A kriging-based active learning algorithm for contour estimation of integrated response with noise factors
Contours have been commonly employed to gain insights into the influence of inputs in designing engineering systems. Estimating a contour from computer experiments via sequentially updating kriging [also called Gaussian process (GP) models] has received increasing attention for obtaining an accurate...
Saved in:
| Published in | Engineering with computers Vol. 39; no. 2; pp. 1341 - 1362 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Springer London
01.04.2023
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0177-0667 1435-5663 |
| DOI | 10.1007/s00366-021-01516-2 |
Cover
| Abstract | Contours have been commonly employed to gain insights into the influence of inputs in designing engineering systems. Estimating a contour from computer experiments via sequentially updating kriging [also called Gaussian process (GP) models] has received increasing attention for obtaining an accurate prediction within a limited simulation budget. In many engineering systems, there are often two types of inputs: control factors specified by design engineers and uncontrollable noise factors due to manufacturing errors or environmental variations. To mitigate undesirable effects of noise factors, the integrated response, which is an expectation of the response with respect to noise factors, is a widely used robust performance measure. Predicting a contour of the integrated response is an important task to identify sets of control factors that maintain the integrated response at a desirable level. However, most of the existing literature focuses on estimating contours with only control factors and ignores inevitable noise factors. In this article, we propose an efficient active learning algorithm for estimating a contour of the integrated response from time-consuming computer models based on GP models. Two acquisition functions (AFs) are proposed to determine the next design points of both control factors and noise factors for updating GP models to better estimate a contour. Closed-form expressions are developed to compute the AFs for facilitating optimization. Three numerical examples with different types of contours and a real aerodynamic airfoil example are used to demonstrate that more accurate contour estimates are obtained with the proposed active learning algorithm efficiently. |
|---|---|
| AbstractList | Contours have been commonly employed to gain insights into the influence of inputs in designing engineering systems. Estimating a contour from computer experiments via sequentially updating kriging [also called Gaussian process (GP) models] has received increasing attention for obtaining an accurate prediction within a limited simulation budget. In many engineering systems, there are often two types of inputs: control factors specified by design engineers and uncontrollable noise factors due to manufacturing errors or environmental variations. To mitigate undesirable effects of noise factors, the integrated response, which is an expectation of the response with respect to noise factors, is a widely used robust performance measure. Predicting a contour of the integrated response is an important task to identify sets of control factors that maintain the integrated response at a desirable level. However, most of the existing literature focuses on estimating contours with only control factors and ignores inevitable noise factors. In this article, we propose an efficient active learning algorithm for estimating a contour of the integrated response from time-consuming computer models based on GP models. Two acquisition functions (AFs) are proposed to determine the next design points of both control factors and noise factors for updating GP models to better estimate a contour. Closed-form expressions are developed to compute the AFs for facilitating optimization. Three numerical examples with different types of contours and a real aerodynamic airfoil example are used to demonstrate that more accurate contour estimates are obtained with the proposed active learning algorithm efficiently. |
| Author | Ouyang, Linhan Han, Mei Huang, Qianqian Zhao, Xufeng |
| Author_xml | – sequence: 1 givenname: Mei orcidid: 0000-0002-8899-0701 surname: Han fullname: Han, Mei email: meihan2@nuaa.edu.cn organization: College of Economics and Management, Nanjing University of Aeronautics and Astronautics – sequence: 2 givenname: Qianqian surname: Huang fullname: Huang, Qianqian organization: College of Economics and Management, Nanjing University of Aeronautics and Astronautics – sequence: 3 givenname: Linhan surname: Ouyang fullname: Ouyang, Linhan organization: College of Economics and Management, Nanjing University of Aeronautics and Astronautics – sequence: 4 givenname: Xufeng surname: Zhao fullname: Zhao, Xufeng organization: College of Economics and Management, Nanjing University of Aeronautics and Astronautics |
| BookMark | eNp9kE9PwyAYh4mZidv0C3gi8Vx9gRba47L4L1niRc-EUlqZHUxgGr-9uJmYeNgFCPk9Lz-eGZo47wxClwSuCYC4iQCM8wIoKYBUhBf0BE1Jyaqi4pxN0BSIEAVwLs7QLMY1AGEAzRStF_gt2MG6oWhVNB1WOtkPg0ejgsu3WI2DDza9bnDvA9beJb8L2MRkNypZ77DvsXXJDEGljAcTt95Fgz8zg523-djnmT7Ec3TaqzGai999jl7ubp-XD8Xq6f5xuVgVmpEm5bU0vG2aqu_argPaQqcbTY1oFREtp1T0XJC6rEsGDeOq7YUCJjrW1LrVtWFzdHWYuw3-fZebynWu7PKTktYgKKWNqHOqPqR08DEG00tt0_5HKSg7SgLyx6w8mJXZrNyblTSj9B-6DdlG-DoOsQMUc9gNJvy1OkJ9A5crj0A |
| CitedBy_id | crossref_primary_10_1007_s00366_023_01865_0 crossref_primary_10_1016_j_cie_2024_110749 |
| Cites_doi | 10.1007/s00366-019-00745-w 10.2514/1.J058663 10.1198/TECH.2011.10192 10.1007/s10898-011-9836-5 10.1198/jasa.2009.ap07625 10.1137/19M1272676 10.1080/0740817X.2016.1167289 10.1007/s00366-020-01043-6 10.1007/s42519-019-0077-0 10.1115/1.2798325 10.1007/s10898-017-0516-y 10.1007/s10898-020-00923-x 10.1080/00224065.2019.1611358 10.1080/00401706.2020.1817790 10.1080/00401706.2014.969446 10.1109/TASE.2020.2990401 10.1007/s00180-012-0380-7 10.1080/00401706.2016.1272493 10.1007/s00366-015-0398-x 10.1016/j.strusafe.2006.10.003 10.1023/A:1008306431147 10.1115/1.4001873 10.1198/004017008000000541 10.2514/1.34321 10.1007/s00366-018-0590-x 10.1162/neco_a_01307 10.1002/qre.2563 10.1109/JPROC.2015.2494218 10.1214/lnms/1215456182 10.1080/00401706.2012.707580 10.1115/1.2204974 10.1109/TEVC.2005.859463 10.1007/978-1-4757-3799-8 10.1080/24725854.2019.1630866 10.1287/educ.2018.0188 10.2514/6.1997-849 10.1007/978-3-319-91436-7_7 10.1109/Allerton.2012.6483247 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s00366-021-01516-2 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection (LUT) ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Computer Science |
| EISSN | 1435-5663 |
| EndPage | 1362 |
| ExternalDocumentID | 10_1007_s00366_021_01516_2 |
| GrantInformation_xml | – fundername: Nanjing’s Science and Technology Innovation Project – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20190389 funderid: http://dx.doi.org/10.13039/501100004608 – fundername: National Natural Science Foundation of China grantid: 71902089; 72072089; 71702072; 71931006; 71801126 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities grantid: NR2019014 funderid: http://dx.doi.org/10.13039/501100012226 – fundername: Nanjing University of Aeronautics and Astronautics grantid: YAH18091 funderid: http://dx.doi.org/10.13039/501100004193 – fundername: Shuangchuang Program of Jiangsu Province |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 28- 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X 9M8 AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW L6V LAS LLZTM M0N M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P62 P9O PF0 PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 Y6R YLTOR Z45 Z5O Z7R Z7S Z7X Z7Z Z83 Z86 Z88 Z8M Z8N Z8T Z8W Z92 ZMTXR ZY4 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c319t-c34e6b995fdbdd02b0dc9c2e7ba17b6227f671848430936abf7a037d398cbc8e3 |
| IEDL.DBID | AGYKE |
| ISSN | 0177-0667 |
| IngestDate | Wed Aug 13 06:34:31 EDT 2025 Wed Oct 01 04:55:37 EDT 2025 Thu Apr 24 22:55:30 EDT 2025 Fri Feb 21 02:45:37 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Contour estimation Expected improvement Gaussian process model Noise factor Active learning Integrated response |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-c34e6b995fdbdd02b0dc9c2e7ba17b6227f671848430936abf7a037d398cbc8e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8899-0701 |
| PQID | 2807222978 |
| PQPubID | 326339 |
| PageCount | 22 |
| ParticipantIDs | proquest_journals_2807222978 crossref_citationtrail_10_1007_s00366_021_01516_2 crossref_primary_10_1007_s00366_021_01516_2 springer_journals_10_1007_s00366_021_01516_2 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20230400 2023-04-00 20230401 |
| PublicationDateYYYYMMDD | 2023-04-01 |
| PublicationDate_xml | – month: 4 year: 2023 text: 20230400 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationSubtitle | An International Journal for Simulation-Based Engineering |
| PublicationTitle | Engineering with computers |
| PublicationTitleAbbrev | Engineering with Computers |
| PublicationYear | 2023 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | Tan (CR35) 2020; 8 Han, Tan (CR7) 2016; 48 Emmerich, Naujoks (CR21) 2006; 10 Press, Teukolsky, Vetterling, Flannery (CR41) 2007 Schonlau, Welch, Jones (CR19) 1998 Inatsu, Sugita, Toyoura, Takeuchi (CR28) 2020; 32 Janusevskis, Le Riche (CR12) 2013; 55 Apley, Liu, Chen (CR16) 2006; 128 Williams, Santner, Notz (CR8) 2000; 10 Gavin, Yau (CR2) 2008; 30 Yang, Lin, Ranjan (CR38) 2020; 14 Bellary, Samad, Couckuyt, Dhaene (CR13) 2016; 32 Tan (CR17) 2015; 57 CR34 Wu, Hamada (CR6) 2009 CR11 CR33 Xiong (CR10) 2020; 52 Shen (CR45) 2017; 59 Santner, Williams, Notz (CR36) 2003 Shahriari, Swersky, Wang (CR23) 2016; 104 Han, Liu, Huang, Tan (CR1) 2020; 52 Qian, Yi, Cheng (CR4) 2020; 36 Bouhlel, Martins (CR14) 2019; 35 Chen, Kang, Lin (CR27) 2021; 63 Ranjan, Bingham, Michailidis (CR37) 2011; 53 Ranjan, Bingham, Michailidis (CR29) 2008; 50 Chang, Williams, Santner (CR15) 1999; 121 Chen, Hung, Wang, Yen (CR30) 2013; 28 Zhan, Xing (CR22) 2020; 78 CR9 Picheny, Ginsbourger, Richet, Caplin (CR40) 2013; 55 CR24 CR44 Ouyang, Zheng, Zhu, Zhou (CR3) 2020; 36 Bichon, Eldred, Swiler (CR32) 2008; 46 CR43 Mathai, Provost (CR39) 1992 Deng, Joseph, Sudjianto, Wu (CR26) 2009; 104 Picheny, Ginsbourger, Roustant (CR20) 2010; 132 Marques, Opgenoord, Lam (CR5) 2020; 58 Jones, Schonlau, Welch (CR18) 1998; 13 Yue, Wen, Hunt, Shi (CR25) 2021; 18 Liu, Yi, Zhou, Cheng (CR31) 2020 Namura, Shimoyama, Obayashi (CR42) 2017; 68 TJ Santner (1516_CR36) 2003 J Janusevskis (1516_CR12) 2013; 55 1516_CR11 1516_CR33 M Han (1516_CR1) 2020; 52 1516_CR34 V Picheny (1516_CR40) 2013; 55 MA Bouhlel (1516_CR14) 2019; 35 N Namura (1516_CR42) 2017; 68 L Ouyang (1516_CR3) 2020; 36 J Qian (1516_CR4) 2020; 36 S Xiong (1516_CR10) 2020; 52 X Yue (1516_CR25) 2021; 18 GKC Emmerich (1516_CR21) 2006; 10 F Yang (1516_CR38) 2020; 14 DR Jones (1516_CR18) 1998; 13 B Shahriari (1516_CR23) 2016; 104 X Deng (1516_CR26) 2009; 104 R-B Chen (1516_CR30) 2013; 28 M Schonlau (1516_CR19) 1998 M Han (1516_CR7) 2016; 48 BJ Williams (1516_CR8) 2000; 10 PB Chang (1516_CR15) 1999; 121 BJ Bichon (1516_CR32) 2008; 46 MHY Tan (1516_CR35) 2020; 8 HP Gavin (1516_CR2) 2008; 30 SAI Bellary (1516_CR13) 2016; 32 1516_CR43 1516_CR44 1516_CR24 J Chen (1516_CR27) 2021; 63 1516_CR9 MHY Tan (1516_CR17) 2015; 57 V Picheny (1516_CR20) 2010; 132 W Press (1516_CR41) 2007 J Liu (1516_CR31) 2020 P Ranjan (1516_CR29) 2008; 50 AM Mathai (1516_CR39) 1992 AN Marques (1516_CR5) 2020; 58 D Zhan (1516_CR22) 2020; 78 P Ranjan (1516_CR37) 2011; 53 Y Inatsu (1516_CR28) 2020; 32 W Shen (1516_CR45) 2017; 59 CF Wu (1516_CR6) 2009 DW Apley (1516_CR16) 2006; 128 |
| References_xml | – volume: 36 start-page: 993 year: 2020 end-page: 1009 ident: CR4 article-title: A sequential constraints updating approach for Kriging surrogate model-assisted engineering optimization design problem publication-title: Eng Comput doi: 10.1007/s00366-019-00745-w – volume: 58 start-page: 1772 year: 2020 end-page: 1784 ident: CR5 article-title: Multifidelity method for locating aeroelastic flutter boundaries publication-title: AIAA J doi: 10.2514/1.J058663 – volume: 53 start-page: 109 year: 2011 end-page: 110 ident: CR37 article-title: Errata publication-title: Technometrics doi: 10.1198/TECH.2011.10192 – volume: 55 start-page: 313 year: 2013 end-page: 336 ident: CR12 article-title: Simultaneous kriging-based estimation and optimization of mean response publication-title: J Glob Optim doi: 10.1007/s10898-011-9836-5 – volume: 104 start-page: 969 year: 2009 end-page: 981 ident: CR26 article-title: Active learning through sequential design, with applications to detection of money laundering publication-title: J Am Stat Assoc doi: 10.1198/jasa.2009.ap07625 – volume: 8 start-page: 891 year: 2020 end-page: 925 ident: CR35 article-title: Bayesian optimization of expected quadratic loss for multiresponse computer experiments with internal noise publication-title: SIAM/ASA J Uncertain Quantif doi: 10.1137/19M1272676 – ident: CR43 – volume: 48 start-page: 1004 year: 2016 end-page: 1015 ident: CR7 article-title: Integrated parameter and tolerance design with computer experiments publication-title: IIE Trans doi: 10.1080/0740817X.2016.1167289 – year: 2020 ident: CR31 article-title: A sequential multi-fidelity surrogate model-assisted contour prediction method for engineering problems with expensive simulations publication-title: Eng Comput doi: 10.1007/s00366-020-01043-6 – volume: 14 start-page: 9 year: 2020 ident: CR38 article-title: Global fitting of the response surface via estimating multiple contours of a simulator publication-title: J Stat Theory Pract doi: 10.1007/s42519-019-0077-0 – volume: 121 start-page: 304 year: 1999 end-page: 310 ident: CR15 article-title: Robust optimization of total joint replacements incorporating environmental variables publication-title: J Biomech Eng doi: 10.1115/1.2798325 – volume: 68 start-page: 827 year: 2017 end-page: 849 ident: CR42 article-title: Kriging surrogate model with coordinate transformation based on likelihood and gradient publication-title: J Glob Optim doi: 10.1007/s10898-017-0516-y – volume: 78 start-page: 507 year: 2020 end-page: 544 ident: CR22 article-title: Expected improvement for expensive optimization: a review publication-title: J Glob Optim doi: 10.1007/s10898-020-00923-x – volume: 52 start-page: 404 year: 2020 end-page: 421 ident: CR1 article-title: Integrated parameter and tolerance optimization of a centrifugal compressor based on a complex simulator publication-title: J Qual Technol doi: 10.1080/00224065.2019.1611358 – volume: 63 start-page: 329 year: 2021 end-page: 342 ident: CR27 article-title: Gaussian process assisted active learning of physical laws publication-title: Technometrics doi: 10.1080/00401706.2020.1817790 – ident: CR33 – volume: 57 start-page: 468 year: 2015 end-page: 478 ident: CR17 article-title: Robust parameter design with computer experiments using orthonormal polynomials publication-title: Technometrics doi: 10.1080/00401706.2014.969446 – volume: 18 start-page: 36 year: 2021 end-page: 46 ident: CR25 article-title: Active learning for Gaussian process considering uncertainties with application to shape control of composite fuselage publication-title: IEEE Trans Autom Sci Eng doi: 10.1109/TASE.2020.2990401 – volume: 28 start-page: 1813 year: 2013 end-page: 1834 ident: CR30 article-title: Contour estimation via two fidelity computer simulators under limited resources publication-title: Comput Stat doi: 10.1007/s00180-012-0380-7 – year: 1992 ident: CR39 publication-title: Quadratic forms in random variables: theory and applications – volume: 59 start-page: 471 year: 2017 end-page: 483 ident: CR45 article-title: Robust parameter designs in computer experiments using stochastic approximation publication-title: Technometrics doi: 10.1080/00401706.2016.1272493 – volume: 32 start-page: 49 year: 2016 end-page: 59 ident: CR13 article-title: A comparative study of kriging variants for the optimization of a turbomachinery system publication-title: Eng Comput doi: 10.1007/s00366-015-0398-x – volume: 30 start-page: 162 year: 2008 end-page: 179 ident: CR2 article-title: High-order limit state functions in the response surface method for structural reliability analysis publication-title: Struct Saf doi: 10.1016/j.strusafe.2006.10.003 – volume: 13 start-page: 455 year: 1998 end-page: 492 ident: CR18 article-title: Efficient global optimization of expensive black-box functions publication-title: J Glob Optim doi: 10.1023/A:1008306431147 – volume: 132 start-page: 071008 year: 2010 end-page: 071017 ident: CR20 article-title: Adaptive designs of experiments for accurate approximation of a target region publication-title: J Mech Des doi: 10.1115/1.4001873 – volume: 50 start-page: 527 year: 2008 end-page: 541 ident: CR29 article-title: Sequential experiment design for contour estimation from complex computer codes publication-title: Technometrics doi: 10.1198/004017008000000541 – ident: CR44 – year: 2007 ident: CR41 publication-title: Numerical recipes: the art of scientific computing – volume: 46 start-page: 2459 year: 2008 end-page: 2468 ident: CR32 article-title: Efficient global reliability analysis for nonlinear implicit performance functions publication-title: AIAA J doi: 10.2514/1.34321 – volume: 35 start-page: 157 year: 2019 end-page: 173 ident: CR14 article-title: Gradient-enhanced kriging for high-dimensional problems publication-title: Eng Comput doi: 10.1007/s00366-018-0590-x – volume: 32 start-page: 2032 year: 2020 end-page: 2068 ident: CR28 article-title: Active learning for enumerating local minima based on Gaussian process derivatives publication-title: Neural Comput doi: 10.1162/neco_a_01307 – volume: 36 start-page: 125 year: 2020 end-page: 143 ident: CR3 article-title: An interval probability-based FMEA model for risk assessment: a real-world case publication-title: Qual Reliab Eng Int doi: 10.1002/qre.2563 – ident: CR11 – volume: 104 start-page: 148 year: 2016 end-page: 175 ident: CR23 article-title: Taking the human out of the loop: a review of Bayesian optimization publication-title: Proc IEEE doi: 10.1109/JPROC.2015.2494218 – ident: CR9 – year: 1998 ident: CR19 article-title: Global versus local search in constrained optimization of computer models publication-title: New Dev Appl Exp Des doi: 10.1214/lnms/1215456182 – ident: CR34 – volume: 55 start-page: 2 year: 2013 end-page: 13 ident: CR40 article-title: Quantile-based optimization of noisy computer experiments with tunable precision publication-title: Technometrics doi: 10.1080/00401706.2012.707580 – volume: 128 start-page: 945 year: 2006 ident: CR16 article-title: Understanding the effects of model uncertainty in robust design with computer experiments publication-title: J Mech Des doi: 10.1115/1.2204974 – volume: 10 start-page: 421 year: 2006 end-page: 439 ident: CR21 article-title: Single- and multiobjective evolutionary optimization assisted by Gaussian random field metamodels publication-title: IEEE Trans Evolut Comput doi: 10.1109/TEVC.2005.859463 – year: 2009 ident: CR6 publication-title: Experiments: planning, analysis, and optimization – ident: CR24 – year: 2003 ident: CR36 publication-title: The design and analysis of computer experiments doi: 10.1007/978-1-4757-3799-8 – volume: 10 start-page: 1133 year: 2000 end-page: 1152 ident: CR8 article-title: Sequential design of computer experiments to minimize integrated response functions publication-title: Stat Sin – volume: 52 start-page: 528 year: 2020 end-page: 536 ident: CR10 article-title: Personalized optimization and its implementation in computer experiments publication-title: IISE Trans doi: 10.1080/24725854.2019.1630866 – volume: 128 start-page: 945 year: 2006 ident: 1516_CR16 publication-title: J Mech Des doi: 10.1115/1.2204974 – volume: 46 start-page: 2459 year: 2008 ident: 1516_CR32 publication-title: AIAA J doi: 10.2514/1.34321 – volume: 32 start-page: 49 year: 2016 ident: 1516_CR13 publication-title: Eng Comput doi: 10.1007/s00366-015-0398-x – volume: 36 start-page: 993 year: 2020 ident: 1516_CR4 publication-title: Eng Comput doi: 10.1007/s00366-019-00745-w – volume: 55 start-page: 313 year: 2013 ident: 1516_CR12 publication-title: J Glob Optim doi: 10.1007/s10898-011-9836-5 – volume-title: The design and analysis of computer experiments year: 2003 ident: 1516_CR36 doi: 10.1007/978-1-4757-3799-8 – volume: 121 start-page: 304 year: 1999 ident: 1516_CR15 publication-title: J Biomech Eng doi: 10.1115/1.2798325 – volume: 10 start-page: 421 year: 2006 ident: 1516_CR21 publication-title: IEEE Trans Evolut Comput doi: 10.1109/TEVC.2005.859463 – volume: 57 start-page: 468 year: 2015 ident: 1516_CR17 publication-title: Technometrics doi: 10.1080/00401706.2014.969446 – ident: 1516_CR33 – volume: 48 start-page: 1004 year: 2016 ident: 1516_CR7 publication-title: IIE Trans doi: 10.1080/0740817X.2016.1167289 – volume: 52 start-page: 404 year: 2020 ident: 1516_CR1 publication-title: J Qual Technol doi: 10.1080/00224065.2019.1611358 – volume-title: Experiments: planning, analysis, and optimization year: 2009 ident: 1516_CR6 – volume: 52 start-page: 528 year: 2020 ident: 1516_CR10 publication-title: IISE Trans doi: 10.1080/24725854.2019.1630866 – ident: 1516_CR24 doi: 10.1287/educ.2018.0188 – volume: 14 start-page: 9 year: 2020 ident: 1516_CR38 publication-title: J Stat Theory Pract doi: 10.1007/s42519-019-0077-0 – volume: 30 start-page: 162 year: 2008 ident: 1516_CR2 publication-title: Struct Saf doi: 10.1016/j.strusafe.2006.10.003 – volume: 104 start-page: 148 year: 2016 ident: 1516_CR23 publication-title: Proc IEEE doi: 10.1109/JPROC.2015.2494218 – volume: 8 start-page: 891 year: 2020 ident: 1516_CR35 publication-title: SIAM/ASA J Uncertain Quantif doi: 10.1137/19M1272676 – ident: 1516_CR43 – volume: 78 start-page: 507 year: 2020 ident: 1516_CR22 publication-title: J Glob Optim doi: 10.1007/s10898-020-00923-x – ident: 1516_CR44 doi: 10.2514/6.1997-849 – volume: 36 start-page: 125 year: 2020 ident: 1516_CR3 publication-title: Qual Reliab Eng Int doi: 10.1002/qre.2563 – volume: 58 start-page: 1772 year: 2020 ident: 1516_CR5 publication-title: AIAA J doi: 10.2514/1.J058663 – volume: 10 start-page: 1133 year: 2000 ident: 1516_CR8 publication-title: Stat Sin – volume: 18 start-page: 36 year: 2021 ident: 1516_CR25 publication-title: IEEE Trans Autom Sci Eng doi: 10.1109/TASE.2020.2990401 – volume: 50 start-page: 527 year: 2008 ident: 1516_CR29 publication-title: Technometrics doi: 10.1198/004017008000000541 – volume: 35 start-page: 157 year: 2019 ident: 1516_CR14 publication-title: Eng Comput doi: 10.1007/s00366-018-0590-x – volume: 63 start-page: 329 year: 2021 ident: 1516_CR27 publication-title: Technometrics doi: 10.1080/00401706.2020.1817790 – volume: 32 start-page: 2032 year: 2020 ident: 1516_CR28 publication-title: Neural Comput doi: 10.1162/neco_a_01307 – volume: 28 start-page: 1813 year: 2013 ident: 1516_CR30 publication-title: Comput Stat doi: 10.1007/s00180-012-0380-7 – volume: 55 start-page: 2 year: 2013 ident: 1516_CR40 publication-title: Technometrics doi: 10.1080/00401706.2012.707580 – volume: 68 start-page: 827 year: 2017 ident: 1516_CR42 publication-title: J Glob Optim doi: 10.1007/s10898-017-0516-y – volume: 59 start-page: 471 year: 2017 ident: 1516_CR45 publication-title: Technometrics doi: 10.1080/00401706.2016.1272493 – ident: 1516_CR34 – volume: 53 start-page: 109 year: 2011 ident: 1516_CR37 publication-title: Technometrics doi: 10.1198/TECH.2011.10192 – ident: 1516_CR11 doi: 10.1007/978-3-319-91436-7_7 – volume: 104 start-page: 969 year: 2009 ident: 1516_CR26 publication-title: J Am Stat Assoc doi: 10.1198/jasa.2009.ap07625 – year: 2020 ident: 1516_CR31 publication-title: Eng Comput doi: 10.1007/s00366-020-01043-6 – volume-title: Quadratic forms in random variables: theory and applications year: 1992 ident: 1516_CR39 – volume: 13 start-page: 455 year: 1998 ident: 1516_CR18 publication-title: J Glob Optim doi: 10.1023/A:1008306431147 – volume: 132 start-page: 071008 year: 2010 ident: 1516_CR20 publication-title: J Mech Des doi: 10.1115/1.4001873 – year: 1998 ident: 1516_CR19 publication-title: New Dev Appl Exp Des doi: 10.1214/lnms/1215456182 – ident: 1516_CR9 doi: 10.1109/Allerton.2012.6483247 – volume-title: Numerical recipes: the art of scientific computing year: 2007 ident: 1516_CR41 |
| SSID | ssj0013009 |
| Score | 2.3334668 |
| Snippet | Contours have been commonly employed to gain insights into the influence of inputs in designing engineering systems. Estimating a contour from computer... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1341 |
| SubjectTerms | Active learning Algorithms CAE) and Design Calculus of Variations and Optimal Control; Optimization Classical Mechanics Computer Science Computer-Aided Engineering (CAD Contours Control Design factors Estimation Gaussian process Machine learning Math. Applications in Chemistry Mathematical analysis Mathematical and Computational Engineering Noise control Noise prediction Optimization Original Article Performance prediction Robustness (mathematics) Systems Theory |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT4NAEJ5oe9GDb2N9ZQ_elAhb2GUPxqipaUxsjNHEG9kH1EeFWvH_uwNLqyb2QkiAJTA7OzM7M98HcMS4kkbRyJOG-zZAkaGnIh56QRRrn2dUcoENzrcD1n8Mb56ipwUYNL0wWFbZrInVQm0KjXvkp4jagtzTPD4ff3jIGoXZ1YZCQzpqBXNWQYwtQpsiMlYL2pe9wd39LK_g10UfAceiL8ZdG03VTIfQLFiQi-F1FDCP_jZVM__zT8q0skTXa7DiXEhyUct8HRbSfANWnTtJnLJ-bsDyD6zBTXi9IG8VCdbQQ8tliKxWOuJoI4ZEjob2e8vnd2L9WIIl7PZFBEE46u5GUmRkCi5hyKQurk0J7uSSvHixp468Zwser3sPV33PES142mpgaY9hypQQUWaUMT5VvtFC09TKMeCKUcozZm1YGIeYN2VSZVz6XW66ItZKx2l3G1p5kac7QAITCxlp5gslMDZUwogg1JwjjLsNrToQNP800Q6FHMkwRskUP7mSQ2LlkFRySGgHjqfPjGsMjrl37zeiSpw-fiaz2dOBk0Z8s8v_j7Y7f7Q9WEL--bqUZx9a5eQrPbBeSqkO3dT7BsJs4s4 priority: 102 providerName: ProQuest |
| Title | A kriging-based active learning algorithm for contour estimation of integrated response with noise factors |
| URI | https://link.springer.com/article/10.1007/s00366-021-01516-2 https://www.proquest.com/docview/2807222978 |
| Volume | 39 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1435-5663 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013009 issn: 0177-0667 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1435-5663 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0013009 issn: 0177-0667 databaseCode: 8FG dateStart: 19970301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1435-5663 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013009 issn: 0177-0667 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1435-5663 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0013009 issn: 0177-0667 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oXPQgihpRJHvwpiVtaXe7RzQ8opEYIwmemn20iCAYKBd_vbvtFpSoiZe22bbbdl8z0_nmG4ALTDiT3PUtJomtDBTmWdwnnuX4gbBJ7DJCdYDzfQ93-97twB-YoLBFjnbPXZLpSr0KdtPUKRowq81f38GWWniLKd9WAYrNzvNda-09sDNoh0M0tAsTEyzzcy3fBdJay9xwjKbypl2Cfv6mGcxkXF8mvC4-Nkgc__sp-7BnFFDUzEbMAWxF0zKUjDKKzFRfqKI830NeVobdL-SFh_DaROM0q9bQ0qJQIpYuncjkoRgiNhnO5qPk5Q0pxRhpTLx6NtKsHlm4JJrFaMVWIdE8Q-tGSP8aRtPZSB2abEBH0G-3nm66lsncYAk1pRO19SLMKfVjyaW0XW5LQYUbqYHhEI5dl8RYCUUv8LQjFjMeE2Y3iGzQQHARRI1jKExn0-gEkCMDynyBbcqpNjY5ldTxBCGaF17ZahVw8u4LhaE119k1JuGKkDlt7VC1dpi2duhW4HJ1z3tG6vHn1dV8VIRmgi9CTSKkU6GToAJXeSevT_9e2-n_Lj-DHZ3gPsMKVaGQzJfRuVKDEl6D7aDdqZmxr_bXrd7Doyrtu81PtBD_uw |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROFAObXmpW2jxoT3RiMTr2PEBIdqCltcKVSBxC34kWx7dpeyiqn-O39aZxNktleDGJYqUxFE8k_GMZ-b7AD5KZY23PI2MVzEGKEZENlUiStLMxarkRmlqcD7qys6p2D9Lz6bgvumFobLKxiZWhtoPHO2RbxBqC3FPq2zr5ldErFGUXW0oNEygVvCbFcRYaOw4KP78xhBuuLn3DeX9ifPdnZOvnSiwDEQO1W-ER1FIq3Vaeut9zG3snXa8wI9IlJWcq1KiAReZoKShNLZUJm4r39aZsy4r2jjuC5gRbaEx-Jv5stM9_j7JY8R1kUmiqMhMqtC2UzXvERQMFQBTOJ8mMuIPl8aJv_tfirZa-XbfwKvgsrLtWsfmYaroL8Dr4L6yYByGCzD3D7bhIlxus6uKdKsX0UrpmaksKws0FT1mrns4v6MfPxn6zYxK5vFFjEA_6m5KNijZGMzCs9u6mLdgtHPM-oMLPA1kQUtw-ixTvgzT_UG_eAss8Zk2qZOxtppiUau9ToRTimDjMZRrQdLMae4C6jmRb1znY7zmSg45yiGv5JDzFqyPn7mpMT-evHu1EVUe_v9hPtHWFnxuxDe5_Pho754ebQ1mOydHh_nhXvdgBV5y9LjqMqJVmB7d3hXv0UMa2Q9BDRmcP7fm_wU_OyBv |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZ4SAgOvBGDATnACSrarE2aA0ITMN6IA0jcSh7teG7AhhB_jV9H3KYbIMGNS1WpbarGrmPH9vcBrDKupFE08qThvg1QZOipiIdeEMXa5xmVXGCD8-kZO7gMj66iqwH4KHthsKyytIm5oTZtjXvkm4jagtzTPN7MXFnE-W5j--nZQwYpzLSWdBqFihyn7282fOtsHe5aWa9R2ti72DnwHMOAp63qde0xTJkSIsqMMsanyjdaaJraDwi4YpTyjFnjHcYhJgyZVBmXfo2bmoi10nFas-MOwjBHFHfsUm_s9zMYflFeEnAsL2PcNezkbXsIAoOlvxjIRwHz6PdFse_p_kjO5mteYxLGnbNK6oV2TcFA2pqGCee4EmcWOtMw9gXVcAbu6uQ-p9tqerhGGiJzm0ocQUWTyIemnc3uzSOxHjPBYnn7IoJwH0UfJWlnpAdjYchLUcabEtwzJq32rT11NEGzcPkvEz4HQ612K50HEphYyEgzXyiBUagSRgSh5hwB420QV4GgnNNEO7xzpN14SHpIzbkcEiuHJJdDQiuw3nvmqUD7-PPuaimqxP35naSvpxXYKMXXv_z7aAt_j7YCI1bfk5PDs-NFGEXS-6J-qApD3ZfXdMm6Rl21nOsggev_VvpPUXAeCQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+kriging-based+active+learning+algorithm+for+contour+estimation+of+integrated+response+with+noise+factors&rft.jtitle=Engineering+with+computers&rft.au=Han%2C+Mei&rft.au=Huang%2C+Qianqian&rft.au=Ouyang%2C+Linhan&rft.au=Zhao%2C+Xufeng&rft.date=2023-04-01&rft.pub=Springer+London&rft.issn=0177-0667&rft.eissn=1435-5663&rft.volume=39&rft.issue=2&rft.spage=1341&rft.epage=1362&rft_id=info:doi/10.1007%2Fs00366-021-01516-2&rft.externalDocID=10_1007_s00366_021_01516_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0177-0667&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0177-0667&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0177-0667&client=summon |