A kriging-based active learning algorithm for contour estimation of integrated response with noise factors

Contours have been commonly employed to gain insights into the influence of inputs in designing engineering systems. Estimating a contour from computer experiments via sequentially updating kriging [also called Gaussian process (GP) models] has received increasing attention for obtaining an accurate...

Full description

Saved in:
Bibliographic Details
Published inEngineering with computers Vol. 39; no. 2; pp. 1341 - 1362
Main Authors Han, Mei, Huang, Qianqian, Ouyang, Linhan, Zhao, Xufeng
Format Journal Article
LanguageEnglish
Published London Springer London 01.04.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0177-0667
1435-5663
DOI10.1007/s00366-021-01516-2

Cover

Abstract Contours have been commonly employed to gain insights into the influence of inputs in designing engineering systems. Estimating a contour from computer experiments via sequentially updating kriging [also called Gaussian process (GP) models] has received increasing attention for obtaining an accurate prediction within a limited simulation budget. In many engineering systems, there are often two types of inputs: control factors specified by design engineers and uncontrollable noise factors due to manufacturing errors or environmental variations. To mitigate undesirable effects of noise factors, the integrated response, which is an expectation of the response with respect to noise factors, is a widely used robust performance measure. Predicting a contour of the integrated response is an important task to identify sets of control factors that maintain the integrated response at a desirable level. However, most of the existing literature focuses on estimating contours with only control factors and ignores inevitable noise factors. In this article, we propose an efficient active learning algorithm for estimating a contour of the integrated response from time-consuming computer models based on GP models. Two acquisition functions (AFs) are proposed to determine the next design points of both control factors and noise factors for updating GP models to better estimate a contour. Closed-form expressions are developed to compute the AFs for facilitating optimization. Three numerical examples with different types of contours and a real aerodynamic airfoil example are used to demonstrate that more accurate contour estimates are obtained with the proposed active learning algorithm efficiently.
AbstractList Contours have been commonly employed to gain insights into the influence of inputs in designing engineering systems. Estimating a contour from computer experiments via sequentially updating kriging [also called Gaussian process (GP) models] has received increasing attention for obtaining an accurate prediction within a limited simulation budget. In many engineering systems, there are often two types of inputs: control factors specified by design engineers and uncontrollable noise factors due to manufacturing errors or environmental variations. To mitigate undesirable effects of noise factors, the integrated response, which is an expectation of the response with respect to noise factors, is a widely used robust performance measure. Predicting a contour of the integrated response is an important task to identify sets of control factors that maintain the integrated response at a desirable level. However, most of the existing literature focuses on estimating contours with only control factors and ignores inevitable noise factors. In this article, we propose an efficient active learning algorithm for estimating a contour of the integrated response from time-consuming computer models based on GP models. Two acquisition functions (AFs) are proposed to determine the next design points of both control factors and noise factors for updating GP models to better estimate a contour. Closed-form expressions are developed to compute the AFs for facilitating optimization. Three numerical examples with different types of contours and a real aerodynamic airfoil example are used to demonstrate that more accurate contour estimates are obtained with the proposed active learning algorithm efficiently.
Author Ouyang, Linhan
Han, Mei
Huang, Qianqian
Zhao, Xufeng
Author_xml – sequence: 1
  givenname: Mei
  orcidid: 0000-0002-8899-0701
  surname: Han
  fullname: Han, Mei
  email: meihan2@nuaa.edu.cn
  organization: College of Economics and Management, Nanjing University of Aeronautics and Astronautics
– sequence: 2
  givenname: Qianqian
  surname: Huang
  fullname: Huang, Qianqian
  organization: College of Economics and Management, Nanjing University of Aeronautics and Astronautics
– sequence: 3
  givenname: Linhan
  surname: Ouyang
  fullname: Ouyang, Linhan
  organization: College of Economics and Management, Nanjing University of Aeronautics and Astronautics
– sequence: 4
  givenname: Xufeng
  surname: Zhao
  fullname: Zhao, Xufeng
  organization: College of Economics and Management, Nanjing University of Aeronautics and Astronautics
BookMark eNp9kE9PwyAYh4mZidv0C3gi8Vx9gRba47L4L1niRc-EUlqZHUxgGr-9uJmYeNgFCPk9Lz-eGZo47wxClwSuCYC4iQCM8wIoKYBUhBf0BE1Jyaqi4pxN0BSIEAVwLs7QLMY1AGEAzRStF_gt2MG6oWhVNB1WOtkPg0ejgsu3WI2DDza9bnDvA9beJb8L2MRkNypZ77DvsXXJDEGljAcTt95Fgz8zg523-djnmT7Ec3TaqzGai999jl7ubp-XD8Xq6f5xuVgVmpEm5bU0vG2aqu_argPaQqcbTY1oFREtp1T0XJC6rEsGDeOq7YUCJjrW1LrVtWFzdHWYuw3-fZebynWu7PKTktYgKKWNqHOqPqR08DEG00tt0_5HKSg7SgLyx6w8mJXZrNyblTSj9B-6DdlG-DoOsQMUc9gNJvy1OkJ9A5crj0A
CitedBy_id crossref_primary_10_1007_s00366_023_01865_0
crossref_primary_10_1016_j_cie_2024_110749
Cites_doi 10.1007/s00366-019-00745-w
10.2514/1.J058663
10.1198/TECH.2011.10192
10.1007/s10898-011-9836-5
10.1198/jasa.2009.ap07625
10.1137/19M1272676
10.1080/0740817X.2016.1167289
10.1007/s00366-020-01043-6
10.1007/s42519-019-0077-0
10.1115/1.2798325
10.1007/s10898-017-0516-y
10.1007/s10898-020-00923-x
10.1080/00224065.2019.1611358
10.1080/00401706.2020.1817790
10.1080/00401706.2014.969446
10.1109/TASE.2020.2990401
10.1007/s00180-012-0380-7
10.1080/00401706.2016.1272493
10.1007/s00366-015-0398-x
10.1016/j.strusafe.2006.10.003
10.1023/A:1008306431147
10.1115/1.4001873
10.1198/004017008000000541
10.2514/1.34321
10.1007/s00366-018-0590-x
10.1162/neco_a_01307
10.1002/qre.2563
10.1109/JPROC.2015.2494218
10.1214/lnms/1215456182
10.1080/00401706.2012.707580
10.1115/1.2204974
10.1109/TEVC.2005.859463
10.1007/978-1-4757-3799-8
10.1080/24725854.2019.1630866
10.1287/educ.2018.0188
10.2514/6.1997-849
10.1007/978-3-319-91436-7_7
10.1109/Allerton.2012.6483247
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s00366-021-01516-2
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection (LUT)
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1435-5663
EndPage 1362
ExternalDocumentID 10_1007_s00366_021_01516_2
GrantInformation_xml – fundername: Nanjing’s Science and Technology Innovation Project
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20190389
  funderid: http://dx.doi.org/10.13039/501100004608
– fundername: National Natural Science Foundation of China
  grantid: 71902089; 72072089; 71702072; 71931006; 71801126
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: NR2019014
  funderid: http://dx.doi.org/10.13039/501100012226
– fundername: Nanjing University of Aeronautics and Astronautics
  grantid: YAH18091
  funderid: http://dx.doi.org/10.13039/501100004193
– fundername: Shuangchuang Program of Jiangsu Province
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
28-
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
9M8
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P62
P9O
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
Y6R
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8W
Z92
ZMTXR
ZY4
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-c34e6b995fdbdd02b0dc9c2e7ba17b6227f671848430936abf7a037d398cbc8e3
IEDL.DBID AGYKE
ISSN 0177-0667
IngestDate Wed Aug 13 06:34:31 EDT 2025
Wed Oct 01 04:55:37 EDT 2025
Thu Apr 24 22:55:30 EDT 2025
Fri Feb 21 02:45:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Contour estimation
Expected improvement
Gaussian process model
Noise factor
Active learning
Integrated response
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-c34e6b995fdbdd02b0dc9c2e7ba17b6227f671848430936abf7a037d398cbc8e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8899-0701
PQID 2807222978
PQPubID 326339
PageCount 22
ParticipantIDs proquest_journals_2807222978
crossref_citationtrail_10_1007_s00366_021_01516_2
crossref_primary_10_1007_s00366_021_01516_2
springer_journals_10_1007_s00366_021_01516_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230400
2023-04-00
20230401
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 4
  year: 2023
  text: 20230400
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationSubtitle An International Journal for Simulation-Based Engineering
PublicationTitle Engineering with computers
PublicationTitleAbbrev Engineering with Computers
PublicationYear 2023
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Tan (CR35) 2020; 8
Han, Tan (CR7) 2016; 48
Emmerich, Naujoks (CR21) 2006; 10
Press, Teukolsky, Vetterling, Flannery (CR41) 2007
Schonlau, Welch, Jones (CR19) 1998
Inatsu, Sugita, Toyoura, Takeuchi (CR28) 2020; 32
Janusevskis, Le Riche (CR12) 2013; 55
Apley, Liu, Chen (CR16) 2006; 128
Williams, Santner, Notz (CR8) 2000; 10
Gavin, Yau (CR2) 2008; 30
Yang, Lin, Ranjan (CR38) 2020; 14
Bellary, Samad, Couckuyt, Dhaene (CR13) 2016; 32
Tan (CR17) 2015; 57
CR34
Wu, Hamada (CR6) 2009
CR11
CR33
Xiong (CR10) 2020; 52
Shen (CR45) 2017; 59
Santner, Williams, Notz (CR36) 2003
Shahriari, Swersky, Wang (CR23) 2016; 104
Han, Liu, Huang, Tan (CR1) 2020; 52
Qian, Yi, Cheng (CR4) 2020; 36
Bouhlel, Martins (CR14) 2019; 35
Chen, Kang, Lin (CR27) 2021; 63
Ranjan, Bingham, Michailidis (CR37) 2011; 53
Ranjan, Bingham, Michailidis (CR29) 2008; 50
Chang, Williams, Santner (CR15) 1999; 121
Chen, Hung, Wang, Yen (CR30) 2013; 28
Zhan, Xing (CR22) 2020; 78
CR9
Picheny, Ginsbourger, Richet, Caplin (CR40) 2013; 55
CR24
CR44
Ouyang, Zheng, Zhu, Zhou (CR3) 2020; 36
Bichon, Eldred, Swiler (CR32) 2008; 46
CR43
Mathai, Provost (CR39) 1992
Deng, Joseph, Sudjianto, Wu (CR26) 2009; 104
Picheny, Ginsbourger, Roustant (CR20) 2010; 132
Marques, Opgenoord, Lam (CR5) 2020; 58
Jones, Schonlau, Welch (CR18) 1998; 13
Yue, Wen, Hunt, Shi (CR25) 2021; 18
Liu, Yi, Zhou, Cheng (CR31) 2020
Namura, Shimoyama, Obayashi (CR42) 2017; 68
TJ Santner (1516_CR36) 2003
J Janusevskis (1516_CR12) 2013; 55
1516_CR11
1516_CR33
M Han (1516_CR1) 2020; 52
1516_CR34
V Picheny (1516_CR40) 2013; 55
MA Bouhlel (1516_CR14) 2019; 35
N Namura (1516_CR42) 2017; 68
L Ouyang (1516_CR3) 2020; 36
J Qian (1516_CR4) 2020; 36
S Xiong (1516_CR10) 2020; 52
X Yue (1516_CR25) 2021; 18
GKC Emmerich (1516_CR21) 2006; 10
F Yang (1516_CR38) 2020; 14
DR Jones (1516_CR18) 1998; 13
B Shahriari (1516_CR23) 2016; 104
X Deng (1516_CR26) 2009; 104
R-B Chen (1516_CR30) 2013; 28
M Schonlau (1516_CR19) 1998
M Han (1516_CR7) 2016; 48
BJ Williams (1516_CR8) 2000; 10
PB Chang (1516_CR15) 1999; 121
BJ Bichon (1516_CR32) 2008; 46
MHY Tan (1516_CR35) 2020; 8
HP Gavin (1516_CR2) 2008; 30
SAI Bellary (1516_CR13) 2016; 32
1516_CR43
1516_CR44
1516_CR24
J Chen (1516_CR27) 2021; 63
1516_CR9
MHY Tan (1516_CR17) 2015; 57
V Picheny (1516_CR20) 2010; 132
W Press (1516_CR41) 2007
J Liu (1516_CR31) 2020
P Ranjan (1516_CR29) 2008; 50
AM Mathai (1516_CR39) 1992
AN Marques (1516_CR5) 2020; 58
D Zhan (1516_CR22) 2020; 78
P Ranjan (1516_CR37) 2011; 53
Y Inatsu (1516_CR28) 2020; 32
W Shen (1516_CR45) 2017; 59
CF Wu (1516_CR6) 2009
DW Apley (1516_CR16) 2006; 128
References_xml – volume: 36
  start-page: 993
  year: 2020
  end-page: 1009
  ident: CR4
  article-title: A sequential constraints updating approach for Kriging surrogate model-assisted engineering optimization design problem
  publication-title: Eng Comput
  doi: 10.1007/s00366-019-00745-w
– volume: 58
  start-page: 1772
  year: 2020
  end-page: 1784
  ident: CR5
  article-title: Multifidelity method for locating aeroelastic flutter boundaries
  publication-title: AIAA J
  doi: 10.2514/1.J058663
– volume: 53
  start-page: 109
  year: 2011
  end-page: 110
  ident: CR37
  article-title: Errata
  publication-title: Technometrics
  doi: 10.1198/TECH.2011.10192
– volume: 55
  start-page: 313
  year: 2013
  end-page: 336
  ident: CR12
  article-title: Simultaneous kriging-based estimation and optimization of mean response
  publication-title: J Glob Optim
  doi: 10.1007/s10898-011-9836-5
– volume: 104
  start-page: 969
  year: 2009
  end-page: 981
  ident: CR26
  article-title: Active learning through sequential design, with applications to detection of money laundering
  publication-title: J Am Stat Assoc
  doi: 10.1198/jasa.2009.ap07625
– volume: 8
  start-page: 891
  year: 2020
  end-page: 925
  ident: CR35
  article-title: Bayesian optimization of expected quadratic loss for multiresponse computer experiments with internal noise
  publication-title: SIAM/ASA J Uncertain Quantif
  doi: 10.1137/19M1272676
– ident: CR43
– volume: 48
  start-page: 1004
  year: 2016
  end-page: 1015
  ident: CR7
  article-title: Integrated parameter and tolerance design with computer experiments
  publication-title: IIE Trans
  doi: 10.1080/0740817X.2016.1167289
– year: 2020
  ident: CR31
  article-title: A sequential multi-fidelity surrogate model-assisted contour prediction method for engineering problems with expensive simulations
  publication-title: Eng Comput
  doi: 10.1007/s00366-020-01043-6
– volume: 14
  start-page: 9
  year: 2020
  ident: CR38
  article-title: Global fitting of the response surface via estimating multiple contours of a simulator
  publication-title: J Stat Theory Pract
  doi: 10.1007/s42519-019-0077-0
– volume: 121
  start-page: 304
  year: 1999
  end-page: 310
  ident: CR15
  article-title: Robust optimization of total joint replacements incorporating environmental variables
  publication-title: J Biomech Eng
  doi: 10.1115/1.2798325
– volume: 68
  start-page: 827
  year: 2017
  end-page: 849
  ident: CR42
  article-title: Kriging surrogate model with coordinate transformation based on likelihood and gradient
  publication-title: J Glob Optim
  doi: 10.1007/s10898-017-0516-y
– volume: 78
  start-page: 507
  year: 2020
  end-page: 544
  ident: CR22
  article-title: Expected improvement for expensive optimization: a review
  publication-title: J Glob Optim
  doi: 10.1007/s10898-020-00923-x
– volume: 52
  start-page: 404
  year: 2020
  end-page: 421
  ident: CR1
  article-title: Integrated parameter and tolerance optimization of a centrifugal compressor based on a complex simulator
  publication-title: J Qual Technol
  doi: 10.1080/00224065.2019.1611358
– volume: 63
  start-page: 329
  year: 2021
  end-page: 342
  ident: CR27
  article-title: Gaussian process assisted active learning of physical laws
  publication-title: Technometrics
  doi: 10.1080/00401706.2020.1817790
– ident: CR33
– volume: 57
  start-page: 468
  year: 2015
  end-page: 478
  ident: CR17
  article-title: Robust parameter design with computer experiments using orthonormal polynomials
  publication-title: Technometrics
  doi: 10.1080/00401706.2014.969446
– volume: 18
  start-page: 36
  year: 2021
  end-page: 46
  ident: CR25
  article-title: Active learning for Gaussian process considering uncertainties with application to shape control of composite fuselage
  publication-title: IEEE Trans Autom Sci Eng
  doi: 10.1109/TASE.2020.2990401
– volume: 28
  start-page: 1813
  year: 2013
  end-page: 1834
  ident: CR30
  article-title: Contour estimation via two fidelity computer simulators under limited resources
  publication-title: Comput Stat
  doi: 10.1007/s00180-012-0380-7
– year: 1992
  ident: CR39
  publication-title: Quadratic forms in random variables: theory and applications
– volume: 59
  start-page: 471
  year: 2017
  end-page: 483
  ident: CR45
  article-title: Robust parameter designs in computer experiments using stochastic approximation
  publication-title: Technometrics
  doi: 10.1080/00401706.2016.1272493
– volume: 32
  start-page: 49
  year: 2016
  end-page: 59
  ident: CR13
  article-title: A comparative study of kriging variants for the optimization of a turbomachinery system
  publication-title: Eng Comput
  doi: 10.1007/s00366-015-0398-x
– volume: 30
  start-page: 162
  year: 2008
  end-page: 179
  ident: CR2
  article-title: High-order limit state functions in the response surface method for structural reliability analysis
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2006.10.003
– volume: 13
  start-page: 455
  year: 1998
  end-page: 492
  ident: CR18
  article-title: Efficient global optimization of expensive black-box functions
  publication-title: J Glob Optim
  doi: 10.1023/A:1008306431147
– volume: 132
  start-page: 071008
  year: 2010
  end-page: 071017
  ident: CR20
  article-title: Adaptive designs of experiments for accurate approximation of a target region
  publication-title: J Mech Des
  doi: 10.1115/1.4001873
– volume: 50
  start-page: 527
  year: 2008
  end-page: 541
  ident: CR29
  article-title: Sequential experiment design for contour estimation from complex computer codes
  publication-title: Technometrics
  doi: 10.1198/004017008000000541
– ident: CR44
– year: 2007
  ident: CR41
  publication-title: Numerical recipes: the art of scientific computing
– volume: 46
  start-page: 2459
  year: 2008
  end-page: 2468
  ident: CR32
  article-title: Efficient global reliability analysis for nonlinear implicit performance functions
  publication-title: AIAA J
  doi: 10.2514/1.34321
– volume: 35
  start-page: 157
  year: 2019
  end-page: 173
  ident: CR14
  article-title: Gradient-enhanced kriging for high-dimensional problems
  publication-title: Eng Comput
  doi: 10.1007/s00366-018-0590-x
– volume: 32
  start-page: 2032
  year: 2020
  end-page: 2068
  ident: CR28
  article-title: Active learning for enumerating local minima based on Gaussian process derivatives
  publication-title: Neural Comput
  doi: 10.1162/neco_a_01307
– volume: 36
  start-page: 125
  year: 2020
  end-page: 143
  ident: CR3
  article-title: An interval probability-based FMEA model for risk assessment: a real-world case
  publication-title: Qual Reliab Eng Int
  doi: 10.1002/qre.2563
– ident: CR11
– volume: 104
  start-page: 148
  year: 2016
  end-page: 175
  ident: CR23
  article-title: Taking the human out of the loop: a review of Bayesian optimization
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2015.2494218
– ident: CR9
– year: 1998
  ident: CR19
  article-title: Global versus local search in constrained optimization of computer models
  publication-title: New Dev Appl Exp Des
  doi: 10.1214/lnms/1215456182
– ident: CR34
– volume: 55
  start-page: 2
  year: 2013
  end-page: 13
  ident: CR40
  article-title: Quantile-based optimization of noisy computer experiments with tunable precision
  publication-title: Technometrics
  doi: 10.1080/00401706.2012.707580
– volume: 128
  start-page: 945
  year: 2006
  ident: CR16
  article-title: Understanding the effects of model uncertainty in robust design with computer experiments
  publication-title: J Mech Des
  doi: 10.1115/1.2204974
– volume: 10
  start-page: 421
  year: 2006
  end-page: 439
  ident: CR21
  article-title: Single- and multiobjective evolutionary optimization assisted by Gaussian random field metamodels
  publication-title: IEEE Trans Evolut Comput
  doi: 10.1109/TEVC.2005.859463
– year: 2009
  ident: CR6
  publication-title: Experiments: planning, analysis, and optimization
– ident: CR24
– year: 2003
  ident: CR36
  publication-title: The design and analysis of computer experiments
  doi: 10.1007/978-1-4757-3799-8
– volume: 10
  start-page: 1133
  year: 2000
  end-page: 1152
  ident: CR8
  article-title: Sequential design of computer experiments to minimize integrated response functions
  publication-title: Stat Sin
– volume: 52
  start-page: 528
  year: 2020
  end-page: 536
  ident: CR10
  article-title: Personalized optimization and its implementation in computer experiments
  publication-title: IISE Trans
  doi: 10.1080/24725854.2019.1630866
– volume: 128
  start-page: 945
  year: 2006
  ident: 1516_CR16
  publication-title: J Mech Des
  doi: 10.1115/1.2204974
– volume: 46
  start-page: 2459
  year: 2008
  ident: 1516_CR32
  publication-title: AIAA J
  doi: 10.2514/1.34321
– volume: 32
  start-page: 49
  year: 2016
  ident: 1516_CR13
  publication-title: Eng Comput
  doi: 10.1007/s00366-015-0398-x
– volume: 36
  start-page: 993
  year: 2020
  ident: 1516_CR4
  publication-title: Eng Comput
  doi: 10.1007/s00366-019-00745-w
– volume: 55
  start-page: 313
  year: 2013
  ident: 1516_CR12
  publication-title: J Glob Optim
  doi: 10.1007/s10898-011-9836-5
– volume-title: The design and analysis of computer experiments
  year: 2003
  ident: 1516_CR36
  doi: 10.1007/978-1-4757-3799-8
– volume: 121
  start-page: 304
  year: 1999
  ident: 1516_CR15
  publication-title: J Biomech Eng
  doi: 10.1115/1.2798325
– volume: 10
  start-page: 421
  year: 2006
  ident: 1516_CR21
  publication-title: IEEE Trans Evolut Comput
  doi: 10.1109/TEVC.2005.859463
– volume: 57
  start-page: 468
  year: 2015
  ident: 1516_CR17
  publication-title: Technometrics
  doi: 10.1080/00401706.2014.969446
– ident: 1516_CR33
– volume: 48
  start-page: 1004
  year: 2016
  ident: 1516_CR7
  publication-title: IIE Trans
  doi: 10.1080/0740817X.2016.1167289
– volume: 52
  start-page: 404
  year: 2020
  ident: 1516_CR1
  publication-title: J Qual Technol
  doi: 10.1080/00224065.2019.1611358
– volume-title: Experiments: planning, analysis, and optimization
  year: 2009
  ident: 1516_CR6
– volume: 52
  start-page: 528
  year: 2020
  ident: 1516_CR10
  publication-title: IISE Trans
  doi: 10.1080/24725854.2019.1630866
– ident: 1516_CR24
  doi: 10.1287/educ.2018.0188
– volume: 14
  start-page: 9
  year: 2020
  ident: 1516_CR38
  publication-title: J Stat Theory Pract
  doi: 10.1007/s42519-019-0077-0
– volume: 30
  start-page: 162
  year: 2008
  ident: 1516_CR2
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2006.10.003
– volume: 104
  start-page: 148
  year: 2016
  ident: 1516_CR23
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2015.2494218
– volume: 8
  start-page: 891
  year: 2020
  ident: 1516_CR35
  publication-title: SIAM/ASA J Uncertain Quantif
  doi: 10.1137/19M1272676
– ident: 1516_CR43
– volume: 78
  start-page: 507
  year: 2020
  ident: 1516_CR22
  publication-title: J Glob Optim
  doi: 10.1007/s10898-020-00923-x
– ident: 1516_CR44
  doi: 10.2514/6.1997-849
– volume: 36
  start-page: 125
  year: 2020
  ident: 1516_CR3
  publication-title: Qual Reliab Eng Int
  doi: 10.1002/qre.2563
– volume: 58
  start-page: 1772
  year: 2020
  ident: 1516_CR5
  publication-title: AIAA J
  doi: 10.2514/1.J058663
– volume: 10
  start-page: 1133
  year: 2000
  ident: 1516_CR8
  publication-title: Stat Sin
– volume: 18
  start-page: 36
  year: 2021
  ident: 1516_CR25
  publication-title: IEEE Trans Autom Sci Eng
  doi: 10.1109/TASE.2020.2990401
– volume: 50
  start-page: 527
  year: 2008
  ident: 1516_CR29
  publication-title: Technometrics
  doi: 10.1198/004017008000000541
– volume: 35
  start-page: 157
  year: 2019
  ident: 1516_CR14
  publication-title: Eng Comput
  doi: 10.1007/s00366-018-0590-x
– volume: 63
  start-page: 329
  year: 2021
  ident: 1516_CR27
  publication-title: Technometrics
  doi: 10.1080/00401706.2020.1817790
– volume: 32
  start-page: 2032
  year: 2020
  ident: 1516_CR28
  publication-title: Neural Comput
  doi: 10.1162/neco_a_01307
– volume: 28
  start-page: 1813
  year: 2013
  ident: 1516_CR30
  publication-title: Comput Stat
  doi: 10.1007/s00180-012-0380-7
– volume: 55
  start-page: 2
  year: 2013
  ident: 1516_CR40
  publication-title: Technometrics
  doi: 10.1080/00401706.2012.707580
– volume: 68
  start-page: 827
  year: 2017
  ident: 1516_CR42
  publication-title: J Glob Optim
  doi: 10.1007/s10898-017-0516-y
– volume: 59
  start-page: 471
  year: 2017
  ident: 1516_CR45
  publication-title: Technometrics
  doi: 10.1080/00401706.2016.1272493
– ident: 1516_CR34
– volume: 53
  start-page: 109
  year: 2011
  ident: 1516_CR37
  publication-title: Technometrics
  doi: 10.1198/TECH.2011.10192
– ident: 1516_CR11
  doi: 10.1007/978-3-319-91436-7_7
– volume: 104
  start-page: 969
  year: 2009
  ident: 1516_CR26
  publication-title: J Am Stat Assoc
  doi: 10.1198/jasa.2009.ap07625
– year: 2020
  ident: 1516_CR31
  publication-title: Eng Comput
  doi: 10.1007/s00366-020-01043-6
– volume-title: Quadratic forms in random variables: theory and applications
  year: 1992
  ident: 1516_CR39
– volume: 13
  start-page: 455
  year: 1998
  ident: 1516_CR18
  publication-title: J Glob Optim
  doi: 10.1023/A:1008306431147
– volume: 132
  start-page: 071008
  year: 2010
  ident: 1516_CR20
  publication-title: J Mech Des
  doi: 10.1115/1.4001873
– year: 1998
  ident: 1516_CR19
  publication-title: New Dev Appl Exp Des
  doi: 10.1214/lnms/1215456182
– ident: 1516_CR9
  doi: 10.1109/Allerton.2012.6483247
– volume-title: Numerical recipes: the art of scientific computing
  year: 2007
  ident: 1516_CR41
SSID ssj0013009
Score 2.3334668
Snippet Contours have been commonly employed to gain insights into the influence of inputs in designing engineering systems. Estimating a contour from computer...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1341
SubjectTerms Active learning
Algorithms
CAE) and Design
Calculus of Variations and Optimal Control; Optimization
Classical Mechanics
Computer Science
Computer-Aided Engineering (CAD
Contours
Control
Design factors
Estimation
Gaussian process
Machine learning
Math. Applications in Chemistry
Mathematical analysis
Mathematical and Computational Engineering
Noise control
Noise prediction
Optimization
Original Article
Performance prediction
Robustness (mathematics)
Systems Theory
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT4NAEJ5oe9GDb2N9ZQ_elAhb2GUPxqipaUxsjNHEG9kH1EeFWvH_uwNLqyb2QkiAJTA7OzM7M98HcMS4kkbRyJOG-zZAkaGnIh56QRRrn2dUcoENzrcD1n8Mb56ipwUYNL0wWFbZrInVQm0KjXvkp4jagtzTPD4ff3jIGoXZ1YZCQzpqBXNWQYwtQpsiMlYL2pe9wd39LK_g10UfAceiL8ZdG03VTIfQLFiQi-F1FDCP_jZVM__zT8q0skTXa7DiXEhyUct8HRbSfANWnTtJnLJ-bsDyD6zBTXi9IG8VCdbQQ8tliKxWOuJoI4ZEjob2e8vnd2L9WIIl7PZFBEE46u5GUmRkCi5hyKQurk0J7uSSvHixp468Zwser3sPV33PES142mpgaY9hypQQUWaUMT5VvtFC09TKMeCKUcozZm1YGIeYN2VSZVz6XW66ItZKx2l3G1p5kac7QAITCxlp5gslMDZUwogg1JwjjLsNrToQNP800Q6FHMkwRskUP7mSQ2LlkFRySGgHjqfPjGsMjrl37zeiSpw-fiaz2dOBk0Z8s8v_j7Y7f7Q9WEL--bqUZx9a5eQrPbBeSqkO3dT7BsJs4s4
  priority: 102
  providerName: ProQuest
Title A kriging-based active learning algorithm for contour estimation of integrated response with noise factors
URI https://link.springer.com/article/10.1007/s00366-021-01516-2
https://www.proquest.com/docview/2807222978
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1435-5663
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013009
  issn: 0177-0667
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1435-5663
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0013009
  issn: 0177-0667
  databaseCode: 8FG
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1435-5663
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013009
  issn: 0177-0667
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1435-5663
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0013009
  issn: 0177-0667
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oXPQgihpRJHvwpiVtaXe7RzQ8opEYIwmemn20iCAYKBd_vbvtFpSoiZe22bbbdl8z0_nmG4ALTDiT3PUtJomtDBTmWdwnnuX4gbBJ7DJCdYDzfQ93-97twB-YoLBFjnbPXZLpSr0KdtPUKRowq81f38GWWniLKd9WAYrNzvNda-09sDNoh0M0tAsTEyzzcy3fBdJay9xwjKbypl2Cfv6mGcxkXF8mvC4-Nkgc__sp-7BnFFDUzEbMAWxF0zKUjDKKzFRfqKI830NeVobdL-SFh_DaROM0q9bQ0qJQIpYuncjkoRgiNhnO5qPk5Q0pxRhpTLx6NtKsHlm4JJrFaMVWIdE8Q-tGSP8aRtPZSB2abEBH0G-3nm66lsncYAk1pRO19SLMKfVjyaW0XW5LQYUbqYHhEI5dl8RYCUUv8LQjFjMeE2Y3iGzQQHARRI1jKExn0-gEkCMDynyBbcqpNjY5ldTxBCGaF17ZahVw8u4LhaE119k1JuGKkDlt7VC1dpi2duhW4HJ1z3tG6vHn1dV8VIRmgi9CTSKkU6GToAJXeSevT_9e2-n_Lj-DHZ3gPsMKVaGQzJfRuVKDEl6D7aDdqZmxr_bXrd7Doyrtu81PtBD_uw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROFAObXmpW2jxoT3RiMTr2PEBIdqCltcKVSBxC34kWx7dpeyiqn-O39aZxNktleDGJYqUxFE8k_GMZ-b7AD5KZY23PI2MVzEGKEZENlUiStLMxarkRmlqcD7qys6p2D9Lz6bgvumFobLKxiZWhtoPHO2RbxBqC3FPq2zr5ldErFGUXW0oNEygVvCbFcRYaOw4KP78xhBuuLn3DeX9ifPdnZOvnSiwDEQO1W-ER1FIq3Vaeut9zG3snXa8wI9IlJWcq1KiAReZoKShNLZUJm4r39aZsy4r2jjuC5gRbaEx-Jv5stM9_j7JY8R1kUmiqMhMqtC2UzXvERQMFQBTOJ8mMuIPl8aJv_tfirZa-XbfwKvgsrLtWsfmYaroL8Dr4L6yYByGCzD3D7bhIlxus6uKdKsX0UrpmaksKws0FT1mrns4v6MfPxn6zYxK5vFFjEA_6m5KNijZGMzCs9u6mLdgtHPM-oMLPA1kQUtw-ixTvgzT_UG_eAss8Zk2qZOxtppiUau9ToRTimDjMZRrQdLMae4C6jmRb1znY7zmSg45yiGv5JDzFqyPn7mpMT-evHu1EVUe_v9hPtHWFnxuxDe5_Pho754ebQ1mOydHh_nhXvdgBV5y9LjqMqJVmB7d3hXv0UMa2Q9BDRmcP7fm_wU_OyBv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZ4SAgOvBGDATnACSrarE2aA0ITMN6IA0jcSh7teG7AhhB_jV9H3KYbIMGNS1WpbarGrmPH9vcBrDKupFE08qThvg1QZOipiIdeEMXa5xmVXGCD8-kZO7gMj66iqwH4KHthsKyytIm5oTZtjXvkm4jagtzTPN7MXFnE-W5j--nZQwYpzLSWdBqFihyn7282fOtsHe5aWa9R2ti72DnwHMOAp63qde0xTJkSIsqMMsanyjdaaJraDwi4YpTyjFnjHcYhJgyZVBmXfo2bmoi10nFas-MOwjBHFHfsUm_s9zMYflFeEnAsL2PcNezkbXsIAoOlvxjIRwHz6PdFse_p_kjO5mteYxLGnbNK6oV2TcFA2pqGCee4EmcWOtMw9gXVcAbu6uQ-p9tqerhGGiJzm0ocQUWTyIemnc3uzSOxHjPBYnn7IoJwH0UfJWlnpAdjYchLUcabEtwzJq32rT11NEGzcPkvEz4HQ612K50HEphYyEgzXyiBUagSRgSh5hwB420QV4GgnNNEO7xzpN14SHpIzbkcEiuHJJdDQiuw3nvmqUD7-PPuaimqxP35naSvpxXYKMXXv_z7aAt_j7YCI1bfk5PDs-NFGEXS-6J-qApD3ZfXdMm6Rl21nOsggev_VvpPUXAeCQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+kriging-based+active+learning+algorithm+for+contour+estimation+of+integrated+response+with+noise+factors&rft.jtitle=Engineering+with+computers&rft.au=Han%2C+Mei&rft.au=Huang%2C+Qianqian&rft.au=Ouyang%2C+Linhan&rft.au=Zhao%2C+Xufeng&rft.date=2023-04-01&rft.pub=Springer+London&rft.issn=0177-0667&rft.eissn=1435-5663&rft.volume=39&rft.issue=2&rft.spage=1341&rft.epage=1362&rft_id=info:doi/10.1007%2Fs00366-021-01516-2&rft.externalDocID=10_1007_s00366_021_01516_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0177-0667&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0177-0667&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0177-0667&client=summon