A new inexact stochastic recursive gradient descent algorithm with Barzilai–Borwein step size in machine learning
The inexact SARAH (iSARAH) algorithm as a variant of SARAH algorithm for variance reduction has recently surged into prominence for solving large-scale optimization problems in the context of machine learning. The performance of the iSARAH significantly depends on the choice of step-size sequence. I...
Saved in:
| Published in | Nonlinear dynamics Vol. 111; no. 4; pp. 3575 - 3586 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Dordrecht
Springer Netherlands
01.02.2023
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0924-090X 1573-269X |
| DOI | 10.1007/s11071-022-07987-2 |
Cover
| Abstract | The inexact SARAH (iSARAH) algorithm as a variant of SARAH algorithm for variance reduction has recently surged into prominence for solving large-scale optimization problems in the context of machine learning. The performance of the iSARAH significantly depends on the choice of step-size sequence. In this paper, we develop a new algorithm called iSARAH-BB, which employs the Barzilai–Borwein (BB) method to automatically compute step size based on SARAH. By introducing this adaptive step size in the design of the new algorithm, iSARAH-BB can take better advantages of both iSARAH and BB methods. Finally, we analyze the convergence rate and the complexity of the new algorithm under the usual assumptions. Numerical experiments on standard datasets indicate that our proposed iSARAH-BB algorithm is robust to the selection of the initial step size, and it is effective and more competitive than the existing algorithms. |
|---|---|
| AbstractList | The inexact SARAH (iSARAH) algorithm as a variant of SARAH algorithm for variance reduction has recently surged into prominence for solving large-scale optimization problems in the context of machine learning. The performance of the iSARAH significantly depends on the choice of step-size sequence. In this paper, we develop a new algorithm called iSARAH-BB, which employs the Barzilai–Borwein (BB) method to automatically compute step size based on SARAH. By introducing this adaptive step size in the design of the new algorithm, iSARAH-BB can take better advantages of both iSARAH and BB methods. Finally, we analyze the convergence rate and the complexity of the new algorithm under the usual assumptions. Numerical experiments on standard datasets indicate that our proposed iSARAH-BB algorithm is robust to the selection of the initial step size, and it is effective and more competitive than the existing algorithms. |
| Author | Wang, Fu-sheng Li, Jin-xiang Yang, Yi-ming Qin, Yuan-yuan |
| Author_xml | – sequence: 1 givenname: Yi-ming surname: Yang fullname: Yang, Yi-ming organization: School of Mathematics and Statistics, Taiyuan Normal University – sequence: 2 givenname: Fu-sheng orcidid: 0000-0003-4862-2805 surname: Wang fullname: Wang, Fu-sheng email: fswang2005@163.com organization: School of Mathematics and Statistics, Taiyuan Normal University – sequence: 3 givenname: Jin-xiang surname: Li fullname: Li, Jin-xiang organization: School of Mathematics and Statistics, Taiyuan Normal University – sequence: 4 givenname: Yuan-yuan surname: Qin fullname: Qin, Yuan-yuan organization: School of Mathematics and Statistics, Taiyuan Normal University |
| BookMark | eNp9kM1KAzEUhYMoWH9ewFXA9ehNMjOZLFX8A8GNgruQZm7ayDRTk9SqK9_BN_RJnFpBcOHmns35zrmcHbIZ-oCEHDA4YgDyODEGkhXAeQFSNbLgG2TEKikKXquHTTICxcsCFDxsk52UHgFAcGhGJJ3QgEvqA74Ym2nKvZ2alL2lEe0iJv-MdBJN6zFk2mKyKzXdpI8-T2d0OVx6auKb74z_fP847eMSfRhycE6Tf8Mhmc6MnQ4FtEMTgw-TPbLlTJdw_0d3yf3F-d3ZVXFze3l9dnJTWMFULsbjpqxQlqo0ijWCV05K27ambuvGoQXnRFNzNEI4sBVXzpZYCkQmqrETjotdcrjOncf-aYEp68d-EcNQqbms60apEurB1axdNvYpRXTa-myy70OOxneagV5NrNcT62Fi_T2xXhXwP-g8-pmJr_9DYg2lwRwmGH-_-of6AoNTlCI |
| CitedBy_id | crossref_primary_10_1007_s11071_024_09799_y |
| Cites_doi | 10.1214/aoms/1177729586 10.1093/imanum/8.1.141 10.1093/imanum/22.1.1 10.3934/jimo.2019052 10.1080/10556788.2020.1818081 10.1137/16M1080173 10.1038/nature14539 10.1016/j.ins.2015.03.073 10.1007/s10107-016-1030-6 10.1016/j.engappai.2018.03.017 10.1007/s10915-020-01402-x 10.1007/s11590-020-01550-x 10.1007/0-387-24255-4_10 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s11071-022-07987-2 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
| DatabaseTitleList | Engineering Database |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1573-269X |
| EndPage | 3586 |
| ExternalDocumentID | 10_1007_s11071_022_07987_2 |
| GrantInformation_xml | – fundername: Basic Research Program of Shanxi Province (Free exploration) project grantid: No.202103021224303, No.20210302124688 – fundername: Shanxi Scholarship Council of China grantid: No.2017-104 funderid: http://dx.doi.org/10.13039/501100003398 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9T PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8S Z8T Z8W Z8Z Z92 ZMTXR _50 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-bb845e7494a918325f77cdda6d68fec0ff3862ea33f0c529fc4e43ee135bf3f23 |
| IEDL.DBID | BENPR |
| ISSN | 0924-090X |
| IngestDate | Fri Jul 25 10:53:56 EDT 2025 Wed Oct 01 02:34:54 EDT 2025 Thu Apr 24 23:03:25 EDT 2025 Fri Feb 21 02:45:19 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Stochastic optimization Stochastic gradient BB method Variance reduction |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-bb845e7494a918325f77cdda6d68fec0ff3862ea33f0c529fc4e43ee135bf3f23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4862-2805 |
| PQID | 2766899406 |
| PQPubID | 2043746 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_2766899406 crossref_citationtrail_10_1007_s11071_022_07987_2 crossref_primary_10_1007_s11071_022_07987_2 springer_journals_10_1007_s11071_022_07987_2 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20230200 2023-02-00 20230201 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 2 year: 2023 text: 20230200 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems |
| PublicationTitle | Nonlinear dynamics |
| PublicationTitleAbbrev | Nonlinear Dyn |
| PublicationYear | 2023 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | Barzilai, Borwein (CR15) 1988; 8 Bottou, Curtis, Nocedal (CR3) 2018; 60 Nguyen, Scheinberg, Takáč (CR11) 2020; 36 Schmidt, Le Roux, Bach (CR6) 2017; 162 Ding, Yang, Liu (CR2) 2008; 51 Sopya, Drozda (CR19) 2015; 316 CR17 LeCun, Bengio, Hinton (CR4) 2015; 521 CR14 Yu, Liu, Dai (CR18) 2021; 87 CR10 Dai, Liao (CR16) 2002; 22 Yang, Wang, Zhang, Li (CR24) 2018; 72 Yang, Chen, Wang (CR25) 2019; 1 CR5 CR8 Shao, Xue, Yu, Zheng (CR22) 2020; 16 CR7 CR9 Duchi, Hazan, Singer (CR13) 2011; 12 CR21 CR20 Liu, Wang, Guo (CR23) 2020 Bottou (CR12) 1998; 17 Robbins, Monro (CR1) 1951; 22 F Ding (7987_CR2) 2008; 51 M Schmidt (7987_CR6) 2017; 162 J Barzilai (7987_CR15) 1988; 8 7987_CR10 L Bottou (7987_CR12) 1998; 17 YH Dai (7987_CR16) 2002; 22 Y LeCun (7987_CR4) 2015; 521 T Yu (7987_CR18) 2021; 87 Y Liu (7987_CR23) 2020 K Sopya (7987_CR19) 2015; 316 7987_CR14 7987_CR17 Z Yang (7987_CR24) 2018; 72 JC Duchi (7987_CR13) 2011; 12 7987_CR20 7987_CR21 7987_CR9 7987_CR7 H Robbins (7987_CR1) 1951; 22 7987_CR8 7987_CR5 GM Shao (7987_CR22) 2020; 16 L Bottou (7987_CR3) 2018; 60 Z Yang (7987_CR25) 2019; 1 LM Nguyen (7987_CR11) 2020; 36 |
| References_xml | – ident: CR14 – volume: 12 start-page: 2121 year: 2011 end-page: 2159 ident: CR13 article-title: Adaptive subgradient methods for online learning and stochastic optimization publication-title: J. Mach. Learn. Res. – volume: 22 start-page: 400 issue: 3 year: 1951 end-page: 407 ident: CR1 article-title: A stochastic approximation method publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177729586 – ident: CR10 – volume: 8 start-page: 141 issue: 1 year: 1988 end-page: 148 ident: CR15 article-title: Two-point step size gradient methods publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/8.1.141 – ident: CR8 – volume: 22 start-page: 1 issue: 1 year: 2002 end-page: 10 ident: CR16 article-title: R-linear convergence of the Barzilai and Borwein gradient method publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/22.1.1 – volume: 16 start-page: 2253 issue: 5 year: 2020 end-page: 2266 ident: CR22 article-title: Improved SVRG for finite sum structure optimization with application to binary classification publication-title: J. Ind. Manag. Optim. doi: 10.3934/jimo.2019052 – volume: 17 start-page: 9 year: 1998 end-page: 42 ident: CR12 article-title: Online learning and stochastic approximations publication-title: Online Learn. Neural Netw. – volume: 36 start-page: 237 year: 2020 end-page: 258 ident: CR11 article-title: Inexact SARAH algorithm for stochastic optimization publication-title: Optim. Method. Softw. doi: 10.1080/10556788.2020.1818081 – volume: 60 start-page: 223 issue: 2 year: 2018 end-page: 311 ident: CR3 article-title: Optimization methods for large-scale machine learning publication-title: SIAM Rev. doi: 10.1137/16M1080173 – ident: CR21 – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: CR4 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 51 start-page: 1269 year: 2008 end-page: 1280 ident: CR2 article-title: Performance analysis of stochastic gradient algorithms under weak conditions publication-title: Sci. China Ser. F: Inf. Sci. – volume: 316 start-page: 218 year: 2015 end-page: 233 ident: CR19 article-title: Stochastic gradient descent with Barzilai–Borwein update step for SVM publication-title: Inf. Sci. doi: 10.1016/j.ins.2015.03.073 – ident: CR17 – volume: 1 start-page: 157 year: 2019 end-page: 173 ident: CR25 article-title: Accelerating mini-batch SARAH by step size rules publication-title: Inf. Sci. – ident: CR9 – volume: 162 start-page: 83 year: 2017 end-page: 112 ident: CR6 article-title: Minimizing finite sums with the stochastic average gradient publication-title: Math. Program. doi: 10.1007/s10107-016-1030-6 – volume: 72 start-page: 124 year: 2018 end-page: 135 ident: CR24 article-title: Random Barzilai–Borwein step size for mini-batch algorithms publication-title: Eng. Appl. Artif. Intel. doi: 10.1016/j.engappai.2018.03.017 – ident: CR5 – ident: CR7 – volume: 87 start-page: 1 issue: 5 year: 2021 ident: CR18 article-title: Stochastic variance reduced gradient methods using a trust-region-like scheme publication-title: J. Sci. Comput. doi: 10.1007/s10915-020-01402-x – year: 2020 ident: CR23 article-title: A linearly convergent stochastic recursive gradient method for convex optimization publication-title: Optim. Lett. doi: 10.1007/s11590-020-01550-x – ident: CR20 – ident: 7987_CR8 – year: 2020 ident: 7987_CR23 publication-title: Optim. Lett. doi: 10.1007/s11590-020-01550-x – volume: 51 start-page: 1269 year: 2008 ident: 7987_CR2 publication-title: Sci. China Ser. F: Inf. Sci. – volume: 22 start-page: 1 issue: 1 year: 2002 ident: 7987_CR16 publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/22.1.1 – volume: 36 start-page: 237 year: 2020 ident: 7987_CR11 publication-title: Optim. Method. Softw. doi: 10.1080/10556788.2020.1818081 – volume: 8 start-page: 141 issue: 1 year: 1988 ident: 7987_CR15 publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/8.1.141 – volume: 72 start-page: 124 year: 2018 ident: 7987_CR24 publication-title: Eng. Appl. Artif. Intel. doi: 10.1016/j.engappai.2018.03.017 – volume: 521 start-page: 436 year: 2015 ident: 7987_CR4 publication-title: Nature doi: 10.1038/nature14539 – ident: 7987_CR21 – volume: 12 start-page: 2121 year: 2011 ident: 7987_CR13 publication-title: J. Mach. Learn. Res. – ident: 7987_CR7 – volume: 1 start-page: 157 year: 2019 ident: 7987_CR25 publication-title: Inf. Sci. – ident: 7987_CR9 – volume: 162 start-page: 83 year: 2017 ident: 7987_CR6 publication-title: Math. Program. doi: 10.1007/s10107-016-1030-6 – ident: 7987_CR5 – volume: 16 start-page: 2253 issue: 5 year: 2020 ident: 7987_CR22 publication-title: J. Ind. Manag. Optim. doi: 10.3934/jimo.2019052 – volume: 87 start-page: 1 issue: 5 year: 2021 ident: 7987_CR18 publication-title: J. Sci. Comput. doi: 10.1007/s10915-020-01402-x – volume: 316 start-page: 218 year: 2015 ident: 7987_CR19 publication-title: Inf. Sci. doi: 10.1016/j.ins.2015.03.073 – ident: 7987_CR14 – ident: 7987_CR10 – ident: 7987_CR17 doi: 10.1007/0-387-24255-4_10 – volume: 17 start-page: 9 year: 1998 ident: 7987_CR12 publication-title: Online Learn. Neural Netw. – volume: 22 start-page: 400 issue: 3 year: 1951 ident: 7987_CR1 publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177729586 – volume: 60 start-page: 223 issue: 2 year: 2018 ident: 7987_CR3 publication-title: SIAM Rev. doi: 10.1137/16M1080173 – ident: 7987_CR20 |
| SSID | ssj0003208 |
| Score | 2.3657572 |
| Snippet | The inexact SARAH (iSARAH) algorithm as a variant of SARAH algorithm for variance reduction has recently surged into prominence for solving large-scale... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3575 |
| SubjectTerms | Algorithms Automotive Engineering Classical Mechanics Control Dynamical Systems Engineering Experiments Machine learning Mechanical Engineering Methods Optimization Original Paper Random variables Robustness (mathematics) Vibration |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQLDDwRpSXPLBBpDa242RsEahCgolK3aKLa7eR-lISBOrEf-Af8ks4Jw4FBEisiX1Dzmd_3-X8HSHnCMJDJQX3RCIijytoeiHXwgNkQ3g8A-NgE_p390G3x2_7ou8uheV1tXv9S7LcqZeX3ZCpIPX1bbUkMmUPN941YeW8cBX3_PbH_sv8sg9dE5mFzUL03VWZn218PY6WGPPbb9HytLnZJpsOJtJ25dcdsqKnu2TLQUbqAjLfJRuf9AT3SN6miJIpPngGVVDEdWoEVoiZZjatbivV6TAri7wKOqiEnCiMh7MsLUYTanOytAPZIh1D-vby2pllTzqdoh09p3m60GiZTsrqS01du4nhPundXD9cdT3XVcFTGG6FlyQhF1ryiENk41kYKdVgAMEgCI1WTWMYshwNjJmmEn5kFNecad1iIjHM-OyArE5nU31IaAhWLUfxSCPRUrKVQGAkgN8CidMla5BW_XFj5STHbeeLcbwUS7YOidEhcemQ2G-Qi48580pw48_RJ7XPYhd8eezLIEAaiVClQS5rPy5f_27t6H_Dj8m6bT5f1XCfkNUie9SnCFGK5Kxcke-2vt21 priority: 102 providerName: Springer Nature |
| Title | A new inexact stochastic recursive gradient descent algorithm with Barzilai–Borwein step size in machine learning |
| URI | https://link.springer.com/article/10.1007/s11071-022-07987-2 https://www.proquest.com/docview/2766899406 |
| Volume | 111 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 1573-269X dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0003208 issn: 0924-090X databaseCode: AMVHM dateStart: 19900301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-269X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003208 issn: 0924-090X databaseCode: AFBBN dateStart: 19900101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-269X dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0003208 issn: 0924-090X databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-269X dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0003208 issn: 0924-090X databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-269X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003208 issn: 0924-090X databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-269X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003208 issn: 0924-090X databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbhMxEB61yQUOFAqogTbygRtYJP5Z7x5QlVRJKxARQkQKp5XXa6eR0iRsFoF66jv0DXkSxrveBpDo1bueg8fj-fH4-wBeYRAeGyUFlZlMqDC6R2NhJdWYDaF71lxoX9D_OIkupuL9TM72YNK8hfFtlc2ZWB3U-dr4GvlbpqIIcwP0P6ebb9SzRvnb1YZCQwdqhfxdBTG2D23mkbFa0B6OJp8-353NnFUcdT3MOnyFYhae0dSP6TATwtSa-W5MzMQp-9tV7eLPf65MK080fgyPQghJBrXOn8CeXR3CQQgnSTDW7SE8_ANr8ClsBwQjaIIDP7UpCcZ85lJ7kGZS-JK772In86JqACtJXoM8Eb2c4xqUl1fE12vJUBfXi6Ve_Lq5Ha6LH3axQjl2Q7aLa4uSyVXVmWlJoKKYP4PpePTl7IIGxgVq0BRLmmWxkFaJROjE27p0Spk811Eexc6annMcMyCrOXc9I1nijLCCW9vnMnPcMf4cWqv1yh4BibVH0jEisZiEGdXPdOSU1qyvFU5XvAP9ZnFTE-DIPSvGMt0BKXuFpKiQtFJIyjrw-m7OpgbjuPfv40ZnaTDMbbrbRh140-hx9_n_0l7cL-0lPPBE9HU_9zG0yuK7PcFwpcy6sB-Pz7vQHpx__TDqhh2Jo1M2-A2oN-rO |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF5V7QE48FNADS2wBzjBimR_vPahQg20SmkbIdRKuZnxejeNlCapbVToiXfgfXgYnoRZe90AEr316p-RvDPemW925htCXmAQHhutJFOZSpg00GWxtIoBoiF0zyAk-IT-0TAanMgPIzVaIT_bXhhfVtnuifVGnc-Nz5G_4TqKEBug_3m7OGd-apQ_XW1HaEAYrZBv1xRjobHjwH67QAhXbu-_R32_5Hxv9_jdgIUpA8yg-VUsy2KprJaJhMTbt3JamzyHKI9iZ03XOYFRvwUhXNconjgjrRTW9oTKnHCe-ABdwJoUMkHwt9bfHX78dOULBK9n4nUR5fiMyCi07TTNe4i8EMpzX_2JyJ_xv13jMt7954i29nx798ndELLSncbGHpAVO1sn90L4SsPmUK6TO39wGz4k5Q7FiJ3iha9gKooxpjkFTwpNC5_i91XzdFzUBWcVzRtSKQrTMa55dXpGfX6Y9qG4nExh8uv7j_68uLCTGcqxC1pOLi1Kpmd1JailYfTF-BE5uZG1f0xWZ_OZ3SA0Bs_cY2RiEfQZ3csgchqA90Dj61p0SK9d3NQE-nM_hWOaLombvUJSVEhaKyTlHfLq6p1FQ_5x7dNbrc7SsBGU6dJsO-R1q8fl7f9Le3K9tOfk1uD46DA93B8ebJLbHD--qSXfIqtV8cU-xVCpyp4Fe6Tk803_Ar8BaIklgA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELUQSAgO7Iiy-sANItrYjpNjWSp2caBSb9HEsUukklZpEIgT_8Af8iWMk5QCAiSuiT2HjMd-z5l5Q8gugnBfScEdEYnA4Qrqjs-1cADZEB7PwDjYC_2ra--0zc87ovOpir_Idh_9kixrGqxKU5ofDGJzMC58Q9aCNNi1mZPImh3chKe4FUrAFd12mx97MXOLnnR1ZBn2RqJTlc38bOPr0TTGm99-kRYnT2uBzFWQkTZLHy-SCZ0ukfkKPtIqOIdLZPaTtuAyGTYpImaKD55A5RQxnroDK8pMM3vFbrPWaTcrEr5yGpeiThR63X6W5Hf31N7P0kPInpMeJG8vr4f97FEnKdrRAzpMnjVapvdFJqamVeuJ7gppt05uj06dqsOCozD0cieKfC605AGHwMa2MFKqOAYv9nyjVd0YhoxHA2OmroQbGMU1Z1o3mIgMMy5bJZNpP9VrhPpglXMUDzSSLiUbEXhGArgNkDhdshppjD5uqCr5cdsFoxeOhZOtQ0J0SFg4JHRrZO9jzqAU3_hz9ObIZ2EViMPQlZ6HlBJhS43sj_w4fv27tfX_Dd8h0zfHrfDy7Ppig8zYnvRlavcmmcyzB72FyCWPtovF-Q48CeTd |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+inexact+stochastic+recursive+gradient+descent+algorithm+with+Barzilai%E2%80%93Borwein+step+size+in+machine+learning&rft.jtitle=Nonlinear+dynamics&rft.au=Yang%2C+Yi-ming&rft.au=Wang%2C+Fu-sheng&rft.au=Li%2C+Jin-xiang&rft.au=Qin%2C+Yuan-yuan&rft.date=2023-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=111&rft.issue=4&rft.spage=3575&rft.epage=3586&rft_id=info:doi/10.1007%2Fs11071-022-07987-2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon |