Reconstructing an unknown potential term in the third-order pseudo-parabolic problem
The inverse problem of identifying the time-dependent potential term along with the temperature in a third-order pseudo-parabolic equation with initial and Neumann boundary conditions supplemented by the additional condition is, for the first time, numerically investigated. This problem emerges sign...
Saved in:
| Published in | Computational & applied mathematics Vol. 40; no. 4 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Cham
Springer International Publishing
01.06.2021
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2238-3603 1807-0302 |
| DOI | 10.1007/s40314-021-01532-4 |
Cover
| Abstract | The inverse problem of identifying the time-dependent potential term along with the temperature in a third-order pseudo-parabolic equation with initial and Neumann boundary conditions supplemented by the additional condition is, for the first time, numerically investigated. This problem emerges significantly in the modelling of various phenomena in physics and engineering. Although, the inverse problem is ill-posed by being sensitive to noise but has a unique solution. For the numerical realization, we apply the cubic B-spline (CB-spline) collocation method for discretizing the direct problem and the Tikhonov regularization for finding a stable and accurate solution. The resulting nonlinear minimization problem is solved computationally using the MATLAB subroutine. Numerical results presented for two examples show the efficiency of the computational method and the accuracy and stability of the numerical solution even in the presence of noise in the input data. The von Neumann stability analysis is also discussed. |
|---|---|
| AbstractList | The inverse problem of identifying the time-dependent potential term along with the temperature in a third-order pseudo-parabolic equation with initial and Neumann boundary conditions supplemented by the additional condition is, for the first time, numerically investigated. This problem emerges significantly in the modelling of various phenomena in physics and engineering. Although, the inverse problem is ill-posed by being sensitive to noise but has a unique solution. For the numerical realization, we apply the cubic B-spline (CB-spline) collocation method for discretizing the direct problem and the Tikhonov regularization for finding a stable and accurate solution. The resulting nonlinear minimization problem is solved computationally using the MATLAB subroutine. Numerical results presented for two examples show the efficiency of the computational method and the accuracy and stability of the numerical solution even in the presence of noise in the input data. The von Neumann stability analysis is also discussed. |
| ArticleNumber | 140 |
| Author | Tamsir, Mohammad Dhiman, Neeraj Huntul, M. J. |
| Author_xml | – sequence: 1 givenname: M. J. orcidid: 0000-0001-5247-2913 surname: Huntul fullname: Huntul, M. J. email: mhantool@jazanu.edu.sa organization: Department of Mathematics, Faculty of Science, Jazan University – sequence: 2 givenname: Neeraj surname: Dhiman fullname: Dhiman, Neeraj organization: Department of Mathematics, Graphic Era Hill University – sequence: 3 givenname: Mohammad surname: Tamsir fullname: Tamsir, Mohammad organization: Department of Mathematics, Faculty of Science, Jazan University |
| BookMark | eNp9kE1LAzEQhoNUsK3-AU8LnqNJJutmj1L8goIg9Ryy2WlN3SZrkkX8965WEDz0MMzlfeYdnhmZ-OCRkHPOLjlj1VWSDLikTHDKeAmCyiMy5YpVlAETEzIVAhSFawYnZJbSljGouJRTsnpGG3zKcbDZ-U1hfDH4Nx8-fNGHjD470xUZ465wvsivOI6LLQ2xxVj0CYc20N5E04TO2aKPoelwd0qO16ZLePa75-Tl7na1eKDLp_vHxc2SWuB1pla0TaPA1FYIxrhCCQybeg0VrKE0JbclKgtSWJRGybYRdWkVN1giVHWNMCcX-7tj7_uAKettGKIfK7UoRaVqEFCPKbFP2RhSirjWfXQ7Ez81Z_rbnt7b06M9_WNPyxFS_yDrssku-ByN6w6jsEfT2OM3GP--OkB9ARGNhsE |
| CitedBy_id | crossref_primary_10_2989_16073606_2023_2280249 crossref_primary_10_1016_j_padiff_2024_100916 crossref_primary_10_1007_s42985_024_00296_w crossref_primary_10_1016_j_cam_2023_115712 crossref_primary_10_1007_s12190_024_02229_7 crossref_primary_10_1186_s13662_021_03608_1 crossref_primary_10_1108_EC_12_2020_0757 crossref_primary_10_3934_math_2024689 crossref_primary_10_1186_s13661_024_01956_x crossref_primary_10_1007_s40314_022_01829_y crossref_primary_10_1088_1402_4896_ac54d0 crossref_primary_10_3934_math_2023136 crossref_primary_10_1155_2022_6542490 crossref_primary_10_1002_mma_8104 crossref_primary_10_2989_16073606_2024_2347432 crossref_primary_10_1108_EC_01_2022_0010 crossref_primary_10_52846_ami_v51i1_1744 crossref_primary_10_1007_s40314_021_01532_4 crossref_primary_10_1515_math_2022_0503 crossref_primary_10_1016_j_asej_2021_05_011 crossref_primary_10_15672_hujms_1118138 crossref_primary_10_1016_j_icheatmasstransfer_2021_105550 crossref_primary_10_1080_17415977_2021_1964496 |
| Cites_doi | 10.1007/s10958-014-2206-3 10.1515/jiip.1994.2.1.1 10.1155/MPE.2005.521 10.1016/0022-247X(74)90116-4 10.1016/0378-4754(79)90130-7 10.1080/00036818008839304 10.1080/00036811.2010.530258 10.1016/0022-247X(86)90012-0 10.1016/0021-8928(60)90107-6 10.1142/S0217984916501104 10.1007/s10958-007-0541-3 10.1016/0022-247X(82)90270-0 10.26577/JMMCS.2020.v105.i1.08 10.1134/S0965542517120089 10.1016/S0893-9659(99)00052-X 10.1137/0501001 10.4028/www.scientific.net/AMR.705.15 10.1108/MMMS-12-2017-0150 10.1016/S0096-3003(03)00691-X 10.1002/num.22778 10.1007/s40314-021-01532-4 |
| ContentType | Journal Article |
| Copyright | SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2021 SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2021. |
| Copyright_xml | – notice: SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2021 – notice: SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2021. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s40314-021-01532-4 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Mathematics |
| EISSN | 1807-0302 |
| ExternalDocumentID | 10_1007_s40314_021_01532_4 |
| GroupedDBID | -EM .4S .DC 06D 0R~ 203 29F 2WC 30V 4.4 406 5GY 69Q 96X AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AAKPC AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAZMS ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTHY ABTKH ABTMW ABXHO ABXPI ACAOD ACCUX ACDTI ACGFO ACGFS ACHSB ACIPV ACIWK ACKNC ACMLO ACOKC ACPIV ACREN ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGNC AEGXH AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AIAGR AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR ANMIH APOWU ARCSS ASPBG AUKKA AVWKF AXYYD AYJHY AZFZN BAPOH BGNMA C1A CS3 CSCUP DNIVK DPUIP DU5 E3Z EBLON EBS EDO EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ7 HMJXF HRMNR HZ~ I0C IKXTQ IWAJR IXD J-C JBSCW JZLTJ KOV KQ8 KWQ LLZTM M4Y M~E NPVJJ NQJWS NU0 O9- O93 O9G O9J OK1 P2P PT4 RLLFE RNS ROL RSC RSV SCD SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TR2 TSG UG4 UOJIU UTJUX UZXMN VFIZW W48 XSB Z7R Z83 ZMTXR AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION OVT JQ2 |
| ID | FETCH-LOGICAL-c319t-c2dbb83a9c220018e430eb9f373f35a51c5e8c342ce4a84db295c81ae5e3799e3 |
| IEDL.DBID | AGYKE |
| ISSN | 2238-3603 |
| IngestDate | Thu Sep 25 00:52:14 EDT 2025 Wed Oct 01 01:21:49 EDT 2025 Thu Apr 24 22:56:45 EDT 2025 Fri Feb 21 02:49:12 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Pseudo-parabolic equation 35K70 Nonlinear optimization Inverse identification problem 65M30 Stability analysis 65M22 Tikhonov regularization CB-spline collocation method 65M32 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-c2dbb83a9c220018e430eb9f373f35a51c5e8c342ce4a84db295c81ae5e3799e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5247-2913 |
| PQID | 2527893239 |
| PQPubID | 2044245 |
| ParticipantIDs | proquest_journals_2527893239 crossref_primary_10_1007_s40314_021_01532_4 crossref_citationtrail_10_1007_s40314_021_01532_4 springer_journals_10_1007_s40314_021_01532_4 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-06-01 |
| PublicationDateYYYYMMDD | 2021-06-01 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Heidelberg |
| PublicationTitle | Computational & applied mathematics |
| PublicationTitleAbbrev | Comp. Appl. Math |
| PublicationYear | 2021 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | Khonatbek (CR15) 2013; 705 Lyubanova, Velisevich (CR18) 2018; 98 Khompysh (CR13) 2017; 216 Lyubanova, Tani (CR17) 2011; 90 CR19 Showalter, Ting (CR24) 1970; 1 Barenblat, Zheltov, Kochina (CR3) 1960; 24 Dag, Irk, Sahin (CR8) 2005; 2005 Caglar, Caglar, Twizell (CR5) 1999; 12 Vichnevetsky (CR27) 1979; 21 CR12 CR11 Beshtokov (CR4) 2017; 57 Ting (CR26) 1974; 45 Rundell (CR23) 1980; 10 Rubinshtein (CR22) 1948; 12 Yaman, Gözükizil (CR28) 2004; 154 Khompysh, Shakir (CR14) 2020; 105 Mehraliyev, Shafiyeva (CR20) 2015; 204 Cannon, van der Hoek (CR7) 1986; 115 Shukla, Tamsir, Srivastava, Rashidi (CR25) 2016; 30 Cannon, van der Hoek (CR6) 1982; 86 Goldstein (CR10) 2006; 11 Asanov, Atmanov (CR2) 1994; 2 Korpusov, Sveshnikov (CR16) 2008; 148 Dhiman, Tamsir (CR9) 2018; 14 CR21 Abylkairov, Khompysh (CR1) 2015; 9 A Asanov (1532_CR2) 1994; 2 MKh Beshtokov (1532_CR4) 2017; 57 HS Shukla (1532_CR25) 2016; 30 UU Abylkairov (1532_CR1) 2015; 9 TW Ting (1532_CR26) 1974; 45 1532_CR11 I Dag (1532_CR8) 2005; 2005 1532_CR12 RE Showalter (1532_CR24) 1970; 1 R Vichnevetsky (1532_CR27) 1979; 21 JR Cannon (1532_CR7) 1986; 115 YT Mehraliyev (1532_CR20) 2015; 204 AS Lyubanova (1532_CR18) 2018; 98 1532_CR19 HN Caglar (1532_CR5) 1999; 12 JR Cannon (1532_CR6) 1982; 86 K Khompysh (1532_CR13) 2017; 216 LI Rubinshtein (1532_CR22) 1948; 12 W Rundell (1532_CR23) 1980; 10 M Yaman (1532_CR28) 2004; 154 K Khompysh (1532_CR14) 2020; 105 GR Goldstein (1532_CR10) 2006; 11 1532_CR21 GI Barenblat (1532_CR3) 1960; 24 K Khonatbek (1532_CR15) 2013; 705 MO Korpusov (1532_CR16) 2008; 148 AS Lyubanova (1532_CR17) 2011; 90 N Dhiman (1532_CR9) 2018; 14 |
| References_xml | – volume: 204 start-page: 343 year: 2015 end-page: 350 ident: CR20 article-title: On an inverse boundary-value problem for a pseudoparabolic third-order equation with integral condition of the first kind publication-title: J Math Sci doi: 10.1007/s10958-014-2206-3 – volume: 2 start-page: 1 year: 1994 end-page: 14 ident: CR2 article-title: An inverse problem for a pseudoparabolic operator equation publication-title: Journal of Inverse and Ill-Posed Problems doi: 10.1515/jiip.1994.2.1.1 – volume: 154 start-page: 69 year: 2004 end-page: 74 ident: CR28 article-title: Asymptotic behaviour of the solutions of inverse problems for pseudo-parabolic equations publication-title: Appl Math Comput – ident: CR12 – volume: 2005 start-page: 521 year: 2005 end-page: 538 ident: CR8 article-title: B-spline collocation methods for numerical solutions of the Burgers’ equation publication-title: Math Probl Eng doi: 10.1155/MPE.2005.521 – volume: 45 start-page: 23 year: 1974 end-page: 31 ident: CR26 article-title: A cooling process according to two-temperature theory of heat conduction publication-title: J Math Anal Appl doi: 10.1016/0022-247X(74)90116-4 – volume: 21 start-page: 170 year: 1979 end-page: 177 ident: CR27 article-title: Stability charts in the numerical approximation of partial differential equations: a review publication-title: Math Comput Simul doi: 10.1016/0378-4754(79)90130-7 – volume: 10 start-page: 231 year: 1980 end-page: 242 ident: CR23 article-title: Determination of an unknown nonhomogeneous term in a linear partial differential equation from overspecified boundary data publication-title: Appl Anal doi: 10.1080/00036818008839304 – volume: 90 start-page: 1557 year: 2011 end-page: 1571 ident: CR17 article-title: An inverse problem for pseudoparabolic equation of filtration: the existence, uniqueness and regularity publication-title: Appl Anal doi: 10.1080/00036811.2010.530258 – volume: 11 start-page: 457 year: 2006 end-page: 480 ident: CR10 article-title: Derivation and physical interpretation of general boundary conditions publication-title: Adv Differ Equ – volume: 115 start-page: 517 year: 1986 end-page: 529 ident: CR7 article-title: Diffusion subject to the specification of mass publication-title: J Math Anal Appl doi: 10.1016/0022-247X(86)90012-0 – volume: 24 start-page: 1286 year: 1960 end-page: 1303 ident: CR3 article-title: Basic concept in the theory of seepage of homogeneous liquids in fissured rocks publication-title: J Appl Math Mech doi: 10.1016/0021-8928(60)90107-6 – ident: CR21 – volume: 30 start-page: 1650110 year: 2016 ident: CR25 article-title: Modified cubic B-spline differential quadrature method for numerical solution of three dimensional coupled viscous Burger equation publication-title: Mod Phys Lett B doi: 10.1142/S0217984916501104 – volume: 148 start-page: 1 year: 2008 end-page: 142 ident: CR16 article-title: Blow-up of solutions of strongly nonlinear equations of pseudoparabolic type publication-title: J Math Sci doi: 10.1007/s10958-007-0541-3 – ident: CR19 – volume: 12 start-page: 27 year: 1948 end-page: 45 ident: CR22 article-title: On heat propagation in heterogeneous media publication-title: Izvestiya Rossiiskoi Akademii Nauk Seriya Geograficheskaya – volume: 216 start-page: 382 year: 2017 end-page: 387 ident: CR13 article-title: Inverse problem for 1D pseudo-parabolic equation publication-title: Funct Anal Interdiscip Appl – volume: 98 start-page: 1 year: 2018 end-page: 14 ident: CR18 article-title: Inverse problems for the stationary and pseudoparabolic equations of diffusion publication-title: Appl Anal – volume: 86 start-page: 281 year: 1982 end-page: 291 ident: CR6 article-title: The one phase Stefan problem subject to the specification of energy publication-title: J Math Anal Appl doi: 10.1016/0022-247X(82)90270-0 – ident: CR11 – volume: 9 start-page: 5079 year: 2015 end-page: 5088 ident: CR1 article-title: An inverse problem of identifying the coefficient in Kelvin–Voight equations publication-title: Appl Math Sci – volume: 105 start-page: 87 year: 2020 end-page: 98 ident: CR14 article-title: The inverse problem for determining the right part of the pseudo-parabolic equation publication-title: J Math Mech Comput Sci doi: 10.26577/JMMCS.2020.v105.i1.08 – volume: 57 start-page: 1973 year: 2017 end-page: 1993 ident: CR4 article-title: Differential and difference boundary value problem for loaded third-order pseudo-parabolic differential equations and difference methods for their numerical solution publication-title: Comput Math Math Phys doi: 10.1134/S0965542517120089 – volume: 12 start-page: 25 year: 1999 end-page: 30 ident: CR5 article-title: The numerical solution of fifth-order boundary value problems with sixth-degree B-spline functions publication-title: Appl Math Lett doi: 10.1016/S0893-9659(99)00052-X – volume: 1 start-page: 1 year: 1970 end-page: 26 ident: CR24 article-title: Pseudoparabolic partial differential equations publication-title: SIAM J Math Anal doi: 10.1137/0501001 – volume: 705 start-page: 15 year: 2013 end-page: 20 ident: CR15 article-title: Inverse problem with integral overdetermination for system of equations of Kelvin–Voight fluids publication-title: Adv Mater Res doi: 10.4028/www.scientific.net/AMR.705.15 – volume: 14 start-page: 923 year: 2018 end-page: 939 ident: CR9 article-title: A collocation technique based on modified form of trigonometric cubic B-spline basis functions for Fisher’s reaction-diffusion equation publication-title: Multidiscip Model Mater Struct doi: 10.1108/MMMS-12-2017-0150 – volume: 216 start-page: 382 year: 2017 ident: 1532_CR13 publication-title: Funct Anal Interdiscip Appl – volume: 115 start-page: 517 year: 1986 ident: 1532_CR7 publication-title: J Math Anal Appl doi: 10.1016/0022-247X(86)90012-0 – volume: 10 start-page: 231 year: 1980 ident: 1532_CR23 publication-title: Appl Anal doi: 10.1080/00036818008839304 – volume: 154 start-page: 69 year: 2004 ident: 1532_CR28 publication-title: Appl Math Comput doi: 10.1016/S0096-3003(03)00691-X – volume: 14 start-page: 923 year: 2018 ident: 1532_CR9 publication-title: Multidiscip Model Mater Struct doi: 10.1108/MMMS-12-2017-0150 – volume: 90 start-page: 1557 year: 2011 ident: 1532_CR17 publication-title: Appl Anal doi: 10.1080/00036811.2010.530258 – volume: 2005 start-page: 521 year: 2005 ident: 1532_CR8 publication-title: Math Probl Eng doi: 10.1155/MPE.2005.521 – volume: 705 start-page: 15 year: 2013 ident: 1532_CR15 publication-title: Adv Mater Res doi: 10.4028/www.scientific.net/AMR.705.15 – volume: 12 start-page: 27 year: 1948 ident: 1532_CR22 publication-title: Izvestiya Rossiiskoi Akademii Nauk Seriya Geograficheskaya – volume: 24 start-page: 1286 year: 1960 ident: 1532_CR3 publication-title: J Appl Math Mech doi: 10.1016/0021-8928(60)90107-6 – volume: 57 start-page: 1973 year: 2017 ident: 1532_CR4 publication-title: Comput Math Math Phys doi: 10.1134/S0965542517120089 – volume: 2 start-page: 1 year: 1994 ident: 1532_CR2 publication-title: Journal of Inverse and Ill-Posed Problems doi: 10.1515/jiip.1994.2.1.1 – volume: 105 start-page: 87 year: 2020 ident: 1532_CR14 publication-title: J Math Mech Comput Sci doi: 10.26577/JMMCS.2020.v105.i1.08 – volume: 204 start-page: 343 year: 2015 ident: 1532_CR20 publication-title: J Math Sci doi: 10.1007/s10958-014-2206-3 – volume: 9 start-page: 5079 year: 2015 ident: 1532_CR1 publication-title: Appl Math Sci – volume: 86 start-page: 281 year: 1982 ident: 1532_CR6 publication-title: J Math Anal Appl doi: 10.1016/0022-247X(82)90270-0 – volume: 21 start-page: 170 year: 1979 ident: 1532_CR27 publication-title: Math Comput Simul doi: 10.1016/0378-4754(79)90130-7 – ident: 1532_CR12 doi: 10.1002/num.22778 – ident: 1532_CR19 – volume: 11 start-page: 457 year: 2006 ident: 1532_CR10 publication-title: Adv Differ Equ – volume: 30 start-page: 1650110 year: 2016 ident: 1532_CR25 publication-title: Mod Phys Lett B doi: 10.1142/S0217984916501104 – ident: 1532_CR11 doi: 10.1007/s40314-021-01532-4 – volume: 98 start-page: 1 year: 2018 ident: 1532_CR18 publication-title: Appl Anal – volume: 148 start-page: 1 year: 2008 ident: 1532_CR16 publication-title: J Math Sci doi: 10.1007/s10958-007-0541-3 – ident: 1532_CR21 – volume: 1 start-page: 1 year: 1970 ident: 1532_CR24 publication-title: SIAM J Math Anal doi: 10.1137/0501001 – volume: 45 start-page: 23 year: 1974 ident: 1532_CR26 publication-title: J Math Anal Appl doi: 10.1016/0022-247X(74)90116-4 – volume: 12 start-page: 25 year: 1999 ident: 1532_CR5 publication-title: Appl Math Lett doi: 10.1016/S0893-9659(99)00052-X |
| SSID | ssj0037144 |
| Score | 2.3130567 |
| Snippet | The inverse problem of identifying the time-dependent potential term along with the temperature in a third-order pseudo-parabolic equation with initial and... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Applications of Mathematics Applied physics Boundary conditions Collocation methods Computational mathematics Computational Mathematics and Numerical Analysis Inverse problems Mathematical Applications in Computer Science Mathematical Applications in the Physical Sciences Mathematics Mathematics and Statistics Noise sensitivity Regularization Stability analysis Time dependence |
| Title | Reconstructing an unknown potential term in the third-order pseudo-parabolic problem |
| URI | https://link.springer.com/article/10.1007/s40314-021-01532-4 https://www.proquest.com/docview/2527893239 |
| Volume | 40 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 1807-0302 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0037144 issn: 2238-3603 databaseCode: AMVHM dateStart: 20050901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1807-0302 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037144 issn: 2238-3603 databaseCode: AFBBN dateStart: 20130401 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1807-0302 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037144 issn: 2238-3603 databaseCode: AGYKE dateStart: 20130101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5RuOhBFDWiaHrwpiXQH1t7JAYlGjyBwdOydsUQzSBuXPzrbUcHkagJh2VL1jZdX1_ft_a97wFcB5ROlAWumBIpMIs5x1IJibUgKmGGE0VcvPPgOeiP2OOYj31QWFZ6u5dHksVKvQp2Y45pHTuXAmvCKMFsF6oF31YFqt2H16deuQI7Ejp3mmwtn-1D0KY-WOb3Vn4apDXK3DgYLezNfQ1GZU-XbibvrUWuWvprg8Rx2085hAMPQFF3OWOOYMekdah5MIq8qmd12B-sCF2zYxi639SSbDZ9Q3GKFqnbj0vRfJY7jyPbplvl0TRFtp69pp8JLog90Twzi2SGHcu4cjTEyGexOYHRfW9418c-IQPWVlNzrEmilKCx1MS5YgnDaNsoOaEhnVAe847mRmjKiDYsFixRRHItOrHhhoZSGnoKlXSWmjNA7aBg5lFBaO2jBa1iQgKjQqEtvArtYwM6pVQi7dnKXdKMj2jFs1wMYmQHMSoGMWINuFnVmS-5Ov4t3SyFHXm9zSLCXWQwJVQ24LaU3fr1362db1f8AvZIIX63ndOEihWfubToJldXfjK7--ClP_gGOffulg |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGYCBN6I8PbCBUetHYo8IUQp9TK0EUxQ7LqpAaUXShV-PnTpBVIDUIVKk2Jbju_N9tu8-A1wGlI6UBa6YEikwiznHUgmJtSAqYYYTRVy-c68ftIfs6Zk_-6SwrIx2L48ki5m6SnZjjmkdu5AC68IowWwV1phdoJAarN0-vHTuyxnYkdC502Tr-Wwfggb1yTK_t_LTIX2jzIWD0cLftLZhWPZ0HmbydjPL1Y3-XCBxXPZXdmDLA1B0O9eYXVgx6R5sezCKvKlne7DZqwhds30YuGVqSTabvqI4RbPU7celaDrJXcSRbdPN8micIlvPPuOPBBfEnmiamVkywY5lXDkaYuRvsTmAYet-cNfG_kIGrK2l5liTRClBY6mJC8UShtGGUXJEQzqiPOZNzY3QlBFtWCxYoojkWjRjww0NpTT0EGrpJDVHgBpBwcyjgtD6RwtaxYgERoVCW3gV2tc6NEupRNqzlbtLM96jime5GMTIDmJUDGLE6nBV1ZnOuTr-LX1aCjvydptFhLvMYEqorMN1Kbvvz3-3drxc8QtYbw963aj72O-cwAYpVMFt7ZxCzYrSnFmkk6tzr9hf6Kvv2Q |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB61IFXlACUFER7FB26tIfFj1z4iSEpJE3EAiZ5Wa68XIZATkeTCr2e88QYaUSTUw0orre21PWPPZ3vmM8BBwnlpELhSzrSiIpeSaqM0tYqZQjjJDAvxzv1BcnYlzq_l9Yso_srbvT6SnMU0BJYmPzkaFeXRPPBNBNZ1GtwL0JxxRsVHWMalSYqavnz880-vU8_GgZAunCyjFcT6JC0eA2deL-Vv4_SMOBcOSSvb012DvK71zOXk7nA6MYf2cYHQ8X-a9QVWIzAlxzNNWocPzjdgLYJUEqeAcQNW-nOi1_FXuAzL15qE1t-Q3JOpD_t0noyG4c-o3iTM_uTWE8yHz-1DQSvCTzIau2kxpIF93AR6YhJvt9mAq27n8uSMxosaqMURPKGWFcYonmvLgouWcoK3nNElT3nJZS7bVjpluWDWiVyJwjAtrWrnTjqeau34Jiz5oXdbQFpJxdhjkhTtJoJZVbLEmVRZhF0pvjahXUsos5HFPFymcZ_N-ZerTsywE7OqEzPRhO_zPKMZh8ebqXdrwWdxPI8zJkPEMGdcN-FHLcfnz_8ubft9yffh08VpN_v9a9Dbgc-s0oSw47MLSyhJt4cAaGK-RR1_AhIq-L0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconstructing+an+unknown+potential+term+in+the+third-order+pseudo-parabolic+problem&rft.jtitle=Computational+%26+applied+mathematics&rft.au=Huntul%2C+M.+J.&rft.au=Dhiman%2C+Neeraj&rft.au=Tamsir%2C+Mohammad&rft.date=2021-06-01&rft.issn=2238-3603&rft.eissn=1807-0302&rft.volume=40&rft.issue=4&rft_id=info:doi/10.1007%2Fs40314-021-01532-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40314_021_01532_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2238-3603&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2238-3603&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2238-3603&client=summon |