDERgkIFd29lT9veZwwaKbpUa7jzM-797zzok_lHFLZzj0TRM2aiWdEs1bMCIzmagYe1GTjYtuPXWLHS6GTGQnpkxs9T4UEXuilkzQApiHoKBNHkoK0hk8IAWj-TvGUaq-SCfg-t_Ee88jGWPmV4A4oUxF77rSRaiHJWWDINZ1sJB5ms_0E1wK-FEiUU4N0Qb91GNzWwEGqFAo0KgkdOE7a93nkp8jz-fXq5kHtl_PY9qzWzCTrUP9fTvqy3-vdoaTPSuzs-is-P-6RJMGp77sglyGcaGL696BaOhoVy1Kkfg9r-1_BOEXxOq |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60guhBbFWsVt2DB0WXJtnsNjlJUUt9FQ8WegvZ7kYKNhYTD_57Z_NoqqjgdXaTwDx2ZjI73wAcc-6NLWkLypWHCQpHWUhmKaoxWA6tKPSlNBXdh4HoD93bER8tdPFnt93LkmTe02BQmuK0PVNRu2p8M1k4RX9DzVA5TIiXYcU1QAmo0UOnW2oUsw3WSuVwGXMzzKn5XxhLIC2_mOgJzyDz2kVnzc-f-eq9qpD0WxU1c069TdgookrSzdWgDks6bsD6AtZgA-qFFSfkpICaPt2Ci25MDMBmbA49ajyaIs_ZqiGQbEwOwbCWTPN6DplM8fwhyUeMcWMySbZh2Lt-uuzTYqQCHaOtpXQshcSEBe1aici3DEcYikTyCNNkBwlcaydiYceWXAnJOtoTkfJCJaWjIm6zHajFr7HeBeL4IRfIc8l85KrCpBxDS9ZBInO16-km2CWrgnGBN27GXrwEFVKyYW-A7A0y9gZWE87mz8xytI0_d7dKCQSF5SWB49voYH2P8yacl1Kpln9_297_th_B6uNVL7i_Gdztw5oZQp93KLaglr696wMMVVJ5mGnjJ1nN16A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+attentive-based+generative+model+for+medical+image+synthesis&rft.jtitle=International+journal+of+machine+learning+and+cybernetics&rft.au=Wang%2C+Jiayuan&rft.au=Wu%2C+Q.+M.+Jonathan&rft.au=Pourpanah%2C+Farhad&rft.date=2023-11-01&rft.pub=Springer+Nature+B.V&rft.issn=1868-8071&rft.eissn=1868-808X&rft.volume=14&rft.issue=11&rft.spage=3897&rft.epage=3910&rft_id=info:doi/10.1007%2Fs13042-023-01871-0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-8071&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-8071&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-8071&client=summon |