A new inexact stochastic recursive gradient descent algorithm with Barzilai–Borwein step size in machine learning

The inexact SARAH (iSARAH) algorithm as a variant of SARAH algorithm for variance reduction has recently surged into prominence for solving large-scale optimization problems in the context of machine learning. The performance of the iSARAH significantly depends on the choice of step-size sequence. I...

Full description

Saved in:
Bibliographic Details
Published inNonlinear dynamics Vol. 111; no. 4; pp. 3575 - 3586
Main Authors Yang, Yi-ming, Wang, Fu-sheng, Li, Jin-xiang, Qin, Yuan-yuan
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.02.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0924-090X
1573-269X
DOI10.1007/s11071-022-07987-2

Cover

Abstract The inexact SARAH (iSARAH) algorithm as a variant of SARAH algorithm for variance reduction has recently surged into prominence for solving large-scale optimization problems in the context of machine learning. The performance of the iSARAH significantly depends on the choice of step-size sequence. In this paper, we develop a new algorithm called iSARAH-BB, which employs the Barzilai–Borwein (BB) method to automatically compute step size based on SARAH. By introducing this adaptive step size in the design of the new algorithm, iSARAH-BB can take better advantages of both iSARAH and BB methods. Finally, we analyze the convergence rate and the complexity of the new algorithm under the usual assumptions. Numerical experiments on standard datasets indicate that our proposed iSARAH-BB algorithm is robust to the selection of the initial step size, and it is effective and more competitive than the existing algorithms.
AbstractList The inexact SARAH (iSARAH) algorithm as a variant of SARAH algorithm for variance reduction has recently surged into prominence for solving large-scale optimization problems in the context of machine learning. The performance of the iSARAH significantly depends on the choice of step-size sequence. In this paper, we develop a new algorithm called iSARAH-BB, which employs the Barzilai–Borwein (BB) method to automatically compute step size based on SARAH. By introducing this adaptive step size in the design of the new algorithm, iSARAH-BB can take better advantages of both iSARAH and BB methods. Finally, we analyze the convergence rate and the complexity of the new algorithm under the usual assumptions. Numerical experiments on standard datasets indicate that our proposed iSARAH-BB algorithm is robust to the selection of the initial step size, and it is effective and more competitive than the existing algorithms.
Author Wang, Fu-sheng
Li, Jin-xiang
Yang, Yi-ming
Qin, Yuan-yuan
Author_xml – sequence: 1
  givenname: Yi-ming
  surname: Yang
  fullname: Yang, Yi-ming
  organization: School of Mathematics and Statistics, Taiyuan Normal University
– sequence: 2
  givenname: Fu-sheng
  orcidid: 0000-0003-4862-2805
  surname: Wang
  fullname: Wang, Fu-sheng
  email: fswang2005@163.com
  organization: School of Mathematics and Statistics, Taiyuan Normal University
– sequence: 3
  givenname: Jin-xiang
  surname: Li
  fullname: Li, Jin-xiang
  organization: School of Mathematics and Statistics, Taiyuan Normal University
– sequence: 4
  givenname: Yuan-yuan
  surname: Qin
  fullname: Qin, Yuan-yuan
  organization: School of Mathematics and Statistics, Taiyuan Normal University
BookMark eNp9kM1KAzEUhYMoWH9ewFXA9ehNMjOZLFX8A8GNgruQZm7ayDRTk9SqK9_BN_RJnFpBcOHmns35zrmcHbIZ-oCEHDA4YgDyODEGkhXAeQFSNbLgG2TEKikKXquHTTICxcsCFDxsk52UHgFAcGhGJJ3QgEvqA74Ym2nKvZ2alL2lEe0iJv-MdBJN6zFk2mKyKzXdpI8-T2d0OVx6auKb74z_fP847eMSfRhycE6Tf8Mhmc6MnQ4FtEMTgw-TPbLlTJdw_0d3yf3F-d3ZVXFze3l9dnJTWMFULsbjpqxQlqo0ijWCV05K27ambuvGoQXnRFNzNEI4sBVXzpZYCkQmqrETjotdcrjOncf-aYEp68d-EcNQqbms60apEurB1axdNvYpRXTa-myy70OOxneagV5NrNcT62Fi_T2xXhXwP-g8-pmJr_9DYg2lwRwmGH-_-of6AoNTlCI
CitedBy_id crossref_primary_10_1007_s11071_024_09799_y
Cites_doi 10.1214/aoms/1177729586
10.1093/imanum/8.1.141
10.1093/imanum/22.1.1
10.3934/jimo.2019052
10.1080/10556788.2020.1818081
10.1137/16M1080173
10.1038/nature14539
10.1016/j.ins.2015.03.073
10.1007/s10107-016-1030-6
10.1016/j.engappai.2018.03.017
10.1007/s10915-020-01402-x
10.1007/s11590-020-01550-x
10.1007/0-387-24255-4_10
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s11071-022-07987-2
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList
Engineering Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1573-269X
EndPage 3586
ExternalDocumentID 10_1007_s11071_022_07987_2
GrantInformation_xml – fundername: Basic Research Program of Shanxi Province (Free exploration) project
  grantid: No.202103021224303, No.20210302124688
– fundername: Shanxi Scholarship Council of China
  grantid: No.2017-104
  funderid: http://dx.doi.org/10.13039/501100003398
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9T
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZMTXR
_50
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-bb845e7494a918325f77cdda6d68fec0ff3862ea33f0c529fc4e43ee135bf3f23
IEDL.DBID BENPR
ISSN 0924-090X
IngestDate Fri Jul 25 10:53:56 EDT 2025
Wed Oct 01 02:34:54 EDT 2025
Thu Apr 24 23:03:25 EDT 2025
Fri Feb 21 02:45:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Stochastic optimization
Stochastic gradient
BB method
Variance reduction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-bb845e7494a918325f77cdda6d68fec0ff3862ea33f0c529fc4e43ee135bf3f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4862-2805
PQID 2766899406
PQPubID 2043746
PageCount 12
ParticipantIDs proquest_journals_2766899406
crossref_citationtrail_10_1007_s11071_022_07987_2
crossref_primary_10_1007_s11071_022_07987_2
springer_journals_10_1007_s11071_022_07987_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230200
2023-02-00
20230201
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 2
  year: 2023
  text: 20230200
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems
PublicationTitle Nonlinear dynamics
PublicationTitleAbbrev Nonlinear Dyn
PublicationYear 2023
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Barzilai, Borwein (CR15) 1988; 8
Bottou, Curtis, Nocedal (CR3) 2018; 60
Nguyen, Scheinberg, Takáč (CR11) 2020; 36
Schmidt, Le Roux, Bach (CR6) 2017; 162
Ding, Yang, Liu (CR2) 2008; 51
Sopya, Drozda (CR19) 2015; 316
CR17
LeCun, Bengio, Hinton (CR4) 2015; 521
CR14
Yu, Liu, Dai (CR18) 2021; 87
CR10
Dai, Liao (CR16) 2002; 22
Yang, Wang, Zhang, Li (CR24) 2018; 72
Yang, Chen, Wang (CR25) 2019; 1
CR5
CR8
Shao, Xue, Yu, Zheng (CR22) 2020; 16
CR7
CR9
Duchi, Hazan, Singer (CR13) 2011; 12
CR21
CR20
Liu, Wang, Guo (CR23) 2020
Bottou (CR12) 1998; 17
Robbins, Monro (CR1) 1951; 22
F Ding (7987_CR2) 2008; 51
M Schmidt (7987_CR6) 2017; 162
J Barzilai (7987_CR15) 1988; 8
7987_CR10
L Bottou (7987_CR12) 1998; 17
YH Dai (7987_CR16) 2002; 22
Y LeCun (7987_CR4) 2015; 521
T Yu (7987_CR18) 2021; 87
Y Liu (7987_CR23) 2020
K Sopya (7987_CR19) 2015; 316
7987_CR14
7987_CR17
Z Yang (7987_CR24) 2018; 72
JC Duchi (7987_CR13) 2011; 12
7987_CR20
7987_CR21
7987_CR9
7987_CR7
H Robbins (7987_CR1) 1951; 22
7987_CR8
7987_CR5
GM Shao (7987_CR22) 2020; 16
L Bottou (7987_CR3) 2018; 60
Z Yang (7987_CR25) 2019; 1
LM Nguyen (7987_CR11) 2020; 36
References_xml – ident: CR14
– volume: 12
  start-page: 2121
  year: 2011
  end-page: 2159
  ident: CR13
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: J. Mach. Learn. Res.
– volume: 22
  start-page: 400
  issue: 3
  year: 1951
  end-page: 407
  ident: CR1
  article-title: A stochastic approximation method
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177729586
– ident: CR10
– volume: 8
  start-page: 141
  issue: 1
  year: 1988
  end-page: 148
  ident: CR15
  article-title: Two-point step size gradient methods
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/8.1.141
– ident: CR8
– volume: 22
  start-page: 1
  issue: 1
  year: 2002
  end-page: 10
  ident: CR16
  article-title: R-linear convergence of the Barzilai and Borwein gradient method
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/22.1.1
– volume: 16
  start-page: 2253
  issue: 5
  year: 2020
  end-page: 2266
  ident: CR22
  article-title: Improved SVRG for finite sum structure optimization with application to binary classification
  publication-title: J. Ind. Manag. Optim.
  doi: 10.3934/jimo.2019052
– volume: 17
  start-page: 9
  year: 1998
  end-page: 42
  ident: CR12
  article-title: Online learning and stochastic approximations
  publication-title: Online Learn. Neural Netw.
– volume: 36
  start-page: 237
  year: 2020
  end-page: 258
  ident: CR11
  article-title: Inexact SARAH algorithm for stochastic optimization
  publication-title: Optim. Method. Softw.
  doi: 10.1080/10556788.2020.1818081
– volume: 60
  start-page: 223
  issue: 2
  year: 2018
  end-page: 311
  ident: CR3
  article-title: Optimization methods for large-scale machine learning
  publication-title: SIAM Rev.
  doi: 10.1137/16M1080173
– ident: CR21
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: CR4
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 51
  start-page: 1269
  year: 2008
  end-page: 1280
  ident: CR2
  article-title: Performance analysis of stochastic gradient algorithms under weak conditions
  publication-title: Sci. China Ser. F: Inf. Sci.
– volume: 316
  start-page: 218
  year: 2015
  end-page: 233
  ident: CR19
  article-title: Stochastic gradient descent with Barzilai–Borwein update step for SVM
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2015.03.073
– ident: CR17
– volume: 1
  start-page: 157
  year: 2019
  end-page: 173
  ident: CR25
  article-title: Accelerating mini-batch SARAH by step size rules
  publication-title: Inf. Sci.
– ident: CR9
– volume: 162
  start-page: 83
  year: 2017
  end-page: 112
  ident: CR6
  article-title: Minimizing finite sums with the stochastic average gradient
  publication-title: Math. Program.
  doi: 10.1007/s10107-016-1030-6
– volume: 72
  start-page: 124
  year: 2018
  end-page: 135
  ident: CR24
  article-title: Random Barzilai–Borwein step size for mini-batch algorithms
  publication-title: Eng. Appl. Artif. Intel.
  doi: 10.1016/j.engappai.2018.03.017
– ident: CR5
– ident: CR7
– volume: 87
  start-page: 1
  issue: 5
  year: 2021
  ident: CR18
  article-title: Stochastic variance reduced gradient methods using a trust-region-like scheme
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-020-01402-x
– year: 2020
  ident: CR23
  article-title: A linearly convergent stochastic recursive gradient method for convex optimization
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-020-01550-x
– ident: CR20
– ident: 7987_CR8
– year: 2020
  ident: 7987_CR23
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-020-01550-x
– volume: 51
  start-page: 1269
  year: 2008
  ident: 7987_CR2
  publication-title: Sci. China Ser. F: Inf. Sci.
– volume: 22
  start-page: 1
  issue: 1
  year: 2002
  ident: 7987_CR16
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/22.1.1
– volume: 36
  start-page: 237
  year: 2020
  ident: 7987_CR11
  publication-title: Optim. Method. Softw.
  doi: 10.1080/10556788.2020.1818081
– volume: 8
  start-page: 141
  issue: 1
  year: 1988
  ident: 7987_CR15
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/8.1.141
– volume: 72
  start-page: 124
  year: 2018
  ident: 7987_CR24
  publication-title: Eng. Appl. Artif. Intel.
  doi: 10.1016/j.engappai.2018.03.017
– volume: 521
  start-page: 436
  year: 2015
  ident: 7987_CR4
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: 7987_CR21
– volume: 12
  start-page: 2121
  year: 2011
  ident: 7987_CR13
  publication-title: J. Mach. Learn. Res.
– ident: 7987_CR7
– volume: 1
  start-page: 157
  year: 2019
  ident: 7987_CR25
  publication-title: Inf. Sci.
– ident: 7987_CR9
– volume: 162
  start-page: 83
  year: 2017
  ident: 7987_CR6
  publication-title: Math. Program.
  doi: 10.1007/s10107-016-1030-6
– ident: 7987_CR5
– volume: 16
  start-page: 2253
  issue: 5
  year: 2020
  ident: 7987_CR22
  publication-title: J. Ind. Manag. Optim.
  doi: 10.3934/jimo.2019052
– volume: 87
  start-page: 1
  issue: 5
  year: 2021
  ident: 7987_CR18
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-020-01402-x
– volume: 316
  start-page: 218
  year: 2015
  ident: 7987_CR19
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2015.03.073
– ident: 7987_CR14
– ident: 7987_CR10
– ident: 7987_CR17
  doi: 10.1007/0-387-24255-4_10
– volume: 17
  start-page: 9
  year: 1998
  ident: 7987_CR12
  publication-title: Online Learn. Neural Netw.
– volume: 22
  start-page: 400
  issue: 3
  year: 1951
  ident: 7987_CR1
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177729586
– volume: 60
  start-page: 223
  issue: 2
  year: 2018
  ident: 7987_CR3
  publication-title: SIAM Rev.
  doi: 10.1137/16M1080173
– ident: 7987_CR20
SSID ssj0003208
Score 2.3657572
Snippet The inexact SARAH (iSARAH) algorithm as a variant of SARAH algorithm for variance reduction has recently surged into prominence for solving large-scale...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3575
SubjectTerms Algorithms
Automotive Engineering
Classical Mechanics
Control
Dynamical Systems
Engineering
Experiments
Machine learning
Mechanical Engineering
Methods
Optimization
Original Paper
Random variables
Robustness (mathematics)
Vibration
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQLDDwRpSXPLBBpDa242RsEahCgolK3aKLa7eR-lISBOrEf-Af8ks4Jw4FBEisiX1Dzmd_3-X8HSHnCMJDJQX3RCIijytoeiHXwgNkQ3g8A-NgE_p390G3x2_7ou8uheV1tXv9S7LcqZeX3ZCpIPX1bbUkMmUPN941YeW8cBX3_PbH_sv8sg9dE5mFzUL03VWZn218PY6WGPPbb9HytLnZJpsOJtJ25dcdsqKnu2TLQUbqAjLfJRuf9AT3SN6miJIpPngGVVDEdWoEVoiZZjatbivV6TAri7wKOqiEnCiMh7MsLUYTanOytAPZIh1D-vby2pllTzqdoh09p3m60GiZTsrqS01du4nhPundXD9cdT3XVcFTGG6FlyQhF1ryiENk41kYKdVgAMEgCI1WTWMYshwNjJmmEn5kFNecad1iIjHM-OyArE5nU31IaAhWLUfxSCPRUrKVQGAkgN8CidMla5BW_XFj5STHbeeLcbwUS7YOidEhcemQ2G-Qi48580pw48_RJ7XPYhd8eezLIEAaiVClQS5rPy5f_27t6H_Dj8m6bT5f1XCfkNUie9SnCFGK5Kxcke-2vt21
  priority: 102
  providerName: Springer Nature
Title A new inexact stochastic recursive gradient descent algorithm with Barzilai–Borwein step size in machine learning
URI https://link.springer.com/article/10.1007/s11071-022-07987-2
https://www.proquest.com/docview/2766899406
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: AMVHM
  dateStart: 19900301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-269X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: AFBBN
  dateStart: 19900101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-269X
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbhMxEB61yQUOFAqogTbygRtYJP5Z7x5QlVRJKxARQkQKp5XXa6eR0iRsFoF66jv0DXkSxrveBpDo1bueg8fj-fH4-wBeYRAeGyUFlZlMqDC6R2NhJdWYDaF71lxoX9D_OIkupuL9TM72YNK8hfFtlc2ZWB3U-dr4GvlbpqIIcwP0P6ebb9SzRvnb1YZCQwdqhfxdBTG2D23mkbFa0B6OJp8-353NnFUcdT3MOnyFYhae0dSP6TATwtSa-W5MzMQp-9tV7eLPf65MK080fgyPQghJBrXOn8CeXR3CQQgnSTDW7SE8_ANr8ClsBwQjaIIDP7UpCcZ85lJ7kGZS-JK772In86JqACtJXoM8Eb2c4xqUl1fE12vJUBfXi6Ve_Lq5Ha6LH3axQjl2Q7aLa4uSyVXVmWlJoKKYP4PpePTl7IIGxgVq0BRLmmWxkFaJROjE27p0Spk811Eexc6annMcMyCrOXc9I1nijLCCW9vnMnPcMf4cWqv1yh4BibVH0jEisZiEGdXPdOSU1qyvFU5XvAP9ZnFTE-DIPSvGMt0BKXuFpKiQtFJIyjrw-m7OpgbjuPfv40ZnaTDMbbrbRh140-hx9_n_0l7cL-0lPPBE9HU_9zG0yuK7PcFwpcy6sB-Pz7vQHpx__TDqhh2Jo1M2-A2oN-rO
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF5V7QE48FNADS2wBzjBimR_vPahQg20SmkbIdRKuZnxejeNlCapbVToiXfgfXgYnoRZe90AEr316p-RvDPemW925htCXmAQHhutJFOZSpg00GWxtIoBoiF0zyAk-IT-0TAanMgPIzVaIT_bXhhfVtnuifVGnc-Nz5G_4TqKEBug_3m7OGd-apQ_XW1HaEAYrZBv1xRjobHjwH67QAhXbu-_R32_5Hxv9_jdgIUpA8yg-VUsy2KprJaJhMTbt3JamzyHKI9iZ03XOYFRvwUhXNconjgjrRTW9oTKnHCe-ABdwJoUMkHwt9bfHX78dOULBK9n4nUR5fiMyCi07TTNe4i8EMpzX_2JyJ_xv13jMt7954i29nx798ndELLSncbGHpAVO1sn90L4SsPmUK6TO39wGz4k5Q7FiJ3iha9gKooxpjkFTwpNC5_i91XzdFzUBWcVzRtSKQrTMa55dXpGfX6Y9qG4nExh8uv7j_68uLCTGcqxC1pOLi1Kpmd1JailYfTF-BE5uZG1f0xWZ_OZ3SA0Bs_cY2RiEfQZ3csgchqA90Dj61p0SK9d3NQE-nM_hWOaLombvUJSVEhaKyTlHfLq6p1FQ_5x7dNbrc7SsBGU6dJsO-R1q8fl7f9Le3K9tOfk1uD46DA93B8ebJLbHD--qSXfIqtV8cU-xVCpyp4Fe6Tk803_Ar8BaIklgA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELUQSAgO7Iiy-sANItrYjpNjWSp2caBSb9HEsUukklZpEIgT_8Af8iWMk5QCAiSuiT2HjMd-z5l5Q8gugnBfScEdEYnA4Qrqjs-1cADZEB7PwDjYC_2ra--0zc87ovOpir_Idh_9kixrGqxKU5ofDGJzMC58Q9aCNNi1mZPImh3chKe4FUrAFd12mx97MXOLnnR1ZBn2RqJTlc38bOPr0TTGm99-kRYnT2uBzFWQkTZLHy-SCZ0ukfkKPtIqOIdLZPaTtuAyGTYpImaKD55A5RQxnroDK8pMM3vFbrPWaTcrEr5yGpeiThR63X6W5Hf31N7P0kPInpMeJG8vr4f97FEnKdrRAzpMnjVapvdFJqamVeuJ7gppt05uj06dqsOCozD0cieKfC605AGHwMa2MFKqOAYv9nyjVd0YhoxHA2OmroQbGMU1Z1o3mIgMMy5bJZNpP9VrhPpglXMUDzSSLiUbEXhGArgNkDhdshppjD5uqCr5cdsFoxeOhZOtQ0J0SFg4JHRrZO9jzqAU3_hz9ObIZ2EViMPQlZ6HlBJhS43sj_w4fv27tfX_Dd8h0zfHrfDy7Ppig8zYnvRlavcmmcyzB72FyCWPtovF-Q48CeTd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+inexact+stochastic+recursive+gradient+descent+algorithm+with+Barzilai%E2%80%93Borwein+step+size+in+machine+learning&rft.jtitle=Nonlinear+dynamics&rft.au=Yang%2C+Yi-ming&rft.au=Wang%2C+Fu-sheng&rft.au=Li%2C+Jin-xiang&rft.au=Qin%2C+Yuan-yuan&rft.date=2023-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=111&rft.issue=4&rft.spage=3575&rft.epage=3586&rft_id=info:doi/10.1007%2Fs11071-022-07987-2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon