Exploration of English speech translation recognition based on the LSTM RNN algorithm

In today’s information society, the demand for intelligence is increasing daily. English speech translation recognition technology based on the LSTM (long short-term memory) recurrent neural network (RNN) algorithm is an important manifestations of computer intelligence. In recent years, many schola...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 35; no. 36; pp. 24961 - 24970
Main Authors Yuan, Qiwei, Dai, Yu, Li, Guangming
Format Journal Article
LanguageEnglish
Published London Springer London 01.12.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0941-0643
1433-3058
DOI10.1007/s00521-023-08462-8

Cover

Abstract In today’s information society, the demand for intelligence is increasing daily. English speech translation recognition technology based on the LSTM (long short-term memory) recurrent neural network (RNN) algorithm is an important manifestations of computer intelligence. In recent years, many scholars have conducted research on speech translation recognition technology, including template matching and statistical pattern recognition. Each of these methods has its drawbacks. This paper discusses English speech recognition techniques by utilizing the basic RNN principles. Moreover, its application and construction in practice, which can provide some useful reference for future researchers, are analysed. LSTM RNN is an intelligent system that is different from traditional pattern recognition methods. The greatest difference is that it simulates the information processing of the human brain and realizes the intelligent information processing in a distributed manner. It has a variety of automatic recognition and extraction functions, such as storage, association, and retrieval, especially for speech translation and recognition problems with high perception ability. This new neural network recognition system has a strong scientific nature and can store sound information in a decentralized manner, similar to the human brain. The LSTM RNN has been widely used in the speech recognition field due to its excellent performance in extraction and classification. The study found that the recognition accuracy of the original RNN was generally maintained between 48 and 54%, and the data loss rate was relatively high. The accuracy rate of speech recognition based on LSTM RNN was as high as 94%, and the information storage efficiency was high, which greatly avoided repetitive processes. The voice data processing speed can be completed in 4.5 s at the fastest, which plays an important role in terms of mass satisfaction and social development needs.
AbstractList In today’s information society, the demand for intelligence is increasing daily. English speech translation recognition technology based on the LSTM (long short-term memory) recurrent neural network (RNN) algorithm is an important manifestations of computer intelligence. In recent years, many scholars have conducted research on speech translation recognition technology, including template matching and statistical pattern recognition. Each of these methods has its drawbacks. This paper discusses English speech recognition techniques by utilizing the basic RNN principles. Moreover, its application and construction in practice, which can provide some useful reference for future researchers, are analysed. LSTM RNN is an intelligent system that is different from traditional pattern recognition methods. The greatest difference is that it simulates the information processing of the human brain and realizes the intelligent information processing in a distributed manner. It has a variety of automatic recognition and extraction functions, such as storage, association, and retrieval, especially for speech translation and recognition problems with high perception ability. This new neural network recognition system has a strong scientific nature and can store sound information in a decentralized manner, similar to the human brain. The LSTM RNN has been widely used in the speech recognition field due to its excellent performance in extraction and classification. The study found that the recognition accuracy of the original RNN was generally maintained between 48 and 54%, and the data loss rate was relatively high. The accuracy rate of speech recognition based on LSTM RNN was as high as 94%, and the information storage efficiency was high, which greatly avoided repetitive processes. The voice data processing speed can be completed in 4.5 s at the fastest, which plays an important role in terms of mass satisfaction and social development needs.
In today’s information society, the demand for intelligence is increasing daily. English speech translation recognition technology based on the LSTM (long short-term memory) recurrent neural network (RNN) algorithm is an important manifestations of computer intelligence. In recent years, many scholars have conducted research on speech translation recognition technology, including template matching and statistical pattern recognition. Each of these methods has its drawbacks. This paper discusses English speech recognition techniques by utilizing the basic RNN principles. Moreover, its application and construction in practice, which can provide some useful reference for future researchers, are analysed. LSTM RNN is an intelligent system that is different from traditional pattern recognition methods. The greatest difference is that it simulates the information processing of the human brain and realizes the intelligent information processing in a distributed manner. It has a variety of automatic recognition and extraction functions, such as storage, association, and retrieval, especially for speech translation and recognition problems with high perception ability. This new neural network recognition system has a strong scientific nature and can store sound information in a decentralized manner, similar to the human brain. The LSTM RNN has been widely used in the speech recognition field due to its excellent performance in extraction and classification. The study found that the recognition accuracy of the original RNN was generally maintained between 48 and 54%, and the data loss rate was relatively high. The accuracy rate of speech recognition based on LSTM RNN was as high as 94%, and the information storage efficiency was high, which greatly avoided repetitive processes. The voice data processing speed can be completed in 4.5 s at the fastest, which plays an important role in terms of mass satisfaction and social development needs.
Author Yuan, Qiwei
Li, Guangming
Dai, Yu
Author_xml – sequence: 1
  givenname: Qiwei
  surname: Yuan
  fullname: Yuan, Qiwei
  organization: College of Foreign Language, Shaoyang University
– sequence: 2
  givenname: Yu
  surname: Dai
  fullname: Dai, Yu
  email: dyx2333@dlsud.edu.ph
  organization: College of International Education, Hunan University of Medicine
– sequence: 3
  givenname: Guangming
  surname: Li
  fullname: Li, Guangming
  organization: Department of Mechanical and Energy Engineering, Shaoyang University
BookMark eNp9kEtLAzEQgINUsK3-AU8Bz6vJ5rHZo5T6gFpB23NIs8nulm1Sky3ovzd2BcFDyWEGZr7MzDcBI-edAeAao1uMUHEXEWI5zlBOMiQozzNxBsaYEpIRxMQIjFFJU5lTcgEmMW4RQpQLNgbr-ee-80H1rXfQWzh3ddfGBsa9MbqBfVAudkM1GO1r1x7zjYqmginpGwMX76sX-LZcQtXVPrR9s7sE51Z10Vz9xilYP8xXs6ds8fr4PLtfZJrgss-0YIQbTRVDtmS44oW2BeJsw61gSlRUVYrxwtiysnlVYJoew8SqyqRzN5ZMwc3w7z74j4OJvdz6Q3BppMxFyRArGcGpKx-6dPAxBmPlPrQ7Fb4kRvJHnxz0yaRPHvVJkSDxD9JtfxSRnLTdaZQMaExzXG3C31YnqG-L5IZm
CitedBy_id crossref_primary_10_1007_s00521_024_10469_8
crossref_primary_10_2478_amns_2024_1143
crossref_primary_10_2478_amns_2024_1341
crossref_primary_10_2478_amns_2024_2044
crossref_primary_10_1007_s00521_024_09618_w
Cites_doi 10.3233/JIFS-189231
10.1017/S1366728919000889
10.1007/s10489-016-0846-3
10.3233/JIFS-189052
10.1044/2019_JSLHR-19-00059
10.1007/s00521-020-05156-3
10.14733/cadaps.2020.S1.124-136
10.1007/s00521-018-3601-3
10.2478/pralin-2018-0011
10.1044/2018_AJA-18-0067
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00521-023-08462-8
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 24970
ExternalDocumentID 10_1007_s00521_023_08462_8
GrantInformation_xml – fundername: Shaoyang Science and Technology Planning Project (2021025ZD): Construction of College English online education Platform under the background of "Internet +"
  grantid: 2021025ZD
  funderid: http://dx.doi.org/10.13039/100010513
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-c8536ec4a50f951d67cf7065b6f85a8d4ada567ef9df2d714141513fade052bf3
IEDL.DBID BENPR
ISSN 0941-0643
IngestDate Fri Jul 25 23:34:24 EDT 2025
Thu Apr 24 22:59:09 EDT 2025
Wed Oct 01 03:43:38 EDT 2025
Fri Feb 21 02:40:57 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 36
Keywords Recurrent neural network algorithm
Translation recognition system
LSTM (long short-term memory)
English voice translator
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-c8536ec4a50f951d67cf7065b6f85a8d4ada567ef9df2d714141513fade052bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2895059531
PQPubID 2043988
PageCount 10
ParticipantIDs proquest_journals_2895059531
crossref_primary_10_1007_s00521_023_08462_8
crossref_citationtrail_10_1007_s00521_023_08462_8
springer_journals_10_1007_s00521_023_08462_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231200
2023-12-00
20231201
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 20231200
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2023
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Cao, Guo (CR14) 2020; 12
Zhang, Liu (CR17) 2018; 18
Hidayat, Winursito (CR18) 2021; 14
Mendel, Poussen, Bass (CR11) 2019; 28
Pathak, Pakray, Bentham (CR19) 2019; 31
Hai (CR7) 2020; 39
Duan, Wang, Qin (CR6) 2020; 40
Dharmale, Thakare, Patil (CR4) 2019; 10
Yun (CR16) 2017; 55
Hou, Li, Kang (CR5) 2020; 40
Zhu (CR8) 2020; 39
Mott, Midgley, Holcomb (CR10) 2020; 23
Sangeetha, Jothilakshmi (CR9) 2017; 46
Miller, Calandruccio, Buss (CR15) 2019; 62
Chen (CR2) 2021; 40
Du (CR1) 2019; 17
Feng, Zhou (CR13) 2021; 202
Long, Li, Zhang (CR12) 2020; 161
Zenkel, Sperber, Niehues (CR3) 2018; 111
Bawa (CR20) 2021; 33
X Chen (8462_CR2) 2021; 40
LL Mendel (8462_CR11) 2019; 28
R Duan (8462_CR6) 2020; 40
Y Long (8462_CR12) 2020; 161
Z Yun (8462_CR16) 2017; 55
MK Miller (8462_CR15) 2019; 62
R Hidayat (8462_CR18) 2021; 14
J Sangeetha (8462_CR9) 2017; 46
Q Hou (8462_CR5) 2020; 40
X Feng (8462_CR13) 2021; 202
H Zhu (8462_CR8) 2020; 39
G Dharmale (8462_CR4) 2019; 10
T Zenkel (8462_CR3) 2018; 111
Y Zhang (8462_CR17) 2018; 18
A Pathak (8462_CR19) 2019; 31
S Du (8462_CR1) 2019; 17
Y Hai (8462_CR7) 2020; 39
D Cao (8462_CR14) 2020; 12
S Bawa (8462_CR20) 2021; 33
M Mott (8462_CR10) 2020; 23
References_xml – volume: 40
  start-page: 2349
  issue: 2
  year: 2021
  end-page: 2360
  ident: CR2
  article-title: Simulation of english speech translation recognition based on transfer learning and CNN neural network
  publication-title: J Intell Fuzzy Syst
  doi: 10.3233/JIFS-189231
– volume: 23
  start-page: 1032
  issue: 5
  year: 2020
  end-page: 1044
  ident: CR10
  article-title: Speech recognition translation initiation and image effects in American Sign Language deaf and English listening learners
  publication-title: Biling Lang Cognit
  doi: 10.1017/S1366728919000889
– volume: 161
  start-page: 107
  issue: 11
  year: 2020
  end-page: 125
  ident: CR12
  article-title: Acoustic data augmentation for Mandarin-English code-switching speech recognition
  publication-title: Appl Acoust
– volume: 46
  start-page: 534
  issue: 3
  year: 2017
  end-page: 550
  ident: CR9
  article-title: Speech translation system for english to dravidian languages
  publication-title: Appl Intell
  doi: 10.1007/s10489-016-0846-3
– volume: 202
  start-page: 1
  issue: 1
  year: 2021
  end-page: 12
  ident: CR13
  article-title: English translation language retrieval based on adaptive English phonetic adjustment algorithm
  publication-title: Complexity
– volume: 14
  start-page: 12
  issue: 1
  year: 2021
  end-page: 21
  ident: CR18
  article-title: Improved MFCC robust English speech recognition based on wavelet denoising
  publication-title: Int J Intell Eng Syst
– volume: 39
  start-page: 5749
  issue: 4
  year: 2020
  end-page: 5760
  ident: CR7
  article-title: Computer-aided teaching mode of oral English intelligent learning based on speech recognition and network assistance
  publication-title: J Intell Fuzzy Syst
  doi: 10.3233/JIFS-189052
– volume: 10
  start-page: 83
  issue: 2
  year: 2019
  end-page: 87
  ident: CR4
  article-title: Implementation of Efficient speech recognition system on mobile device for Hindi and English language
  publication-title: Int J Adv Comput Sci Appl
– volume: 18
  start-page: 20
  issue: 5
  year: 2018
  end-page: 31
  ident: CR17
  article-title: Using computer speech recognition technology to evaluate spoken English
  publication-title: Educ Sci Theory Pract
– volume: 40
  start-page: 1
  issue: 1
  year: 2020
  end-page: 12
  ident: CR6
  article-title: A speech recognition model for correcting spoken English teaching
  publication-title: Journal of Intelligence and Fuzzy Systems
– volume: 39
  start-page: 1
  issue: 99
  year: 2020
  end-page: 12
  ident: CR8
  article-title: Construction of English spoken language system based on machine learning algorithm and natural language recognition
  publication-title: J Intell Fuzzy Syst
– volume: 62
  start-page: 1
  issue: 12
  year: 2019
  end-page: 14
  ident: CR15
  article-title: Masked English speech recognition performance in younger and older Spanish–English bilingual and English monolingual children
  publication-title: J Speech Lang Hear Res
  doi: 10.1044/2019_JSLHR-19-00059
– volume: 28
  start-page: 1
  issue: 1
  year: 2019
  end-page: 8
  ident: CR11
  article-title: English speech recognition threshold test for Spanish children
  publication-title: Am J Audiol
– volume: 33
  start-page: 2819
  year: 2021
  end-page: 2838
  ident: CR20
  article-title: A Sanskrit-to-English machine translation using hybridization of direct and rule-based approach
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-05156-3
– volume: 12
  start-page: 120
  issue: 1
  year: 2020
  end-page: 131
  ident: CR14
  article-title: Algorithm research of spoken English assessment based on fuzzy measure and speech recognition technology
  publication-title: Int J Biom
– volume: 40
  start-page: 1
  issue: 7
  year: 2020
  end-page: 11
  ident: CR5
  article-title: Intelligent model for speech recognition based on SVM: a case study on English language
  publication-title: J Intell Fuzzy Syst
– volume: 55
  start-page: 445
  issue: 16
  year: 2017
  end-page: 449
  ident: CR16
  article-title: Research on spoken english speech recognition technology in computer network environment
  publication-title: Boletin Tecnico/Tech Bull
– volume: 17
  start-page: 124
  issue: 1
  year: 2019
  end-page: 136
  ident: CR1
  article-title: Optimization of speech recognition system of english education industry based on machine learning
  publication-title: Computer-Aided Des Appl
  doi: 10.14733/cadaps.2020.S1.124-136
– volume: 31
  start-page: 7615
  year: 2019
  end-page: 7631
  ident: CR19
  article-title: English-Mizo machine translation using neural and statistical approaches
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-018-3601-3
– volume: 111
  start-page: 125
  issue: 1
  year: 2018
  end-page: 135
  ident: CR3
  article-title: An open source toolkit for speech-to-English text translation
  publication-title: Prague Bull Math Ling
  doi: 10.2478/pralin-2018-0011
– volume: 40
  start-page: 2349
  issue: 2
  year: 2021
  ident: 8462_CR2
  publication-title: J Intell Fuzzy Syst
  doi: 10.3233/JIFS-189231
– volume: 55
  start-page: 445
  issue: 16
  year: 2017
  ident: 8462_CR16
  publication-title: Boletin Tecnico/Tech Bull
– volume: 10
  start-page: 83
  issue: 2
  year: 2019
  ident: 8462_CR4
  publication-title: Int J Adv Comput Sci Appl
– volume: 40
  start-page: 1
  issue: 1
  year: 2020
  ident: 8462_CR6
  publication-title: Journal of Intelligence and Fuzzy Systems
– volume: 46
  start-page: 534
  issue: 3
  year: 2017
  ident: 8462_CR9
  publication-title: Appl Intell
  doi: 10.1007/s10489-016-0846-3
– volume: 62
  start-page: 1
  issue: 12
  year: 2019
  ident: 8462_CR15
  publication-title: J Speech Lang Hear Res
  doi: 10.1044/2019_JSLHR-19-00059
– volume: 31
  start-page: 7615
  year: 2019
  ident: 8462_CR19
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-018-3601-3
– volume: 28
  start-page: 1
  issue: 1
  year: 2019
  ident: 8462_CR11
  publication-title: Am J Audiol
  doi: 10.1044/2018_AJA-18-0067
– volume: 111
  start-page: 125
  issue: 1
  year: 2018
  ident: 8462_CR3
  publication-title: Prague Bull Math Ling
  doi: 10.2478/pralin-2018-0011
– volume: 23
  start-page: 1032
  issue: 5
  year: 2020
  ident: 8462_CR10
  publication-title: Biling Lang Cognit
  doi: 10.1017/S1366728919000889
– volume: 202
  start-page: 1
  issue: 1
  year: 2021
  ident: 8462_CR13
  publication-title: Complexity
– volume: 14
  start-page: 12
  issue: 1
  year: 2021
  ident: 8462_CR18
  publication-title: Int J Intell Eng Syst
– volume: 17
  start-page: 124
  issue: 1
  year: 2019
  ident: 8462_CR1
  publication-title: Computer-Aided Des Appl
  doi: 10.14733/cadaps.2020.S1.124-136
– volume: 161
  start-page: 107
  issue: 11
  year: 2020
  ident: 8462_CR12
  publication-title: Appl Acoust
– volume: 39
  start-page: 5749
  issue: 4
  year: 2020
  ident: 8462_CR7
  publication-title: J Intell Fuzzy Syst
  doi: 10.3233/JIFS-189052
– volume: 18
  start-page: 20
  issue: 5
  year: 2018
  ident: 8462_CR17
  publication-title: Educ Sci Theory Pract
– volume: 39
  start-page: 1
  issue: 99
  year: 2020
  ident: 8462_CR8
  publication-title: J Intell Fuzzy Syst
– volume: 12
  start-page: 120
  issue: 1
  year: 2020
  ident: 8462_CR14
  publication-title: Int J Biom
– volume: 40
  start-page: 1
  issue: 7
  year: 2020
  ident: 8462_CR5
  publication-title: J Intell Fuzzy Syst
– volume: 33
  start-page: 2819
  year: 2021
  ident: 8462_CR20
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-05156-3
SSID ssj0004685
Score 2.3940947
Snippet In today’s information society, the demand for intelligence is increasing daily. English speech translation recognition technology based on the LSTM (long...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 24961
SubjectTerms Algorithms
Artificial Intelligence
Brain
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data loss
Data Mining and Knowledge Discovery
Data processing
Image Processing and Computer Vision
Information processing
Information storage
Intelligence
Neural networks
Pattern recognition
Probability and Statistics in Computer Science
Recurrent neural networks
S.I.: Evolutionary Computation based Methods and Applications for Data Processing
Special Issue on Evolutionary Computation based Methods and Applications for Data Processing
Speech
Speech recognition
Template matching
Voice data processing
Voice recognition
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwGP_QefHiW5xOycGbFrY2TbrjEMcQt4OusFvJ0wlzG1v9__3Spp2KCtJLoGkO3_OXfi-Aa5QCLtD0B1KGIqCmLQMplAqMQHBqEqWTxBUnD0dskNKHSTzxRWHrKtu9CkkWlroudnN_MPHqG0auFylDPd6Gndi180IpTsPep2rIYhAn3ltcTg-NfKnMz2d8dUcbjPktLFp4m_4B7HmYSHolXw9hy8yPYL8awUC8Rh5DWubQFeQlC0t8VS5ZL41RU5I7T1Rmu5E6VQjXzndpgguEf-TxeTwkT6MREbOXxeo1n76dQNq_H98NAj8pIVCoQnmg0Okyo6iI2xYhk2au2RCCC8lsEotEU6FFzLixXW1DzTsUn7gTWaENEkTa6BQa88XcnAHRXFPLu-i6paAu6Gq1UJy5cCpllosmdCqCZcq3EXfTLGZZ3QC5IHKGRM4KImdJE27qb5ZlE40_d7cqPmReodYZ3gsRq3XRYjThtuLN5vXvp53_b_sF7LqB8mXCSgsa-erdXCLsyOVVIWUfNIDNTw
  priority: 102
  providerName: Springer Nature
Title Exploration of English speech translation recognition based on the LSTM RNN algorithm
URI https://link.springer.com/article/10.1007/s00521-023-08462-8
https://www.proquest.com/docview/2895059531
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ABDBF
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ADMLS
  dateStart: 19930301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: 8FG
  dateStart: 20180401
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ4gXLz4NqJI9uBNG6HdPjgYg4ZHVBqDNMFTs92HHBBQ6v93tt2Cmkh62WzbPczMzszuPD6AC5QCn6Hqt5LEZhaVjcRKGOeWZOicyoCLINDFyYPQ60f0YeyOSxAWtTA6rbLQiZmiFnOu78iv8WCAxrqFInO7-LA0apSOrhYQGsxAK4ibrMXYFlRs3RmrDJW7Tvg8_FEpmYF04plG5_tQx5TRZMV0-oYUZ21H9zr1UE_8NlVr__NPyDSzRN092DEuJGnnPN-HkpwdwG4Bz0DMbj2EKM-vy0hP5oqYil2yXEjJJyTVVirPhCOrNCIca7smCA7QNSRPL6MBGYYhYdM3pEY6eT-CqNsZ3fctg6JgcdxeqcXRIHuSU-Y2FLpTwtONiNDxSDwVuCwQlAnmer5ULaFs4TcpPm7TUUxIJEiinGMoz-YzeQJE-IIqv4VmPWFUB2SVYNz3dKiVespnVWgWBIu5aTGukS6m8ao5ckbkGIkcZ0SOgypcrv5Z5A02Nn5dK_gQm822jNeiUYWrgjfr1_-vdrp5tTPY1uDyefJKDcrp55c8RxckTeqwFXR7dai0e6-PnbqRMpyN7PY3nTjaYA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT8JAFH5xOejF3YiizkFP2gjtdOFAjAsEBRqDkHir01nkoIBSY_xz_jbftFNQE72ZXiZd5vDe61vmLR_AAUqBz1D1W3FsM4vKUmzFjHNLMnROZcBFEOjm5HboNXr0-s69m4GPvBdGl1XmOjFV1GLI9Rn5CQYGaKwrKDKno2dLo0bp7GoOocEMtIKopiPGTGNHU76_YQg3rl5dIr8Pbbte6140LIMyYHEUv8TiaLA8ySlzSwrdDeHpQT1omGNPBS4LBGWCuZ4vVUUoW_hlipdbdhQTsuTasXJw31mYpw6tYPA3f14LbzpfOjNTUFCMoXR9EXVM207avKdPZPGu7ejZqh7qpe-mcerv_kjRppavvgJLxmUlZ5mMrcKMHKzBcg4HQYx2WIdeVs-XspoMFTEdwmQ8kpL3SaKtYlZ5RyZlS7jWdlQQXKArSlq33TbphCFhjw9I_aT_tAG9f6HnJswNhgO5BUT4giq_gm5EzKhOACvBuO_p1C71lM8KUM4JFnEz0lwjazxGk2HMKZEjJHKUEjkKCnA0-WaUDfT48-1izofI_NzjaCqKBTjOeTN9_Ptu23_vtg8LjW67FbWuwuYOLGpg-6xwpghzycur3EX3J4n3jIwRuP9vsf4E2MIUng
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4oJsaLbyOKugdv2gDtdluORCWo0BilCbfNPsUEC4H6_53tA9Coiellk273MLOz821nvhmELmEXBByOfkcIlztEN4QjuJSO5gBOdShVGFpycj-i3Zg8DP3hCos_y3YvQ5I5p8FWaUrS-lSZ-oL4Zv9mwjXY9WxdUgo2vY42iC2UADs6dtsrzMisKSfcYWx-D_EK2szPa3x1TUu8-S1Emnmezi7aLiAjbuc63kNrOtlHO2U7BlxY5wGK83y6TNR4YnDB0MXzqdZyhFPrlfLMN7xIG4Kx9WMKwwCgIO69DPr4OYowH79OZm_p6P0QxZ27wU3XKbomOBLMKXUkOGCqJeF-wwB8UtQWHgKgIagJfR4qwhX3aaBNSxlXBU0Cj9_0DFcaBCKMd4QqySTRxwirQBETtMCNC05sANYoLgNqQ6uEmoBXUbMUGJNFSXHb2WLMFsWQMyEzEDLLhMzCKrpafDPNC2r8ObtW6oEVxjVncEcE3NaC06OKrkvdLF__vtrJ_6ZfoM2n2w7r3UePp2jL9pnP81hqqJLOPvQZoJFUnGcb7hNMdNR3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploration+of+English+speech+translation+recognition+based+on+the+LSTM+RNN+algorithm&rft.jtitle=Neural+computing+%26+applications&rft.au=Yuan%2C+Qiwei&rft.au=Dai%2C+Yu&rft.au=Li%2C+Guangming&rft.date=2023-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=35&rft.issue=36&rft.spage=24961&rft.epage=24970&rft_id=info:doi/10.1007%2Fs00521-023-08462-8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon