A Python tool for parameter estimation of “black box” macro- and micro-kinetic models with Bayesian optimization – petBOA
We develop an open-source Python-based Parameter Estimation Tool utilizing Bayesian Optimization (petBOA) with a unique wrapper interface for gradient-free parameter estimation of expensive black-box kinetic models. We provide examples for Python macrokinetic and microkinetic modeling (MKM) tools, s...
        Saved in:
      
    
          | Published in | Computer physics communications Vol. 306; no. C; p. 109358 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Netherlands
          Elsevier B.V
    
        01.01.2025
     Elsevier  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0010-4655 1879-2944  | 
| DOI | 10.1016/j.cpc.2024.109358 | 
Cover
| Abstract | We develop an open-source Python-based Parameter Estimation Tool utilizing Bayesian Optimization (petBOA) with a unique wrapper interface for gradient-free parameter estimation of expensive black-box kinetic models. We provide examples for Python macrokinetic and microkinetic modeling (MKM) tools, such as Cantera and OpenMKM. petBOA leverages surrogate Gaussian processes to approximate and minimize the objective function designed for parameter estimation. Bayesian Optimization (BO) is implemented using the open-source BoTorch toolkit. petBOA employs local and global sensitivity analyses to identify important parameters optimized against experimental data, and leverages pMuTT for consistent kinetic and thermodynamic parameters while perturbing species binding energies within the typical error of conventional DFT exchange-correlation functionals (20-30 kJ/mol). The source code and documentation are hosted on GitHub.
Program title: petBOA
CPC Library link to program files:https://doi.org/10.17632/hwwvksbb75.1
Developer's repository link: https://github.com/VlachosGroup/petBOA
Licensing provisions: MIT license
Programming language: Python
External routines: NEXTorch, PyTorch, GPyTorch, BoTorch, Matplotlib, PyDOE2, NumPy, SciPy, pandas, pMuTT, SALib, docker.
Nature of the problem: An open-source, gradient-free parameter estimation of black-box microkinetic modeling tools, such as OpenMKM is lacking.
Solution method: petBOA is a Python-based tool that utilizes Bayesian Optimization and offers a unique wrapper interface for expensive black-box kinetic models. It leverages the pMuTT library for consistent kinetic and thermodynamic parameter estimation and employs both local and global sensitivity analyses to identify crucial parameters.
[Display omitted] | 
    
|---|---|
| AbstractList | We develop an open-source Python-based Parameter Estimation Tool utilizing Bayesian Optimization (petBOA) with a unique wrapper interface for gradient-free parameter estimation of expensive black-box kinetic models. We provide examples for Python macrokinetic and microkinetic modeling (MKM) tools, such as Cantera and OpenMKM. petBOA leverages surrogate Gaussian processes to approximate and minimize the objective function designed for parameter estimation. Bayesian Optimization (BO) is implemented using the open-source BoTorch toolkit. petBOA employs local and global sensitivity analyses to identify important parameters optimized against experimental data, and leverages pMuTT for consistent kinetic and thermodynamic parameters while perturbing species binding energies within the typical error of conventional DFT exchange-correlation functionals (20-30 kJ/mol). The source code and documentation are hosted on GitHub.
Program title: petBOA
CPC Library link to program files:https://doi.org/10.17632/hwwvksbb75.1
Developer's repository link: https://github.com/VlachosGroup/petBOA
Licensing provisions: MIT license
Programming language: Python
External routines: NEXTorch, PyTorch, GPyTorch, BoTorch, Matplotlib, PyDOE2, NumPy, SciPy, pandas, pMuTT, SALib, docker.
Nature of the problem: An open-source, gradient-free parameter estimation of black-box microkinetic modeling tools, such as OpenMKM is lacking.
Solution method: petBOA is a Python-based tool that utilizes Bayesian Optimization and offers a unique wrapper interface for expensive black-box kinetic models. It leverages the pMuTT library for consistent kinetic and thermodynamic parameter estimation and employs both local and global sensitivity analyses to identify crucial parameters.
[Display omitted] | 
    
| ArticleNumber | 109358 | 
    
| Author | Singh, Aayush R. Bhandari, Saurabh Vlachos, Dionisios G. Wang, Yifan Kasiraju, Sashank  | 
    
| Author_xml | – sequence: 1 givenname: Sashank surname: Kasiraju fullname: Kasiraju, Sashank organization: RAPID Manufacturing Institute and Delaware Energy Institute, University of Delaware, 221 Academy St., Newark, Delaware 19716, USA – sequence: 2 givenname: Yifan surname: Wang fullname: Wang, Yifan organization: RAPID Manufacturing Institute and Delaware Energy Institute, University of Delaware, 221 Academy St., Newark, Delaware 19716, USA – sequence: 3 givenname: Saurabh surname: Bhandari fullname: Bhandari, Saurabh organization: Reaction Engineering, Engineering & Process Science, Core R&D, The Dow Chemical Company, Lake Jackson, TX 77566, USA – sequence: 4 givenname: Aayush R. surname: Singh fullname: Singh, Aayush R. organization: Dow Silicones Corporation, Process R&D – Engineering Sciences, The Dow Chemical Company, Midland, MI 48640, USA – sequence: 5 givenname: Dionisios G. orcidid: 0000-0002-6795-8403 surname: Vlachos fullname: Vlachos, Dionisios G. email: vlachos@udel.edu organization: RAPID Manufacturing Institute and Delaware Energy Institute, University of Delaware, 221 Academy St., Newark, Delaware 19716, USA  | 
    
| BackLink | https://www.osti.gov/biblio/2440321$$D View this record in Osti.gov | 
    
| BookMark | eNqNkL1OwzAQxz2ABBQegM1iT7Hz0aRiaiu-JCQYYLYuzkV1SezINpSy0HdghZfrk-AozIjp7nT3_0n3OyJ72mgk5JSzMWd8cr4ay06OYxanYZ4mWbFHDhnjLEonWXZAjpxbMcbyfJocko8Zfdj4pdHUG9PQ2ljagYUWPVqKzqsWvApbU9Pd9qtsQD7T0rzttt-0BWlNREFXtFV9-6w0eiVpaypsHF0rv6Rz2KBTEABdYKn3gbbbftIO_fx-dkz2a2gcnvzWEXm6unxc3ER399e3i9ldJBM-9VGJeYbplGdSpkWJZVJLhLwok7TIK6hzzHiRTxJAmQOrACTEiFjHUExYGdeYjEg8cF90B5s1NI3obHjObgRnotcmViJoE702MWgLobMhZIII4aTyKJfSaI3SizhNWRLzcMSHo6DAOYv1v8AXQyZ4wleFtoejllgp27Mro_5I_wB3V5sF | 
    
| Cites_doi | 10.1287/educ.2018.0188 10.1038/s41592-019-0686-2 10.1007/s12532-017-0127-0 10.1002/wcms.1372 10.1016/j.ces.2021.116534 10.1016/j.ces.2009.05.054 10.1016/j.jcp.2018.10.045 10.1021/acscatal.7b00115 10.1063/1.5109116 10.1021/ie0202470 10.1063/5.0086649 10.1021/acs.chemrev.0c00394 10.1007/s11244-009-9432-9 10.1063/5.0015672 10.1093/comjnl/3.3.175 10.1038/s41524-021-00656-9 10.1021/acs.jpcc.1c04754 10.1016/j.cattod.2022.04.002 10.1016/S0082-0784(89)80102-X 10.1016/j.cpc.2019.106864 10.1109/JPROC.2015.2494218 10.1002/cctc.202000976 10.2172/481906 10.1016/j.ces.2011.05.050 10.1002/aic.14322 10.1021/jp7099702 10.1016/j.softx.2020.100442 10.1093/comjnl/7.4.308 10.1016/j.ces.2007.11.024 10.1002/aic.690461013 10.1080/13647830.2021.2002417 10.1021/acs.jcim.1c00637 10.1038/s41586-021-03213-y 10.1007/978-0-387-40065-5_5 10.1109/TAC.1974.1100705 10.1021/acscatal.9b01234 10.1002/aic.690320105 10.1126/sciadv.abl6576 10.1021/ie800343s 10.1063/1.2046628 10.1016/j.ces.2014.09.011 10.1002/kin.550231205 10.1021/acs.jcim.3c00088 10.1021/cs200055d 10.1016/j.cpc.2010.12.039 10.1016/S0082-0784(00)80347-1 10.1021/acs.chemrev.0c01060 10.1021/acssuschemeng.1c06899 10.1002/aic.690380502 10.1145/3582078 10.1007/s10494-018-9942-2 10.1093/bioinformatics/btl485 10.1002/cctc.202000953 10.1016/S0098-1354(98)00043-X 10.1016/S1385-8947(02)00065-7 10.1021/acs.accounts.0c00340 10.1021/acs.jpca.1c05102 10.1007/s10107-004-0559-y 10.1021/jp9916485 10.1038/s41524-021-00662-x 10.21105/joss.00097 10.1021/acs.jpcc.7b08089 10.1021/ie900144x 10.1021/acs.jpca.2c06513 10.1007/BF01589116 10.1016/j.cattod.2005.04.003 10.1016/S0010-4655(02)00280-1 10.1016/j.compchemeng.2023.108547 10.1016/j.compchemeng.2006.05.033 10.1038/s41586-020-2442-2 10.1021/ie070322c 10.1063/5.0006124 10.1038/nchem.2454 10.1016/j.cpc.2021.107989 10.1039/D0SC01101K 10.1016/S0065-2377(05)30001-9 10.1021/j150514a018 10.1023/A:1008202821328 10.1039/D0RE00243G  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2024 Elsevier B.V. | 
    
| Copyright_xml | – notice: 2024 Elsevier B.V. | 
    
| DBID | AAYXX CITATION OTOTI ADTOC UNPAY  | 
    
| DOI | 10.1016/j.cpc.2024.109358 | 
    
| DatabaseName | CrossRef OSTI.GOV Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Physics | 
    
| ExternalDocumentID | oai:osti.gov:2440321 2440321 10_1016_j_cpc_2024_109358 S0010465524002819  | 
    
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXKI AAXUO AAYFN ABBOA ABFNM ABMAC ABNEU ABQEM ABQYD ABXDB ACDAQ ACFVG ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADECG ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFJKZ AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HME HMV HVGLF HZ~ IHE IMUCA J1W KOM LG9 LZ4 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCB SDF SDG SES SEW SHN SPC SPCBC SPD SPG SSE SSK SSQ SSV SSZ T5K TN5 UPT VH1 WUQ ZMT ~02 ~G- AATTM AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD OTOTI ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c319t-be75e4915cc48beb3fcea78b3487daf7e518763aec7a0daaca2eeef2a860b2fe3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0010-4655 1879-2944  | 
    
| IngestDate | Sun Oct 26 02:34:04 EDT 2025 Mon Sep 16 02:20:39 EDT 2024 Wed Oct 01 03:23:01 EDT 2025 Sat Nov 09 16:01:01 EST 2024  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | C | 
    
| Keywords | Parameter estimation Macrokinetic models Gaussian process Microkinetic models Bayesian optimization  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c319t-be75e4915cc48beb3fcea78b3487daf7e518763aec7a0daaca2eeef2a860b2fe3 | 
    
| Notes | USDOE EE0007888-9.5  | 
    
| ORCID | 0000-0002-6795-8403 0000000267958403  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.osti.gov/biblio/2440321 | 
    
| ParticipantIDs | unpaywall_primary_10_1016_j_cpc_2024_109358 osti_scitechconnect_2440321 crossref_primary_10_1016_j_cpc_2024_109358 elsevier_sciencedirect_doi_10_1016_j_cpc_2024_109358  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | January 2025 2025-01-00 2025-01-01  | 
    
| PublicationDateYYYYMMDD | 2025-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2025 text: January 2025  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Netherlands | 
    
| PublicationPlace_xml | – name: Netherlands | 
    
| PublicationTitle | Computer physics communications | 
    
| PublicationYear | 2025 | 
    
| Publisher | Elsevier B.V Elsevier  | 
    
| Publisher_xml | – name: Elsevier B.V – name: Elsevier  | 
    
| References | Aghalayam, Park, Vlachos (bib0014) 2000; 46 Valorani, Ciottoli, Malpica Galassi, Paolucci, Grenga, Martelli (bib0085) 2018; 101 Besora, Maseras (bib0069) 2018; 8 Kee, Rupley, Miller (bib0036) 1989 Gusmão, Medford (bib0062) 2024; 181 Garnett (bib0052) 2023 Prasad, Karim, Ulissi, Zagrobelny, Vlachos (bib0007) 2010; 65 Eriksson, Jankowiak (bib0074) 2021; 161 Medasani, Kasiraju, Vlachos (bib0035) 2023; 63 Prasad, Vlachos (bib0013) 2008; 47 Herman, Usher (bib0078) 2017; 2 De Florio, Schiassi, Furfaro (bib0059) 2022; 32 Lym, Wittreich, Vlachos (bib0098) 2020; 247 D. Goodwin, H. Moffat, R. Speth, Cantera: An Object-oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes; (initial developer: D. Goodwin) Saltelli (bib0076) 2002; 145 Walker, Ravisankar, Savara (bib0033) 2020; 12 Metaxas, Thybaut, Morra, Farrusseng, Mirodatos, Marin (bib0029) 2010; 53 Hermes, Janes, Schmidt (bib0031) 2019; 151 Candelieri (bib0053) 2021 . M.E. Coltrin, R.J. Kee, F.M. Rupley, E Meeks, SURFACE CHEMKIN-III: A Fortran package for analyzing heterogeneous chemical kinetics at a solid-surface - gas-phase interface, OSTI Technical Report, United States, 1996. PyPI - The Python Package Index. Chen, Cohen, Yu, Wang, Zheng, Vlachos (bib0009) 2021; 237 Stewart, Caracotsios, Sørensen (bib0021) 1992; 38 P.I. Frazier, A Tutorial on Bayesian Optimization. Savara, Walker (bib0032) 2020; 12 Shields, Stevens, Li, Parasram, Damani, Alvarado, Janey, Adams, Doyle (bib0041) 2021; 590 2018. Campbell (bib0082) 2017; 7 Salciccioli, Stamatakis, Caratzoulas, Vlachos (bib0073) 2011; 66 Wittreich, Liu, Dauenhauer, Vlachos (bib0090) 2022; 8 Mhadeshwar, Vlachos (bib0019) 2007; 46 Shomate (bib0093) 1954; 58 Lam, Goussis (bib0083) 1989; 22 Kee, Dixon-Lewis, Warnatz, Coltrin, Miller (bib0091) 1986 Wächter, Biegler (bib0030) 2006; 106 Wittreich, Gu, Robinson, Katsoulakis, Vlachos (bib0002) 2021; 125 Sutton, Vlachos (bib0004) 2015; 121 Samant, Vlachos (bib0079) 2005; 123 Liang, Gongora, Ren, Tiihonen, Liu, Sun, Deneault, Bash, Mekki-Berrada, Khan, Hippalgaonkar, Maruyama, Brown, Fisher Iii, Buonassisi (bib0056) 2021; 7 Schwaab, Biscaia, Monteiro, Pinto (bib0024) 2008; 63 Montoya, Winther, Flores, Bligaard, Hummelshøj, Aykol (bib0044) 2020; 11 Coltrin, Kee, Rupley (bib0037) 1991; 23 Raissi, Perdikaris, Karniadakis (bib0057) 2019; 378 Nelder, Mead (bib0088) 1965; 7 Gusmão, Retnanto, Cunha, Medford (bib0061) 2023; 417 Filot (bib0070) 2018 Rangarajan, Maravelias, Mavrikakis (bib0010) 2017; 121 Tran, Tranchida, Wildey, Thompson (bib0043) 2020; 153 Wittreich, Alexopoulos, Vlachos (bib0068) 2020 Sutton, Guo, Katsoulakis, Vlachos (bib0001) 2016; 8 Chase (bib0094) 1998; 1 Park, Froment (bib0023) 1998; 22 Ebikade, Wang, Samulewicz, Hasa, Vlachos (bib0039) 2020; 5 Gupta, Vlachos (bib0066) 2020; 11 Ji, Qiu, Shi, Pan, Deng (bib0060) 2021; 125 McBride, Zehe, Gordon (bib0092) 2002 Burger, Maffettone, Gusev, Aitchison, Bai, Wang, Li, Alston, Li, Clowes, Rankin, Harris, Sprick, Cooper (bib0040) 2020; 583 Weng, Zhou (bib0058) 2022; 126 Mhadeshwar, Vlachos (bib0081) 2005; 105 Akaike (bib0095) 1974; 19 Matera, Schneider, Heyden, Savara (bib0012) 2019; 9 (accessed 08/01/2023). Vlachos, Mhadeshwar, Kaisare (bib0018) 2006; 30 Nocedal, Wright (bib0096) 2006 Wang, Jin, Schmitt, Olhofer (bib0055) 2023; 55 Lym, Wittreich, Vlachos (bib0064) 2020; 247 Díaz-Ibarra, Kim, Safta, Zádor, Najm (bib0084) 2022; 26 Grabow, Gokhale, Evans, Dumesic, Mavrikakis (bib0005) 2008; 112 Lei, Kirk, Bhattacharya, Pati, Qian, Arroyave, Mallick (bib0054) 2021; 7 Virtanen, Gommers, Oliphant, Haberland, Reddy, Cournapeau, Burovski, Peterson, Weckesser, Bright, van der Walt, Brett, Wilson, Millman, Mayorov, Nelson, Jones, Kern, Larson, Carey, Polat, Feng, Moore, VanderPlas, Laxalde, Perktold, Cimrman, Henriksen, Quintero, Harris, Archibald, Ribeiro, Pedregosa, van Mulbregt, Vijaykumar, Bardelli, Rothberg, Hilboll, Kloeckner, Scopatz, Lee, Rokem, Woods, Fulton, Masson, Häggström, Fitzgerald, Nicholson, Hagen, Pasechnik, Olivetti, Martin, Wieser, Silva, Lenders, Wilhelm, Young, Price, Ingold, Allen, Lee, Audren, Probst, Dietrich, Silterra, Webber, Slavič, Nothman, Buchner, Kulick, Schönberger, de Miranda Cardoso, Reimer, Harrington, Rodríguez, Nunez-Iglesias, Kuczynski, Tritz, Thoma, Newville, Kümmerer, Bolingbroke, Tartre, Pak, Smith, Nowaczyk, Shebanov, Pavlyk, Brodtkorb, Lee, McGibbon, Feldbauer, Lewis, Tygier, Sievert, Vigna, Peterson, More, Pudlik, Oshima, Pingel, Robitaille, Spura, Jones, Cera, Leslie, Zito, Krauss, Upadhyay, Halchenko, Vázquez-Baeza, SciPy (bib0049) 2020; 17 Del Rosario, Rupp, Kim, Antono, Ling (bib0042) 2020; 153 Chen, Xu, Mavrikakis (bib0072) 2021; 121 Raimondeau, Aghalayam, Mhadeshwar, Vlachos (bib0017) 2003; 42 2014. Rosenbrock (bib0047) 1960; 3 Campolongo, Saltelli, Cariboni (bib0077) 2011; 182 M. Balandat, B. Karrer; D.R. Jiang, S. Daulton, B. Letham, A.G. Wilson, E. Bakshy, BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization. arXiv, 2019, arXiv S. Kasiraju, petBOA - Website Documentation Liu, Nocedal (bib0097) 1989; 45 Motagamwala, Dumesic (bib0067) 2020; 121 Deutschmann (bib0008) 2013 Xu, Stangland, Dumesic, Mavrikakis (bib0048) 2022; 10 Park, Aghalayam, Vlachos (bib0016) 1999; 103 W.E. Stewart, M. Caracotsios, Athena Visual Studio. Nicholson, Siirola, Watson, Zavala, Biegler (bib0027) 2018; 10 Shahriari, Swersky, Wang, Adams, De Freitas (bib0051) 2015; 104 Prasad, Karim, Arya, Vlachos (bib0003) 2009; 48 Wright (bib0089) 1996 Raimondeau, Vlachos (bib0006) 2002; 90 Asthagiri, Janik (bib0071) 2013 Aghalayam, Park, Vlachos (bib0015) 2000; 28 Biegler, Damiano, Blau (bib0022) 1986; 32 Wang, Chen, Vlachos (bib0045) 2021; 61 Rasmussen, Williams (bib0063) 2005 Grabow, Mavrikakis (bib0011) 2011; 1 Rubert-Nason, Mavrikakis, Maravelias, Grabow, Biegler (bib0020) 2014; 60 Cohen, Vlachos (bib0034) 2021; 265 Bhandari, Rangarajan, Mavrikakis (bib0025) 2020; 53 Storn, Price (bib0099) 1997; 11 Hoops, Sahle, Gauges, Lee, Pahle, Simus, Singhal, Xu, Mendes, Kummer (bib0028) 2006; 22 Vlachos (bib0075) 2005; 30 Gusmão (10.1016/j.cpc.2024.109358_bib0061) 2023; 417 Aghalayam (10.1016/j.cpc.2024.109358_bib0015) 2000; 28 Wittreich (10.1016/j.cpc.2024.109358_bib0002) 2021; 125 Ji (10.1016/j.cpc.2024.109358_bib0060) 2021; 125 Candelieri (10.1016/j.cpc.2024.109358_bib0053) 2021 Shomate (10.1016/j.cpc.2024.109358_bib0093) 1954; 58 Nelder (10.1016/j.cpc.2024.109358_bib0088) 1965; 7 10.1016/j.cpc.2024.109358_bib0086 10.1016/j.cpc.2024.109358_bib0087 Hermes (10.1016/j.cpc.2024.109358_bib0031) 2019; 151 Lym (10.1016/j.cpc.2024.109358_bib0064) 2020; 247 Vlachos (10.1016/j.cpc.2024.109358_bib0075) 2005; 30 Prasad (10.1016/j.cpc.2024.109358_bib0003) 2009; 48 Prasad (10.1016/j.cpc.2024.109358_bib0013) 2008; 47 Vlachos (10.1016/j.cpc.2024.109358_bib0018) 2006; 30 Tran (10.1016/j.cpc.2024.109358_bib0043) 2020; 153 Wächter (10.1016/j.cpc.2024.109358_bib0030) 2006; 106 De Florio (10.1016/j.cpc.2024.109358_bib0059) 2022; 32 Rosenbrock (10.1016/j.cpc.2024.109358_bib0047) 1960; 3 Rubert-Nason (10.1016/j.cpc.2024.109358_bib0020) 2014; 60 Hoops (10.1016/j.cpc.2024.109358_bib0028) 2006; 22 Campolongo (10.1016/j.cpc.2024.109358_bib0077) 2011; 182 Rangarajan (10.1016/j.cpc.2024.109358_bib0010) 2017; 121 Nocedal (10.1016/j.cpc.2024.109358_bib0096) 2006 Shahriari (10.1016/j.cpc.2024.109358_bib0051) 2015; 104 Gupta (10.1016/j.cpc.2024.109358_bib0066) 2020; 11 Kee (10.1016/j.cpc.2024.109358_bib0036) 1989 Bhandari (10.1016/j.cpc.2024.109358_bib0025) 2020; 53 Besora (10.1016/j.cpc.2024.109358_bib0069) 2018; 8 Eriksson (10.1016/j.cpc.2024.109358_bib0074) 2021; 161 Montoya (10.1016/j.cpc.2024.109358_bib0044) 2020; 11 Gusmão (10.1016/j.cpc.2024.109358_bib0062) 2024; 181 Chen (10.1016/j.cpc.2024.109358_bib0009) 2021; 237 Metaxas (10.1016/j.cpc.2024.109358_bib0029) 2010; 53 Motagamwala (10.1016/j.cpc.2024.109358_bib0067) 2020; 121 Rasmussen (10.1016/j.cpc.2024.109358_bib0063) 2005 Stewart (10.1016/j.cpc.2024.109358_bib0021) 1992; 38 10.1016/j.cpc.2024.109358_bib0065 Chase (10.1016/j.cpc.2024.109358_bib0094) 1998; 1 Lei (10.1016/j.cpc.2024.109358_bib0054) 2021; 7 Grabow (10.1016/j.cpc.2024.109358_bib0011) 2011; 1 Mhadeshwar (10.1016/j.cpc.2024.109358_bib0081) 2005; 105 Park (10.1016/j.cpc.2024.109358_bib0023) 1998; 22 Raimondeau (10.1016/j.cpc.2024.109358_bib0006) 2002; 90 Lam (10.1016/j.cpc.2024.109358_bib0083) 1989; 22 Matera (10.1016/j.cpc.2024.109358_bib0012) 2019; 9 10.1016/j.cpc.2024.109358_bib0050 Storn (10.1016/j.cpc.2024.109358_bib0099) 1997; 11 Wittreich (10.1016/j.cpc.2024.109358_bib0090) 2022; 8 Park (10.1016/j.cpc.2024.109358_bib0016) 1999; 103 Prasad (10.1016/j.cpc.2024.109358_bib0007) 2010; 65 Ebikade (10.1016/j.cpc.2024.109358_bib0039) 2020; 5 Coltrin (10.1016/j.cpc.2024.109358_bib0037) 1991; 23 Medasani (10.1016/j.cpc.2024.109358_bib0035) 2023; 63 Valorani (10.1016/j.cpc.2024.109358_bib0085) 2018; 101 Shields (10.1016/j.cpc.2024.109358_bib0041) 2021; 590 Wang (10.1016/j.cpc.2024.109358_bib0055) 2023; 55 Cohen (10.1016/j.cpc.2024.109358_bib0034) 2021; 265 Wittreich (10.1016/j.cpc.2024.109358_bib0068) 2020 Chen (10.1016/j.cpc.2024.109358_bib0072) 2021; 121 Del Rosario (10.1016/j.cpc.2024.109358_bib0042) 2020; 153 Sutton (10.1016/j.cpc.2024.109358_bib0004) 2015; 121 Asthagiri (10.1016/j.cpc.2024.109358_bib0071) 2013 Raimondeau (10.1016/j.cpc.2024.109358_bib0017) 2003; 42 Sutton (10.1016/j.cpc.2024.109358_bib0001) 2016; 8 Wright (10.1016/j.cpc.2024.109358_bib0089) 1996 Kee (10.1016/j.cpc.2024.109358_bib0091) 1986 Xu (10.1016/j.cpc.2024.109358_bib0048) 2022; 10 Akaike (10.1016/j.cpc.2024.109358_bib0095) 1974; 19 Savara (10.1016/j.cpc.2024.109358_bib0032) 2020; 12 Burger (10.1016/j.cpc.2024.109358_bib0040) 2020; 583 10.1016/j.cpc.2024.109358_bib0046 Garnett (10.1016/j.cpc.2024.109358_bib0052) 2023 Weng (10.1016/j.cpc.2024.109358_bib0058) 2022; 126 Virtanen (10.1016/j.cpc.2024.109358_bib0049) 2020; 17 Filot (10.1016/j.cpc.2024.109358_bib0070) 2018 Walker (10.1016/j.cpc.2024.109358_bib0033) 2020; 12 Grabow (10.1016/j.cpc.2024.109358_bib0005) 2008; 112 Mhadeshwar (10.1016/j.cpc.2024.109358_bib0019) 2007; 46 Díaz-Ibarra (10.1016/j.cpc.2024.109358_bib0084) 2022; 26 Campbell (10.1016/j.cpc.2024.109358_bib0082) 2017; 7 Liang (10.1016/j.cpc.2024.109358_bib0056) 2021; 7 Herman (10.1016/j.cpc.2024.109358_bib0078) 2017; 2 Lym (10.1016/j.cpc.2024.109358_bib0098) 2020; 247 Deutschmann (10.1016/j.cpc.2024.109358_bib0008) 2013 10.1016/j.cpc.2024.109358_bib0038 McBride (10.1016/j.cpc.2024.109358_bib0092) 2002 Schwaab (10.1016/j.cpc.2024.109358_bib0024) 2008; 63 Nicholson (10.1016/j.cpc.2024.109358_bib0027) 2018; 10 Wang (10.1016/j.cpc.2024.109358_bib0045) 2021; 61 Raissi (10.1016/j.cpc.2024.109358_bib0057) 2019; 378 Liu (10.1016/j.cpc.2024.109358_bib0097) 1989; 45 Biegler (10.1016/j.cpc.2024.109358_bib0022) 1986; 32 Aghalayam (10.1016/j.cpc.2024.109358_bib0014) 2000; 46 Samant (10.1016/j.cpc.2024.109358_bib0079) 2005; 123 Salciccioli (10.1016/j.cpc.2024.109358_bib0073) 2011; 66 10.1016/j.cpc.2024.109358_bib0026 Saltelli (10.1016/j.cpc.2024.109358_bib0076) 2002; 145  | 
    
| References_xml | – volume: 247 year: 2020 ident: bib0098 article-title: A Python Multiscale Thermochemistry Toolbox (pMuTT) for thermochemical and kinetic parameter estimation publication-title: Computer Physics Communications – volume: 58 start-page: 368 year: 1954 end-page: 372 ident: bib0093 article-title: A method for evaluating and correlating thermodynamic da ta publication-title: The Journal of Physical Chemistry – volume: 121 start-page: 1049 year: 2020 end-page: 1076 ident: bib0067 article-title: Microkinetic modeling: a tool for rational catalyst design publication-title: Chemical Reviews – volume: 121 start-page: 25847 year: 2017 end-page: 25863 ident: bib0010 article-title: Sequential-Optimization-Based Framework for Robust Modeling and Design of Heterogeneous Catalytic Systems publication-title: The Journal of Physical Chemistry C – year: 2013 ident: bib0008 article-title: Modeling and simulation of heterogeneous catalytic reactions: from the molecular process to the technical system – volume: 8 start-page: e1372 year: 2018 ident: bib0069 article-title: Microkinetic modeling in homogeneous catalysis publication-title: WIREs Computational Molecular Science – volume: 121 start-page: 190 year: 2015 end-page: 199 ident: bib0004 article-title: Building large microkinetic models with first-principles' accuracy at reduced computational cost publication-title: Chem. Eng. Sci. – volume: 63 start-page: 1542 year: 2008 end-page: 1552 ident: bib0024 article-title: Nonlinear parameter estimation through particle swarm optimization publication-title: Chemical Engineering Science – volume: 45 start-page: 503 year: 1989 end-page: 528 ident: bib0097 article-title: On the limited memory BFGS method for large scale optimization publication-title: Mathematical Programming – volume: 106 start-page: 25 year: 2006 end-page: 57 ident: bib0030 article-title: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming publication-title: Mathematical programming – reference: P.I. Frazier, A Tutorial on Bayesian Optimization. – volume: 8 start-page: 331 year: 2016 end-page: 337 ident: bib0001 article-title: Effects of correlated parameters and uncertainty in electronic-structure-based chemical kinetic modelling publication-title: Nat Chem – volume: 53 start-page: 64 year: 2010 end-page: 76 ident: bib0029 article-title: A Microkinetic Vision on High-Throughput Catalyst Formulation and Optimization: Development of an Appropriate Software Tool publication-title: Topics in Catalysis – volume: 125 start-page: 8098 year: 2021 end-page: 8106 ident: bib0060 article-title: Stiff-PINN: Physics-Informed Neural Network for Stiff Chemical Kinetics publication-title: The Journal of Physical Chemistry A – start-page: 101 year: 2006 end-page: 134 ident: bib0096 article-title: Conjugate gradient methods publication-title: Numerical optimization – volume: 237 year: 2021 ident: bib0009 article-title: Experimental data-driven reaction network identification and uncertainty quantification of CO2-assisted ethane dehydrogenation over Ga2O3/Al2O3 publication-title: Chemical Engineering Science – volume: 7 start-page: 188 year: 2021 ident: bib0056 article-title: Benchmarking the performance of Bayesian optimization across multiple experimental materials science domains publication-title: npj Computational Materials – volume: 90 start-page: 3 year: 2002 end-page: 23 ident: bib0006 article-title: Recent developments on multiscale, hierarchical modeling of chemical reactors publication-title: Chemical Engineering Journal – volume: 247 year: 2020 ident: bib0064 article-title: A Python Multiscale Thermochemistry Toolbox (pMuTT) for thermochemical and kinetic parameter estimation publication-title: Computer Physics Communications – volume: 8 start-page: eabl6576 year: 2022 ident: bib0090 article-title: Catalytic resonance of ammonia synthesis by simulated dynamic ruthenium crystal strain publication-title: Science Advances – volume: 63 start-page: 3377 year: 2023 end-page: 3391 ident: bib0035 article-title: OpenMKM: An Open-Source C++ Multiscale Modeling Simulator for Homogeneous and Heterogeneous Catalytic Reactions publication-title: Journal of Chemical Information and Modeling – volume: 7 start-page: 308 year: 1965 end-page: 313 ident: bib0088 article-title: A Simplex Method for Function Minimization publication-title: The Computer Journal – volume: 265 year: 2021 ident: bib0034 article-title: Chemical Kinetics Bayesian Inference Toolbox (CKBIT) publication-title: Computer Physics Communications – volume: 46 start-page: 2017 year: 2000 end-page: 2029 ident: bib0014 article-title: Construction and optimization of complex surface-reaction mechanisms publication-title: AIChE Journal – volume: 12 start-page: 5385 year: 2020 end-page: 5400 ident: bib0032 article-title: CheKiPEUQ Intro 1: Bayesian Parameter Estimation Considering Uncertainty or Error from both Experiments and Theory** publication-title: ChemCatChem – volume: 28 start-page: 1331 year: 2000 end-page: 1339 ident: bib0015 article-title: A detailed surface reaction mechanism for CO oxidation on Pt publication-title: Proceedings of the Combustion Institute – year: 1989 ident: bib0036 article-title: Sandia National Laboratories Report, SAND89-8009 – reference: W.E. Stewart, M. Caracotsios, Athena Visual Studio. – volume: 153 year: 2020 ident: bib0043 article-title: Multi-fidelity machine-learning with uncertainty quantification and Bayesian optimization for materials design: Application to ternary random alloys publication-title: The Journal of Chemical Physics – volume: 65 start-page: 240 year: 2010 end-page: 246 ident: bib0007 article-title: High throughput multiscale modeling for design of experiments, catalysts, and reactors: Application to hydrogen production from ammonia publication-title: Chemical Engineering Science – volume: 2 start-page: 97 year: 2017 ident: bib0078 article-title: SALib: An open-source Python library for Sensitivity Analysis publication-title: The Journal of Open Source Software – volume: 125 start-page: 18187 year: 2021 end-page: 18196 ident: bib0002 article-title: Uncertainty Quantification and Error Propagation in the Enthalpy and Entropy of Surface Reactions Arising from a Single DFT Functional publication-title: The Journal of Physical Chemistry C – volume: 182 start-page: 978 year: 2011 end-page: 988 ident: bib0077 article-title: From screening to quantitative sensitivity analysis. A unified approach publication-title: Computer Physics Communications – year: 1986 ident: bib0091 publication-title: A Fortran computer code package for the evaluation of gas-phase, multicomponent transport properties – reference: (accessed 08/01/2023). – volume: 5 start-page: 2134 year: 2020 end-page: 2147 ident: bib0039 article-title: Active learning-driven quantitative synthesis–structure–property relations for improving performance and revealing active sites of nitrogen-doped carbon for the hydrogen evolution reaction publication-title: Reaction Chemistry & Engineering – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: bib0099 article-title: Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces publication-title: Journal of Global Optimization – volume: 26 start-page: 201 year: 2022 end-page: 227 ident: bib0084 article-title: Using computational singular perturbation as a diagnostic tool in ODE and DAE systems: a case study in heterogeneous catalysis publication-title: Combustion Theory and Modelling – volume: 23 start-page: 1111 year: 1991 end-page: 1128 ident: bib0037 article-title: Surface chemkin: A general formalism and software for analyzing heterogeneous chemical kinetics at a gas-surface interface publication-title: International Journal of Chemical Kinetics – volume: 1 start-page: 365 year: 2011 end-page: 384 ident: bib0011 article-title: Mechanism of Methanol Synthesis on Cu through CO2 and CO Hydrogenation publication-title: ACS Catalysis – volume: 11 start-page: 8517 year: 2020 end-page: 8532 ident: bib0044 article-title: Autonomous intelligent agents for accelerated materials discovery publication-title: Chemical Science – volume: 11 year: 2020 ident: bib0066 article-title: Reaction Network Viewer (ReNView): An open-source framework for reaction path visualization of chemical reaction systems publication-title: SoftwareX – start-page: 1377 year: 2020 end-page: 1404 ident: bib0068 article-title: Microkinetic Modeling of Surface Catalysis publication-title: Handbook of Materials Modeling: Applications: Current and Emerging Materials – volume: 19 start-page: 716 year: 1974 end-page: 723 ident: bib0095 article-title: A new look at the statistical model identification publication-title: IEEE transactions on automatic control – volume: 61 start-page: 5312 year: 2021 end-page: 5319 ident: bib0045 article-title: NEXTorch: A Design and Bayesian Optimization Toolkit for Chemical Sciences and Engineering publication-title: J Chem Inf Model – volume: 181 year: 2024 ident: bib0062 article-title: Maximum-likelihood estimators in physics-informed neural networks for high-dimensional inverse problems publication-title: Computers & Chemical Engineering – year: 2005 ident: bib0063 article-title: Gaussian Processes for Machine Learning – reference: D. Goodwin, H. Moffat, R. Speth, Cantera: An Object-oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes; (initial developer: D. Goodwin); – volume: 126 start-page: 8534 year: 2022 end-page: 8543 ident: bib0058 article-title: Multiscale Physics-Informed Neural Networks for Stiff Chemical Kinetics publication-title: The Journal of Physical Chemistry A – volume: 42 start-page: 1174 year: 2003 end-page: 1183 ident: bib0017 article-title: Parameter Optimization of Molecular Models: Application to Surface Kinetics publication-title: Industrial & Engineering Chemistry Research – volume: 583 start-page: 237 year: 2020 end-page: 241 ident: bib0040 article-title: A mobile robotic chemist publication-title: Nature – volume: 30 start-page: 1712 year: 2006 end-page: 1724 ident: bib0018 article-title: Hierarchical multiscale model-based design of experiments, catalysts, and reactors for fuel processing publication-title: Computers & Chemical Engineering – volume: 32 start-page: 29 year: 1986 end-page: 45 ident: bib0022 article-title: Nonlinear parameter estimation: A case study comparison publication-title: AIChE Journal – reference: S. Kasiraju, petBOA - Website Documentation, – volume: 1 year: 1998 ident: bib0094 publication-title: NIST-JANAF Thermochemical Tables – start-page: 191 year: 1996 end-page: 208 ident: bib0089 article-title: Direct search methods: Once scorned, now respectable publication-title: Pitman Research Notes in Mathematics Series – volume: 9 start-page: 6624 year: 2019 end-page: 6647 ident: bib0012 article-title: Progress in Accurate Chemical Kinetic Modeling, Simulations, and Parameter Estimation for Heterogeneous Catalysis publication-title: ACS Catalysis – volume: 590 start-page: 89 year: 2021 end-page: 96 ident: bib0041 article-title: Bayesian reaction optimization as a tool for chemical synthesis publication-title: Nature – year: 2023 ident: bib0052 article-title: Bayesian optimization – year: 2013 ident: bib0071 article-title: Computational catalysis – volume: 53 start-page: 1893 year: 2020 end-page: 1904 ident: bib0025 article-title: Combining Computational Modeling with Reaction Kinetics Experiments for Elucidating the In Situ Nature of the Active Site in Catalysis publication-title: Accounts of Chemical Research – volume: 417 year: 2023 ident: bib0061 article-title: Kinetics-informed neural networks publication-title: Catalysis Today – volume: 378 start-page: 686 year: 2019 end-page: 707 ident: bib0057 article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: Journal of Computational Physics – reference: M.E. Coltrin, R.J. Kee, F.M. Rupley, E Meeks, SURFACE CHEMKIN-III: A Fortran package for analyzing heterogeneous chemical kinetics at a solid-surface - gas-phase interface, OSTI Technical Report, United States, 1996. – volume: 22 start-page: S103 year: 1998 end-page: S110 ident: bib0023 article-title: A hybrid genetic algorithm for the estimation of parameters in detailed kinetic models publication-title: Computers & Chemical Engineering – volume: 22 start-page: 3067 year: 2006 end-page: 3074 ident: bib0028 article-title: COPASI—a complex pathway simulator publication-title: Bioinformatics – volume: 66 start-page: 4319 year: 2011 end-page: 4355 ident: bib0073 article-title: A review of multiscale modeling of metal-catalyzed reactions: Mechanism development for complexity and emergent behavior publication-title: Chemical Engineering Science – reference: 2018. – volume: 17 start-page: 261 year: 2020 end-page: 272 ident: bib0049 article-title: SciPy 1.0: fundamental algorithms for scientific computing in Python publication-title: Nature Methods – volume: 12 start-page: 5401 year: 2020 end-page: 5410 ident: bib0033 article-title: CheKiPEUQ Intro 2: Harnessing Uncertainties from Data Sets, Bayesian Design of Experiments in Chemical Kinetics** publication-title: ChemCatChem – volume: 10 start-page: 1509 year: 2022 end-page: 1523 ident: bib0048 article-title: Mechanistic Study of 1,2-Dichloroethane Hydrodechlorination on Cu-Rich Pt–Cu Alloys: Combining Reaction Kinetics Experiments with DFT Calculations and Microkinetic Modeling publication-title: ACS Sustainable Chemistry & Engineering – volume: 7 start-page: 2770 year: 2017 end-page: 2779 ident: bib0082 article-title: The Degree of Rate Control: A Powerful Tool for Catalysis Research publication-title: ACS Catalysis – volume: 30 start-page: 1 year: 2005 end-page: 61 ident: bib0075 article-title: A review of multiscale analysis: Examples from systems biology, materials engineering, and other fluid-surface interacting systems publication-title: Adv. Chem. Eng. – volume: 103 start-page: 8101 year: 1999 end-page: 8107 ident: bib0016 article-title: A Generalized Approach for Predicting Coverage-Dependent Reaction Parameters of Complex Surface Reactions: Application to H2 Oxidation over Platinum publication-title: The Journal of Physical Chemistry A – volume: 10 start-page: 187 year: 2018 end-page: 223 ident: bib0027 article-title: pyomo. dae: A modeling and automatic discretization framework for optimization with differential and algebraic equations publication-title: Mathematical Programming Computation – volume: 161 start-page: 493 year: 2021 end-page: 503 ident: bib0074 article-title: High-dimensional Bayesian optimization with sparse axis-aligned subspaces publication-title: Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence – reference: , 2014. – volume: 153 year: 2020 ident: bib0042 article-title: Assessing the frontier: Active learning, model accuracy, and multi-objective candidate discovery and optimization publication-title: The Journal of Chemical Physics – volume: 38 start-page: 641 year: 1992 end-page: 650 ident: bib0021 article-title: Parameter estimation from multiresponse data publication-title: AIChE Journal – reference: M. Balandat, B. Karrer; D.R. Jiang, S. Daulton, B. Letham, A.G. Wilson, E. Bakshy, BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization. arXiv, 2019, arXiv: – volume: 121 start-page: 1007 year: 2021 end-page: 1048 ident: bib0072 article-title: Computational Methods in Heterogeneous Catalysis publication-title: Chemical Reviews – reference: PyPI - The Python Package Index. – volume: 22 start-page: 931 year: 1989 end-page: 941 ident: bib0083 article-title: Understanding complex chemical kinetics with computational singular perturbation publication-title: Symposium (International) on Combustion – volume: 123 year: 2005 ident: bib0079 article-title: Overcoming stiffness in stochastic simulation stemming from partial equilibrium: a multiscale Monte Carlo algorithm publication-title: J Chem Phys – volume: 112 start-page: 4608 year: 2008 end-page: 4617 ident: bib0005 article-title: Mechanism of the Water Gas Shift Reaction on Pt: First Principles, Experiments, and Microkinetic Modeling publication-title: The Journal of Physical Chemistry C – volume: 60 start-page: 1336 year: 2014 end-page: 1346 ident: bib0020 article-title: Advanced solution methods for microkinetic models of catalytic reactions: A methanol synthesis case study publication-title: AIChE Journal – volume: 32 year: 2022 ident: bib0059 article-title: Physics-informed neural networks and functional interpolation for stiff chemical kinetics publication-title: Chaos: An Interdisciplinary Journal of Nonlinear Science – start-page: 1 year: 2021 end-page: 16 ident: bib0053 article-title: A Gentle Introduction to Bayesian Optimization publication-title: 2021 Winter Simulation Conference (WSC), 12-15 Dec. 2021 – volume: 3 start-page: 175 year: 1960 end-page: 184 ident: bib0047 article-title: An Automatic Method for Finding the Greatest or Least Value of a Function publication-title: The Computer Journal – volume: 47 start-page: 6555 year: 2008 end-page: 6567 ident: bib0013 article-title: Multiscale Model and Informatics-Based Optimal Design of Experiments: Application to the Catalytic Decomposition of Ammonia on Ruthenium publication-title: Industrial & Engineering Chemistry Research – volume: 101 start-page: 1023 year: 2018 end-page: 1033 ident: bib0085 article-title: Enhancements of the G-Scheme Framework publication-title: Flow, Turbulence and Combustion – year: 2018 ident: bib0070 publication-title: Introduction to microkinetic modeling – volume: 145 start-page: 280 year: 2002 end-page: 297 ident: bib0076 article-title: Making best use of model evaluations to compute sensitivity indices publication-title: Computer Physics Communications – volume: 105 start-page: 162 year: 2005 end-page: 172 ident: bib0081 article-title: Is the water–gas shift reaction on Pt simple? publication-title: Catalysis Today – volume: 55 year: 2023 ident: bib0055 article-title: Recent Advances in Bayesian Optimization publication-title: ACM Comput. Surv. – volume: 7 start-page: 194 year: 2021 ident: bib0054 article-title: Bayesian optimization with adaptive surrogate models for automated experimental design publication-title: npj Computational Materials – reference: . – volume: 48 start-page: 5255 year: 2009 end-page: 5265 ident: bib0003 article-title: Assessment of Overall Rate Expressions and Multiscale, Microkinetic Model Uniqueness via Experimental Data Injection: Ammonia Decomposition on Ru/γ-Al2O3 for Hydrogen Production publication-title: Industrial & Engineering Chemistry Research – volume: 46 start-page: 5310 year: 2007 end-page: 5324 ident: bib0019 article-title: A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum publication-title: Industrial & Engineering Chemistry Research – volume: 104 start-page: 148 year: 2015 end-page: 175 ident: bib0051 article-title: Taking the human out of the loop: A review of Bayesian optimization publication-title: Proceedings of the IEEE – volume: 151 year: 2019 ident: bib0031 article-title: Micki: A python-based object-oriented microkinetic modeling code publication-title: J Chem Phys – year: 2002 ident: bib0092 publication-title: NASA Glenn coefficients for calculating thermodynamic properties of individual species – ident: 10.1016/j.cpc.2024.109358_bib0050 doi: 10.1287/educ.2018.0188 – year: 2005 ident: 10.1016/j.cpc.2024.109358_bib0063 – volume: 17 start-page: 261 issue: 3 year: 2020 ident: 10.1016/j.cpc.2024.109358_bib0049 article-title: SciPy 1.0: fundamental algorithms for scientific computing in Python publication-title: Nature Methods doi: 10.1038/s41592-019-0686-2 – volume: 10 start-page: 187 year: 2018 ident: 10.1016/j.cpc.2024.109358_bib0027 article-title: pyomo. dae: A modeling and automatic discretization framework for optimization with differential and algebraic equations publication-title: Mathematical Programming Computation doi: 10.1007/s12532-017-0127-0 – year: 2002 ident: 10.1016/j.cpc.2024.109358_bib0092 – volume: 8 start-page: e1372 issue: 6 year: 2018 ident: 10.1016/j.cpc.2024.109358_bib0069 article-title: Microkinetic modeling in homogeneous catalysis publication-title: WIREs Computational Molecular Science doi: 10.1002/wcms.1372 – volume: 237 year: 2021 ident: 10.1016/j.cpc.2024.109358_bib0009 article-title: Experimental data-driven reaction network identification and uncertainty quantification of CO2-assisted ethane dehydrogenation over Ga2O3/Al2O3 publication-title: Chemical Engineering Science doi: 10.1016/j.ces.2021.116534 – volume: 65 start-page: 240 issue: 1 year: 2010 ident: 10.1016/j.cpc.2024.109358_bib0007 article-title: High throughput multiscale modeling for design of experiments, catalysts, and reactors: Application to hydrogen production from ammonia publication-title: Chemical Engineering Science doi: 10.1016/j.ces.2009.05.054 – volume: 1 year: 1998 ident: 10.1016/j.cpc.2024.109358_bib0094 – volume: 378 start-page: 686 year: 2019 ident: 10.1016/j.cpc.2024.109358_bib0057 article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: Journal of Computational Physics doi: 10.1016/j.jcp.2018.10.045 – volume: 7 start-page: 2770 issue: 4 year: 2017 ident: 10.1016/j.cpc.2024.109358_bib0082 article-title: The Degree of Rate Control: A Powerful Tool for Catalysis Research publication-title: ACS Catalysis doi: 10.1021/acscatal.7b00115 – volume: 151 issue: 1 year: 2019 ident: 10.1016/j.cpc.2024.109358_bib0031 article-title: Micki: A python-based object-oriented microkinetic modeling code publication-title: J Chem Phys doi: 10.1063/1.5109116 – volume: 42 start-page: 1174 issue: 6 year: 2003 ident: 10.1016/j.cpc.2024.109358_bib0017 article-title: Parameter Optimization of Molecular Models: Application to Surface Kinetics publication-title: Industrial & Engineering Chemistry Research doi: 10.1021/ie0202470 – volume: 32 issue: 6 year: 2022 ident: 10.1016/j.cpc.2024.109358_bib0059 article-title: Physics-informed neural networks and functional interpolation for stiff chemical kinetics publication-title: Chaos: An Interdisciplinary Journal of Nonlinear Science doi: 10.1063/5.0086649 – ident: 10.1016/j.cpc.2024.109358_bib0086 – start-page: 1377 year: 2020 ident: 10.1016/j.cpc.2024.109358_bib0068 article-title: Microkinetic Modeling of Surface Catalysis – volume: 121 start-page: 1049 issue: 2 year: 2020 ident: 10.1016/j.cpc.2024.109358_bib0067 article-title: Microkinetic modeling: a tool for rational catalyst design publication-title: Chemical Reviews doi: 10.1021/acs.chemrev.0c00394 – volume: 53 start-page: 64 issue: 1 year: 2010 ident: 10.1016/j.cpc.2024.109358_bib0029 article-title: A Microkinetic Vision on High-Throughput Catalyst Formulation and Optimization: Development of an Appropriate Software Tool publication-title: Topics in Catalysis doi: 10.1007/s11244-009-9432-9 – volume: 153 issue: 7 year: 2020 ident: 10.1016/j.cpc.2024.109358_bib0043 article-title: Multi-fidelity machine-learning with uncertainty quantification and Bayesian optimization for materials design: Application to ternary random alloys publication-title: The Journal of Chemical Physics doi: 10.1063/5.0015672 – volume: 3 start-page: 175 issue: 3 year: 1960 ident: 10.1016/j.cpc.2024.109358_bib0047 article-title: An Automatic Method for Finding the Greatest or Least Value of a Function publication-title: The Computer Journal doi: 10.1093/comjnl/3.3.175 – volume: 7 start-page: 188 issue: 1 year: 2021 ident: 10.1016/j.cpc.2024.109358_bib0056 article-title: Benchmarking the performance of Bayesian optimization across multiple experimental materials science domains publication-title: npj Computational Materials doi: 10.1038/s41524-021-00656-9 – volume: 125 start-page: 18187 issue: 33 year: 2021 ident: 10.1016/j.cpc.2024.109358_bib0002 article-title: Uncertainty Quantification and Error Propagation in the Enthalpy and Entropy of Surface Reactions Arising from a Single DFT Functional publication-title: The Journal of Physical Chemistry C doi: 10.1021/acs.jpcc.1c04754 – volume: 417 year: 2023 ident: 10.1016/j.cpc.2024.109358_bib0061 article-title: Kinetics-informed neural networks publication-title: Catalysis Today doi: 10.1016/j.cattod.2022.04.002 – volume: 161 start-page: 493 year: 2021 ident: 10.1016/j.cpc.2024.109358_bib0074 article-title: High-dimensional Bayesian optimization with sparse axis-aligned subspaces – volume: 22 start-page: 931 issue: 1 year: 1989 ident: 10.1016/j.cpc.2024.109358_bib0083 article-title: Understanding complex chemical kinetics with computational singular perturbation publication-title: Symposium (International) on Combustion doi: 10.1016/S0082-0784(89)80102-X – volume: 247 year: 2020 ident: 10.1016/j.cpc.2024.109358_bib0064 article-title: A Python Multiscale Thermochemistry Toolbox (pMuTT) for thermochemical and kinetic parameter estimation publication-title: Computer Physics Communications doi: 10.1016/j.cpc.2019.106864 – volume: 104 start-page: 148 issue: 1 year: 2015 ident: 10.1016/j.cpc.2024.109358_bib0051 article-title: Taking the human out of the loop: A review of Bayesian optimization publication-title: Proceedings of the IEEE doi: 10.1109/JPROC.2015.2494218 – volume: 12 start-page: 5401 issue: 21 year: 2020 ident: 10.1016/j.cpc.2024.109358_bib0033 article-title: CheKiPEUQ Intro 2: Harnessing Uncertainties from Data Sets, Bayesian Design of Experiments in Chemical Kinetics** publication-title: ChemCatChem doi: 10.1002/cctc.202000976 – ident: 10.1016/j.cpc.2024.109358_bib0065 doi: 10.2172/481906 – volume: 66 start-page: 4319 issue: 19 year: 2011 ident: 10.1016/j.cpc.2024.109358_bib0073 article-title: A review of multiscale modeling of metal-catalyzed reactions: Mechanism development for complexity and emergent behavior publication-title: Chemical Engineering Science doi: 10.1016/j.ces.2011.05.050 – volume: 60 start-page: 1336 issue: 4 year: 2014 ident: 10.1016/j.cpc.2024.109358_bib0020 article-title: Advanced solution methods for microkinetic models of catalytic reactions: A methanol synthesis case study publication-title: AIChE Journal doi: 10.1002/aic.14322 – start-page: 191 year: 1996 ident: 10.1016/j.cpc.2024.109358_bib0089 article-title: Direct search methods: Once scorned, now respectable publication-title: Pitman Research Notes in Mathematics Series – volume: 247 year: 2020 ident: 10.1016/j.cpc.2024.109358_bib0098 article-title: A Python Multiscale Thermochemistry Toolbox (pMuTT) for thermochemical and kinetic parameter estimation publication-title: Computer Physics Communications doi: 10.1016/j.cpc.2019.106864 – volume: 112 start-page: 4608 issue: 12 year: 2008 ident: 10.1016/j.cpc.2024.109358_bib0005 article-title: Mechanism of the Water Gas Shift Reaction on Pt: First Principles, Experiments, and Microkinetic Modeling publication-title: The Journal of Physical Chemistry C doi: 10.1021/jp7099702 – volume: 11 year: 2020 ident: 10.1016/j.cpc.2024.109358_bib0066 article-title: Reaction Network Viewer (ReNView): An open-source framework for reaction path visualization of chemical reaction systems publication-title: SoftwareX doi: 10.1016/j.softx.2020.100442 – volume: 7 start-page: 308 issue: 4 year: 1965 ident: 10.1016/j.cpc.2024.109358_bib0088 article-title: A Simplex Method for Function Minimization publication-title: The Computer Journal doi: 10.1093/comjnl/7.4.308 – volume: 63 start-page: 1542 issue: 6 year: 2008 ident: 10.1016/j.cpc.2024.109358_bib0024 article-title: Nonlinear parameter estimation through particle swarm optimization publication-title: Chemical Engineering Science doi: 10.1016/j.ces.2007.11.024 – volume: 46 start-page: 2017 issue: 10 year: 2000 ident: 10.1016/j.cpc.2024.109358_bib0014 article-title: Construction and optimization of complex surface-reaction mechanisms publication-title: AIChE Journal doi: 10.1002/aic.690461013 – volume: 26 start-page: 201 issue: 2 year: 2022 ident: 10.1016/j.cpc.2024.109358_bib0084 article-title: Using computational singular perturbation as a diagnostic tool in ODE and DAE systems: a case study in heterogeneous catalysis publication-title: Combustion Theory and Modelling doi: 10.1080/13647830.2021.2002417 – volume: 61 start-page: 5312 issue: 11 year: 2021 ident: 10.1016/j.cpc.2024.109358_bib0045 article-title: NEXTorch: A Design and Bayesian Optimization Toolkit for Chemical Sciences and Engineering publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.1c00637 – volume: 590 start-page: 89 issue: 7844 year: 2021 ident: 10.1016/j.cpc.2024.109358_bib0041 article-title: Bayesian reaction optimization as a tool for chemical synthesis publication-title: Nature doi: 10.1038/s41586-021-03213-y – start-page: 101 year: 2006 ident: 10.1016/j.cpc.2024.109358_bib0096 article-title: Conjugate gradient methods publication-title: Numerical optimization doi: 10.1007/978-0-387-40065-5_5 – volume: 19 start-page: 716 issue: 6 year: 1974 ident: 10.1016/j.cpc.2024.109358_bib0095 article-title: A new look at the statistical model identification publication-title: IEEE transactions on automatic control doi: 10.1109/TAC.1974.1100705 – volume: 9 start-page: 6624 issue: 8 year: 2019 ident: 10.1016/j.cpc.2024.109358_bib0012 article-title: Progress in Accurate Chemical Kinetic Modeling, Simulations, and Parameter Estimation for Heterogeneous Catalysis publication-title: ACS Catalysis doi: 10.1021/acscatal.9b01234 – year: 2013 ident: 10.1016/j.cpc.2024.109358_bib0008 – volume: 32 start-page: 29 issue: 1 year: 1986 ident: 10.1016/j.cpc.2024.109358_bib0022 article-title: Nonlinear parameter estimation: A case study comparison publication-title: AIChE Journal doi: 10.1002/aic.690320105 – volume: 8 start-page: eabl6576 issue: 4 year: 2022 ident: 10.1016/j.cpc.2024.109358_bib0090 article-title: Catalytic resonance of ammonia synthesis by simulated dynamic ruthenium crystal strain publication-title: Science Advances doi: 10.1126/sciadv.abl6576 – volume: 47 start-page: 6555 issue: 17 year: 2008 ident: 10.1016/j.cpc.2024.109358_bib0013 article-title: Multiscale Model and Informatics-Based Optimal Design of Experiments: Application to the Catalytic Decomposition of Ammonia on Ruthenium publication-title: Industrial & Engineering Chemistry Research doi: 10.1021/ie800343s – volume: 123 issue: 14 year: 2005 ident: 10.1016/j.cpc.2024.109358_bib0079 article-title: Overcoming stiffness in stochastic simulation stemming from partial equilibrium: a multiscale Monte Carlo algorithm publication-title: J Chem Phys doi: 10.1063/1.2046628 – ident: 10.1016/j.cpc.2024.109358_bib0087 – volume: 121 start-page: 190 year: 2015 ident: 10.1016/j.cpc.2024.109358_bib0004 article-title: Building large microkinetic models with first-principles' accuracy at reduced computational cost publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2014.09.011 – ident: 10.1016/j.cpc.2024.109358_bib0026 – volume: 23 start-page: 1111 issue: 12 year: 1991 ident: 10.1016/j.cpc.2024.109358_bib0037 article-title: Surface chemkin: A general formalism and software for analyzing heterogeneous chemical kinetics at a gas-surface interface publication-title: International Journal of Chemical Kinetics doi: 10.1002/kin.550231205 – volume: 63 start-page: 3377 issue: 11 year: 2023 ident: 10.1016/j.cpc.2024.109358_bib0035 article-title: OpenMKM: An Open-Source C++ Multiscale Modeling Simulator for Homogeneous and Heterogeneous Catalytic Reactions publication-title: Journal of Chemical Information and Modeling doi: 10.1021/acs.jcim.3c00088 – volume: 1 start-page: 365 issue: 4 year: 2011 ident: 10.1016/j.cpc.2024.109358_bib0011 article-title: Mechanism of Methanol Synthesis on Cu through CO2 and CO Hydrogenation publication-title: ACS Catalysis doi: 10.1021/cs200055d – volume: 182 start-page: 978 issue: 4 year: 2011 ident: 10.1016/j.cpc.2024.109358_bib0077 article-title: From screening to quantitative sensitivity analysis. A unified approach publication-title: Computer Physics Communications doi: 10.1016/j.cpc.2010.12.039 – year: 2018 ident: 10.1016/j.cpc.2024.109358_bib0070 – ident: 10.1016/j.cpc.2024.109358_bib0038 – year: 2013 ident: 10.1016/j.cpc.2024.109358_bib0071 – volume: 28 start-page: 1331 issue: 1 year: 2000 ident: 10.1016/j.cpc.2024.109358_bib0015 article-title: A detailed surface reaction mechanism for CO oxidation on Pt publication-title: Proceedings of the Combustion Institute doi: 10.1016/S0082-0784(00)80347-1 – volume: 121 start-page: 1007 issue: 2 year: 2021 ident: 10.1016/j.cpc.2024.109358_bib0072 article-title: Computational Methods in Heterogeneous Catalysis publication-title: Chemical Reviews doi: 10.1021/acs.chemrev.0c01060 – volume: 10 start-page: 1509 issue: 4 year: 2022 ident: 10.1016/j.cpc.2024.109358_bib0048 article-title: Mechanistic Study of 1,2-Dichloroethane Hydrodechlorination on Cu-Rich Pt–Cu Alloys: Combining Reaction Kinetics Experiments with DFT Calculations and Microkinetic Modeling publication-title: ACS Sustainable Chemistry & Engineering doi: 10.1021/acssuschemeng.1c06899 – volume: 38 start-page: 641 issue: 5 year: 1992 ident: 10.1016/j.cpc.2024.109358_bib0021 article-title: Parameter estimation from multiresponse data publication-title: AIChE Journal doi: 10.1002/aic.690380502 – volume: 55 issue: 13s year: 2023 ident: 10.1016/j.cpc.2024.109358_bib0055 article-title: Recent Advances in Bayesian Optimization publication-title: ACM Comput. Surv. doi: 10.1145/3582078 – volume: 101 start-page: 1023 issue: 4 year: 2018 ident: 10.1016/j.cpc.2024.109358_bib0085 article-title: Enhancements of the G-Scheme Framework publication-title: Flow, Turbulence and Combustion doi: 10.1007/s10494-018-9942-2 – year: 1986 ident: 10.1016/j.cpc.2024.109358_bib0091 – volume: 22 start-page: 3067 issue: 24 year: 2006 ident: 10.1016/j.cpc.2024.109358_bib0028 article-title: COPASI—a complex pathway simulator publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl485 – volume: 12 start-page: 5385 issue: 21 year: 2020 ident: 10.1016/j.cpc.2024.109358_bib0032 article-title: CheKiPEUQ Intro 1: Bayesian Parameter Estimation Considering Uncertainty or Error from both Experiments and Theory** publication-title: ChemCatChem doi: 10.1002/cctc.202000953 – volume: 22 start-page: S103 year: 1998 ident: 10.1016/j.cpc.2024.109358_bib0023 article-title: A hybrid genetic algorithm for the estimation of parameters in detailed kinetic models publication-title: Computers & Chemical Engineering doi: 10.1016/S0098-1354(98)00043-X – volume: 90 start-page: 3 issue: 1 year: 2002 ident: 10.1016/j.cpc.2024.109358_bib0006 article-title: Recent developments on multiscale, hierarchical modeling of chemical reactors publication-title: Chemical Engineering Journal doi: 10.1016/S1385-8947(02)00065-7 – volume: 53 start-page: 1893 issue: 9 year: 2020 ident: 10.1016/j.cpc.2024.109358_bib0025 article-title: Combining Computational Modeling with Reaction Kinetics Experiments for Elucidating the In Situ Nature of the Active Site in Catalysis publication-title: Accounts of Chemical Research doi: 10.1021/acs.accounts.0c00340 – volume: 125 start-page: 8098 issue: 36 year: 2021 ident: 10.1016/j.cpc.2024.109358_bib0060 article-title: Stiff-PINN: Physics-Informed Neural Network for Stiff Chemical Kinetics publication-title: The Journal of Physical Chemistry A doi: 10.1021/acs.jpca.1c05102 – volume: 106 start-page: 25 year: 2006 ident: 10.1016/j.cpc.2024.109358_bib0030 article-title: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming publication-title: Mathematical programming doi: 10.1007/s10107-004-0559-y – volume: 103 start-page: 8101 issue: 40 year: 1999 ident: 10.1016/j.cpc.2024.109358_bib0016 article-title: A Generalized Approach for Predicting Coverage-Dependent Reaction Parameters of Complex Surface Reactions: Application to H2 Oxidation over Platinum publication-title: The Journal of Physical Chemistry A doi: 10.1021/jp9916485 – volume: 7 start-page: 194 issue: 1 year: 2021 ident: 10.1016/j.cpc.2024.109358_bib0054 article-title: Bayesian optimization with adaptive surrogate models for automated experimental design publication-title: npj Computational Materials doi: 10.1038/s41524-021-00662-x – volume: 2 start-page: 97 issue: 9 year: 2017 ident: 10.1016/j.cpc.2024.109358_bib0078 article-title: SALib: An open-source Python library for Sensitivity Analysis publication-title: The Journal of Open Source Software doi: 10.21105/joss.00097 – volume: 121 start-page: 25847 issue: 46 year: 2017 ident: 10.1016/j.cpc.2024.109358_bib0010 article-title: Sequential-Optimization-Based Framework for Robust Modeling and Design of Heterogeneous Catalytic Systems publication-title: The Journal of Physical Chemistry C doi: 10.1021/acs.jpcc.7b08089 – year: 2023 ident: 10.1016/j.cpc.2024.109358_bib0052 – volume: 48 start-page: 5255 issue: 11 year: 2009 ident: 10.1016/j.cpc.2024.109358_bib0003 article-title: Assessment of Overall Rate Expressions and Multiscale, Microkinetic Model Uniqueness via Experimental Data Injection: Ammonia Decomposition on Ru/γ-Al2O3 for Hydrogen Production publication-title: Industrial & Engineering Chemistry Research doi: 10.1021/ie900144x – volume: 126 start-page: 8534 issue: 45 year: 2022 ident: 10.1016/j.cpc.2024.109358_bib0058 article-title: Multiscale Physics-Informed Neural Networks for Stiff Chemical Kinetics publication-title: The Journal of Physical Chemistry A doi: 10.1021/acs.jpca.2c06513 – volume: 45 start-page: 503 issue: 1 year: 1989 ident: 10.1016/j.cpc.2024.109358_bib0097 article-title: On the limited memory BFGS method for large scale optimization publication-title: Mathematical Programming doi: 10.1007/BF01589116 – volume: 105 start-page: 162 issue: 1 year: 2005 ident: 10.1016/j.cpc.2024.109358_bib0081 article-title: Is the water–gas shift reaction on Pt simple? publication-title: Catalysis Today doi: 10.1016/j.cattod.2005.04.003 – ident: 10.1016/j.cpc.2024.109358_bib0046 – volume: 145 start-page: 280 issue: 2 year: 2002 ident: 10.1016/j.cpc.2024.109358_bib0076 article-title: Making best use of model evaluations to compute sensitivity indices publication-title: Computer Physics Communications doi: 10.1016/S0010-4655(02)00280-1 – volume: 181 year: 2024 ident: 10.1016/j.cpc.2024.109358_bib0062 article-title: Maximum-likelihood estimators in physics-informed neural networks for high-dimensional inverse problems publication-title: Computers & Chemical Engineering doi: 10.1016/j.compchemeng.2023.108547 – volume: 30 start-page: 1712 issue: 10-12 year: 2006 ident: 10.1016/j.cpc.2024.109358_bib0018 article-title: Hierarchical multiscale model-based design of experiments, catalysts, and reactors for fuel processing publication-title: Computers & Chemical Engineering doi: 10.1016/j.compchemeng.2006.05.033 – volume: 583 start-page: 237 issue: 7815 year: 2020 ident: 10.1016/j.cpc.2024.109358_bib0040 article-title: A mobile robotic chemist publication-title: Nature doi: 10.1038/s41586-020-2442-2 – volume: 46 start-page: 5310 issue: 16 year: 2007 ident: 10.1016/j.cpc.2024.109358_bib0019 article-title: A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum publication-title: Industrial & Engineering Chemistry Research doi: 10.1021/ie070322c – volume: 153 issue: 2 year: 2020 ident: 10.1016/j.cpc.2024.109358_bib0042 article-title: Assessing the frontier: Active learning, model accuracy, and multi-objective candidate discovery and optimization publication-title: The Journal of Chemical Physics doi: 10.1063/5.0006124 – year: 1989 ident: 10.1016/j.cpc.2024.109358_bib0036 – start-page: 1 year: 2021 ident: 10.1016/j.cpc.2024.109358_bib0053 article-title: A Gentle Introduction to Bayesian Optimization – volume: 8 start-page: 331 issue: 4 year: 2016 ident: 10.1016/j.cpc.2024.109358_bib0001 article-title: Effects of correlated parameters and uncertainty in electronic-structure-based chemical kinetic modelling publication-title: Nat Chem doi: 10.1038/nchem.2454 – volume: 265 year: 2021 ident: 10.1016/j.cpc.2024.109358_bib0034 article-title: Chemical Kinetics Bayesian Inference Toolbox (CKBIT) publication-title: Computer Physics Communications doi: 10.1016/j.cpc.2021.107989 – volume: 11 start-page: 8517 issue: 32 year: 2020 ident: 10.1016/j.cpc.2024.109358_bib0044 article-title: Autonomous intelligent agents for accelerated materials discovery publication-title: Chemical Science doi: 10.1039/D0SC01101K – volume: 30 start-page: 1 year: 2005 ident: 10.1016/j.cpc.2024.109358_bib0075 article-title: A review of multiscale analysis: Examples from systems biology, materials engineering, and other fluid-surface interacting systems publication-title: Adv. Chem. Eng. doi: 10.1016/S0065-2377(05)30001-9 – volume: 58 start-page: 368 issue: 4 year: 1954 ident: 10.1016/j.cpc.2024.109358_bib0093 article-title: A method for evaluating and correlating thermodynamic da ta publication-title: The Journal of Physical Chemistry doi: 10.1021/j150514a018 – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 10.1016/j.cpc.2024.109358_bib0099 article-title: Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces publication-title: Journal of Global Optimization doi: 10.1023/A:1008202821328 – volume: 5 start-page: 2134 issue: 12 year: 2020 ident: 10.1016/j.cpc.2024.109358_bib0039 article-title: Active learning-driven quantitative synthesis–structure–property relations for improving performance and revealing active sites of nitrogen-doped carbon for the hydrogen evolution reaction publication-title: Reaction Chemistry & Engineering doi: 10.1039/D0RE00243G  | 
    
| SSID | ssj0007793 | 
    
| Score | 2.460695 | 
    
| Snippet | We develop an open-source Python-based Parameter Estimation Tool utilizing Bayesian Optimization (petBOA) with a unique wrapper interface for gradient-free... | 
    
| SourceID | unpaywall osti crossref elsevier  | 
    
| SourceType | Open Access Repository Index Database Publisher  | 
    
| StartPage | 109358 | 
    
| SubjectTerms | Bayesian optimization Gaussian process Macrokinetic models Microkinetic models Parameter estimation  | 
    
| SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yIOpBfOL6Yg6elOq2TZvucRVFBB8HBW9lkqag7raLruhe1P_gVf-cv8SZPnyAKHgNnXbIJJPp5JtvhFgLXZRau9ZRbeM7MvGNE3kJp8MCo5M2Vy9zofDhUbh_Jg_Og_MRsVPXwjCssvL9pU8vvHU1slXN5lb_4oJrfPl-MggYBcnXQVzBLhV3Mdh8-IR5KFUR75K_4afrm80C42X6zGLoyYJUibu-_3w2NXLabhNi7Dbr4_AOu90vR9DelJisYkfolOpNixGbzYjRAsNpbmbFYwdOhkwFAIM87wJFo8DE3j0GvACTaZRVipCn8Pb0ojlzBzq_f3t6hR6SRg5glkCPEXrOFQWf9BUoGuXcAGdrYRuHlksuISc306vqN-lVz0CR9_ZxZ06c7e2e7uw7VX8Fx9DGGzjaqsDKNlnFyEjTX3VqLKpI-_QTk2CqbOAyXx1ao7CVIBr0rLWph1HY0l5q_XnRyPLMLgiQER2GoZUhMqOfVNg2JOhigsbQaNIU6_XMxv2SRiOu8WWXMZkhZjPEpRmaQtZzH39bCzG5-d_ElthOLML8t4aBQiRD8UvL99ym2Pgw398qLP5PhSUx7nF_4CJFsywag-tbu0JBy0CvFqvyHWFA7To priority: 102 providerName: Elsevier  | 
    
| Title | A Python tool for parameter estimation of “black box” macro- and micro-kinetic models with Bayesian optimization – petBOA | 
    
| URI | https://dx.doi.org/10.1016/j.cpc.2024.109358 https://www.osti.gov/biblio/2440321  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 306 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 1879-2944 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0007793 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 1879-2944 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0007793 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 1879-2944 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0007793 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 1879-2944 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0007793 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 1879-2944 databaseCode: AKRWK dateStart: 19690701 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007793 providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9NAEB2VRAhxgPIlAiVaCU6gDbG9_jq60CoQESpERDlZs-u1VJrYEXUE4UD7H7jCn-svYcYfCCFExcmS5bHXeuudt-s3bwEeBQ4qrR0rw9h4UmWekZGb8XKYb3QWc_UyFwq_mgWTuXp56B9uwcOuFoZllSV17lpTqY_04qh8Shlo7HGxeD_wiXD3oD-fHSTvmzF2LNkBjKdVURhLN1aq-3dZq7jMin0KXVXbJvG-7n_PPj1-5lW4si5WuPmEi8VvSWb_OjzvmtdoS45H60qPzJc_nBsvaP82XGtJpkiaXnEDtmxxEy7XYk9zcgtOE3GwYc8AUZXlQhBtFewAvmRljGDXjaacUZS5OD_7rnmJT-jy8_nZD7FEejEpsMjEkqV88phYKj1F1DvqnAhe1hW7uLFcmylKGo-WbaEn3eqbIIq--zq5DfP9vbfPJrLdiEEa-kIrqW3oWxUTfEZFmqbfubEYRtqj2U6GeWh9h43t0JoQxxmiQddam7sYBWPt5ta7A72iLOxdECqirBlYFSBb_6kQY0OBDmZoDJ3NBvC4AyhdNX4baSdE-5ASmimjmTZoDkB1EKYtYWiIQEr54F9h9xkiDmGjXMOKIoppYRrAk1-94OIm3Puvq3egV31c2wfEYyo9hEujr84Q-smL6WTGx-mbd9Nh27t_AnB_-kg | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9xADLbooopyqKAt6kJLfeDUKmWTTDLZ44KKlpbXASRukWcykYDdZFUWlb1Q_kOv8Of4JbXz6EOqWqnXKE6s8YzH4_n8GWAj9kkZ4ztP923oqSy0XhJkkg6LrMn6Ur0shcL7B_HwRH08jU7nYLuthRFYZeP7a59eeevmyWYzmpuTszOp8ZX7ySgSFKRcBz2CeRUFWk5g729-4jy0bph32eHI6-3VZgXyshOhMQxUxaokbd__vDl1Sl5vi7BwVUxo9oVGo1_2oJ0leNoEjzio9VuGOVc8g8cViNNePoevAzyaCRcATstyhByOojB7jwXxgsKmUZcpYpnjw-2dkdQdmvL64fYex8QaeUhFhmOB6HkXHH3yX7DqlHOJkq7FLZo5qbnEkv3MuCng5E99Qw69tw4HL-Bk58Px9tBrGix4llfe1DNOR0712SxWJYaP1bl1pBMT8ikmo1y7yBfCOnJWUy8jshQ45_KAkrhngtyFK9ApysK9BFQJ74axUzEJpZ_S1Lcs6FNG1vLTrAtv25FNJzWPRtoCzM5TNkMqZkhrM3RBtWOf_jYZUvbzfxNbEzuJiBDgWkEKsQwHML0w8Lvw7of5_q3C6v-p8AYWhsf7e-ne7sGnNXgSSLPgKl_zCjrTz1fuNUcwU7NezdDvXTvwXQ | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1VWyHEgdIC6ralGglOIJfdxPk6bqFVhUTpoSuVUzR2HGnb3WRFsyrLhf4HruXP9Zcwkw-EKkTFNYpjR2_ieXbePAO8CoekjRk6FSXWVzrzrYq9TLbDAmuyRKqXpVD443F4NNYfzoKzFXjZ1cKIrLLk4K41lWZippPyLWeggS_F4qthwIS7B6vj45PR52aOHShxAJNlVRwlyku07v5d1iouOxefQk_Xtklyrvvfs09P-nwEDxfFnJZXNJ3-kWQO1-B9N7xGW3Kxt6jMnv12x7nxnvE_gcctycRRExXrsOKKDXhQiz3t5VP4PsKTpXgGYFWWU2TaiuIAPhNlDIrrRlPOiGWOt9c3Rrb40JRfb69_4oz4xRRSkeFMpHzqglkq94L1iTqXKNu6uE9LJ7WZWPJ8NGsLPflRP5Ap-v6n0TMYHx6cvjtS7UEMyvIXWinjosDphOGzOja8_M6toyg2Pq92MsojFwzF2I6cjWiQEVnynHO5R3E4MF7u_OfQK8rCbQLqmLNm6HRIYv2nI0osNxxSRtby1awPrzuA0nnjt5F2QrTzlNFMBc20QbMPuoMwbQlDQwRSzgf_arYtEEkTMcq1oijiNi1MfXjzOwruH8LWf929A73qy8K9YB5Tmd02jn8BI1v2GQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Python+tool+for+parameter+estimation+of+%E2%80%9Cblack+box%E2%80%9D+macro-+and+micro-kinetic+models+with+Bayesian+optimization+%E2%80%93+petBOA&rft.jtitle=Computer+physics+communications&rft.au=Kasiraju%2C+Sashank&rft.au=Wang%2C+Yifan&rft.au=Bhandari%2C+Saurabh&rft.au=Singh%2C+Aayush+R.&rft.date=2025-01-01&rft.pub=Elsevier&rft.issn=0010-4655&rft.volume=306&rft.issue=C&rft_id=info:doi/10.1016%2Fj.cpc.2024.109358&rft.externalDocID=2440321 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon |