Mining image frequent patterns based on a frequent pattern list in image databases
The goal of image mining is to find the useful information hidden in image databases. The 9DSPA-Miner approach uses the Apriori strategy to mine the image database, where each image is represented by the 9D-SPA representation. It presents a reasoning method to reason the unknown spatial relation tha...
Saved in:
Published in | The Journal of supercomputing Vol. 76; no. 4; pp. 2597 - 2621 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.04.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0920-8542 1573-0484 |
DOI | 10.1007/s11227-019-03041-y |
Cover
Abstract | The goal of image mining is to find the useful information hidden in image databases. The 9DSPA-Miner approach uses the Apriori strategy to mine the image database, where each image is represented by the 9D-SPA representation. It presents a reasoning method to reason the unknown spatial relation that satisfies the spatial consistency. However, it may generate invalid candidates with the impossible relations that cannot be found in the 2D space or in the input database. Moreover, in this approach, counting the support of the pattern needs to intersect the associated image sets by searching the index structure, taking a long time. Therefore, in this paper, we propose an approach with a frequent pattern list, which generates all valid candidates of frequent patterns. Based on the frequent pattern list, the proposed approach presents two conditions in the candidate generation for finding frequent spatial patterns to avoid generating impossible candidates. Moreover, the proposed approach uses an additional verification step to further avoid generating impossible spatial relations. Therefore, the proposed approach generates fewer candidates than the 9DSPA-Miner approach, reducing the processing time. The experimental results have verified that the proposed approach outperforms the 9DSPA-Miner approach. |
---|---|
AbstractList | The goal of image mining is to find the useful information hidden in image databases. The 9DSPA-Miner approach uses the Apriori strategy to mine the image database, where each image is represented by the 9D-SPA representation. It presents a reasoning method to reason the unknown spatial relation that satisfies the spatial consistency. However, it may generate invalid candidates with the impossible relations that cannot be found in the 2D space or in the input database. Moreover, in this approach, counting the support of the pattern needs to intersect the associated image sets by searching the index structure, taking a long time. Therefore, in this paper, we propose an approach with a frequent pattern list, which generates all valid candidates of frequent patterns. Based on the frequent pattern list, the proposed approach presents two conditions in the candidate generation for finding frequent spatial patterns to avoid generating impossible candidates. Moreover, the proposed approach uses an additional verification step to further avoid generating impossible spatial relations. Therefore, the proposed approach generates fewer candidates than the 9DSPA-Miner approach, reducing the processing time. The experimental results have verified that the proposed approach outperforms the 9DSPA-Miner approach. |
Author | Chang, Ye-In Shen, Jun-Hong Li, Chia-En Tu, Ming-Hsuan Chen, Zih-Siang |
Author_xml | – sequence: 1 givenname: Ye-In surname: Chang fullname: Chang, Ye-In organization: Department of Computer Science and Engineering, National Sun Yat-sen University – sequence: 2 givenname: Jun-Hong orcidid: 0000-0002-6220-096X surname: Shen fullname: Shen, Jun-Hong email: shenjh@asia.edu.tw organization: Department of Information Communication, Asia University, Department of Medical Research, China Medical University Hospital, China Medical University – sequence: 3 givenname: Chia-En surname: Li fullname: Li, Chia-En organization: Department of Computer Science and Engineering, National Sun Yat-sen University – sequence: 4 givenname: Zih-Siang surname: Chen fullname: Chen, Zih-Siang organization: Department of Computer Science and Engineering, National Sun Yat-sen University – sequence: 5 givenname: Ming-Hsuan surname: Tu fullname: Tu, Ming-Hsuan organization: Department of Computer Science and Engineering, National Sun Yat-sen University |
BookMark | eNp9kE1LAzEQhoNUsK3-AU8Bz9HJxya7Ryl-QUUQPYfsblJSarYm6aH_3tQVBIWe5jDvM_PyzNAkDMEidEnhmgKom0QpY4oAbQhwEJTsT9CUVooTELWYoCk0DEhdCXaGZimtAUBwxafo9dkHH1bYf5iVxS7az50NGW9NzjaGhFuTbI-HgM2_Jd74lLEPP2xvsjmk0zk6dWaT7MXPnKP3-7u3xSNZvjw8LW6XpOO0yaRrmexbJiwztRXKqAZszyxTlaWCW-koOFk52ageREclayVzjreyrY3kPedzdDXe3cahFEtZr4ddDOWlZrxhFa-ZlCXFxlQXh5SidXobS-G41xT0wZ0e3eniTn-70_sC1X-gzmeT_RByNH5zHOUjmsqfsLLxt9UR6gtqzoZb |
CitedBy_id | crossref_primary_10_1007_s42452_020_03474_8 |
Cites_doi | 10.1016/j.fss.2008.02.011 10.1016/j.cageo.2019.01.005 10.1016/j.ins.2018.11.026 10.1109/TKDE.2004.90 10.5121/sipij.2012.3104 10.1109/32.6147 10.1016/j.eswa.2019.05.013 10.1109/2.410146 10.1016/j.jvlc.2007.09.001 10.1023/A:1015508302797 10.1016/j.ins.2006.09.018 10.1007/s11042-012-1055-7 10.1016/j.jss.2008.08.028 10.1145/253262.253404 10.1109/tpami.1987.4767923 10.1109/TKDE.2004.92 10.1016/j.patcog.2012.06.001 10.1016/j.jvcir.2014.05.008 10.1145/502512.502564 10.1145/2578726.2578743 10.1109/ICACTM.2019.8776770 10.1145/956750.956818 10.1109/ICISCON.2013.6524166 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 Springer Science+Business Media, LLC, part of Springer Nature 2019. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019. |
DBID | AAYXX CITATION JQ2 |
DOI | 10.1007/s11227-019-03041-y |
DatabaseName | CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1573-0484 |
EndPage | 2621 |
ExternalDocumentID | 10_1007_s11227_019_03041_y |
GrantInformation_xml | – fundername: Ministry of Science and Technology, Taiwan grantid: MOST 107-2221-E-110-064 funderid: http://dx.doi.org/10.13039/501100004663 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBD EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7X Z7Z Z83 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ JQ2 |
ID | FETCH-LOGICAL-c319t-cb26db24e2a8e47a790ed2e275e143e6f10f65f697d04c162b62ff3b6b8a63d33 |
IEDL.DBID | U2A |
ISSN | 0920-8542 |
IngestDate | Thu Sep 25 01:05:23 EDT 2025 Tue Jul 01 03:04:29 EDT 2025 Thu Apr 24 22:55:00 EDT 2025 Fri Feb 21 02:27:43 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Frequent image patterns Image databases Image mining |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-cb26db24e2a8e47a790ed2e275e143e6f10f65f697d04c162b62ff3b6b8a63d33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6220-096X |
PQID | 2392538266 |
PQPubID | 2043774 |
PageCount | 25 |
ParticipantIDs | proquest_journals_2392538266 crossref_primary_10_1007_s11227_019_03041_y crossref_citationtrail_10_1007_s11227_019_03041_y springer_journals_10_1007_s11227_019_03041_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-01 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationSubtitle | An International Journal of High-Performance Computer Design, Analysis, and Use |
PublicationTitle | The Journal of supercomputing |
PublicationTitleAbbrev | J Supercomput |
PublicationYear | 2020 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Huang, Shekhar, Xiong (CR4) 2014; 16 Huang, Lee (CR27) 2004; 16 Lee, Liu, Tsai, Lin, Wu (CR15) 2009; 82 CR18 CR17 Chang, Yan, Dimitroff, Arndt (CR25) 1988; 14 CR13 CR12 CR11 Lee, Hong, Ko, Tsao, Lin (CR14) 2007; 177 Saritha, Santhosh, Venugopal, Patnaik (CR16) 2011 Ovi, Ahmed, Leung, Pazdor, Kacprzyk (CR30) 2019 Huang, Hsu, Su, Lin (CR26) 2008; 19 Wang, Zhang, Yang (CR23) 2014; 68 Tan, Steinbach, Karpatne, Kumar (CR29) 2019 Hudelot, Atif, Bloch (CR5) 2008; 159 Sumalatha, Subramanyam (CR32) 2019; 133 Chang, Shi, Yan (CR9) 1987; PAMI-9 Han, Koperski, Stefanovic (CR3) 1997; 26 Koperski, Han, Egenhofer, Herring (CR6) 1995 Shekhar, Zhang, Huang, Vatsavai, Joshi, Kargupta (CR1) 2004 Shekhar, Huang, Jensen, Schneider, Seeger, Tsotras (CR8) 2001 Flickner, Sawhney, Niblack, Ashley, Huang, Dom, Gorkani, Hafner, Lee, Petkovic, Steele, Yanker (CR19) 1995; 28 Chang (CR24) 1991; 7 CR7 CR28 Wu, Zhang (CR2) 2019; 124 Hsu, Lee, Zhang (CR10) 2002; 19 Singha, Hemachandran (CR22) 2012; 3 Liu, Yang (CR20) 2013; 46 Murala, Wu (CR21) 2014; 25 Rahman, Ahmed, Leung (CR31) 2019; 479 3041_CR13 3041_CR11 3041_CR12 J Han (3041_CR3) 1997; 26 C-C Chang (3041_CR24) 1991; 7 MM Rahman (3041_CR31) 2019; 479 JA Ovi (3041_CR30) 2019 S Sumalatha (3041_CR32) 2019; 133 3041_CR17 M Flickner (3041_CR19) 1995; 28 SK Chang (3041_CR25) 1988; 14 3041_CR18 S Shekhar (3041_CR8) 2001 P-N Tan (3041_CR29) 2019 S-K Chang (3041_CR9) 1987; PAMI-9 AJT Lee (3041_CR14) 2007; 177 AJT Lee (3041_CR15) 2009; 82 M Singha (3041_CR22) 2012; 3 S Saritha (3041_CR16) 2011 P-W Huang (3041_CR27) 2004; 16 S Shekhar (3041_CR1) 2004 K Koperski (3041_CR6) 1995 X-Y Wang (3041_CR23) 2014; 68 3041_CR7 Y Huang (3041_CR4) 2014; 16 W Hsu (3041_CR10) 2002; 19 3041_CR28 S Murala (3041_CR21) 2014; 25 X Wu (3041_CR2) 2019; 124 P-W Huang (3041_CR26) 2008; 19 C Hudelot (3041_CR5) 2008; 159 G-H Liu (3041_CR20) 2013; 46 |
References_xml | – start-page: 357 year: 2004 end-page: 380 ident: CR1 article-title: Trends in spatial data mining publication-title: Data mining: next generation challenges and future directions – start-page: 47 year: 1995 end-page: 66 ident: CR6 article-title: Discovery of spatial association rules in geographic information databases publication-title: Lecture notes in computer science – volume: 159 start-page: 1929 year: 2008 end-page: 1951 ident: CR5 article-title: Fuzzy spatial relation ontology for image interpretation publication-title: Fuzzy Sets Syst doi: 10.1016/j.fss.2008.02.011 – ident: CR18 – volume: 124 start-page: 128 year: 2019 end-page: 139 ident: CR2 article-title: An efficient pixel clustering-based method for mining spatial sequential patterns from serial remote sensing images publication-title: Comput Geosci doi: 10.1016/j.cageo.2019.01.005 – volume: 479 start-page: 76 year: 2019 end-page: 100 ident: CR31 article-title: Mining weighted frequent sequences in uncertain databases publication-title: Inf Sci (NY) doi: 10.1016/j.ins.2018.11.026 – ident: CR12 – volume: 16 start-page: 1472 year: 2014 end-page: 1485 ident: CR4 article-title: Discovering colocation patterns from spatial data sets: a general approach publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2004.90 – volume: 3 start-page: 39 year: 2012 end-page: 57 ident: CR22 article-title: Content based image retrieval using color and texture publication-title: Signal Image Process Int J doi: 10.5121/sipij.2012.3104 – volume: 14 start-page: 681 year: 1988 end-page: 688 ident: CR25 article-title: An intelligent image database system publication-title: IEEE Trans Softw Eng doi: 10.1109/32.6147 – start-page: 236 year: 2001 end-page: 256 ident: CR8 article-title: Discovering spatial co-location patterns: a summary of results publication-title: Lecture notes in computer science – volume: 7 start-page: 405 year: 1991 end-page: 422 ident: CR24 article-title: Spatial match retrieval of symbolic pictures publication-title: J Inf Sci Eng – volume: 133 start-page: 109 year: 2019 end-page: 125 ident: CR32 article-title: A MapReduce solution for incremental mining of sequential patterns from big data publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.05.013 – volume: 28 start-page: 23 year: 1995 end-page: 32 ident: CR19 article-title: Query by image and video content: the QBIC system publication-title: Computer doi: 10.1109/2.410146 – volume: 19 start-page: 637 year: 2008 end-page: 651 ident: CR26 article-title: Spatial inference and similarity retrieval of an intelligent image database system based on object’s spanning representation publication-title: J Vis Lang Comput doi: 10.1016/j.jvlc.2007.09.001 – year: 2019 ident: CR29 publication-title: Introduction to data mining – volume: 19 start-page: 7 year: 2002 end-page: 23 ident: CR10 article-title: Image mining: trends and developments publication-title: J Intell Inf Syst doi: 10.1023/A:1015508302797 – start-page: 1 year: 2011 end-page: 10 ident: CR16 article-title: Interestingness analysis of semantic association mining in medical images publication-title: Communications in computer and information science – ident: CR17 – ident: CR13 – volume: 177 start-page: 1593 year: 2007 end-page: 1608 ident: CR14 article-title: Mining spatial association rules in image databases publication-title: Inf Sci (NY) doi: 10.1016/j.ins.2006.09.018 – volume: 68 start-page: 545 year: 2014 end-page: 569 ident: CR23 article-title: Content-based image retrieval by integrating color and texture features publication-title: Multimed Tools Appl doi: 10.1007/s11042-012-1055-7 – ident: CR11 – volume: 82 start-page: 603 year: 2009 end-page: 618 ident: CR15 article-title: Mining frequent patterns in image databases with 9D-SPA representation publication-title: J Syst Softw doi: 10.1016/j.jss.2008.08.028 – volume: 26 start-page: 553 year: 1997 end-page: 556 ident: CR3 article-title: GeoMiner: a system prototype for spatial data mining publication-title: ACM SIGMOD Rec doi: 10.1145/253262.253404 – ident: CR7 – volume: PAMI-9 start-page: 413 year: 1987 end-page: 428 ident: CR9 article-title: Iconic indexing by 2-D strings publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/tpami.1987.4767923 – volume: 16 start-page: 1486 year: 2004 end-page: 1496 ident: CR27 article-title: Image database design based on 9D-SPA representation for spatial relations publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2004.92 – volume: 46 start-page: 188 year: 2013 end-page: 198 ident: CR20 article-title: Content-based image retrieval using color difference histogram publication-title: Pattern Recognit doi: 10.1016/j.patcog.2012.06.001 – ident: CR28 – volume: 25 start-page: 1324 year: 2014 end-page: 1334 ident: CR21 article-title: Expert content-based image retrieval system using robust local patterns publication-title: J Vis Commun Image Represent doi: 10.1016/j.jvcir.2014.05.008 – start-page: 917 year: 2019 end-page: 936 ident: CR30 article-title: Mining weighted frequent patterns from uncertain data streams publication-title: Advances in intelligent systems and computing – volume: 16 start-page: 1472 year: 2014 ident: 3041_CR4 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2004.90 – volume: 28 start-page: 23 year: 1995 ident: 3041_CR19 publication-title: Computer doi: 10.1109/2.410146 – ident: 3041_CR17 – volume: 68 start-page: 545 year: 2014 ident: 3041_CR23 publication-title: Multimed Tools Appl doi: 10.1007/s11042-012-1055-7 – volume: 133 start-page: 109 year: 2019 ident: 3041_CR32 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.05.013 – volume: 124 start-page: 128 year: 2019 ident: 3041_CR2 publication-title: Comput Geosci doi: 10.1016/j.cageo.2019.01.005 – volume: 479 start-page: 76 year: 2019 ident: 3041_CR31 publication-title: Inf Sci (NY) doi: 10.1016/j.ins.2018.11.026 – start-page: 236 volume-title: Lecture notes in computer science year: 2001 ident: 3041_CR8 – volume: 46 start-page: 188 year: 2013 ident: 3041_CR20 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2012.06.001 – ident: 3041_CR7 doi: 10.1145/502512.502564 – volume: 177 start-page: 1593 year: 2007 ident: 3041_CR14 publication-title: Inf Sci (NY) doi: 10.1016/j.ins.2006.09.018 – volume: 26 start-page: 553 year: 1997 ident: 3041_CR3 publication-title: ACM SIGMOD Rec doi: 10.1145/253262.253404 – ident: 3041_CR12 doi: 10.1145/2578726.2578743 – volume: 159 start-page: 1929 year: 2008 ident: 3041_CR5 publication-title: Fuzzy Sets Syst doi: 10.1016/j.fss.2008.02.011 – volume: 19 start-page: 7 year: 2002 ident: 3041_CR10 publication-title: J Intell Inf Syst doi: 10.1023/A:1015508302797 – ident: 3041_CR28 – volume: 19 start-page: 637 year: 2008 ident: 3041_CR26 publication-title: J Vis Lang Comput doi: 10.1016/j.jvlc.2007.09.001 – ident: 3041_CR11 doi: 10.1109/ICACTM.2019.8776770 – start-page: 357 volume-title: Data mining: next generation challenges and future directions year: 2004 ident: 3041_CR1 – start-page: 1 volume-title: Communications in computer and information science year: 2011 ident: 3041_CR16 – volume: 3 start-page: 39 year: 2012 ident: 3041_CR22 publication-title: Signal Image Process Int J doi: 10.5121/sipij.2012.3104 – volume: 82 start-page: 603 year: 2009 ident: 3041_CR15 publication-title: J Syst Softw doi: 10.1016/j.jss.2008.08.028 – volume: PAMI-9 start-page: 413 year: 1987 ident: 3041_CR9 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/tpami.1987.4767923 – volume: 7 start-page: 405 year: 1991 ident: 3041_CR24 publication-title: J Inf Sci Eng – volume-title: Introduction to data mining year: 2019 ident: 3041_CR29 – ident: 3041_CR13 doi: 10.1145/956750.956818 – volume: 16 start-page: 1486 year: 2004 ident: 3041_CR27 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2004.92 – volume: 14 start-page: 681 year: 1988 ident: 3041_CR25 publication-title: IEEE Trans Softw Eng doi: 10.1109/32.6147 – volume: 25 start-page: 1324 year: 2014 ident: 3041_CR21 publication-title: J Vis Commun Image Represent doi: 10.1016/j.jvcir.2014.05.008 – ident: 3041_CR18 doi: 10.1109/ICISCON.2013.6524166 – start-page: 47 volume-title: Lecture notes in computer science year: 1995 ident: 3041_CR6 – start-page: 917 volume-title: Advances in intelligent systems and computing year: 2019 ident: 3041_CR30 |
SSID | ssj0004373 |
Score | 2.2143977 |
Snippet | The goal of image mining is to find the useful information hidden in image databases. The 9DSPA-Miner approach uses the Apriori strategy to mine the image... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2597 |
SubjectTerms | Candidates Compilers Computer Science Data mining Deep Learning Image databases Interpreters Parallel Computing in Biomed Sciences & Healthcare Processor Architectures Programming Languages |
Title | Mining image frequent patterns based on a frequent pattern list in image databases |
URI | https://link.springer.com/article/10.1007/s11227-019-03041-y https://www.proquest.com/docview/2392538266 |
Volume | 76 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagXVh4Iwql8sAGlpKLY8djBS0VUAagUpkiJ7GlSiWtmjL032OnDhFPiSmDzx7ufHefcy-EzsGjSqmAEcggJZTKkAjFMsJ9TYXkofCl_aE_fGCDEb0dh2NXFFZU2e5VSLK01HWxmw9g0yQFseE8n6w2UTO0_aTMLR5Bt66GDNZxZWEeRlFIwZXK_HzGZ3dUY8wvYdHS2_R30baDibi7luse2lD5PtqpRjBgp5EH6HFYDnjAk1djF7BelInRSzwvu2bmBbZOKsOzHMtvi3hqJIwnudtrU0UtdXGIRv3e89WAuDEJJDX6syRpAnYoFFUgI0W55MJTGSjgoTJgSDHte5qFmgmeeTT1GSQMtA4SlkSSBVkQHKFGPsvVMcIipTxItOelSWS8GxMAgntMMBnyIKKyhfyKW3HqeojbURbTuO5-bDkcGw7HJYfjVQtdfOyZrzto_EndroQQO20qYjAgzhhmgyVa6LISTL38-2kn_yM_RVtgn9NlYk4bNZaLN3VmMMcy6aBm93p4_2S_Ny93vU555d4BymTPPg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDLDwRhQKeGADS8nFseOxQlQF2g6olbpFTuJIlSCtmjD032O7DhFPidlnD3e5u-9yL4SuwaNKqYARyCAllMqQCMUywv2cCslD4UvzQ384Yv0JfZyGU9cUVtbV7nVK0lrqptnNBzBlkoKYdJ5PVptoy6QZTcg1gW7TDRms88pCB0ZRSMG1yvz8xmd31GDML2lR6216-2jXwUTcXcv1AG2o4hDt1SsYsNPII_Q8tAse8OxV2wWcL21hdIUXdmpmUWLjpDI8L7D8dohftITxrHB3TamooS6P0aR3P77rE7cmgaRafyqSJmCWQlEFMlKUSy48lYECHioNhhTLfS9nYc4Ezzya-gwSBnkeJCyJJAuyIDhBrWJeqFOERUp5kOSelyaR9m5MAAjuMcFkyIOIyjbya27FqZshblZZvMTN9GPD4VhzOLYcjldtdPNxZ7GeoPEndacWQuy0qYxBgzhtmDWWaKPbWjDN8e-vnf2P_Apt98fDQTx4GD2dox0wobUt0umgVrV8Uxcaf1TJpf3c3gGPIM75 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgSIgLb8R45sANAm2aJs0RwcZjgBACCU5V2ibSxOimrTvAryfpg_KWEOc4UWo7sVPbnwF2iEOVUh7DJCExplT6WCiWYO5qKiT3hSvtD_3LK3Z6R8_v_ft3Vfx5tnsVkixqGixKU5odDBJ9UBe-uYTYlEmBbWjPxc-TMEVtD4kGTB2ePHRadW2kV0SZhXkmBT4lZeHM96t8NE61x_kpSJrbnvYcyGrXRcrJ4_44i_bjl0-Ajv_5rHmYLR1TdFho0gJMqHQR5qqmD6i8A5bg5jJvKYG6T-YmQnqYp2JnaJDjdKYjZM1igvopkl8GUc_oFOqm5VybnGqpR8tw127dHp3isjEDjs2JzXAcEduGiioiA0W55MJRCVGE-8q4X4pp19HM10zwxKGxy0jEiNZexKJAMi_xvBVopP1UrQISMeVepB0njgJjT5kgRHCHCSZ97gVUNsGtJBLGJWq5bZ7RC2u8Zcu00DAtzJkWPjdh923OoMDs-JV6oxJ0WJ7fUUiM22hMgfFemrBXya0e_nm1tb-Rb8P09XE7vDi76qzDDLFv-TwraAMa2XCsNo3Dk0VbpU6_Avno9Q0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mining+image+frequent+patterns+based+on+a+frequent+pattern+list+in+image+databases&rft.jtitle=The+Journal+of+supercomputing&rft.au=Chang%2C+Ye-In&rft.au=Shen%2C+Jun-Hong&rft.au=Li%2C+Chia-En&rft.au=Chen%2C+Zih-Siang&rft.date=2020-04-01&rft.pub=Springer+US&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=76&rft.issue=4&rft.spage=2597&rft.epage=2621&rft_id=info:doi/10.1007%2Fs11227-019-03041-y&rft.externalDocID=10_1007_s11227_019_03041_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon |