Deep Learning Architecture for Computer Vision-based Structural Defect Detection

Structural health monitoring (SHM) refers to the implementation of a damage detection strategy for structures. Fault occurrence in these structural systems during the operation is inevitable. Efficient, fast, and precise health monitoring methods are required to proactively perform the necessary rep...

Full description

Saved in:
Bibliographic Details
Published inApplied intelligence (Dordrecht, Netherlands) Vol. 53; no. 19; pp. 22850 - 22862
Main Authors Yang, Ruoyu, Singh, Shubhendu Kumar, Tavakkoli, Mostafa, Karami, M. Amin, Rai, Rahul
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0924-669X
1573-7497
DOI10.1007/s10489-023-04654-w

Cover

Abstract Structural health monitoring (SHM) refers to the implementation of a damage detection strategy for structures. Fault occurrence in these structural systems during the operation is inevitable. Efficient, fast, and precise health monitoring methods are required to proactively perform the necessary repairs and maintenance on time before it is too late. The current structural health monitoring methods involve physically attached sensors or non-contact vision-based vibration measurements. However, these methods have significant drawbacks due to the low spatial resolution, weight influence on the lightweight structure, and time/labor consumption. Recently, computer-vison-based deep learning methods like convolutional neural network (CNN) and fully convolutional neural network (FCN) have been applied for defect detection and localization, which address the aforementioned problems and obtain high accuracy. This paper proposes a novel hybrid deep learning architecture comprising CNN and temporal convolutional networks (CNN-TCN) for the computer vision-based defect detection task. Various beam samples, consisting of five different materials and various structural defects, were used to evaluate the proposed deep learning algorithms’ performance. The proposed deep learning methods treat each pixel of the video frame like a sensor to extract valuable features for defect detection. Through empirical results, we demonstrate that this ’pixel-sensor’ approach is more efficient and accurate and can achieve a better defect detection performance on different beam samples compared with the current state-of-the-art approaches, including CNN-long short-term memory (LSTM), CNN-bidirectional long short-term memory (BiLSTM), multi-scale CNN-LSTM, and CNN-gated recurrent unit(GRU) methods.
AbstractList Structural health monitoring (SHM) refers to the implementation of a damage detection strategy for structures. Fault occurrence in these structural systems during the operation is inevitable. Efficient, fast, and precise health monitoring methods are required to proactively perform the necessary repairs and maintenance on time before it is too late. The current structural health monitoring methods involve physically attached sensors or non-contact vision-based vibration measurements. However, these methods have significant drawbacks due to the low spatial resolution, weight influence on the lightweight structure, and time/labor consumption. Recently, computer-vison-based deep learning methods like convolutional neural network (CNN) and fully convolutional neural network (FCN) have been applied for defect detection and localization, which address the aforementioned problems and obtain high accuracy. This paper proposes a novel hybrid deep learning architecture comprising CNN and temporal convolutional networks (CNN-TCN) for the computer vision-based defect detection task. Various beam samples, consisting of five different materials and various structural defects, were used to evaluate the proposed deep learning algorithms’ performance. The proposed deep learning methods treat each pixel of the video frame like a sensor to extract valuable features for defect detection. Through empirical results, we demonstrate that this ’pixel-sensor’ approach is more efficient and accurate and can achieve a better defect detection performance on different beam samples compared with the current state-of-the-art approaches, including CNN-long short-term memory (LSTM), CNN-bidirectional long short-term memory (BiLSTM), multi-scale CNN-LSTM, and CNN-gated recurrent unit(GRU) methods.
Author Karami, M. Amin
Tavakkoli, Mostafa
Singh, Shubhendu Kumar
Rai, Rahul
Yang, Ruoyu
Author_xml – sequence: 1
  givenname: Ruoyu
  surname: Yang
  fullname: Yang, Ruoyu
  organization: Department of Automotive Engineering, Clemson University
– sequence: 2
  givenname: Shubhendu Kumar
  surname: Singh
  fullname: Singh, Shubhendu Kumar
  organization: Department of Automotive Engineering, Clemson University
– sequence: 3
  givenname: Mostafa
  surname: Tavakkoli
  fullname: Tavakkoli, Mostafa
  organization: Department of Mechanical and Aerospace Engineering, University at Buffalo
– sequence: 4
  givenname: M. Amin
  surname: Karami
  fullname: Karami, M. Amin
  organization: Department of Mechanical and Aerospace Engineering, University at Buffalo
– sequence: 5
  givenname: Rahul
  surname: Rai
  fullname: Rai, Rahul
  email: rrai@clemson.edu
  organization: Department of Automotive Engineering, Clemson University
BookMark eNp9kF1LwzAUhoNMcE7_gFcFr6NJkzTJ5dj8goGCH3gX2vR0dmxtTVKG_97UCoIXuzo3z3Pec95TNGnaBhC6oOSKEiKvPSVcaUxShgnPBMf7IzSlQjIsuZYTNCU65TjL9PsJOvV-QwhhjNApeloCdMkKctfUzTqZO_tRB7Chd5BUrUsW7a7rA7jkrfZ12-Ai91Amz8H1A5NvkyVUEY9jsCJxho6rfOvh_HfO0OvtzcviHq8e7x4W8xW2jOqArZAFUCKqspRaFNxaoQqSQlparglQzqCQKlMM8oJrS0XFeKV4qWxWRBDYDF2OezvXfvbgg9m0vWtipEmVVEIwytJIpSNlXeu9g8p0rt7l7stQYobmzNicic2Zn-bMPkrqn2TrkA_PBZfX28MqG1Ufc5o1uL-rDljf8nWGbw
CitedBy_id crossref_primary_10_3390_s24123932
crossref_primary_10_1007_s42107_024_01139_0
crossref_primary_10_1007_s40747_024_01554_5
Cites_doi 10.1016/j.ymssp.2016.11.009
10.1016/j.jsv.2016.09.026
10.1109/COMST.2017.2691551
10.1016/j.measurement.2020.107769
10.1109/JSEN.2019.2911015
10.1016/j.ymssp.2020.106885
10.1016/j.autcon.2018.07.008
10.1109/JSEN.2012.2218680
10.1016/j.ndteint.2004.06.012
10.1002/stc.2321
10.1007/s10845-020-01600-2
10.1111/j.1467-8667.2008.00585.x
10.1016/j.optlaseng.2016.12.017
10.1002/stc.2381
10.1002/stc.2892
10.1177/0583102406061499
10.1016/j.autcon.2011.06.008
10.1016/j.engstruct.2020.110551
10.1016/j.ymssp.2020.106651
10.1002/stc.2296
10.1016/j.engstruct.2017.11.018
10.1061/(ASCE)CP.1943-5487.0000854
10.1088/0964-1726/17/01/015016
10.1088/1742-6596/1213/4/042050
10.4028/www.scientific.net/KEM.518.1
10.1109/CVPRW.2017.207
10.1002/stc.2155
10.1155/2015/139695
10.1109/ICKII.2018.8569155
10.1007/978-3-319-49409-8_7
10.1109/CVPR.2017.113
10.1007/s10586-020-03055-9
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PSYQQ
PTHSS
Q9U
DOI 10.1007/s10489-023-04654-w
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Psychology
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7497
EndPage 22862
ExternalDocumentID 10_1007_s10489_023_04654_w
GrantInformation_xml – fundername: Defense Advanced Research Projects Agency
  grantid: HR00111890037
  funderid: http://dx.doi.org/10.13039/100000185
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
77K
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
ZY4
~A9
~EX
77I
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-c57be105fdd795b4cc58b02e2dc490e143eb78683eab49c15f34f84d8c6b8b0e3
IEDL.DBID AGYKE
ISSN 0924-669X
IngestDate Fri Jul 25 12:18:02 EDT 2025
Wed Oct 01 04:10:01 EDT 2025
Thu Apr 24 23:00:47 EDT 2025
Fri Feb 21 02:42:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords Structural health monitoring
Computer Vision
TCN (Temporal Convolutional Networks)
CNN (Convolutional Neural Networks)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-c57be105fdd795b4cc58b02e2dc490e143eb78683eab49c15f34f84d8c6b8b0e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2878553132
PQPubID 326365
PageCount 13
ParticipantIDs proquest_journals_2878553132
crossref_primary_10_1007_s10489_023_04654_w
crossref_citationtrail_10_1007_s10489_023_04654_w
springer_journals_10_1007_s10489_023_04654_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231000
2023-10-00
20231001
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 20231000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Boston
PublicationSubtitle The International Journal of Research on Intelligent Systems for Real Life Complex Problems
PublicationTitle Applied intelligence (Dordrecht, Netherlands)
PublicationTitleAbbrev Appl Intell
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Ye, Jin, Yun (CR34) 2019; 24
Chae, Yoo, Kim, Cho (CR4) 2012; 21
Torfs, Sterken, Brebels, Santana, van den Hoven, Spiering, Bertsch, Trapani, Zonta (CR30) 2012; 13
Yang, Singh, Tavakkoli, Amiri, Karami, Rai (CR32) 2022; 29
Feng, Feng (CR7) 2018; 156
CR19
CR17
Siringoringo, Fujino (CR26) 2009; 24
CR15
Nassif, Gindy, Davis (CR21) 2005; 38
Tang, Chen, Bao, Li (CR29) 2019; 26
CR14
CR13
Nhat-Duc, Nguyen, Tran (CR23) 2018; 94
CR31
Yang, Singh, Tavakkoli, Amiri, Yang, Karami, Rai (CR33) 2020; 144
Chen, Zhang, Gao (CR6) 2021; 32
Lynch, Loh (CR20) 2006; 38
Chen, Zhu (CR5) 2017; 387
Khuc, Nguyen, Dao, Catbas (CR11) 2020; 159
Javh, Slavič, Boltežar (CR10) 2017; 88
Zhou, Shen, Zeng, Fang, Wei, Zhang (CR35) 2016; 47
Ngeljaratan, Moustafa (CR22) 2020; 213
CR2
Liu, Huang, Zou, Tian, Wang, Zhao, Dai, Ren (CR18) 2019; 19
CR3
Lee, Lee, Jeong, Lee, Sim (CR16) 2020; 140
CR8
Noel, Abdaoui, Elfouly, Ahmed, Badawy, Shehata (CR24) 2017; 19
CR28
CR9
Sony, Laventure, Sadhu (CR27) 2019; 26
Kim, Cho (CR12) 2019; 26
Alipour, Harris, Miller (CR1) 2019; 33
Pieczonka, Ambroziński, Staszewski, Barnoncel, Pérès (CR25) 2017; 99
4654_CR3
4654_CR2
D Feng (4654_CR7) 2018; 156
T Khuc (4654_CR11) 2020; 159
DM Siringoringo (4654_CR26) 2009; 24
HH Nassif (4654_CR21) 2005; 38
X Ye (4654_CR34) 2019; 24
4654_CR13
4654_CR9
4654_CR8
X Chen (4654_CR6) 2021; 32
Ł Pieczonka (4654_CR25) 2017; 99
4654_CR31
AB Noel (4654_CR24) 2017; 19
DM Chen (4654_CR5) 2017; 387
J Javh (4654_CR10) 2017; 88
M Chae (4654_CR4) 2012; 21
4654_CR19
4654_CR17
4654_CR14
4654_CR15
J Liu (4654_CR18) 2019; 19
R Yang (4654_CR33) 2020; 144
M Alipour (4654_CR1) 2019; 33
S Sony (4654_CR27) 2019; 26
B Kim (4654_CR12) 2019; 26
Z Tang (4654_CR29) 2019; 26
R Yang (4654_CR32) 2022; 29
H Nhat-Duc (4654_CR23) 2018; 94
S Zhou (4654_CR35) 2016; 47
4654_CR28
J Lee (4654_CR16) 2020; 140
T Torfs (4654_CR30) 2012; 13
JP Lynch (4654_CR20) 2006; 38
L Ngeljaratan (4654_CR22) 2020; 213
References_xml – volume: 88
  start-page: 89
  year: 2017
  end-page: 99
  ident: CR10
  article-title: The subpixel resolution of optical-flow-based modal analysis
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2016.11.009
– volume: 387
  start-page: 36
  year: 2017
  end-page: 52
  ident: CR5
  article-title: Investigation of three-dimensional vibration measurement by a single scanning laser doppler vibrometer
  publication-title: Journal of Sound and Vibration
  doi: 10.1016/j.jsv.2016.09.026
– volume: 19
  start-page: 1403
  issue: 3
  year: 2017
  end-page: 1423
  ident: CR24
  article-title: Structural health monitoring using wireless sensor networks: A comprehensive survey
  publication-title: IEEE Communications Surveys & Tutorials
  doi: 10.1109/COMST.2017.2691551
– volume: 159
  year: 2020
  ident: CR11
  article-title: Swaying displacement measurement for structural monitoring using computer vision and an unmanned aerial vehicle
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.107769
– ident: CR14
– ident: CR2
– volume: 19
  start-page: 6844
  issue: 16
  year: 2019
  end-page: 6857
  ident: CR18
  article-title: Learning visual similarity for inspecting defective railway fasteners
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2019.2911015
– volume: 144
  year: 2020
  ident: CR33
  article-title: Cnn-lstm deep learning architecture for computer vision-based modal frequency detection
  publication-title: Mechanical Systems and signal processing
  doi: 10.1016/j.ymssp.2020.106885
– volume: 94
  start-page: 203
  year: 2018
  end-page: 213
  ident: CR23
  article-title: Automatic recognition of asphalt pavement cracks using metaheuristic optimized edge detection algorithms and convolution neural network
  publication-title: Automation in Construction
  doi: 10.1016/j.autcon.2018.07.008
– volume: 13
  start-page: 909
  issue: 3
  year: 2012
  end-page: 915
  ident: CR30
  article-title: Low power wireless sensor network for building monitoring
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2012.2218680
– ident: CR8
– volume: 38
  start-page: 213
  issue: 3
  year: 2005
  end-page: 218
  ident: CR21
  article-title: Comparison of laser doppler vibrometer with contact sensors for monitoring bridge deflection and vibration
  publication-title: Ndt & E International
  doi: 10.1016/j.ndteint.2004.06.012
– volume: 26
  issue: 3
  year: 2019
  ident: CR27
  article-title: A literature review of next-generation smart sensing technology in structural health monitoring
  publication-title: Structural Control and Health Monitoring
  doi: 10.1002/stc.2321
– volume: 32
  start-page: 971
  year: 2021
  end-page: 987
  ident: CR6
  article-title: Bearing fault diagnosis base on multi-scale cnn and lstm model
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-020-01600-2
– volume: 24
  start-page: 567
  issue: 5
  year: 2019
  end-page: 585
  ident: CR34
  article-title: A review on deep learning-based structural health monitoring of civil infrastructures
  publication-title: Smart Structures and Systems
– volume: 24
  start-page: 249
  issue: 4
  year: 2009
  end-page: 265
  ident: CR26
  article-title: Noncontact operational modal analysis of structural members by laser doppler vibrometer
  publication-title: Computer-Aided Civil and Infrastructure Engineering
  doi: 10.1111/j.1467-8667.2008.00585.x
– volume: 99
  start-page: 80
  year: 2017
  end-page: 87
  ident: CR25
  article-title: Damage detection in composite panels based on mode-converted lamb waves sensed using 3d laser scanning vibrometer
  publication-title: Optics and lasers in engineering
  doi: 10.1016/j.optlaseng.2016.12.017
– volume: 26
  issue: 8
  year: 2019
  ident: CR12
  article-title: Image-based concrete crack assessment using mask and region-based convolutional neural network
  publication-title: Structural Control and Health Monitoring
  doi: 10.1002/stc.2381
– ident: CR19
– ident: CR3
– ident: CR15
– volume: 29
  issue: 3
  year: 2022
  ident: CR32
  article-title: Continuous video stream pixel sensor: A cnn-lstm based deep learning approach for mode shape prediction
  publication-title: Structural Control and Health Monitoring
  doi: 10.1002/stc.2892
– ident: CR17
– ident: CR31
– ident: CR13
– volume: 38
  start-page: 91
  issue: 2
  year: 2006
  end-page: 130
  ident: CR20
  article-title: A summary review of wireless sensors and sensor networks for structural health monitoring
  publication-title: Shock and Vibration Digest
  doi: 10.1177/0583102406061499
– ident: CR9
– volume: 21
  start-page: 237
  year: 2012
  end-page: 252
  ident: CR4
  article-title: Development of a wireless sensor network system for suspension bridge health monitoring
  publication-title: Automation in Construction
  doi: 10.1016/j.autcon.2011.06.008
– volume: 213
  year: 2020
  ident: CR22
  article-title: Structural health monitoring and seismic response assessment of bridge structures using target-tracking digital image correlation
  publication-title: Engineering Structures
  doi: 10.1016/j.engstruct.2020.110551
– volume: 140
  year: 2020
  ident: CR16
  article-title: Long-term displacement measurement of full-scale bridges using camera ego-motion compensation
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2020.106651
– volume: 26
  issue: 1
  year: 2019
  ident: CR29
  article-title: Convolutional neural network-based data anomaly detection method using multiple information for structural health monitoring
  publication-title: Structural Control and Health Monitoring
  doi: 10.1002/stc.2296
– volume: 156
  start-page: 105
  year: 2018
  end-page: 117
  ident: CR7
  article-title: Computer vision for shm of civil infrastructure: From dynamic response measurement to damage detection-a review
  publication-title: Engineering Structures
  doi: 10.1016/j.engstruct.2017.11.018
– ident: CR28
– volume: 47
  start-page: 358
  year: 2016
  end-page: 368
  ident: CR35
  article-title: Spatial-temporal convolutional neural networks for anomaly detection and localization in crowded scenes
  publication-title: Signal Processing: Image Communication
– volume: 33
  start-page: 04019040
  issue: 6
  year: 2019
  ident: CR1
  article-title: Robust pixel-level crack detection using deep fully convolutional neural networks
  publication-title: Journal of Computing in Civil Engineering
  doi: 10.1061/(ASCE)CP.1943-5487.0000854
– ident: 4654_CR9
  doi: 10.1088/0964-1726/17/01/015016
– volume: 19
  start-page: 1403
  issue: 3
  year: 2017
  ident: 4654_CR24
  publication-title: IEEE Communications Surveys & Tutorials
  doi: 10.1109/COMST.2017.2691551
– volume: 13
  start-page: 909
  issue: 3
  year: 2012
  ident: 4654_CR30
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2012.2218680
– volume: 29
  issue: 3
  year: 2022
  ident: 4654_CR32
  publication-title: Structural Control and Health Monitoring
  doi: 10.1002/stc.2892
– volume: 26
  issue: 3
  year: 2019
  ident: 4654_CR27
  publication-title: Structural Control and Health Monitoring
  doi: 10.1002/stc.2321
– ident: 4654_CR2
– volume: 387
  start-page: 36
  year: 2017
  ident: 4654_CR5
  publication-title: Journal of Sound and Vibration
  doi: 10.1016/j.jsv.2016.09.026
– ident: 4654_CR8
  doi: 10.1088/1742-6596/1213/4/042050
– volume: 24
  start-page: 567
  issue: 5
  year: 2019
  ident: 4654_CR34
  publication-title: Smart Structures and Systems
– volume: 38
  start-page: 91
  issue: 2
  year: 2006
  ident: 4654_CR20
  publication-title: Shock and Vibration Digest
  doi: 10.1177/0583102406061499
– ident: 4654_CR28
  doi: 10.4028/www.scientific.net/KEM.518.1
– ident: 4654_CR13
  doi: 10.1109/CVPRW.2017.207
– volume: 26
  issue: 8
  year: 2019
  ident: 4654_CR12
  publication-title: Structural Control and Health Monitoring
  doi: 10.1002/stc.2381
– volume: 26
  issue: 1
  year: 2019
  ident: 4654_CR29
  publication-title: Structural Control and Health Monitoring
  doi: 10.1002/stc.2296
– ident: 4654_CR31
  doi: 10.1002/stc.2155
– volume: 24
  start-page: 249
  issue: 4
  year: 2009
  ident: 4654_CR26
  publication-title: Computer-Aided Civil and Infrastructure Engineering
  doi: 10.1111/j.1467-8667.2008.00585.x
– volume: 213
  year: 2020
  ident: 4654_CR22
  publication-title: Engineering Structures
  doi: 10.1016/j.engstruct.2020.110551
– ident: 4654_CR3
  doi: 10.1155/2015/139695
– volume: 32
  start-page: 971
  year: 2021
  ident: 4654_CR6
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-020-01600-2
– volume: 21
  start-page: 237
  year: 2012
  ident: 4654_CR4
  publication-title: Automation in Construction
  doi: 10.1016/j.autcon.2011.06.008
– volume: 99
  start-page: 80
  year: 2017
  ident: 4654_CR25
  publication-title: Optics and lasers in engineering
  doi: 10.1016/j.optlaseng.2016.12.017
– ident: 4654_CR17
  doi: 10.1109/ICKII.2018.8569155
– volume: 47
  start-page: 358
  year: 2016
  ident: 4654_CR35
  publication-title: Signal Processing: Image Communication
– volume: 159
  year: 2020
  ident: 4654_CR11
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.107769
– volume: 144
  year: 2020
  ident: 4654_CR33
  publication-title: Mechanical Systems and signal processing
  doi: 10.1016/j.ymssp.2020.106885
– volume: 94
  start-page: 203
  year: 2018
  ident: 4654_CR23
  publication-title: Automation in Construction
  doi: 10.1016/j.autcon.2018.07.008
– volume: 38
  start-page: 213
  issue: 3
  year: 2005
  ident: 4654_CR21
  publication-title: Ndt & E International
  doi: 10.1016/j.ndteint.2004.06.012
– ident: 4654_CR15
  doi: 10.1007/978-3-319-49409-8_7
– ident: 4654_CR14
  doi: 10.1109/CVPR.2017.113
– volume: 33
  start-page: 04019040
  issue: 6
  year: 2019
  ident: 4654_CR1
  publication-title: Journal of Computing in Civil Engineering
  doi: 10.1061/(ASCE)CP.1943-5487.0000854
– volume: 88
  start-page: 89
  year: 2017
  ident: 4654_CR10
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2016.11.009
– volume: 140
  year: 2020
  ident: 4654_CR16
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2020.106651
– ident: 4654_CR19
  doi: 10.1007/s10586-020-03055-9
– volume: 19
  start-page: 6844
  issue: 16
  year: 2019
  ident: 4654_CR18
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2019.2911015
– volume: 156
  start-page: 105
  year: 2018
  ident: 4654_CR7
  publication-title: Engineering Structures
  doi: 10.1016/j.engstruct.2017.11.018
SSID ssj0003301
Score 2.347534
Snippet Structural health monitoring (SHM) refers to the implementation of a damage detection strategy for structures. Fault occurrence in these structural systems...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 22850
SubjectTerms Algorithms
Artificial Intelligence
Artificial neural networks
Computer architecture
Computer Science
Computer vision
Damage detection
Deep learning
Defects
Diagnostic systems
Machine learning
Machines
Maintenance
Manufacturing
Mechanical Engineering
Neural networks
Pixels
Processes
Spatial resolution
Structural health monitoring
Teaching methods
Vibration measurement
Vibration monitoring
Weight reduction
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PT8IwFH5BuHjxtxFF04M3bYSt3bqDMSgQYiIhKobbsnadFzMwkvDv-97omJrIaYe1XfLa1_d1fe_7AC4D7XuhNG2emchw9ETcB60nuYmEpZCks5Bqh59GwXAiHqdyWoNRWQtDaZXlnlhs1OnM0D_yG0T2SkoiGrybf3JSjaLb1VJCI3HSCultQTG2BQ2PmLHq0Ljvj8bP670ZT--Fhh6eOngQRFNXRuOK6QSlD3k-pTtKwZe_Q1WFP_9cmRaRaLAHOw5Csu5qzvehZvMD2C3lGZjz1kMY96ydM0eg-s66P64MGEJVtu7xVtSXcwpoKXspCGWJjIP1LOV64GNR5GvlRzAZ9F8fhtwJKHCDnrXgRobaIoDK0jSMpBbGSKXbnvVSI6K2RahkdagC5dtEi8h0ZOaLTIlUmUBjQ-sfQz2f5fYEGMIag66PeIgI9DOjgihNMqXxE4mSSdCETmmr2Dh2cRK5-IgrXmSyb4z2jQv7xssmXK37zFfcGhtbt8opiJ2ffcXVqmjCdTkt1ev_RzvdPNoZbJOuPAUpT7Wgjqa354g-FvrCLalvRzTV7w
  priority: 102
  providerName: ProQuest
Title Deep Learning Architecture for Computer Vision-based Structural Defect Detection
URI https://link.springer.com/article/10.1007/s10489-023-04654-w
https://www.proquest.com/docview/2878553132
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4IXLyIz4gi6cGblsBuu9s9LvKKRkJUDJ42tNv1oEESMCT-eqdLF5CoCac99LG7nc7M13TmG4BLT7qOz1WNJipQFDUR7aB2OFUB08YlycQ3ucP3Pa87YLdDPrRJYdMs2j27kkwt9VqyGzPhPY5rwhE5o_McFFK-rTwUws7LXWtpgfGMnlbKw7MF9bxgaJNlfp_lp0NaocyNi9HU37SLMMi-dBFm8lb9nMmq-togcdz2V_ZhzwJQEi52zAHs6PEhFLPiDsTq-hH0m1pPiKVffSXh2oUDQaBLliOe0-x0atxhTB5TOlpD5UGa2kSK4GOWRnuNj2HQbj3ddKktv0AV6uWMKu5LjfAriWM_4JIpxYWsOdqJFQtqGoGWlr7whKtHkgWqzhOXJYLFQnkSO2r3BPLjj7E-BYKgSKHhQDRl6PcTJbwgHiVC4itGgo-8EtQzGUTKcpObEhnv0YpV2SxZhEsWpUsWzUtwtRwzWTBz_Nu7nIk2slo6jfC0KDg35JUluM4ktWr-e7az7bqfw66pUr-IASxDHkWhLxDLzGQFcqLdqeAGbjcavYrdyPhstHr9B2wdOOE3RZjvBQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV09T8MwED0VOsDCN6JQwANMYFESO3GGChVaVKCtKmhRtxA7DgsKRVSq-HP8Ns6p0wIS3ZgyxHaku_Pdc3z3DuDIk67jc1WhiQoUxZ2IflA7nKqAaROSZOKb2uF2x2v22e2ADwrwmdfCmLTK3Cdmjjp-VeYf-Rkie8G5IRq8GL5R0zXK3K7mLTQi21ohrmYUY7aw405_jPEI9169qaO-jx3nutG7alLbZYAqNL8RVdyXGlFGEsd-wCVTigtZcbQTKxZUNOIJLX3hCVdHkgXqnCcuSwSLhfIkDtQurrsAReayAA9_xctGp3s_jQWumzVgruAph3peMLBlO7Z4j5l0Jcc16ZWc0fHP0DjDu7-uaLPId70GKxayktrExtahoNMNWM3bQRDrHTahW9d6SCxh6zOpfbuiIAiNyXTGY1bPTk0AjclDRmBryD9IXZvcEnyMsvywdAv6_yLKbVhMX1O9AwRhlEJXg_jLEPYnSnhBHCVC4iciwSOvBOe5rEJl2cxNU42XcMbDbOQbonzDTL7huAQn0znDCZfH3NHlXAWh3dfv4cwKS3Caq2X2-u_VduevdghLzV67FbZuOnd7sGx62k8yBsuwiGrQ-4h8RvLAmheBp_-26C-Q7BPn
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLbGkBAX3ojxzAFOEG1rkzY9IIQY442QYGi30qQpF7QNbdLEX-PXYXfpBkjsxqmHJqlkO_aXxv4MsB9o3wulqfHMRIbjTkQ_aD3JTSQshSSdhVQ7fHcfXLbEdVu2S_BZ1MJQWmXhE3NHnXYN_SOvIrJXUhLRYDVzaREPjeZJ751TBym6aS3aaYxM5MZ-DPH41j--aqCuDzyvef50dsldhwFu0PQG3MhQW0QYWZqGkdTCGKl0zbNeakRUs4glrA5VoHybaBGZusx8kSmRKhNoHGh9XHcGZkNicacq9ebFOAr4ft56uYbnGx4EUdsV7LiyPUGJSp5PiZVS8OHPoDhBur8uZ_OY11yCBQdW2enIupahZDsrsFg0gmDOL6zCQ8PaHnNUra_s9NvlBENQzMYznvNKdk6hM2WPOXUt0X6whqWsEnwM8sywzhq0_kWQ61DudDt2AxgCKINOBpEXUfVnRgVRmmRK4ycSJZOgAvVCVrFxPObUTuMtnjAwk3xjlG-cyzceVuBwPKc3YvGYOnq7UEHsdnQ_nthfBY4KtUxe_73a5vTV9mAO7Ti-vbq_2YJ5amY_ShXchjJqwe4g5Bno3dy2GLz8tzF_Af8EEYE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Architecture+for+Computer+Vision-based+Structural+Defect+Detection&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Yang%2C+Ruoyu&rft.au=Singh%2C+Shubhendu+Kumar&rft.au=Tavakkoli%2C+Mostafa&rft.au=Karami%2C+M.+Amin&rft.date=2023-10-01&rft.pub=Springer+US&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=53&rft.issue=19&rft.spage=22850&rft.epage=22862&rft_id=info:doi/10.1007%2Fs10489-023-04654-w&rft.externalDocID=10_1007_s10489_023_04654_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon