A novel algorithm for mining couples of enhanced association rules based on the number of output couples and its application

Besides the need for more advanced predictive methods, there is increasing demand for easily interpretable results. Couples of enhanced association rules (a generalization of association rules/apriori/frequent itemsets) are excellent candidates for this task. They can be interpreted in various ways,...

Full description

Saved in:
Bibliographic Details
Published inJournal of intelligent information systems Vol. 62; no. 2; pp. 431 - 458
Main Authors Máša, Petr, Rauch, Jan
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0925-9902
1573-7675
DOI10.1007/s10844-023-00820-1

Cover

Abstract Besides the need for more advanced predictive methods, there is increasing demand for easily interpretable results. Couples of enhanced association rules (a generalization of association rules/apriori/frequent itemsets) are excellent candidates for this task. They can be interpreted in various ways, subgroup discovery being an example. A typical result in rule mining is that there are too low or too many rules in the resulting ruleset. Analysts must usually iterate 5–15 times to get a reasonable number of rules. Inspired by research in a similar area of frequent itemsets to simplify input and parameter-free frequent itemsets, we have proposed a novel algorithm that finds rules based not on parameters like support and confidence but the best rules by a given range of required rule count in output. We propose this algorithm for couples of rules – SD4ft-Miner procedure and benefits from a brand new implementation of methods of mechanizing hypothesis formation in Python called Cleverminer that allows easy implementation of this algorithm. We have verified the algorithm by several applications on eight public data sets. Our original case was a case study, and it was also the reason why we developed the algorithm. However, implementation is in Python, and the algorithm itself can be used on a broader class of methods in any language. The algorithm iterates quickly, in all experiments we needed a maximum of 10 iterations. Possible enhancements to this algorithm are also outlined.
AbstractList Besides the need for more advanced predictive methods, there is increasing demand for easily interpretable results. Couples of enhanced association rules (a generalization of association rules/apriori/frequent itemsets) are excellent candidates for this task. They can be interpreted in various ways, subgroup discovery being an example. A typical result in rule mining is that there are too low or too many rules in the resulting ruleset. Analysts must usually iterate 5–15 times to get a reasonable number of rules. Inspired by research in a similar area of frequent itemsets to simplify input and parameter-free frequent itemsets, we have proposed a novel algorithm that finds rules based not on parameters like support and confidence but the best rules by a given range of required rule count in output. We propose this algorithm for couples of rules – SD4ft-Miner procedure and benefits from a brand new implementation of methods of mechanizing hypothesis formation in Python called Cleverminer that allows easy implementation of this algorithm. We have verified the algorithm by several applications on eight public data sets. Our original case was a case study, and it was also the reason why we developed the algorithm. However, implementation is in Python, and the algorithm itself can be used on a broader class of methods in any language. The algorithm iterates quickly, in all experiments we needed a maximum of 10 iterations. Possible enhancements to this algorithm are also outlined.
Author Rauch, Jan
Máša, Petr
Author_xml – sequence: 1
  givenname: Petr
  orcidid: 0000-0002-1744-034X
  surname: Máša
  fullname: Máša, Petr
  email: masa@petrmasa.com
  organization: Prague University of Economics and Business
– sequence: 2
  givenname: Jan
  orcidid: 0000-0003-1919-7010
  surname: Rauch
  fullname: Rauch, Jan
  organization: Prague University of Economics and Business
BookMark eNp9kF1LBCEUhiUK2j7-QFdC11NHnRn1MqIvCLqpa3EcZ9eY1UmdIOjH5-5GQRcheDj6Pu85vEdo3wdvETojcEEA-GUiIOq6AsoqAEGhIntoQRrOKt7yZh8tQNKmkhLoITpK6RUApGhhgT6vsA_vdsR6XIbo8mqNhxDx2nnnl9iEeRptwmHA1q-0N7bHOqVgnM4ueBznzW-nU3kvbV5Z7Od1Z-OGCHOe5vzjoX2PXS51mkZntvwJOhj0mOzpdz1GL7c3z9f31ePT3cP11WNlGJG56gbTMM4HSXlne9oRzoxoCS_H1kK0UtQNSMON7HvKZAdNY-hQrr7uNYWeHaPzne8Uw9tsU1avYY6-jFQMaimJrFtRVGKnMjGkFO2gjMvbPXPUblQE1CZrtctalazVNmtFCkr_oFN0ax0__ofYDkpF7Jc2_m71D_UFYZKUyQ
CitedBy_id crossref_primary_10_1007_s10844_024_00899_0
Cites_doi 10.3233/IDA-160069
10.1109/ACCESS.2023.3295239
10.1371/journal.pone.0179703
10.1007/BF02345483
10.1007/3-540-45372-5_70
10.4018/978-1-60566-010-3.ch258
10.1007/s10618-017-0520-3
10.1201/9781003091448
10.1016/S0020-7373(78)80033-9
10.1007/s10115-010-0356-2
10.1016/S0020-7373(78)80032-7
10.1007/978-3-642-35650-6
10.1016/j.jcss.2009.05.004
10.3233/FI-1999-40403
10.1109/ICDM.2015.87
10.1007/978-94-011-3534-4
10.3390/math9151818
10.1007/978-3-031-25891-6_10
10.3390/electronics11193044
10.1007/s41019-017-0044-2
10.1016/j.knosys.2019.02.019
10.1007/978-3-319-21542-6_4
10.1145/335191.335372
10.1504/IJDMMM.2012.048105
10.1016/S0020-7373(81)80009-0
10.1007/978-3-642-11737-4
10.1007/978-3-319-08326-1_12
10.1007/978-3-642-66943-9
10.1145/170035.170072
10.1002/widm.1144
10.1007/s10115-018-1206-x
10.1007/978-3-642-51883-6_51
10.1007/978-3-030-59491-6_2
10.1016/S0020-7373(77)80012-6
10.1007/978-1-4615-5669-5_1
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s10844-023-00820-1
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global (OCUL)
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7675
EndPage 458
ExternalDocumentID 10_1007_s10844_023_00820_1
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
8FE
8FG
8FL
8FW
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WK8
YLTOR
Z45
Z7R
Z7U
Z7X
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-bfc5377f927bed2b173c8617171e4886984509c7c9dd239b055c2f55cd4da20d3
IEDL.DBID BENPR
ISSN 0925-9902
IngestDate Wed Aug 13 07:10:05 EDT 2025
Wed Oct 01 04:48:27 EDT 2025
Thu Apr 24 23:07:08 EDT 2025
Fri Feb 21 02:38:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords GUHA method
Subgroup discovery
Enhanced association rules
CleverMiner
Python
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-bfc5377f927bed2b173c8617171e4886984509c7c9dd239b055c2f55cd4da20d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1919-7010
0000-0002-1744-034X
PQID 3049919468
PQPubID 30807
PageCount 28
ParticipantIDs proquest_journals_3049919468
crossref_citationtrail_10_1007_s10844_023_00820_1
crossref_primary_10_1007_s10844_023_00820_1
springer_journals_10_1007_s10844_023_00820_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240400
2024-04-00
20240401
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 4
  year: 2024
  text: 20240400
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle Integrating Artificial Intelligence and Database Technologies
PublicationTitle Journal of intelligent information systems
PublicationTitleAbbrev J Intell Inf Syst
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Rafea, A.A., Shaalan, K., & Shafik, S. (2004). An interactive system for association rule discovery for life assurance. In H. Chu (Ed.), Proceedings of the 2nd International Conference Computing, Communications and Control Technologies, CCCT 2004, Austin, TX, USA, August 14-17, 2004, (vol. 1, pp. 32–37). The International Institute of Informatics and Systemics (IIIS).
Agrawal, R., & Srikant, R.(1994). Fast algorithms for mining association rules in large databases. In 20th International conference on very large data bases, (pp. 487–499). San Francisco: VLDB ’94, Morgan Kaufmann Publishers Inc. http://dl.acm.org/citation.cfm?id=645920.672836
Havránek, T. (1981). The present state of the GUHA software. International Journal of Man-Machine Studies,15(3), 253–264. https://doi.org/10.1016/S0020-7373(81)80009-0. https://www.sciencedirect.com/science/article/pii/S0020737381800090
Šimunek, M., & Rauch, J. (2014). EverMiner prototype using LISp-Miner Control Language. In T. Andreasen, H. Christiansen, J. C. C. Talavera, Z. W. Ras (Eds.) Foundations of Intelligent Systems - 21st International Symposium, ISMIS 2014, Roskilde, Denmark, June 25-27, 2014. Proceedings. Lecture Notes in Computer Science, (vol. 8502, pp. 113–122). Springer. https://doi.org/10.1007/978-3-319-08326-1_12.
Zaki, M.J., Parthasarathy, S., Ogihara, M., & Li, W. (1997). New algorithms for fast discovery of association rules. In Proceedings of the Third International Conference on Knowledge Discovery and Data Mining, (pp. 283–286). KDD’97, AAAI Press.
Turunen, E., & Dolos, K. (2021). Revealing drivers natural behavior – a GUHA data mining approach. Mathematics,9(15). https://doi.org/10.3390/math9151818.
Rauch, J., Šimunek, M., Chudán, D., & Máša, P. (2022). Mechanising hypothesis formation - principles and case studies. CRC Press. https://www.routledge.com/Mechanizing-Hypothesis-Formation-Principles-and-Case-Studies/Rauch-Simunek-Chudan-Masa/p/book/9780367549800
HavránekTChybaMPokornýDProcessing sociological data by the GUHA method - an exampleInternational Journal of Man-Machine Studies19779443944710.1016/S0020-7373(77)80012-6
Hájek, P. (1984). The new version of the GUHA procedure ASSOC. In COMPSTAT 1984, Proceedings in Computational Statistics, (pp. 360–365). https://www.springer.com/gp/book/9783705100077
Powell, L., Gelich, A., & Ras, Z.W. (2020). The construction of action rules to raise artwork prices. In Foundations of Intelligent Systems - 25th International Symposium, ISMIS 2020. Lecture Notes in Computer Science, (vol. 12117, pp. 11–20). Springer. https://doi.org/10.1007/978-3-030-59491-6_2.
HájekPHoleňaMRauchJThe GUHA method and its meaning for data miningJournal of Computer Systems Science20107613448256578310.1016/j.jcss.2009.05.004
HanJPeiJYinYMining frequent patterns without candidate generationSIGMOD Rec.200029211210.1145/335191.335372
Pawlak, Z. (1991). Rough sets - theoretical aspects of reasoning about data, Theory and decision library: series D, (vol. 9). Kluwer. https://doi.org/10.1007/978-94-011-3534-4.
Dua, D., & Graff, C. (2017). UCI machine learning repository. http://archive.ics.uci.edu/ml.
Boley, M., Goldsmith, B.R., Ghiringhelli, L.M., & Vreeken, J. (2017). Identifying consistent statements about numerical data with dispersion-corrected subgroup discovery. arXiv:1701.07696.
Hahsler, M. (2023). ARULESPY: Exploring Association Rules and Frequent Itemsets in Python
HerreraFCarmonaCJGonzálezPdel JesúsMJAn overview on subgroup discovery: foundations and applicationsKnowledge Information Systems201129349552510.1007/s10115-010-0356-2
RauchJEverminer: consideration on knowledge driven permanent data mining processInternational Journal of Data Mining, Modelling and Management20124322424310.1504/IJDMMM.2012.048105
SingaramSJeyakarthicMParameter-free algorithm for mining rare association rulesInternational Journal of Computer Sciences and Engineering201974046
BigML (2023) BigML – Machine learning platform. https://bigml.com/. Accessed: 08 Dec 2023.
Li, G., Wang, T., Chen, Q., Shao, P., Xiong, N., & Vasilakos, A. (2022). A survey on particle swarm optimization for association rule mining. Electronics,11(19). https://doi.org/10.3390/electronics11193044. https://www.mdpi.com/2079-9292/11/19/3044.
Máša, P., Rauch, J. (2022). GUHA method and Python language. In Proceedings of the 12th Workshop on Uncertainty Processing, (pp. 147–158). MatfyzPress. http://wupes.utia.cas.cz/2022/Proceedings.pdf.
Fürnkranz, J., & Kliegr, T. (2015). A brief overview of rule learning. In N. Bassiliades, G. Gottlob, F. Sadri, A. Paschke, & D. Roman (Eds.), Rule Technologies: Foundations, Tools, and Applications - 9th International Symposium, RuleML 2015, Berlin, Germany, August 2-5, 2015, Proceedings. Lecture Notes in Computer Science, (vol. 9202, pp. 54–69). Springer. https://doi.org/10.1007/978-3-319-21542-6_4.
SikoraMWróbelLGudysAGuider: A guided separate-and-conquer rule learning in classification, regression, and survival settingsKnowledge Based Systems201917311410.1016/j.knosys.2019.02.019
Egho, E., Gay, D., Boullé, M., Voisine, N., & Clérot, F.: A parameter-free approach for mining robust sequential classification rules. In 2015 IEEE International Conference on Data Mining, (pp. 745–750). https://doi.org/10.1109/ICDM.2015.87.
KleeneSCIntroduction to Metamathematics1952Van Nostrand
Hahsler, M., Gruen, B., Hornik, K., & Buchta, C. (2015). Mining association rules and frequent itemsets. R package version 1.3-1. http://CRAN.R-project.org/package=arules
Ras, Z. W., & Wieczorkowska, A. (2000) Action-rules: How to increase profit of a company. In D. A. Zighed, H. J. Komorowski, J. M. Zytkow (Eds.) Principles of Data Mining and Knowledge Discovery, 4th European Conference, PKDD 2000, Lyon, France, September 13-16, 2000, Proceedings. Lecture Notes in Computer Science, (vol. 1910, pp. 587–592). Springer. https://doi.org/10.1007/3-540-45372-5_70.
Zorrilla, M. E., García-Saiz, D., & Balcázar, J. L. (2011). Towards parameter-free data mining: Mining educational data with yacaree. In Educational Data Mining
Hahsler, M., Chelluboina, S., Hornik, K., & Buchta, C. (2011b). The arules R-package ecosystem: Analyzing interesting patterns from large transaction data sets. Journal of Machine Learning Research,12, 2021–2025. http://dl.acm.org/citation.cfm?id=2021064
HájekPHavelIChytilMThe GUHA method of automatic hypotheses determinationComputing19661429330810.1007/BF02345483
AtzmuellerMSubgroup discoveryWIREs Data Mining and Knowledge Discovery201551354910.1002/widm.1144
TurunenEUsing GUHA data mining method in analyzing road traffic accidents occurred in the years 2004–2008 in FinlandData Science Engineering20172322423110.1007/s41019-017-0044-2
Hájek, P., & Havránek, T. (1978). Mechanising Hypothesis Formation - Mathematical Foundations for a General Theory. Springer. https://www.springer.com/gp/book/9783540087380.
Rauch, J. (2013). Observational Calculi and Association Rules, Studies in Computational Intelligence, (vol. 469). Springer. https://doi.org/10.1007/978-3-642-11737-4
RauchJExpert deduction rules in data mining with association rules: a case studyKnowledge and Information Systems201959116719510.1007/s10115-018-1206-x
Máša, P., & Rauch, J. (2022) Enhanced association rules and python. In G. Nicosia, V. Ojha, E. L. Malfa, G. L. Malfa, P. M. Pardalos, G. D. Fatta, G. Giuffrida, & R. Umeton (Eds.) Machine Learning, Optimization, and Data Science - 8th International Workshop, LOD 2022, Certosa di Pontignano, Italy, September 19-22, 2022, Revised Selected Papers, Part II. Lecture Notes in Computer Science, (vol. 13811, pp. 123–138). Springer. https://doi.org/10.1007/978-3-031-25891-6_10
RauchJSome remarks on computer realizations of GUHA proceduresInternational Journal of Man-Machine Studies1978101232810.1016/S0020-7373(78)80032-7
NieYLuoXYuYA data-driven knowledge discovery framework for smart education management using behavioral characteristicsIEEE Access202311725627257410.1109/ACCESS.2023.3295239
RauchJŠimunekMApriori and GUHA - comparing two approaches to data mining with association rulesIntelligent Data Analysis2017214981101310.3233/IDA-160069
RencZKubátKKouřimJAn application of the GUHA method in medicineInternational Journal of Man-Machine Studies1978101293510.1016/S0020-7373(78)80033-9
Dong, G., & Bailey, J. (2012). Contrast Data Mining: Concepts, Algorithms, and Applications. Chapman & Hall/CRC Data Mining and Knowledge Discovery Series, Taylor & Francis. https://books.google.cz/books?id=_uxNRbzNdfAC
Grzymala-Busse, J.W., & Ziarko, W. (2009). Rough sets and data mining. In: J. Wang (Ed.), Encyclopedia of data warehousing and mining, (2nd ed., vol. 4, pp. 1696–1701). IGI Global. http://www.igi-global.com/Bookstore/Chapter.aspx?TitleId=11046
AqraIHerawanTAbdul GhaniNAkhunzadaAAliABin RazaliRIlahiMRaymond ChooKKA novel association rule mining approach using tid intermediate itemsetPLOS ONE201813113210.1371/journal.pone.0179703
NguyenHSNguyenSHRough sets and association rule generationFundamentals Informaticae1999404383405177494510.3233/FI-1999-40403
Agrawal, R., Imielinski, T., & Swami, A. N. (1993). Mining association rules between sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD International conference on management of data, Washington, DC, USA, May 26-28, (pp. 207–216). https://doi.org/10.1145/170035.170072.
Dardzinska, A. (2013). Action rules mining. In Studies in Computational Intelligence, (vol. 468). Springer. https://doi.org/10.1007/978-3-642-35650-6.
Rauch, J., & Šimunek, M. (2005). An alternative approach to mining association rules. In Foundations of Data Mining and Knowledge Discovery, (pp. 211–231). Springer. https://www.researchgate.net/publication/225673818_An_Alternative_Approach_to_Mining_Association_Rules
Hahsler, M., Chelluboina, S., Hornik, K., & Buchta, C. (2011a). The arules r-package ecosystem: Analyzing interesting patterns from large transaction data sets. Journal of Machine Learning Research,12(57), 2021–2025. http://jmlr.org/papers/v12/hahsler11a.html
Kliegr, T.,
820_CR15
820_CR16
820_CR17
820_CR18
820_CR11
820_CR12
820_CR13
Z Renc (820_CR43) 1978; 10
820_CR14
E Turunen (820_CR48) 2017; 2
820_CR10
820_CR50
T Havránek (820_CR23) 1977; 9
S Singaram (820_CR46) 2019; 7
820_CR9
820_CR8
820_CR7
820_CR6
820_CR49
820_CR5
820_CR2
820_CR45
820_CR1
820_CR47
P Hájek (820_CR20) 2010; 76
F Herrera (820_CR24) 2011; 29
I Aqra (820_CR3) 2018; 13
820_CR37
J Rauch (820_CR41) 2019; 59
SC Kleene (820_CR25) 1952
820_CR38
J Rauch (820_CR40) 2012; 4
820_CR33
820_CR34
820_CR35
820_CR36
820_CR32
J Han (820_CR21) 2000; 29
J Rauch (820_CR42) 2017; 21
M Atzmueller (820_CR4) 2015; 5
820_CR26
820_CR27
P Hájek (820_CR19) 1966; 1
820_CR28
HS Nguyen (820_CR30) 1999; 40
M Sikora (820_CR44) 2019; 173
820_CR29
820_CR22
J Rauch (820_CR39) 1978; 10
Y Nie (820_CR31) 2023; 11
References_xml – reference: SikoraMWróbelLGudysAGuider: A guided separate-and-conquer rule learning in classification, regression, and survival settingsKnowledge Based Systems201917311410.1016/j.knosys.2019.02.019
– reference: KleeneSCIntroduction to Metamathematics1952Van Nostrand
– reference: HerreraFCarmonaCJGonzálezPdel JesúsMJAn overview on subgroup discovery: foundations and applicationsKnowledge Information Systems201129349552510.1007/s10115-010-0356-2
– reference: Egho, E., Gay, D., Boullé, M., Voisine, N., & Clérot, F.: A parameter-free approach for mining robust sequential classification rules. In 2015 IEEE International Conference on Data Mining, (pp. 745–750). https://doi.org/10.1109/ICDM.2015.87.
– reference: Agrawal, R., Imielinski, T., & Swami, A. N. (1993). Mining association rules between sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD International conference on management of data, Washington, DC, USA, May 26-28, (pp. 207–216). https://doi.org/10.1145/170035.170072.
– reference: Hahsler, M., Chelluboina, S., Hornik, K., & Buchta, C. (2011b). The arules R-package ecosystem: Analyzing interesting patterns from large transaction data sets. Journal of Machine Learning Research,12, 2021–2025. http://dl.acm.org/citation.cfm?id=2021064
– reference: Agrawal, R., & Srikant, R.(1994). Fast algorithms for mining association rules in large databases. In 20th International conference on very large data bases, (pp. 487–499). San Francisco: VLDB ’94, Morgan Kaufmann Publishers Inc. http://dl.acm.org/citation.cfm?id=645920.672836
– reference: RauchJŠimunekMApriori and GUHA - comparing two approaches to data mining with association rulesIntelligent Data Analysis2017214981101310.3233/IDA-160069
– reference: Rauch, J. (2013). Observational Calculi and Association Rules, Studies in Computational Intelligence, (vol. 469). Springer. https://doi.org/10.1007/978-3-642-11737-4
– reference: RencZKubátKKouřimJAn application of the GUHA method in medicineInternational Journal of Man-Machine Studies1978101293510.1016/S0020-7373(78)80033-9
– reference: Rauch, J., & Šimunek, M. (2005). An alternative approach to mining association rules. In Foundations of Data Mining and Knowledge Discovery, (pp. 211–231). Springer. https://www.researchgate.net/publication/225673818_An_Alternative_Approach_to_Mining_Association_Rules
– reference: Hahsler, M. (2023). ARULESPY: Exploring Association Rules and Frequent Itemsets in Python
– reference: Hahsler, M., Gruen, B., Hornik, K., & Buchta, C. (2015). Mining association rules and frequent itemsets. R package version 1.3-1. http://CRAN.R-project.org/package=arules
– reference: HanJPeiJYinYMining frequent patterns without candidate generationSIGMOD Rec.200029211210.1145/335191.335372
– reference: Šimunek, M., & Rauch, J. (2014). EverMiner prototype using LISp-Miner Control Language. In T. Andreasen, H. Christiansen, J. C. C. Talavera, Z. W. Ras (Eds.) Foundations of Intelligent Systems - 21st International Symposium, ISMIS 2014, Roskilde, Denmark, June 25-27, 2014. Proceedings. Lecture Notes in Computer Science, (vol. 8502, pp. 113–122). Springer. https://doi.org/10.1007/978-3-319-08326-1_12.
– reference: Grzymala-Busse, J.W., & Ziarko, W. (2009). Rough sets and data mining. In: J. Wang (Ed.), Encyclopedia of data warehousing and mining, (2nd ed., vol. 4, pp. 1696–1701). IGI Global. http://www.igi-global.com/Bookstore/Chapter.aspx?TitleId=11046
– reference: Máša, P., Rauch, J. (2022). GUHA method and Python language. In Proceedings of the 12th Workshop on Uncertainty Processing, (pp. 147–158). MatfyzPress. http://wupes.utia.cas.cz/2022/Proceedings.pdf.
– reference: Hahsler, M., Chelluboina, S., Hornik, K., & Buchta, C. (2011a). The arules r-package ecosystem: Analyzing interesting patterns from large transaction data sets. Journal of Machine Learning Research,12(57), 2021–2025. http://jmlr.org/papers/v12/hahsler11a.html
– reference: NguyenHSNguyenSHRough sets and association rule generationFundamentals Informaticae1999404383405177494510.3233/FI-1999-40403
– reference: Dua, D., & Graff, C. (2017). UCI machine learning repository. http://archive.ics.uci.edu/ml.
– reference: Li, G., Wang, T., Chen, Q., Shao, P., Xiong, N., & Vasilakos, A. (2022). A survey on particle swarm optimization for association rule mining. Electronics,11(19). https://doi.org/10.3390/electronics11193044. https://www.mdpi.com/2079-9292/11/19/3044.
– reference: Powell, L., Gelich, A., & Ras, Z.W. (2020). The construction of action rules to raise artwork prices. In Foundations of Intelligent Systems - 25th International Symposium, ISMIS 2020. Lecture Notes in Computer Science, (vol. 12117, pp. 11–20). Springer. https://doi.org/10.1007/978-3-030-59491-6_2.
– reference: Hájek, P., & Havránek, T. (1978). Mechanising Hypothesis Formation - Mathematical Foundations for a General Theory. Springer. https://www.springer.com/gp/book/9783540087380.
– reference: AqraIHerawanTAbdul GhaniNAkhunzadaAAliABin RazaliRIlahiMRaymond ChooKKA novel association rule mining approach using tid intermediate itemsetPLOS ONE201813113210.1371/journal.pone.0179703
– reference: HájekPHoleňaMRauchJThe GUHA method and its meaning for data miningJournal of Computer Systems Science20107613448256578310.1016/j.jcss.2009.05.004
– reference: Havránek, T. (1981). The present state of the GUHA software. International Journal of Man-Machine Studies,15(3), 253–264. https://doi.org/10.1016/S0020-7373(81)80009-0. https://www.sciencedirect.com/science/article/pii/S0020737381800090
– reference: Hájek, P. (1984). The new version of the GUHA procedure ASSOC. In COMPSTAT 1984, Proceedings in Computational Statistics, (pp. 360–365). https://www.springer.com/gp/book/9783705100077
– reference: Dong, G., & Bailey, J. (2012). Contrast Data Mining: Concepts, Algorithms, and Applications. Chapman & Hall/CRC Data Mining and Knowledge Discovery Series, Taylor & Francis. https://books.google.cz/books?id=_uxNRbzNdfAC
– reference: SingaramSJeyakarthicMParameter-free algorithm for mining rare association rulesInternational Journal of Computer Sciences and Engineering201974046
– reference: RauchJEverminer: consideration on knowledge driven permanent data mining processInternational Journal of Data Mining, Modelling and Management20124322424310.1504/IJDMMM.2012.048105
– reference: Kliegr, T., Kuchar, J., Vojír, S., & Zeman, V. (2017) Easyminer - short history of research and current development. In J. Hlavácová (Ed.), Proceedings of the 17th Conference on Information Technologies - Applications and Theory (ITAT 2017), Martinské hole, Slovakia, September 22-26, 2017. CEUR Workshop Proceedings, (vol. 1885, pp. 235–239). CEUR-WS.org. https://ceur-ws.org/Vol-1885/235.pdf
– reference: RauchJExpert deduction rules in data mining with association rules: a case studyKnowledge and Information Systems201959116719510.1007/s10115-018-1206-x
– reference: TurunenEUsing GUHA data mining method in analyzing road traffic accidents occurred in the years 2004–2008 in FinlandData Science Engineering20172322423110.1007/s41019-017-0044-2
– reference: Boley, M., Goldsmith, B.R., Ghiringhelli, L.M., & Vreeken, J. (2017). Identifying consistent statements about numerical data with dispersion-corrected subgroup discovery. arXiv:1701.07696.
– reference: Dardzinska, A. (2013). Action rules mining. In Studies in Computational Intelligence, (vol. 468). Springer. https://doi.org/10.1007/978-3-642-35650-6.
– reference: Turunen, E., & Dolos, K. (2021). Revealing drivers natural behavior – a GUHA data mining approach. Mathematics,9(15). https://doi.org/10.3390/math9151818.
– reference: AtzmuellerMSubgroup discoveryWIREs Data Mining and Knowledge Discovery201551354910.1002/widm.1144
– reference: Fürnkranz, J., & Kliegr, T. (2015). A brief overview of rule learning. In N. Bassiliades, G. Gottlob, F. Sadri, A. Paschke, & D. Roman (Eds.), Rule Technologies: Foundations, Tools, and Applications - 9th International Symposium, RuleML 2015, Berlin, Germany, August 2-5, 2015, Proceedings. Lecture Notes in Computer Science, (vol. 9202, pp. 54–69). Springer. https://doi.org/10.1007/978-3-319-21542-6_4.
– reference: Pawlak, Z. (1991). Rough sets - theoretical aspects of reasoning about data, Theory and decision library: series D, (vol. 9). Kluwer. https://doi.org/10.1007/978-94-011-3534-4.
– reference: HájekPHavelIChytilMThe GUHA method of automatic hypotheses determinationComputing19661429330810.1007/BF02345483
– reference: NieYLuoXYuYA data-driven knowledge discovery framework for smart education management using behavioral characteristicsIEEE Access202311725627257410.1109/ACCESS.2023.3295239
– reference: Zaki, M.J., Parthasarathy, S., Ogihara, M., & Li, W. (1997). New algorithms for fast discovery of association rules. In Proceedings of the Third International Conference on Knowledge Discovery and Data Mining, (pp. 283–286). KDD’97, AAAI Press.
– reference: Ras, Z. W., & Wieczorkowska, A. (2000) Action-rules: How to increase profit of a company. In D. A. Zighed, H. J. Komorowski, J. M. Zytkow (Eds.) Principles of Data Mining and Knowledge Discovery, 4th European Conference, PKDD 2000, Lyon, France, September 13-16, 2000, Proceedings. Lecture Notes in Computer Science, (vol. 1910, pp. 587–592). Springer. https://doi.org/10.1007/3-540-45372-5_70.
– reference: Rauch, J., Šimunek, M., Chudán, D., & Máša, P. (2022). Mechanising hypothesis formation - principles and case studies. CRC Press. https://www.routledge.com/Mechanizing-Hypothesis-Formation-Principles-and-Case-Studies/Rauch-Simunek-Chudan-Masa/p/book/9780367549800#
– reference: RauchJSome remarks on computer realizations of GUHA proceduresInternational Journal of Man-Machine Studies1978101232810.1016/S0020-7373(78)80032-7
– reference: BigML (2023) BigML – Machine learning platform. https://bigml.com/. Accessed: 08 Dec 2023.
– reference: HavránekTChybaMPokornýDProcessing sociological data by the GUHA method - an exampleInternational Journal of Man-Machine Studies19779443944710.1016/S0020-7373(77)80012-6
– reference: Máša, P., & Rauch, J. (2022) Enhanced association rules and python. In G. Nicosia, V. Ojha, E. L. Malfa, G. L. Malfa, P. M. Pardalos, G. D. Fatta, G. Giuffrida, & R. Umeton (Eds.) Machine Learning, Optimization, and Data Science - 8th International Workshop, LOD 2022, Certosa di Pontignano, Italy, September 19-22, 2022, Revised Selected Papers, Part II. Lecture Notes in Computer Science, (vol. 13811, pp. 123–138). Springer. https://doi.org/10.1007/978-3-031-25891-6_10
– reference: Rafea, A.A., Shaalan, K., & Shafik, S. (2004). An interactive system for association rule discovery for life assurance. In H. Chu (Ed.), Proceedings of the 2nd International Conference Computing, Communications and Control Technologies, CCCT 2004, Austin, TX, USA, August 14-17, 2004, (vol. 1, pp. 32–37). The International Institute of Informatics and Systemics (IIIS).
– reference: Zorrilla, M. E., García-Saiz, D., & Balcázar, J. L. (2011). Towards parameter-free data mining: Mining educational data with yacaree. In Educational Data Mining
– volume: 21
  start-page: 981
  issue: 4
  year: 2017
  ident: 820_CR42
  publication-title: Intelligent Data Analysis
  doi: 10.3233/IDA-160069
– volume: 11
  start-page: 72562
  year: 2023
  ident: 820_CR31
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3295239
– ident: 820_CR26
– volume: 13
  start-page: 1
  issue: 1
  year: 2018
  ident: 820_CR3
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0179703
– volume: 1
  start-page: 293
  issue: 4
  year: 1966
  ident: 820_CR19
  publication-title: Computing
  doi: 10.1007/BF02345483
– ident: 820_CR35
  doi: 10.1007/3-540-45372-5_70
– ident: 820_CR13
  doi: 10.4018/978-1-60566-010-3.ch258
– ident: 820_CR7
  doi: 10.1007/s10618-017-0520-3
– ident: 820_CR5
– ident: 820_CR1
– ident: 820_CR16
– ident: 820_CR38
  doi: 10.1201/9781003091448
– volume: 10
  start-page: 29
  issue: 1
  year: 1978
  ident: 820_CR43
  publication-title: International Journal of Man-Machine Studies
  doi: 10.1016/S0020-7373(78)80033-9
– ident: 820_CR9
– volume: 29
  start-page: 495
  issue: 3
  year: 2011
  ident: 820_CR24
  publication-title: Knowledge Information Systems
  doi: 10.1007/s10115-010-0356-2
– volume: 10
  start-page: 23
  issue: 1
  year: 1978
  ident: 820_CR39
  publication-title: International Journal of Man-Machine Studies
  doi: 10.1016/S0020-7373(78)80032-7
– ident: 820_CR8
  doi: 10.1007/978-3-642-35650-6
– volume-title: Introduction to Metamathematics
  year: 1952
  ident: 820_CR25
– volume: 76
  start-page: 34
  issue: 1
  year: 2010
  ident: 820_CR20
  publication-title: Journal of Computer Systems Science
  doi: 10.1016/j.jcss.2009.05.004
– volume: 40
  start-page: 383
  issue: 4
  year: 1999
  ident: 820_CR30
  publication-title: Fundamentals Informaticae
  doi: 10.3233/FI-1999-40403
– ident: 820_CR11
  doi: 10.1109/ICDM.2015.87
– ident: 820_CR32
  doi: 10.1007/978-94-011-3534-4
– ident: 820_CR29
– ident: 820_CR47
  doi: 10.3390/math9151818
– ident: 820_CR15
– ident: 820_CR6
– ident: 820_CR28
  doi: 10.1007/978-3-031-25891-6_10
– ident: 820_CR27
  doi: 10.3390/electronics11193044
– volume: 2
  start-page: 224
  issue: 3
  year: 2017
  ident: 820_CR48
  publication-title: Data Science Engineering
  doi: 10.1007/s41019-017-0044-2
– volume: 173
  start-page: 1
  year: 2019
  ident: 820_CR44
  publication-title: Knowledge Based Systems
  doi: 10.1016/j.knosys.2019.02.019
– ident: 820_CR12
  doi: 10.1007/978-3-319-21542-6_4
– volume: 29
  start-page: 1
  issue: 2
  year: 2000
  ident: 820_CR21
  publication-title: SIGMOD Rec.
  doi: 10.1145/335191.335372
– volume: 4
  start-page: 224
  issue: 3
  year: 2012
  ident: 820_CR40
  publication-title: International Journal of Data Mining, Modelling and Management
  doi: 10.1504/IJDMMM.2012.048105
– volume: 7
  start-page: 40
  year: 2019
  ident: 820_CR46
  publication-title: International Journal of Computer Sciences and Engineering
– ident: 820_CR22
  doi: 10.1016/S0020-7373(81)80009-0
– ident: 820_CR10
– ident: 820_CR36
  doi: 10.1007/978-3-642-11737-4
– ident: 820_CR37
– ident: 820_CR14
– ident: 820_CR45
  doi: 10.1007/978-3-319-08326-1_12
– ident: 820_CR18
  doi: 10.1007/978-3-642-66943-9
– ident: 820_CR50
– ident: 820_CR2
  doi: 10.1145/170035.170072
– volume: 5
  start-page: 35
  issue: 1
  year: 2015
  ident: 820_CR4
  publication-title: WIREs Data Mining and Knowledge Discovery
  doi: 10.1002/widm.1144
– volume: 59
  start-page: 167
  issue: 1
  year: 2019
  ident: 820_CR41
  publication-title: Knowledge and Information Systems
  doi: 10.1007/s10115-018-1206-x
– ident: 820_CR17
  doi: 10.1007/978-3-642-51883-6_51
– ident: 820_CR33
  doi: 10.1007/978-3-030-59491-6_2
– ident: 820_CR34
– volume: 9
  start-page: 439
  issue: 4
  year: 1977
  ident: 820_CR23
  publication-title: International Journal of Man-Machine Studies
  doi: 10.1016/S0020-7373(77)80012-6
– ident: 820_CR49
  doi: 10.1007/978-1-4615-5669-5_1
SSID ssj0009860
Score 2.3745947
Snippet Besides the need for more advanced predictive methods, there is increasing demand for easily interpretable results. Couples of enhanced association rules (a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 431
SubjectTerms Algorithms
Artificial Intelligence
Computer Science
Data mining
Data Structures and Information Theory
Information Storage and Retrieval
IT in Business
Natural Language Processing (NLP)
Parameters
Subgroups
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6yXrz4FldXycGbBto8mua4iMsi6MmFvZXmUVfotovbevLHO31tVVSQQktJMoV-mcwXJjOD0JXmTDPfMeKUTwm3sQaVcpIo2I0wzQPqdBXg_PAYTGf8fi7mbVDYujvt3rkk65X6U7BbyDkBG0Nqu0Vgz7MtqnReMItndNyn2g3r2GBPUUFgraVtqMzPMr6ao55jfnOL1tZmso92W5qIxw2uB2jLZYdoryvBgFuNPELvY5zlby7Fcfqcwz5_scTAQvGyLvuATV6uUrfGeYJdtqh9_Tju8cCvZdVaGTKL4RW4IG4qhFQj8rKAj21kxJnFLwU8e4_3MZpN7p5up6QtqEAMaFpBdGIEkzJRVGpnqfYlMyFQGLgcKHKgQg78wUijrKVMaU8IQxO4WQCRepadoEGWZ-4U4SCmQlNPBsLEPAYjB8wjkb62nkmcDbwh8rv_Gpk223hV9CKN-jzJFRYRYBHVWET-EF1vxqyaXBt_9h51cEWt3q2jymmofMWDcIhuOgj75t-lnf2v-znaocBumiM8IzQoXkt3Aeyk0Jf1ZPwAqzza6Q
  priority: 102
  providerName: Springer Nature
Title A novel algorithm for mining couples of enhanced association rules based on the number of output couples and its application
URI https://link.springer.com/article/10.1007/s10844-023-00820-1
https://www.proquest.com/docview/3049919468
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1573-7675
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0009860
  issn: 0925-9902
  databaseCode: ADMLS
  dateStart: 20070201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7675
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009860
  issn: 0925-9902
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-7675
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0009860
  issn: 0925-9902
  databaseCode: BENPR
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-7675
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0009860
  issn: 0925-9902
  databaseCode: 8FG
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7675
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009860
  issn: 0925-9902
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7675
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009860
  issn: 0925-9902
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_m9uKL3-J0jjz4psE2_X4Q2WRTFIeIg_lUmo-qMNupnU_-8V66dEVBKTSUtCnp5XK_9HL3AzjirsMdWzlURTajrkw4qpQKaISrEYe7PlNcBzjfjvyrsXs98SYNGFWxMHpbZTUnlhO1zIX-R36q3UERrrj98Hz2RjVrlPauVhQaiaFWkGdlirEVaDGdGasJrf5gdHdfp-ENy7hhK2IexXmYmTAaE0wXui5FG0ZLu0jtn6aqxp-_XKalJRpuwJqBkKS3kPkmNFS2BesVPQMx2roNXz2S5Z9qSpLpE_akeH4liFDJa0kJQbAns6n6IHlKVPZc7gMgSS0r8j7XtdrISYKXiBPJgj1EP5HPC3zZso0kk-SlwLL2hu_AeDh4uLiihmyBCtTCgvJUeE4QpBELuJKM24EjQoQ3eChUcj8KXcQWIhCRlMyJuOV5gqV4kihgZklnF5pZnqk9IH7CPM6swPdE4iZoABGVpIHNpSVSJX2rDXb1XWNhMpFrQoxpXOdQ1rKIURZxKYvYbsPx8pnZIg_Hv3d3KnHFRic_4noEteGkEmFd_Xdr-_-3dgCrDJHOYjtPB5rF-1wdIlIpeBdWwuFlF1q9Yb8_0uXl482gawYl1o5Z7xu_bOmS
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLQXCn2o2_LwoZyo1cR2Hj4gxFNLgVVVgcQtjR8pSEuyZbMgJH4bv41x1iEqUrmhSIkiJxNlZjKP2DMfwFcluOKh5dTKkFFhcoWflE2oxGyEKxEzq1yB8_Eg7p-KH2fR2Qzct7UwblllaxMbQ20q7f6Rf3fTQRIz7jjdHP2lDjXKza62EBq5h1YwG02LMV_YcWhvbzCFG28c7KK81xjb3zvZ6VOPMkA1ql9NVaEjniSFZImyhqkw4TpFv46bRe2OZSrQqepES2MYlyqIIs0K3Bl8MxYYjnRfwZzgQmLyN7e9N_j5q2v7mzZ1yoFkEUW7z3zZji_eS4Wg6DNp44dp-K9r7OLdJ1O0jefbX4B5H7KSramOLcKMLd_B2xYOgnjr8B7utkhZXdshyYd_kHP1-SXBiJhcNhAUBDk3GtoxqQpiy_Nm3QHJO90gVxM36pyqIXiKcSmZopW4O6pJjQ97pJGXhlzUeOxm3z_A6Yuw_SPMllVpPwGJcxYpFiRxpHORo8PFKKhIQmUCXVgTBz0IW75m2nc-dwAcw6zr2exkkaEsskYWWdiD9cd7RtO-H89evdSKK_M2YJx1GtuDb60Iu-H_U_v8PLVVeN0_OT7Kjg4Gh1_gDcMoa7qUaAlm66uJXcYoqVYrXhUJ_H5p7X8A7SYg7A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JS8QwFH64gHhxF8c1Bz1psE2XtAcRUcddPCh4q81SRxjb0ekogr_MX-dLF4uC3qTQUtK80rwveS99G8C6cB3h2NqhOrQZdVUscEppTkPcjTjC9ZkWJsD54tI_vnFPb73bIfioY2GMW2W9JhYLtcqk-Ue-bcxBIe64_WA7qdwirg7au70naipIGUtrXU6jhMiZfnvF7Vt_5-QAeb3BWPvwev-YVhUGqETo5VQk0nM4T0LGhVZM2NyRAcp0PDQi2w8DFwWq5DJUijmhsDxPsgRPCr-KWcpBusMwyk0WdxOl3j5qEv4GRYSyFTKP4orPqoCdKmwvcF2K0pIWEpja34Vio-n-MM4WMq89BROVskr2SnRNw5BOZ2CyLgRBqnVhFt73SJq96C6Ju_c4TnnnkaAuTB6L4hNEZoNeV_dJlhCddgqPAxI3qCDPA9NqxKkieIsaKSnrlJge2SDHl33RiFNFHnK8Nnb3Obj5l0Gfh5E0S_UCED9mnmAW9z0ZuzGKWtR_Em4LZclEK99qgV2PaySrnOem9EY3arI1G15EyIuo4EVkt2Dzq0-vzPjx59PLNbuiavb3owarLdiqWdg0_05t8W9qazCGmI_OTy7PlmCcoXpV-hAtw0j-PNArqB7lYrXAIYG7_wb-J_edHoY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+algorithm+for+mining+couples+of+enhanced+association+rules+based+on+the+number+of+output+couples+and+its+application&rft.jtitle=Journal+of+intelligent+information+systems&rft.au=M%C3%A1%C5%A1a%2C+Petr&rft.au=Rauch%2C+Jan&rft.date=2024-04-01&rft.issn=0925-9902&rft.eissn=1573-7675&rft.volume=62&rft.issue=2&rft.spage=431&rft.epage=458&rft_id=info:doi/10.1007%2Fs10844-023-00820-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10844_023_00820_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-9902&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-9902&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-9902&client=summon