Mining image frequent patterns based on a frequent pattern list in image databases

The goal of image mining is to find the useful information hidden in image databases. The 9DSPA-Miner approach uses the Apriori strategy to mine the image database, where each image is represented by the 9D-SPA representation. It presents a reasoning method to reason the unknown spatial relation tha...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of supercomputing Vol. 76; no. 4; pp. 2597 - 2621
Main Authors Chang, Ye-In, Shen, Jun-Hong, Li, Chia-En, Chen, Zih-Siang, Tu, Ming-Hsuan
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0920-8542
1573-0484
DOI10.1007/s11227-019-03041-y

Cover

Abstract The goal of image mining is to find the useful information hidden in image databases. The 9DSPA-Miner approach uses the Apriori strategy to mine the image database, where each image is represented by the 9D-SPA representation. It presents a reasoning method to reason the unknown spatial relation that satisfies the spatial consistency. However, it may generate invalid candidates with the impossible relations that cannot be found in the 2D space or in the input database. Moreover, in this approach, counting the support of the pattern needs to intersect the associated image sets by searching the index structure, taking a long time. Therefore, in this paper, we propose an approach with a frequent pattern list, which generates all valid candidates of frequent patterns. Based on the frequent pattern list, the proposed approach presents two conditions in the candidate generation for finding frequent spatial patterns to avoid generating impossible candidates. Moreover, the proposed approach uses an additional verification step to further avoid generating impossible spatial relations. Therefore, the proposed approach generates fewer candidates than the 9DSPA-Miner approach, reducing the processing time. The experimental results have verified that the proposed approach outperforms the 9DSPA-Miner approach.
AbstractList The goal of image mining is to find the useful information hidden in image databases. The 9DSPA-Miner approach uses the Apriori strategy to mine the image database, where each image is represented by the 9D-SPA representation. It presents a reasoning method to reason the unknown spatial relation that satisfies the spatial consistency. However, it may generate invalid candidates with the impossible relations that cannot be found in the 2D space or in the input database. Moreover, in this approach, counting the support of the pattern needs to intersect the associated image sets by searching the index structure, taking a long time. Therefore, in this paper, we propose an approach with a frequent pattern list, which generates all valid candidates of frequent patterns. Based on the frequent pattern list, the proposed approach presents two conditions in the candidate generation for finding frequent spatial patterns to avoid generating impossible candidates. Moreover, the proposed approach uses an additional verification step to further avoid generating impossible spatial relations. Therefore, the proposed approach generates fewer candidates than the 9DSPA-Miner approach, reducing the processing time. The experimental results have verified that the proposed approach outperforms the 9DSPA-Miner approach.
Author Chang, Ye-In
Shen, Jun-Hong
Li, Chia-En
Tu, Ming-Hsuan
Chen, Zih-Siang
Author_xml – sequence: 1
  givenname: Ye-In
  surname: Chang
  fullname: Chang, Ye-In
  organization: Department of Computer Science and Engineering, National Sun Yat-sen University
– sequence: 2
  givenname: Jun-Hong
  orcidid: 0000-0002-6220-096X
  surname: Shen
  fullname: Shen, Jun-Hong
  email: shenjh@asia.edu.tw
  organization: Department of Information Communication, Asia University, Department of Medical Research, China Medical University Hospital, China Medical University
– sequence: 3
  givenname: Chia-En
  surname: Li
  fullname: Li, Chia-En
  organization: Department of Computer Science and Engineering, National Sun Yat-sen University
– sequence: 4
  givenname: Zih-Siang
  surname: Chen
  fullname: Chen, Zih-Siang
  organization: Department of Computer Science and Engineering, National Sun Yat-sen University
– sequence: 5
  givenname: Ming-Hsuan
  surname: Tu
  fullname: Tu, Ming-Hsuan
  organization: Department of Computer Science and Engineering, National Sun Yat-sen University
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz9HJxya7Ryl-QUUQPYfsblJSarYm6aH_3tQVBIWe5jDvM_PyzNAkDMEidEnhmgKom0QpY4oAbQhwEJTsT9CUVooTELWYoCk0DEhdCXaGZimtAUBwxafo9dkHH1bYf5iVxS7az50NGW9NzjaGhFuTbI-HgM2_Jd74lLEPP2xvsjmk0zk6dWaT7MXPnKP3-7u3xSNZvjw8LW6XpOO0yaRrmexbJiwztRXKqAZszyxTlaWCW-koOFk52ageREclayVzjreyrY3kPedzdDXe3cahFEtZr4ddDOWlZrxhFa-ZlCXFxlQXh5SidXobS-G41xT0wZ0e3eniTn-70_sC1X-gzmeT_RByNH5zHOUjmsqfsLLxt9UR6gtqzoZb
CitedBy_id crossref_primary_10_1007_s42452_020_03474_8
Cites_doi 10.1016/j.fss.2008.02.011
10.1016/j.cageo.2019.01.005
10.1016/j.ins.2018.11.026
10.1109/TKDE.2004.90
10.5121/sipij.2012.3104
10.1109/32.6147
10.1016/j.eswa.2019.05.013
10.1109/2.410146
10.1016/j.jvlc.2007.09.001
10.1023/A:1015508302797
10.1016/j.ins.2006.09.018
10.1007/s11042-012-1055-7
10.1016/j.jss.2008.08.028
10.1145/253262.253404
10.1109/tpami.1987.4767923
10.1109/TKDE.2004.92
10.1016/j.patcog.2012.06.001
10.1016/j.jvcir.2014.05.008
10.1145/502512.502564
10.1145/2578726.2578743
10.1109/ICACTM.2019.8776770
10.1145/956750.956818
10.1109/ICISCON.2013.6524166
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Springer Science+Business Media, LLC, part of Springer Nature 2019.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2019.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11227-019-03041-y
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0484
EndPage 2621
ExternalDocumentID 10_1007_s11227_019_03041_y
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan
  grantid: MOST 107-2221-E-110-064
  funderid: http://dx.doi.org/10.13039/501100004663
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
JQ2
ID FETCH-LOGICAL-c319t-cb26db24e2a8e47a790ed2e275e143e6f10f65f697d04c162b62ff3b6b8a63d33
IEDL.DBID U2A
ISSN 0920-8542
IngestDate Thu Sep 25 01:05:23 EDT 2025
Tue Jul 01 03:04:29 EDT 2025
Thu Apr 24 22:55:00 EDT 2025
Fri Feb 21 02:27:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Frequent image patterns
Image databases
Image mining
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-cb26db24e2a8e47a790ed2e275e143e6f10f65f697d04c162b62ff3b6b8a63d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6220-096X
PQID 2392538266
PQPubID 2043774
PageCount 25
ParticipantIDs proquest_journals_2392538266
crossref_primary_10_1007_s11227_019_03041_y
crossref_citationtrail_10_1007_s11227_019_03041_y
springer_journals_10_1007_s11227_019_03041_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal of High-Performance Computer Design, Analysis, and Use
PublicationTitle The Journal of supercomputing
PublicationTitleAbbrev J Supercomput
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Huang, Shekhar, Xiong (CR4) 2014; 16
Huang, Lee (CR27) 2004; 16
Lee, Liu, Tsai, Lin, Wu (CR15) 2009; 82
CR18
CR17
Chang, Yan, Dimitroff, Arndt (CR25) 1988; 14
CR13
CR12
CR11
Lee, Hong, Ko, Tsao, Lin (CR14) 2007; 177
Saritha, Santhosh, Venugopal, Patnaik (CR16) 2011
Ovi, Ahmed, Leung, Pazdor, Kacprzyk (CR30) 2019
Huang, Hsu, Su, Lin (CR26) 2008; 19
Wang, Zhang, Yang (CR23) 2014; 68
Tan, Steinbach, Karpatne, Kumar (CR29) 2019
Hudelot, Atif, Bloch (CR5) 2008; 159
Sumalatha, Subramanyam (CR32) 2019; 133
Chang, Shi, Yan (CR9) 1987; PAMI-9
Han, Koperski, Stefanovic (CR3) 1997; 26
Koperski, Han, Egenhofer, Herring (CR6) 1995
Shekhar, Zhang, Huang, Vatsavai, Joshi, Kargupta (CR1) 2004
Shekhar, Huang, Jensen, Schneider, Seeger, Tsotras (CR8) 2001
Flickner, Sawhney, Niblack, Ashley, Huang, Dom, Gorkani, Hafner, Lee, Petkovic, Steele, Yanker (CR19) 1995; 28
Chang (CR24) 1991; 7
CR7
CR28
Wu, Zhang (CR2) 2019; 124
Hsu, Lee, Zhang (CR10) 2002; 19
Singha, Hemachandran (CR22) 2012; 3
Liu, Yang (CR20) 2013; 46
Murala, Wu (CR21) 2014; 25
Rahman, Ahmed, Leung (CR31) 2019; 479
3041_CR13
3041_CR11
3041_CR12
J Han (3041_CR3) 1997; 26
C-C Chang (3041_CR24) 1991; 7
MM Rahman (3041_CR31) 2019; 479
JA Ovi (3041_CR30) 2019
S Sumalatha (3041_CR32) 2019; 133
3041_CR17
M Flickner (3041_CR19) 1995; 28
SK Chang (3041_CR25) 1988; 14
3041_CR18
S Shekhar (3041_CR8) 2001
P-N Tan (3041_CR29) 2019
S-K Chang (3041_CR9) 1987; PAMI-9
AJT Lee (3041_CR14) 2007; 177
AJT Lee (3041_CR15) 2009; 82
M Singha (3041_CR22) 2012; 3
S Saritha (3041_CR16) 2011
P-W Huang (3041_CR27) 2004; 16
S Shekhar (3041_CR1) 2004
K Koperski (3041_CR6) 1995
X-Y Wang (3041_CR23) 2014; 68
3041_CR7
Y Huang (3041_CR4) 2014; 16
W Hsu (3041_CR10) 2002; 19
3041_CR28
S Murala (3041_CR21) 2014; 25
X Wu (3041_CR2) 2019; 124
P-W Huang (3041_CR26) 2008; 19
C Hudelot (3041_CR5) 2008; 159
G-H Liu (3041_CR20) 2013; 46
References_xml – start-page: 357
  year: 2004
  end-page: 380
  ident: CR1
  article-title: Trends in spatial data mining
  publication-title: Data mining: next generation challenges and future directions
– start-page: 47
  year: 1995
  end-page: 66
  ident: CR6
  article-title: Discovery of spatial association rules in geographic information databases
  publication-title: Lecture notes in computer science
– volume: 159
  start-page: 1929
  year: 2008
  end-page: 1951
  ident: CR5
  article-title: Fuzzy spatial relation ontology for image interpretation
  publication-title: Fuzzy Sets Syst
  doi: 10.1016/j.fss.2008.02.011
– ident: CR18
– volume: 124
  start-page: 128
  year: 2019
  end-page: 139
  ident: CR2
  article-title: An efficient pixel clustering-based method for mining spatial sequential patterns from serial remote sensing images
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2019.01.005
– volume: 479
  start-page: 76
  year: 2019
  end-page: 100
  ident: CR31
  article-title: Mining weighted frequent sequences in uncertain databases
  publication-title: Inf Sci (NY)
  doi: 10.1016/j.ins.2018.11.026
– ident: CR12
– volume: 16
  start-page: 1472
  year: 2014
  end-page: 1485
  ident: CR4
  article-title: Discovering colocation patterns from spatial data sets: a general approach
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2004.90
– volume: 3
  start-page: 39
  year: 2012
  end-page: 57
  ident: CR22
  article-title: Content based image retrieval using color and texture
  publication-title: Signal Image Process Int J
  doi: 10.5121/sipij.2012.3104
– volume: 14
  start-page: 681
  year: 1988
  end-page: 688
  ident: CR25
  article-title: An intelligent image database system
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/32.6147
– start-page: 236
  year: 2001
  end-page: 256
  ident: CR8
  article-title: Discovering spatial co-location patterns: a summary of results
  publication-title: Lecture notes in computer science
– volume: 7
  start-page: 405
  year: 1991
  end-page: 422
  ident: CR24
  article-title: Spatial match retrieval of symbolic pictures
  publication-title: J Inf Sci Eng
– volume: 133
  start-page: 109
  year: 2019
  end-page: 125
  ident: CR32
  article-title: A MapReduce solution for incremental mining of sequential patterns from big data
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.05.013
– volume: 28
  start-page: 23
  year: 1995
  end-page: 32
  ident: CR19
  article-title: Query by image and video content: the QBIC system
  publication-title: Computer
  doi: 10.1109/2.410146
– volume: 19
  start-page: 637
  year: 2008
  end-page: 651
  ident: CR26
  article-title: Spatial inference and similarity retrieval of an intelligent image database system based on object’s spanning representation
  publication-title: J Vis Lang Comput
  doi: 10.1016/j.jvlc.2007.09.001
– year: 2019
  ident: CR29
  publication-title: Introduction to data mining
– volume: 19
  start-page: 7
  year: 2002
  end-page: 23
  ident: CR10
  article-title: Image mining: trends and developments
  publication-title: J Intell Inf Syst
  doi: 10.1023/A:1015508302797
– start-page: 1
  year: 2011
  end-page: 10
  ident: CR16
  article-title: Interestingness analysis of semantic association mining in medical images
  publication-title: Communications in computer and information science
– ident: CR17
– ident: CR13
– volume: 177
  start-page: 1593
  year: 2007
  end-page: 1608
  ident: CR14
  article-title: Mining spatial association rules in image databases
  publication-title: Inf Sci (NY)
  doi: 10.1016/j.ins.2006.09.018
– volume: 68
  start-page: 545
  year: 2014
  end-page: 569
  ident: CR23
  article-title: Content-based image retrieval by integrating color and texture features
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-012-1055-7
– ident: CR11
– volume: 82
  start-page: 603
  year: 2009
  end-page: 618
  ident: CR15
  article-title: Mining frequent patterns in image databases with 9D-SPA representation
  publication-title: J Syst Softw
  doi: 10.1016/j.jss.2008.08.028
– volume: 26
  start-page: 553
  year: 1997
  end-page: 556
  ident: CR3
  article-title: GeoMiner: a system prototype for spatial data mining
  publication-title: ACM SIGMOD Rec
  doi: 10.1145/253262.253404
– ident: CR7
– volume: PAMI-9
  start-page: 413
  year: 1987
  end-page: 428
  ident: CR9
  article-title: Iconic indexing by 2-D strings
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/tpami.1987.4767923
– volume: 16
  start-page: 1486
  year: 2004
  end-page: 1496
  ident: CR27
  article-title: Image database design based on 9D-SPA representation for spatial relations
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2004.92
– volume: 46
  start-page: 188
  year: 2013
  end-page: 198
  ident: CR20
  article-title: Content-based image retrieval using color difference histogram
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2012.06.001
– ident: CR28
– volume: 25
  start-page: 1324
  year: 2014
  end-page: 1334
  ident: CR21
  article-title: Expert content-based image retrieval system using robust local patterns
  publication-title: J Vis Commun Image Represent
  doi: 10.1016/j.jvcir.2014.05.008
– start-page: 917
  year: 2019
  end-page: 936
  ident: CR30
  article-title: Mining weighted frequent patterns from uncertain data streams
  publication-title: Advances in intelligent systems and computing
– volume: 16
  start-page: 1472
  year: 2014
  ident: 3041_CR4
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2004.90
– volume: 28
  start-page: 23
  year: 1995
  ident: 3041_CR19
  publication-title: Computer
  doi: 10.1109/2.410146
– ident: 3041_CR17
– volume: 68
  start-page: 545
  year: 2014
  ident: 3041_CR23
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-012-1055-7
– volume: 133
  start-page: 109
  year: 2019
  ident: 3041_CR32
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.05.013
– volume: 124
  start-page: 128
  year: 2019
  ident: 3041_CR2
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2019.01.005
– volume: 479
  start-page: 76
  year: 2019
  ident: 3041_CR31
  publication-title: Inf Sci (NY)
  doi: 10.1016/j.ins.2018.11.026
– start-page: 236
  volume-title: Lecture notes in computer science
  year: 2001
  ident: 3041_CR8
– volume: 46
  start-page: 188
  year: 2013
  ident: 3041_CR20
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2012.06.001
– ident: 3041_CR7
  doi: 10.1145/502512.502564
– volume: 177
  start-page: 1593
  year: 2007
  ident: 3041_CR14
  publication-title: Inf Sci (NY)
  doi: 10.1016/j.ins.2006.09.018
– volume: 26
  start-page: 553
  year: 1997
  ident: 3041_CR3
  publication-title: ACM SIGMOD Rec
  doi: 10.1145/253262.253404
– ident: 3041_CR12
  doi: 10.1145/2578726.2578743
– volume: 159
  start-page: 1929
  year: 2008
  ident: 3041_CR5
  publication-title: Fuzzy Sets Syst
  doi: 10.1016/j.fss.2008.02.011
– volume: 19
  start-page: 7
  year: 2002
  ident: 3041_CR10
  publication-title: J Intell Inf Syst
  doi: 10.1023/A:1015508302797
– ident: 3041_CR28
– volume: 19
  start-page: 637
  year: 2008
  ident: 3041_CR26
  publication-title: J Vis Lang Comput
  doi: 10.1016/j.jvlc.2007.09.001
– ident: 3041_CR11
  doi: 10.1109/ICACTM.2019.8776770
– start-page: 357
  volume-title: Data mining: next generation challenges and future directions
  year: 2004
  ident: 3041_CR1
– start-page: 1
  volume-title: Communications in computer and information science
  year: 2011
  ident: 3041_CR16
– volume: 3
  start-page: 39
  year: 2012
  ident: 3041_CR22
  publication-title: Signal Image Process Int J
  doi: 10.5121/sipij.2012.3104
– volume: 82
  start-page: 603
  year: 2009
  ident: 3041_CR15
  publication-title: J Syst Softw
  doi: 10.1016/j.jss.2008.08.028
– volume: PAMI-9
  start-page: 413
  year: 1987
  ident: 3041_CR9
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/tpami.1987.4767923
– volume: 7
  start-page: 405
  year: 1991
  ident: 3041_CR24
  publication-title: J Inf Sci Eng
– volume-title: Introduction to data mining
  year: 2019
  ident: 3041_CR29
– ident: 3041_CR13
  doi: 10.1145/956750.956818
– volume: 16
  start-page: 1486
  year: 2004
  ident: 3041_CR27
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2004.92
– volume: 14
  start-page: 681
  year: 1988
  ident: 3041_CR25
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/32.6147
– volume: 25
  start-page: 1324
  year: 2014
  ident: 3041_CR21
  publication-title: J Vis Commun Image Represent
  doi: 10.1016/j.jvcir.2014.05.008
– ident: 3041_CR18
  doi: 10.1109/ICISCON.2013.6524166
– start-page: 47
  volume-title: Lecture notes in computer science
  year: 1995
  ident: 3041_CR6
– start-page: 917
  volume-title: Advances in intelligent systems and computing
  year: 2019
  ident: 3041_CR30
SSID ssj0004373
Score 2.2143977
Snippet The goal of image mining is to find the useful information hidden in image databases. The 9DSPA-Miner approach uses the Apriori strategy to mine the image...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2597
SubjectTerms Candidates
Compilers
Computer Science
Data mining
Deep Learning
Image databases
Interpreters
Parallel Computing in Biomed Sciences & Healthcare
Processor Architectures
Programming Languages
Title Mining image frequent patterns based on a frequent pattern list in image databases
URI https://link.springer.com/article/10.1007/s11227-019-03041-y
https://www.proquest.com/docview/2392538266
Volume 76
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagXVh4Iwql8sAGlpKLY8djBS0VUAagUpkiJ7GlSiWtmjL032OnDhFPiSmDzx7ufHefcy-EzsGjSqmAEcggJZTKkAjFMsJ9TYXkofCl_aE_fGCDEb0dh2NXFFZU2e5VSLK01HWxmw9g0yQFseE8n6w2UTO0_aTMLR5Bt66GDNZxZWEeRlFIwZXK_HzGZ3dUY8wvYdHS2_R30baDibi7luse2lD5PtqpRjBgp5EH6HFYDnjAk1djF7BelInRSzwvu2bmBbZOKsOzHMtvi3hqJIwnudtrU0UtdXGIRv3e89WAuDEJJDX6syRpAnYoFFUgI0W55MJTGSjgoTJgSDHte5qFmgmeeTT1GSQMtA4SlkSSBVkQHKFGPsvVMcIipTxItOelSWS8GxMAgntMMBnyIKKyhfyKW3HqeojbURbTuO5-bDkcGw7HJYfjVQtdfOyZrzto_EndroQQO20qYjAgzhhmgyVa6LISTL38-2kn_yM_RVtgn9NlYk4bNZaLN3VmMMcy6aBm93p4_2S_Ny93vU555d4BymTPPg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDLDwRhQKeGADS8nFseOxQlQF2g6olbpFTuJIlSCtmjD032O7DhFPidlnD3e5u-9yL4SuwaNKqYARyCAllMqQCMUywv2cCslD4UvzQ384Yv0JfZyGU9cUVtbV7nVK0lrqptnNBzBlkoKYdJ5PVptoy6QZTcg1gW7TDRms88pCB0ZRSMG1yvz8xmd31GDML2lR6216-2jXwUTcXcv1AG2o4hDt1SsYsNPII_Q8tAse8OxV2wWcL21hdIUXdmpmUWLjpDI8L7D8dohftITxrHB3TamooS6P0aR3P77rE7cmgaRafyqSJmCWQlEFMlKUSy48lYECHioNhhTLfS9nYc4Ezzya-gwSBnkeJCyJJAuyIDhBrWJeqFOERUp5kOSelyaR9m5MAAjuMcFkyIOIyjbya27FqZshblZZvMTN9GPD4VhzOLYcjldtdPNxZ7GeoPEndacWQuy0qYxBgzhtmDWWaKPbWjDN8e-vnf2P_Apt98fDQTx4GD2dox0wobUt0umgVrV8Uxcaf1TJpf3c3gGPIM75
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgSIgLb8R45sANAm2aJs0RwcZjgBACCU5V2ibSxOimrTvAryfpg_KWEOc4UWo7sVPbnwF2iEOVUh7DJCExplT6WCiWYO5qKiT3hSvtD_3LK3Z6R8_v_ft3Vfx5tnsVkixqGixKU5odDBJ9UBe-uYTYlEmBbWjPxc-TMEVtD4kGTB2ePHRadW2kV0SZhXkmBT4lZeHM96t8NE61x_kpSJrbnvYcyGrXRcrJ4_44i_bjl0-Ajv_5rHmYLR1TdFho0gJMqHQR5qqmD6i8A5bg5jJvKYG6T-YmQnqYp2JnaJDjdKYjZM1igvopkl8GUc_oFOqm5VybnGqpR8tw127dHp3isjEDjs2JzXAcEduGiioiA0W55MJRCVGE-8q4X4pp19HM10zwxKGxy0jEiNZexKJAMi_xvBVopP1UrQISMeVepB0njgJjT5kgRHCHCSZ97gVUNsGtJBLGJWq5bZ7RC2u8Zcu00DAtzJkWPjdh923OoMDs-JV6oxJ0WJ7fUUiM22hMgfFemrBXya0e_nm1tb-Rb8P09XE7vDi76qzDDLFv-TwraAMa2XCsNo3Dk0VbpU6_Avno9Q0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mining+image+frequent+patterns+based+on+a+frequent+pattern+list+in+image+databases&rft.jtitle=The+Journal+of+supercomputing&rft.au=Chang%2C+Ye-In&rft.au=Shen%2C+Jun-Hong&rft.au=Li%2C+Chia-En&rft.au=Chen%2C+Zih-Siang&rft.date=2020-04-01&rft.pub=Springer+US&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=76&rft.issue=4&rft.spage=2597&rft.epage=2621&rft_id=info:doi/10.1007%2Fs11227-019-03041-y&rft.externalDocID=10_1007_s11227_019_03041_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon