Deep Learning Architecture for Computer Vision-based Structural Defect Detection
Structural health monitoring (SHM) refers to the implementation of a damage detection strategy for structures. Fault occurrence in these structural systems during the operation is inevitable. Efficient, fast, and precise health monitoring methods are required to proactively perform the necessary rep...
Saved in:
| Published in | Applied intelligence (Dordrecht, Netherlands) Vol. 53; no. 19; pp. 22850 - 22862 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.10.2023
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0924-669X 1573-7497 |
| DOI | 10.1007/s10489-023-04654-w |
Cover
| Abstract | Structural health monitoring (SHM) refers to the implementation of a damage detection strategy for structures. Fault occurrence in these structural systems during the operation is inevitable. Efficient, fast, and precise health monitoring methods are required to proactively perform the necessary repairs and maintenance on time before it is too late. The current structural health monitoring methods involve physically attached sensors or non-contact vision-based vibration measurements. However, these methods have significant drawbacks due to the low spatial resolution, weight influence on the lightweight structure, and time/labor consumption. Recently, computer-vison-based deep learning methods like convolutional neural network (CNN) and fully convolutional neural network (FCN) have been applied for defect detection and localization, which address the aforementioned problems and obtain high accuracy. This paper proposes a novel hybrid deep learning architecture comprising CNN and temporal convolutional networks (CNN-TCN) for the computer vision-based defect detection task. Various beam samples, consisting of five different materials and various structural defects, were used to evaluate the proposed deep learning algorithms’ performance. The proposed deep learning methods treat each pixel of the video frame like a sensor to extract valuable features for defect detection. Through empirical results, we demonstrate that this ’pixel-sensor’ approach is more efficient and accurate and can achieve a better defect detection performance on different beam samples compared with the current state-of-the-art approaches, including CNN-long short-term memory (LSTM), CNN-bidirectional long short-term memory (BiLSTM), multi-scale CNN-LSTM, and CNN-gated recurrent unit(GRU) methods. |
|---|---|
| AbstractList | Structural health monitoring (SHM) refers to the implementation of a damage detection strategy for structures. Fault occurrence in these structural systems during the operation is inevitable. Efficient, fast, and precise health monitoring methods are required to proactively perform the necessary repairs and maintenance on time before it is too late. The current structural health monitoring methods involve physically attached sensors or non-contact vision-based vibration measurements. However, these methods have significant drawbacks due to the low spatial resolution, weight influence on the lightweight structure, and time/labor consumption. Recently, computer-vison-based deep learning methods like convolutional neural network (CNN) and fully convolutional neural network (FCN) have been applied for defect detection and localization, which address the aforementioned problems and obtain high accuracy. This paper proposes a novel hybrid deep learning architecture comprising CNN and temporal convolutional networks (CNN-TCN) for the computer vision-based defect detection task. Various beam samples, consisting of five different materials and various structural defects, were used to evaluate the proposed deep learning algorithms’ performance. The proposed deep learning methods treat each pixel of the video frame like a sensor to extract valuable features for defect detection. Through empirical results, we demonstrate that this ’pixel-sensor’ approach is more efficient and accurate and can achieve a better defect detection performance on different beam samples compared with the current state-of-the-art approaches, including CNN-long short-term memory (LSTM), CNN-bidirectional long short-term memory (BiLSTM), multi-scale CNN-LSTM, and CNN-gated recurrent unit(GRU) methods. |
| Author | Karami, M. Amin Tavakkoli, Mostafa Singh, Shubhendu Kumar Rai, Rahul Yang, Ruoyu |
| Author_xml | – sequence: 1 givenname: Ruoyu surname: Yang fullname: Yang, Ruoyu organization: Department of Automotive Engineering, Clemson University – sequence: 2 givenname: Shubhendu Kumar surname: Singh fullname: Singh, Shubhendu Kumar organization: Department of Automotive Engineering, Clemson University – sequence: 3 givenname: Mostafa surname: Tavakkoli fullname: Tavakkoli, Mostafa organization: Department of Mechanical and Aerospace Engineering, University at Buffalo – sequence: 4 givenname: M. Amin surname: Karami fullname: Karami, M. Amin organization: Department of Mechanical and Aerospace Engineering, University at Buffalo – sequence: 5 givenname: Rahul surname: Rai fullname: Rai, Rahul email: rrai@clemson.edu organization: Department of Automotive Engineering, Clemson University |
| BookMark | eNp9kF1LwzAUhoNMcE7_gFcFr6NJkzTJ5dj8goGCH3gX2vR0dmxtTVKG_97UCoIXuzo3z3Pec95TNGnaBhC6oOSKEiKvPSVcaUxShgnPBMf7IzSlQjIsuZYTNCU65TjL9PsJOvV-QwhhjNApeloCdMkKctfUzTqZO_tRB7Chd5BUrUsW7a7rA7jkrfZ12-Ai91Amz8H1A5NvkyVUEY9jsCJxho6rfOvh_HfO0OvtzcviHq8e7x4W8xW2jOqArZAFUCKqspRaFNxaoQqSQlparglQzqCQKlMM8oJrS0XFeKV4qWxWRBDYDF2OezvXfvbgg9m0vWtipEmVVEIwytJIpSNlXeu9g8p0rt7l7stQYobmzNicic2Zn-bMPkrqn2TrkA_PBZfX28MqG1Ufc5o1uL-rDljf8nWGbw |
| CitedBy_id | crossref_primary_10_3390_s24123932 crossref_primary_10_1007_s42107_024_01139_0 crossref_primary_10_1007_s40747_024_01554_5 |
| Cites_doi | 10.1016/j.ymssp.2016.11.009 10.1016/j.jsv.2016.09.026 10.1109/COMST.2017.2691551 10.1016/j.measurement.2020.107769 10.1109/JSEN.2019.2911015 10.1016/j.ymssp.2020.106885 10.1016/j.autcon.2018.07.008 10.1109/JSEN.2012.2218680 10.1016/j.ndteint.2004.06.012 10.1002/stc.2321 10.1007/s10845-020-01600-2 10.1111/j.1467-8667.2008.00585.x 10.1016/j.optlaseng.2016.12.017 10.1002/stc.2381 10.1002/stc.2892 10.1177/0583102406061499 10.1016/j.autcon.2011.06.008 10.1016/j.engstruct.2020.110551 10.1016/j.ymssp.2020.106651 10.1002/stc.2296 10.1016/j.engstruct.2017.11.018 10.1061/(ASCE)CP.1943-5487.0000854 10.1088/0964-1726/17/01/015016 10.1088/1742-6596/1213/4/042050 10.4028/www.scientific.net/KEM.518.1 10.1109/CVPRW.2017.207 10.1002/stc.2155 10.1155/2015/139695 10.1109/ICKII.2018.8569155 10.1007/978-3-319-49409-8_7 10.1109/CVPR.2017.113 10.1007/s10586-020-03055-9 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PSYQQ PTHSS Q9U |
| DOI | 10.1007/s10489-023-04654-w |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Psychology Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business ProQuest One Psychology Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing Engineering Database ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7497 |
| EndPage | 22862 |
| ExternalDocumentID | 10_1007_s10489_023_04654_w |
| GrantInformation_xml | – fundername: Defense Advanced Research Projects Agency grantid: HR00111890037 funderid: http://dx.doi.org/10.13039/100000185 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 77K 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PSYQQ PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8M Z8N Z8R Z8T Z8U Z8W Z92 ZMTXR ZY4 ~A9 ~EX 77I AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c319t-c57be105fdd795b4cc58b02e2dc490e143eb78683eab49c15f34f84d8c6b8b0e3 |
| IEDL.DBID | AGYKE |
| ISSN | 0924-669X |
| IngestDate | Fri Jul 25 12:18:02 EDT 2025 Wed Oct 01 04:10:01 EDT 2025 Thu Apr 24 23:00:47 EDT 2025 Fri Feb 21 02:42:21 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 19 |
| Keywords | Structural health monitoring Computer Vision TCN (Temporal Convolutional Networks) CNN (Convolutional Neural Networks) |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-c57be105fdd795b4cc58b02e2dc490e143eb78683eab49c15f34f84d8c6b8b0e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2878553132 |
| PQPubID | 326365 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_2878553132 crossref_primary_10_1007_s10489_023_04654_w crossref_citationtrail_10_1007_s10489_023_04654_w springer_journals_10_1007_s10489_023_04654_w |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20231000 2023-10-00 20231001 |
| PublicationDateYYYYMMDD | 2023-10-01 |
| PublicationDate_xml | – month: 10 year: 2023 text: 20231000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Boston |
| PublicationSubtitle | The International Journal of Research on Intelligent Systems for Real Life Complex Problems |
| PublicationTitle | Applied intelligence (Dordrecht, Netherlands) |
| PublicationTitleAbbrev | Appl Intell |
| PublicationYear | 2023 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Ye, Jin, Yun (CR34) 2019; 24 Chae, Yoo, Kim, Cho (CR4) 2012; 21 Torfs, Sterken, Brebels, Santana, van den Hoven, Spiering, Bertsch, Trapani, Zonta (CR30) 2012; 13 Yang, Singh, Tavakkoli, Amiri, Karami, Rai (CR32) 2022; 29 Feng, Feng (CR7) 2018; 156 CR19 CR17 Siringoringo, Fujino (CR26) 2009; 24 CR15 Nassif, Gindy, Davis (CR21) 2005; 38 Tang, Chen, Bao, Li (CR29) 2019; 26 CR14 CR13 Nhat-Duc, Nguyen, Tran (CR23) 2018; 94 CR31 Yang, Singh, Tavakkoli, Amiri, Yang, Karami, Rai (CR33) 2020; 144 Chen, Zhang, Gao (CR6) 2021; 32 Lynch, Loh (CR20) 2006; 38 Chen, Zhu (CR5) 2017; 387 Khuc, Nguyen, Dao, Catbas (CR11) 2020; 159 Javh, Slavič, Boltežar (CR10) 2017; 88 Zhou, Shen, Zeng, Fang, Wei, Zhang (CR35) 2016; 47 Ngeljaratan, Moustafa (CR22) 2020; 213 CR2 Liu, Huang, Zou, Tian, Wang, Zhao, Dai, Ren (CR18) 2019; 19 CR3 Lee, Lee, Jeong, Lee, Sim (CR16) 2020; 140 CR8 Noel, Abdaoui, Elfouly, Ahmed, Badawy, Shehata (CR24) 2017; 19 CR28 CR9 Sony, Laventure, Sadhu (CR27) 2019; 26 Kim, Cho (CR12) 2019; 26 Alipour, Harris, Miller (CR1) 2019; 33 Pieczonka, Ambroziński, Staszewski, Barnoncel, Pérès (CR25) 2017; 99 4654_CR3 4654_CR2 D Feng (4654_CR7) 2018; 156 T Khuc (4654_CR11) 2020; 159 DM Siringoringo (4654_CR26) 2009; 24 HH Nassif (4654_CR21) 2005; 38 X Ye (4654_CR34) 2019; 24 4654_CR13 4654_CR9 4654_CR8 X Chen (4654_CR6) 2021; 32 Ł Pieczonka (4654_CR25) 2017; 99 4654_CR31 AB Noel (4654_CR24) 2017; 19 DM Chen (4654_CR5) 2017; 387 J Javh (4654_CR10) 2017; 88 M Chae (4654_CR4) 2012; 21 4654_CR19 4654_CR17 4654_CR14 4654_CR15 J Liu (4654_CR18) 2019; 19 R Yang (4654_CR33) 2020; 144 M Alipour (4654_CR1) 2019; 33 S Sony (4654_CR27) 2019; 26 B Kim (4654_CR12) 2019; 26 Z Tang (4654_CR29) 2019; 26 R Yang (4654_CR32) 2022; 29 H Nhat-Duc (4654_CR23) 2018; 94 S Zhou (4654_CR35) 2016; 47 4654_CR28 J Lee (4654_CR16) 2020; 140 T Torfs (4654_CR30) 2012; 13 JP Lynch (4654_CR20) 2006; 38 L Ngeljaratan (4654_CR22) 2020; 213 |
| References_xml | – volume: 88 start-page: 89 year: 2017 end-page: 99 ident: CR10 article-title: The subpixel resolution of optical-flow-based modal analysis publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2016.11.009 – volume: 387 start-page: 36 year: 2017 end-page: 52 ident: CR5 article-title: Investigation of three-dimensional vibration measurement by a single scanning laser doppler vibrometer publication-title: Journal of Sound and Vibration doi: 10.1016/j.jsv.2016.09.026 – volume: 19 start-page: 1403 issue: 3 year: 2017 end-page: 1423 ident: CR24 article-title: Structural health monitoring using wireless sensor networks: A comprehensive survey publication-title: IEEE Communications Surveys & Tutorials doi: 10.1109/COMST.2017.2691551 – volume: 159 year: 2020 ident: CR11 article-title: Swaying displacement measurement for structural monitoring using computer vision and an unmanned aerial vehicle publication-title: Measurement doi: 10.1016/j.measurement.2020.107769 – ident: CR14 – ident: CR2 – volume: 19 start-page: 6844 issue: 16 year: 2019 end-page: 6857 ident: CR18 article-title: Learning visual similarity for inspecting defective railway fasteners publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2019.2911015 – volume: 144 year: 2020 ident: CR33 article-title: Cnn-lstm deep learning architecture for computer vision-based modal frequency detection publication-title: Mechanical Systems and signal processing doi: 10.1016/j.ymssp.2020.106885 – volume: 94 start-page: 203 year: 2018 end-page: 213 ident: CR23 article-title: Automatic recognition of asphalt pavement cracks using metaheuristic optimized edge detection algorithms and convolution neural network publication-title: Automation in Construction doi: 10.1016/j.autcon.2018.07.008 – volume: 13 start-page: 909 issue: 3 year: 2012 end-page: 915 ident: CR30 article-title: Low power wireless sensor network for building monitoring publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2012.2218680 – ident: CR8 – volume: 38 start-page: 213 issue: 3 year: 2005 end-page: 218 ident: CR21 article-title: Comparison of laser doppler vibrometer with contact sensors for monitoring bridge deflection and vibration publication-title: Ndt & E International doi: 10.1016/j.ndteint.2004.06.012 – volume: 26 issue: 3 year: 2019 ident: CR27 article-title: A literature review of next-generation smart sensing technology in structural health monitoring publication-title: Structural Control and Health Monitoring doi: 10.1002/stc.2321 – volume: 32 start-page: 971 year: 2021 end-page: 987 ident: CR6 article-title: Bearing fault diagnosis base on multi-scale cnn and lstm model publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-020-01600-2 – volume: 24 start-page: 567 issue: 5 year: 2019 end-page: 585 ident: CR34 article-title: A review on deep learning-based structural health monitoring of civil infrastructures publication-title: Smart Structures and Systems – volume: 24 start-page: 249 issue: 4 year: 2009 end-page: 265 ident: CR26 article-title: Noncontact operational modal analysis of structural members by laser doppler vibrometer publication-title: Computer-Aided Civil and Infrastructure Engineering doi: 10.1111/j.1467-8667.2008.00585.x – volume: 99 start-page: 80 year: 2017 end-page: 87 ident: CR25 article-title: Damage detection in composite panels based on mode-converted lamb waves sensed using 3d laser scanning vibrometer publication-title: Optics and lasers in engineering doi: 10.1016/j.optlaseng.2016.12.017 – volume: 26 issue: 8 year: 2019 ident: CR12 article-title: Image-based concrete crack assessment using mask and region-based convolutional neural network publication-title: Structural Control and Health Monitoring doi: 10.1002/stc.2381 – ident: CR19 – ident: CR3 – ident: CR15 – volume: 29 issue: 3 year: 2022 ident: CR32 article-title: Continuous video stream pixel sensor: A cnn-lstm based deep learning approach for mode shape prediction publication-title: Structural Control and Health Monitoring doi: 10.1002/stc.2892 – ident: CR17 – ident: CR31 – ident: CR13 – volume: 38 start-page: 91 issue: 2 year: 2006 end-page: 130 ident: CR20 article-title: A summary review of wireless sensors and sensor networks for structural health monitoring publication-title: Shock and Vibration Digest doi: 10.1177/0583102406061499 – ident: CR9 – volume: 21 start-page: 237 year: 2012 end-page: 252 ident: CR4 article-title: Development of a wireless sensor network system for suspension bridge health monitoring publication-title: Automation in Construction doi: 10.1016/j.autcon.2011.06.008 – volume: 213 year: 2020 ident: CR22 article-title: Structural health monitoring and seismic response assessment of bridge structures using target-tracking digital image correlation publication-title: Engineering Structures doi: 10.1016/j.engstruct.2020.110551 – volume: 140 year: 2020 ident: CR16 article-title: Long-term displacement measurement of full-scale bridges using camera ego-motion compensation publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2020.106651 – volume: 26 issue: 1 year: 2019 ident: CR29 article-title: Convolutional neural network-based data anomaly detection method using multiple information for structural health monitoring publication-title: Structural Control and Health Monitoring doi: 10.1002/stc.2296 – volume: 156 start-page: 105 year: 2018 end-page: 117 ident: CR7 article-title: Computer vision for shm of civil infrastructure: From dynamic response measurement to damage detection-a review publication-title: Engineering Structures doi: 10.1016/j.engstruct.2017.11.018 – ident: CR28 – volume: 47 start-page: 358 year: 2016 end-page: 368 ident: CR35 article-title: Spatial-temporal convolutional neural networks for anomaly detection and localization in crowded scenes publication-title: Signal Processing: Image Communication – volume: 33 start-page: 04019040 issue: 6 year: 2019 ident: CR1 article-title: Robust pixel-level crack detection using deep fully convolutional neural networks publication-title: Journal of Computing in Civil Engineering doi: 10.1061/(ASCE)CP.1943-5487.0000854 – ident: 4654_CR9 doi: 10.1088/0964-1726/17/01/015016 – volume: 19 start-page: 1403 issue: 3 year: 2017 ident: 4654_CR24 publication-title: IEEE Communications Surveys & Tutorials doi: 10.1109/COMST.2017.2691551 – volume: 13 start-page: 909 issue: 3 year: 2012 ident: 4654_CR30 publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2012.2218680 – volume: 29 issue: 3 year: 2022 ident: 4654_CR32 publication-title: Structural Control and Health Monitoring doi: 10.1002/stc.2892 – volume: 26 issue: 3 year: 2019 ident: 4654_CR27 publication-title: Structural Control and Health Monitoring doi: 10.1002/stc.2321 – ident: 4654_CR2 – volume: 387 start-page: 36 year: 2017 ident: 4654_CR5 publication-title: Journal of Sound and Vibration doi: 10.1016/j.jsv.2016.09.026 – ident: 4654_CR8 doi: 10.1088/1742-6596/1213/4/042050 – volume: 24 start-page: 567 issue: 5 year: 2019 ident: 4654_CR34 publication-title: Smart Structures and Systems – volume: 38 start-page: 91 issue: 2 year: 2006 ident: 4654_CR20 publication-title: Shock and Vibration Digest doi: 10.1177/0583102406061499 – ident: 4654_CR28 doi: 10.4028/www.scientific.net/KEM.518.1 – ident: 4654_CR13 doi: 10.1109/CVPRW.2017.207 – volume: 26 issue: 8 year: 2019 ident: 4654_CR12 publication-title: Structural Control and Health Monitoring doi: 10.1002/stc.2381 – volume: 26 issue: 1 year: 2019 ident: 4654_CR29 publication-title: Structural Control and Health Monitoring doi: 10.1002/stc.2296 – ident: 4654_CR31 doi: 10.1002/stc.2155 – volume: 24 start-page: 249 issue: 4 year: 2009 ident: 4654_CR26 publication-title: Computer-Aided Civil and Infrastructure Engineering doi: 10.1111/j.1467-8667.2008.00585.x – volume: 213 year: 2020 ident: 4654_CR22 publication-title: Engineering Structures doi: 10.1016/j.engstruct.2020.110551 – ident: 4654_CR3 doi: 10.1155/2015/139695 – volume: 32 start-page: 971 year: 2021 ident: 4654_CR6 publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-020-01600-2 – volume: 21 start-page: 237 year: 2012 ident: 4654_CR4 publication-title: Automation in Construction doi: 10.1016/j.autcon.2011.06.008 – volume: 99 start-page: 80 year: 2017 ident: 4654_CR25 publication-title: Optics and lasers in engineering doi: 10.1016/j.optlaseng.2016.12.017 – ident: 4654_CR17 doi: 10.1109/ICKII.2018.8569155 – volume: 47 start-page: 358 year: 2016 ident: 4654_CR35 publication-title: Signal Processing: Image Communication – volume: 159 year: 2020 ident: 4654_CR11 publication-title: Measurement doi: 10.1016/j.measurement.2020.107769 – volume: 144 year: 2020 ident: 4654_CR33 publication-title: Mechanical Systems and signal processing doi: 10.1016/j.ymssp.2020.106885 – volume: 94 start-page: 203 year: 2018 ident: 4654_CR23 publication-title: Automation in Construction doi: 10.1016/j.autcon.2018.07.008 – volume: 38 start-page: 213 issue: 3 year: 2005 ident: 4654_CR21 publication-title: Ndt & E International doi: 10.1016/j.ndteint.2004.06.012 – ident: 4654_CR15 doi: 10.1007/978-3-319-49409-8_7 – ident: 4654_CR14 doi: 10.1109/CVPR.2017.113 – volume: 33 start-page: 04019040 issue: 6 year: 2019 ident: 4654_CR1 publication-title: Journal of Computing in Civil Engineering doi: 10.1061/(ASCE)CP.1943-5487.0000854 – volume: 88 start-page: 89 year: 2017 ident: 4654_CR10 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2016.11.009 – volume: 140 year: 2020 ident: 4654_CR16 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2020.106651 – ident: 4654_CR19 doi: 10.1007/s10586-020-03055-9 – volume: 19 start-page: 6844 issue: 16 year: 2019 ident: 4654_CR18 publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2019.2911015 – volume: 156 start-page: 105 year: 2018 ident: 4654_CR7 publication-title: Engineering Structures doi: 10.1016/j.engstruct.2017.11.018 |
| SSID | ssj0003301 |
| Score | 2.347534 |
| Snippet | Structural health monitoring (SHM) refers to the implementation of a damage detection strategy for structures. Fault occurrence in these structural systems... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 22850 |
| SubjectTerms | Algorithms Artificial Intelligence Artificial neural networks Computer architecture Computer Science Computer vision Damage detection Deep learning Defects Diagnostic systems Machine learning Machines Maintenance Manufacturing Mechanical Engineering Neural networks Pixels Processes Spatial resolution Structural health monitoring Teaching methods Vibration measurement Vibration monitoring Weight reduction |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PT8IwFH5BuHjxtxFF04M3bYSt3bqDMSgQYiIhKobbsnadFzMwkvDv-97omJrIaYe1XfLa1_d1fe_7AC4D7XuhNG2emchw9ETcB60nuYmEpZCks5Bqh59GwXAiHqdyWoNRWQtDaZXlnlhs1OnM0D_yG0T2SkoiGrybf3JSjaLb1VJCI3HSCultQTG2BQ2PmLHq0Ljvj8bP670ZT--Fhh6eOngQRFNXRuOK6QSlD3k-pTtKwZe_Q1WFP_9cmRaRaLAHOw5Csu5qzvehZvMD2C3lGZjz1kMY96ydM0eg-s66P64MGEJVtu7xVtSXcwpoKXspCGWJjIP1LOV64GNR5GvlRzAZ9F8fhtwJKHCDnrXgRobaIoDK0jSMpBbGSKXbnvVSI6K2RahkdagC5dtEi8h0ZOaLTIlUmUBjQ-sfQz2f5fYEGMIag66PeIgI9DOjgihNMqXxE4mSSdCETmmr2Dh2cRK5-IgrXmSyb4z2jQv7xssmXK37zFfcGhtbt8opiJ2ffcXVqmjCdTkt1ev_RzvdPNoZbJOuPAUpT7Wgjqa354g-FvrCLalvRzTV7w priority: 102 providerName: ProQuest |
| Title | Deep Learning Architecture for Computer Vision-based Structural Defect Detection |
| URI | https://link.springer.com/article/10.1007/s10489-023-04654-w https://www.proquest.com/docview/2878553132 |
| Volume | 53 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7497 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-7497 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7497 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7497 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4IXLyIz4gi6cGblsBuu9s9LvKKRkJUDJ42tNv1oEESMCT-eqdLF5CoCac99LG7nc7M13TmG4BLT7qOz1WNJipQFDUR7aB2OFUB08YlycQ3ucP3Pa87YLdDPrRJYdMs2j27kkwt9VqyGzPhPY5rwhE5o_McFFK-rTwUws7LXWtpgfGMnlbKw7MF9bxgaJNlfp_lp0NaocyNi9HU37SLMMi-dBFm8lb9nMmq-togcdz2V_ZhzwJQEi52zAHs6PEhFLPiDsTq-hH0m1pPiKVffSXh2oUDQaBLliOe0-x0atxhTB5TOlpD5UGa2kSK4GOWRnuNj2HQbj3ddKktv0AV6uWMKu5LjfAriWM_4JIpxYWsOdqJFQtqGoGWlr7whKtHkgWqzhOXJYLFQnkSO2r3BPLjj7E-BYKgSKHhQDRl6PcTJbwgHiVC4itGgo-8EtQzGUTKcpObEhnv0YpV2SxZhEsWpUsWzUtwtRwzWTBz_Nu7nIk2slo6jfC0KDg35JUluM4ktWr-e7az7bqfw66pUr-IASxDHkWhLxDLzGQFcqLdqeAGbjcavYrdyPhstHr9B2wdOOE3RZjvBQ |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV09T8MwED0VOsDCN6JQwANMYFESO3GGChVaVKCtKmhRtxA7DgsKRVSq-HP8Ns6p0wIS3ZgyxHaku_Pdc3z3DuDIk67jc1WhiQoUxZ2IflA7nKqAaROSZOKb2uF2x2v22e2ADwrwmdfCmLTK3Cdmjjp-VeYf-Rkie8G5IRq8GL5R0zXK3K7mLTQi21ohrmYUY7aw405_jPEI9169qaO-jx3nutG7alLbZYAqNL8RVdyXGlFGEsd-wCVTigtZcbQTKxZUNOIJLX3hCVdHkgXqnCcuSwSLhfIkDtQurrsAReayAA9_xctGp3s_jQWumzVgruAph3peMLBlO7Z4j5l0Jcc16ZWc0fHP0DjDu7-uaLPId70GKxayktrExtahoNMNWM3bQRDrHTahW9d6SCxh6zOpfbuiIAiNyXTGY1bPTk0AjclDRmBryD9IXZvcEnyMsvywdAv6_yLKbVhMX1O9AwRhlEJXg_jLEPYnSnhBHCVC4iciwSOvBOe5rEJl2cxNU42XcMbDbOQbonzDTL7huAQn0znDCZfH3NHlXAWh3dfv4cwKS3Caq2X2-u_VduevdghLzV67FbZuOnd7sGx62k8yBsuwiGrQ-4h8RvLAmheBp_-26C-Q7BPn |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLbGkBAX3ojxzAFOEG1rkzY9IIQY442QYGi30qQpF7QNbdLEX-PXYXfpBkjsxqmHJqlkO_aXxv4MsB9o3wulqfHMRIbjTkQ_aD3JTSQshSSdhVQ7fHcfXLbEdVu2S_BZ1MJQWmXhE3NHnXYN_SOvIrJXUhLRYDVzaREPjeZJ751TBym6aS3aaYxM5MZ-DPH41j--aqCuDzyvef50dsldhwFu0PQG3MhQW0QYWZqGkdTCGKl0zbNeakRUs4glrA5VoHybaBGZusx8kSmRKhNoHGh9XHcGZkNicacq9ebFOAr4ft56uYbnGx4EUdsV7LiyPUGJSp5PiZVS8OHPoDhBur8uZ_OY11yCBQdW2enIupahZDsrsFg0gmDOL6zCQ8PaHnNUra_s9NvlBENQzMYznvNKdk6hM2WPOXUt0X6whqWsEnwM8sywzhq0_kWQ61DudDt2AxgCKINOBpEXUfVnRgVRmmRK4ycSJZOgAvVCVrFxPObUTuMtnjAwk3xjlG-cyzceVuBwPKc3YvGYOnq7UEHsdnQ_nthfBY4KtUxe_73a5vTV9mAO7Ti-vbq_2YJ5amY_ShXchjJqwe4g5Bno3dy2GLz8tzF_Af8EEYE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Architecture+for+Computer+Vision-based+Structural+Defect+Detection&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Yang%2C+Ruoyu&rft.au=Singh%2C+Shubhendu+Kumar&rft.au=Tavakkoli%2C+Mostafa&rft.au=Karami%2C+M.+Amin&rft.date=2023-10-01&rft.pub=Springer+US&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=53&rft.issue=19&rft.spage=22850&rft.epage=22862&rft_id=info:doi/10.1007%2Fs10489-023-04654-w&rft.externalDocID=10_1007_s10489_023_04654_w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon |