A Robust Condition Monitoring Approach in Industrial Plants Based on the Pythagorean Membership Grades

In this paper, a novel approach for improving the performance and robustness of the condition monitoring system in industrial plants is presented. In the off-line stage of the proposal, the Pythagorean membership grade and its complement of a set of n classification algorithms are used to build the...

Full description

Saved in:
Bibliographic Details
Published inArabian journal for science and engineering (2011) Vol. 48; no. 11; pp. 14731 - 14744
Main Authors Rodríguez-Ramos, Adrián, Rivas Echeverría, Franklin, Silva Neto, Antônio, Llanes-Santiago, Orestes
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2193-567X
1319-8025
2191-4281
DOI10.1007/s13369-023-07789-7

Cover

Abstract In this paper, a novel approach for improving the performance and robustness of the condition monitoring system in industrial plants is presented. In the off-line stage of the proposal, the Pythagorean membership grade and its complement of a set of n classification algorithms are used to build the rule-based decisions for obtaining an enhanced partition matrix, which allows to improve the positioning of the center of the classes and data clustering. The use of Pythagorean fuzzy sets allow to obtain a larger classification space, and then the robustness of the condition monitoring system with respect to noise and external disturbances is improved. This represents a very powerful advantage in industrial plants, where process variables are affected by such features. The proposal was proven using the kernel fuzzy C-means and Gustafson-Kessel algorithms on experimental data sets and on the Tennessee Eastman process benchmark. The percentages of satisfactory classification obtained with the proposal were greater than 90% in most of the experiments. In all cases, the proposed methodology significantly outperformed the results obtained by other algorithms recently presented in the scientific literature.
AbstractList In this paper, a novel approach for improving the performance and robustness of the condition monitoring system in industrial plants is presented. In the off-line stage of the proposal, the Pythagorean membership grade and its complement of a set of n classification algorithms are used to build the rule-based decisions for obtaining an enhanced partition matrix, which allows to improve the positioning of the center of the classes and data clustering. The use of Pythagorean fuzzy sets allow to obtain a larger classification space, and then the robustness of the condition monitoring system with respect to noise and external disturbances is improved. This represents a very powerful advantage in industrial plants, where process variables are affected by such features. The proposal was proven using the kernel fuzzy C-means and Gustafson-Kessel algorithms on experimental data sets and on the Tennessee Eastman process benchmark. The percentages of satisfactory classification obtained with the proposal were greater than 90% in most of the experiments. In all cases, the proposed methodology significantly outperformed the results obtained by other algorithms recently presented in the scientific literature.
In this paper, a novel approach for improving the performance and robustness of the condition monitoring system in industrial plants is presented. In the off-line stage of the proposal, the Pythagorean membership grade and its complement of a set of n classification algorithms are used to build the rule-based decisions for obtaining an enhanced partition matrix, which allows to improve the positioning of the center of the classes and data clustering. The use of Pythagorean fuzzy sets allow to obtain a larger classification space, and then the robustness of the condition monitoring system with respect to noise and external disturbances is improved. This represents a very powerful advantage in industrial plants, where process variables are affected by such features. The proposal was proven using the kernel fuzzy C-means and Gustafson-Kessel algorithms on experimental data sets and on the Tennessee Eastman process benchmark. The percentages of satisfactory classification obtained with the proposal were greater than 90% in most of the experiments. In all cases, the proposed methodology significantly outperformed the results obtained by other algorithms recently presented in the scientific literature.
Author Rodríguez-Ramos, Adrián
Llanes-Santiago, Orestes
Silva Neto, Antônio
Rivas Echeverría, Franklin
Author_xml – sequence: 1
  givenname: Adrián
  surname: Rodríguez-Ramos
  fullname: Rodríguez-Ramos, Adrián
  organization: Automation and Computing, Universidad Tecnológica de la Habana José Antonio Echeverría, CUJAE
– sequence: 2
  givenname: Franklin
  surname: Rivas Echeverría
  fullname: Rivas Echeverría, Franklin
  organization: School of Mathematics and Computational Sciences, Yachay Tech University
– sequence: 3
  givenname: Antônio
  surname: Silva Neto
  fullname: Silva Neto, Antônio
  organization: Instituto Politécnico do Rio de Janeiro, Universidade do Estado do Rio de Janeiro
– sequence: 4
  givenname: Orestes
  orcidid: 0000-0002-6864-9629
  surname: Llanes-Santiago
  fullname: Llanes-Santiago, Orestes
  email: orestes@tesla.cujae.edu.cu
  organization: Automation and Computing, Universidad Tecnológica de la Habana José Antonio Echeverría, CUJAE
BookMark eNp9kE1LAzEQhoNUsNb-AU8Bz6v52N1sjrVoLSgWUfAWsptsN9Ima5Ie-u9Nu4LgoacJzPvMTJ5LMLLOagCuMbrFCLG7gCkteYYIzRBjFc_YGRgTzHGWkwqPjm-aFSX7vADTEEyN8oryAmM6Bu0Mvrl6FyKcO6tMNM7CF2dNdN7YNZz1vXey6aCxcGlVynkjN3C1kTYGeC-DVjARsdNwtY-dXDuvZZqgt7X2oTM9XHipdLgC563cBD39rRPw8fjwPn_Knl8Xy_nsOWso5jGra0RKqkiqlBFdck0qLZFqSKtZURHcUNJgyVhqtpyXtSoYzjlWEmtas5xOwM0wN539vdMhii-38zatFKRimBUUFSSlqiHVeBeC161oTJSHv0cvzUZgJA5ixSBWJLHiKFawhJJ_aO_NVvr9aYgOUOgPVrX_u-oE9QP6d42S
CitedBy_id crossref_primary_10_1007_s13369_024_09716_w
Cites_doi 10.1016/j.jprocont.2015.06.003
10.1007/s10462-020-09934-2
10.1007/s10845-022-01923-2
10.1007/s13369-019-03935-2
10.1016/j.eswa.2018.06.055
10.1007/s00170-021-07253-6
10.1016/j.aei.2021.101445
10.1109/TIM.2021.3076841
10.1007/s13369-020-04848-1
10.1016/j.jlp.2021.104591
10.1016/j.enbuild.2021.111069
10.1016/j.neucom.2015.01.106
10.1016/j.isatra.2021.08.040
10.1016/j.ifacol.2022.07.531
10.1007/s10845-017-1343-1
10.1109/TFUZZ.2006.879986
10.1016/j.neucom.2020.04.159
10.1016/j.net.2021.05.006
10.1016/j.engappai.2022.105372
10.1007/s10489-020-01989-6
10.1016/j.eswa.2021.116228
10.1080/0951192X.2015.1130245
10.1002/cben.202000027
10.1016/j.net.2022.01.011
10.1109/ACCESS.2021.3071796
10.1109/TFUZZ.2013.2278989
10.1016/j.neucom.2015.09.127
10.1016/j.net.2020.09.003
10.1109/JIOT.2021.3106898
10.3390/s21041467
10.1002/int.21584
10.32604/csse.2022.020367
10.1016/0098-1354(93)80018-I
10.1016/j.asoc.2022.109052
10.1109/CDC.1978.268028
10.1007/978-3-319-89978-7
10.1007/978-3-642-29127-2
10.1007/978-3-030-89691-1_20
ContentType Journal Article
Copyright King Fahd University of Petroleum & Minerals 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: King Fahd University of Petroleum & Minerals 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s13369-023-07789-7
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2191-4281
EndPage 14744
ExternalDocumentID 10_1007_s13369_023_07789_7
GroupedDBID -EM
0R~
203
2KG
406
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AASML
AATNV
AATVU
AAUYE
AAYTO
AAYZH
ABAKF
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACDTI
ACHSB
ACMDZ
ACMLO
ACOKC
ACPIV
ACUHS
ACZOJ
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AESKC
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AGAYW
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AHAVH
AHBYD
AHSBF
AIAKS
AIGIU
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
AOCGG
AXYYD
BGNMA
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESX
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GQ6
GQ7
H13
HG6
I-F
IKXTQ
IWAJR
J-C
JBSCW
JZLTJ
L8X
LLZTM
M4Y
MK~
NPVJJ
NQJWS
NU0
O9J
PT4
ROL
RSV
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
TUS
UOJIU
UTJUX
UZXMN
VFIZW
Z5O
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z88
ZMTXR
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
06D
0VY
23M
29~
2KM
30V
408
5GY
96X
AAJKR
AARTL
AAYIU
AAYQN
AAZMS
ABTHY
ACGFS
ACKNC
ADHHG
ADHIR
AEGNC
AEJHL
AENEX
AEPYU
AETCA
AFWTZ
AFZKB
AGDGC
AGWZB
AGYKE
AHYZX
AIIXL
AMKLP
AMYQR
ANMIH
AYJHY
ESBYG
FFXSO
FRRFC
FYJPI
GGRSB
GJIRD
GX1
HMJXF
HRMNR
HZ~
I0C
IXD
J9A
KOV
O93
OVT
P9P
R9I
RLLFE
S27
S3B
SEG
SHX
T13
U2A
UG4
VC2
W48
WK8
~A9
ID FETCH-LOGICAL-c319t-bb0263d2bb0372e69e28ea0dc2fe75821c32c1a7772ef996bd571491da1e3b743
ISSN 2193-567X
1319-8025
IngestDate Mon Jun 30 09:01:47 EDT 2025
Wed Oct 01 02:18:45 EDT 2025
Thu Apr 24 23:08:04 EDT 2025
Fri Feb 21 02:41:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Robust condition monitoring
Fuzzy clustering tools
Pythagorean membership grades
Industrial plants
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c319t-bb0263d2bb0372e69e28ea0dc2fe75821c32c1a7772ef996bd571491da1e3b743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6864-9629
PQID 2871753052
PQPubID 2044268
PageCount 14
ParticipantIDs proquest_journals_2871753052
crossref_citationtrail_10_1007_s13369_023_07789_7
crossref_primary_10_1007_s13369_023_07789_7
springer_journals_10_1007_s13369_023_07789_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Arabian journal for science and engineering (2011)
PublicationTitleAbbrev Arab J Sci Eng
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Harish, Dimple (CR31) 2022; 191
Prieto Moreno, Llanes Santiago (CR34) 2015; 33
Mardani Shari, Eshraghniaye Jahromi, Houshmand (CR28) 2021; 72
Quiñones-Grueiro, Ares-Milián, Sánchez-Rivero, Silva-Neto, Llanes-Santiago (CR9) 2021; 438
Mayadevi, Mini, Hari Kumar, Prins (CR18) 2020
Shahbazi, Byun (CR2) 2021; 21
Zhang, Wen, Dong, Lin, Huang, Tian, Chen (CR8) 2021; 70
Rodríguez-Ramos, Silva Neto, Lanes-Santiago (CR36) 2018; 113
Yager (CR27) 2014; 22
Abid, Khan, Iqbal (CR5) 2021; 54
Taqvi, Zabiri, Tufa, Uddinn, Fatima, Maulud (CR13) 2021; 8
Efthymiou, Mourtzis, Pagoropoulos, Papakostas, Chryssolouris (CR12) 2016; 29
CR32
Garcia, Herrera (CR39) 2008; 9
Quin, Zhao (CR40) 2022; 55
CR30
Yager, Abbasov (CR26) 2013; 28
Rodríguez-Ramos, Bernal de Lázaro, Silva Neto, Llanes-Santiago (CR17) 2019; 30
Kumar, Mohan Mishra, Kumar (CR15) 2021; 53
Biswas (CR25) 1997; 3
Ompal, Mishra, Kumar (CR16) 2022; 54
Onal (CR33) 2022; 41
Wu, Cai, Chen, Zhang (CR11) 2021; 245
Pimenov, Bustillo, Wojciechowski, Sharma, Gupta, Kuntoglu (CR6) 2022
Kumar, Bansal, Kumar, Devrari, Kumar, Mani (CR14) 2021; 53
CR7
CR29
Li, Song, Ly (CR1) 2021
Mendel, John, Liu (CR24) 2006; 14
Zhou, Tang (CR19) 2021; 115
CR23
Bernal-de-Lázaro, Cruz-Corona, Silva-Neto, Llanes-Santiago (CR10) 2021
Zhang, Yi, Cheng (CR4) 2021; 46
Yupeng, Ruixin, Zhen, Guiyang, Jia, Xiuquan, Qiqiang (CR22) 2022
Zhou, Chen, Philip Chen, Zhang, Li (CR38) 2016; 198
Downs, Vogel (CR35) 1993; 17
Karamti, Lashin, Alrowais, Mahmoud (CR3) 2021; 9
Haiyang, Haifeng, Jin, Jinyu (CR21) 2021; 51
Ding, Fu (CR37) 2016; 188
Fan, Ma, Xiao (CR20) 2021; 51
M Ompal (7789_CR16) 2022; 54
K Zhou (7789_CR19) 2021; 115
7789_CR29
R Biswas (7789_CR25) 1997; 3
DY Pimenov (7789_CR6) 2022
JJ Downs (7789_CR35) 1993; 17
M Zhang (7789_CR4) 2021; 46
M Quiñones-Grueiro (7789_CR9) 2021; 438
A Rodríguez-Ramos (7789_CR36) 2018; 113
Y Fan (7789_CR20) 2021; 51
A Prieto Moreno (7789_CR34) 2015; 33
Z Shahbazi (7789_CR2) 2021; 21
RR Yager (7789_CR26) 2013; 28
R Quin (7789_CR40) 2022; 55
N Mayadevi (7789_CR18) 2020
7789_CR23
SAA Taqvi (7789_CR13) 2021; 8
B Wu (7789_CR11) 2021; 245
Y Onal (7789_CR33) 2022; 41
A Kumar (7789_CR14) 2021; 53
P Haiyang (7789_CR21) 2021; 51
J Bernal-de-Lázaro (7789_CR10) 2021
JM Mendel (7789_CR24) 2006; 14
RR Yager (7789_CR27) 2014; 22
H Karamti (7789_CR3) 2021; 9
N Kumar (7789_CR15) 2021; 53
J Zhou (7789_CR38) 2016; 198
Y Li (7789_CR1) 2021
K Efthymiou (7789_CR12) 2016; 29
A Abid (7789_CR5) 2021; 54
M Mardani Shari (7789_CR28) 2021; 72
G Harish (7789_CR31) 2022; 191
Y Ding (7789_CR37) 2016; 188
P Zhang (7789_CR8) 2021; 70
A Rodríguez-Ramos (7789_CR17) 2019; 30
G Yupeng (7789_CR22) 2022
7789_CR30
7789_CR7
7789_CR32
S Garcia (7789_CR39) 2008; 9
References_xml – volume: 33
  start-page: 14
  year: 2015
  end-page: 24
  ident: CR34
  article-title: Principal components selection for dimensionality reduction using discriminat information applied to fault diagnosis
  publication-title: J. Process Contr.
  doi: 10.1016/j.jprocont.2015.06.003
– volume: 54
  start-page: 3639
  year: 2021
  end-page: 3664
  ident: CR5
  article-title: A review on fault detection and diagnosis techniques: basics and beyond
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09934-2
– year: 2022
  ident: CR6
  article-title: Artificial intelligence systems for tool condition monitoring in machining: analysis and critical review
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-022-01923-2
– year: 2020
  ident: CR18
  article-title: Fuzzy-based intelligent algorithm for diagnosis of drive faults in induction motor drive system
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-019-03935-2
– volume: 113
  start-page: 200
  year: 2018
  end-page: 212
  ident: CR36
  article-title: An approach to fault diagnosis with online detection of novel faults using fuzzy clustering tools
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.06.055
– volume: 115
  start-page: 1005
  year: 2021
  end-page: 1019
  ident: CR19
  article-title: Harnessing fuzzy neural network for gear fault diagnosis with limited data labels
  publication-title: Int. J. Adv. Manuf. Tech.
  doi: 10.1007/s00170-021-07253-6
– volume: 51
  start-page: 3718
  year: 2021
  end-page: 3735
  ident: CR21
  article-title: Multi-class fuzzy support matrix machine for classification in roller bearing fault diagnosis
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2021.101445
– volume: 70
  start-page: 1
  issue: 3518415
  year: 2021
  end-page: 15
  ident: CR8
  article-title: A novel multiscale lightweight fault diagnosis model based on the idea of adversarial learning
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2021.3076841
– volume: 46
  start-page: 1647
  year: 2021
  end-page: 1661
  ident: CR4
  article-title: Multistage condition monitoring of batch process based on multi-boundary hypersphere svdd with modified bat algorithm
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-020-04848-1
– ident: CR30
– volume: 72
  year: 2021
  ident: CR28
  article-title: Failure mode and effect analysis using an integrated approach of clustering and mcdm under pythagorean fuzzy environment
  publication-title: J. Loss Prev. Process Ind.
  doi: 10.1016/j.jlp.2021.104591
– volume: 9
  start-page: 2677
  year: 2008
  end-page: 2694
  ident: CR39
  article-title: An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons
  publication-title: J. Mach. Learn. Res.
– volume: 245
  start-page: 1
  year: 2021
  end-page: 10
  ident: CR11
  article-title: A hybrid data-driven simultaneous fault diagnosis model for air handling units
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2021.111069
– volume: 188
  start-page: 233
  issue: 5
  year: 2016
  end-page: 238
  ident: CR37
  article-title: Kernel-based fuzzy c-means clustering algorithm based on genetic algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.01.106
– year: 2021
  ident: CR10
  article-title: Criteria for optimizing kernel methods in fault monitoring process: A survey
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2021.08.040
– volume: 55
  start-page: 732
  year: 2022
  end-page: 737
  ident: CR40
  article-title: High-Efficiency Generative Adversarial Network Model for Chemical Process Fault Diagnosis
  publication-title: IFAC Paper on Line
  doi: 10.1016/j.ifacol.2022.07.531
– volume: 30
  start-page: 1601
  year: 2019
  end-page: 1615
  ident: CR17
  article-title: An approach to robust fault diagnosis in mechanical systems using computational intelligence
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-017-1343-1
– ident: CR29
– volume: 14
  start-page: 808
  issue: 6
  year: 2006
  end-page: 821
  ident: CR24
  article-title: Interval type-2 fuzzy sets made simple
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2006.879986
– volume: 438
  start-page: 195
  year: 2021
  end-page: 208
  ident: CR9
  article-title: Robust leak localization in water distribution networks using computational intelligence
  publication-title: Neurocomp
  doi: 10.1016/j.neucom.2020.04.159
– volume: 53
  start-page: 3327
  year: 2021
  end-page: 3334
  ident: CR15
  article-title: Smart grid and nuclear power plant security by integrating cryptographic hardware chip
  publication-title: Nuclear Eng. Technol.
  doi: 10.1016/j.net.2021.05.006
– year: 2022
  ident: CR22
  article-title: Mechanical equipment health management method based on improved intuitionistic fuzzy entropy and case reasoning technology
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.105372
– volume: 51
  start-page: 3718
  year: 2021
  end-page: 3735
  ident: CR20
  article-title: An improved approach to generate generalized basic probability assignment based on fuzzy sets in the open world and its application in multi-source information fusion
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-01989-6
– ident: CR23
– volume: 191
  start-page: 1162
  year: 2022
  end-page: 1190
  ident: CR31
  article-title: Novel distance measures for intuitionistic fuzzy sets based on various triangle centers of isosceles triangular fuzzy numbers and their applications
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116228
– volume: 3
  start-page: 3
  issue: 1
  year: 1997
  end-page: 11
  ident: CR25
  article-title: On fuzzy sets and intuitionistic fuzzy sets
  publication-title: Notes IFS
– volume: 29
  start-page: 1025
  issue: 9
  year: 2016
  end-page: 1044
  ident: CR12
  article-title: Manufacturing systems complexity analysis methods review
  publication-title: Int. J. Comp. Integ. M
  doi: 10.1080/0951192X.2015.1130245
– volume: 8
  start-page: 239
  issue: 3
  year: 2021
  end-page: 259
  ident: CR13
  article-title: A review on data-driven learning approaches for fault detection and diagnosis in chemical process
  publication-title: ChemBioEng. Rev.
  doi: 10.1002/cben.202000027
– volume: 54
  start-page: 2444
  year: 2022
  end-page: 2452
  ident: CR16
  article-title: FPGA integrated IEEE 802.15.4 ZigBee wireless sensor nodes performance for industrial plant monitoring and automation
  publication-title: Nuclear Eng. Technol.
  doi: 10.1016/j.net.2022.01.011
– volume: 9
  start-page: 58838
  year: 2021
  end-page: 58851
  ident: CR3
  article-title: A new deep stacked architecture for multi-fault machinery identification with imbalanced samples
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3071796
– volume: 22
  start-page: 958
  issue: 4
  year: 2014
  end-page: 965
  ident: CR27
  article-title: Pythagorean membership grades in multicriteria decision making
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2013.2278989
– ident: CR32
– volume: 198
  start-page: 125
  issue: 19
  year: 2016
  end-page: 134
  ident: CR38
  article-title: Fuzzy clustering with the entropy of attribute weights
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.09.127
– volume: 53
  start-page: 1167
  year: 2021
  end-page: 1175
  ident: CR14
  article-title: FPGA application for wireless monitoring in power plant
  publication-title: Nuclear Eng. Technol.
  doi: 10.1016/j.net.2020.09.003
– ident: CR7
– year: 2021
  ident: CR1
  article-title: Deep learning in security of internet of things
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3106898
– volume: 21
  start-page: 1467
  year: 2021
  ident: CR2
  article-title: Integration of blockchain, IoT and machine learning for multistage quality control and enhancing security in smart manufacturing
  publication-title: Sensors
  doi: 10.3390/s21041467
– volume: 28
  start-page: 436
  year: 2013
  end-page: 452
  ident: CR26
  article-title: Pythagorean membership grades, complex numbers and decision making
  publication-title: Int. J. Intell. Syst.
  doi: 10.1002/int.21584
– volume: 41
  start-page: 141
  issue: 1
  year: 2022
  end-page: 156
  ident: CR33
  article-title: Gaussian kernel based svr model for short-term photovoltaic mpp power prediction
  publication-title: Comput. Syst. Sci. Eng.
  doi: 10.32604/csse.2022.020367
– volume: 17
  start-page: 245
  issue: 3
  year: 1993
  end-page: 255
  ident: CR35
  article-title: A plant-wide industrial process control problem
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/0098-1354(93)80018-I
– volume: 115
  start-page: 1005
  year: 2021
  ident: 7789_CR19
  publication-title: Int. J. Adv. Manuf. Tech.
  doi: 10.1007/s00170-021-07253-6
– volume: 191
  start-page: 1162
  year: 2022
  ident: 7789_CR31
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116228
– volume: 70
  start-page: 1
  issue: 3518415
  year: 2021
  ident: 7789_CR8
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2021.3076841
– volume: 9
  start-page: 58838
  year: 2021
  ident: 7789_CR3
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3071796
– volume: 51
  start-page: 3718
  year: 2021
  ident: 7789_CR20
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-01989-6
– volume: 8
  start-page: 239
  issue: 3
  year: 2021
  ident: 7789_CR13
  publication-title: ChemBioEng. Rev.
  doi: 10.1002/cben.202000027
– year: 2021
  ident: 7789_CR10
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2021.08.040
– ident: 7789_CR30
  doi: 10.1016/j.asoc.2022.109052
– year: 2022
  ident: 7789_CR6
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-022-01923-2
– volume: 53
  start-page: 3327
  year: 2021
  ident: 7789_CR15
  publication-title: Nuclear Eng. Technol.
  doi: 10.1016/j.net.2021.05.006
– volume: 54
  start-page: 3639
  year: 2021
  ident: 7789_CR5
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09934-2
– volume: 14
  start-page: 808
  issue: 6
  year: 2006
  ident: 7789_CR24
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2006.879986
– volume: 28
  start-page: 436
  year: 2013
  ident: 7789_CR26
  publication-title: Int. J. Intell. Syst.
  doi: 10.1002/int.21584
– ident: 7789_CR32
  doi: 10.1109/CDC.1978.268028
– volume: 29
  start-page: 1025
  issue: 9
  year: 2016
  ident: 7789_CR12
  publication-title: Int. J. Comp. Integ. M
  doi: 10.1080/0951192X.2015.1130245
– volume: 3
  start-page: 3
  issue: 1
  year: 1997
  ident: 7789_CR25
  publication-title: Notes IFS
– volume: 21
  start-page: 1467
  year: 2021
  ident: 7789_CR2
  publication-title: Sensors
  doi: 10.3390/s21041467
– year: 2021
  ident: 7789_CR1
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3106898
– volume: 245
  start-page: 1
  year: 2021
  ident: 7789_CR11
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2021.111069
– year: 2020
  ident: 7789_CR18
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-019-03935-2
– volume: 113
  start-page: 200
  year: 2018
  ident: 7789_CR36
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.06.055
– volume: 198
  start-page: 125
  issue: 19
  year: 2016
  ident: 7789_CR38
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.09.127
– ident: 7789_CR7
  doi: 10.1007/978-3-319-89978-7
– volume: 188
  start-page: 233
  issue: 5
  year: 2016
  ident: 7789_CR37
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.01.106
– volume: 30
  start-page: 1601
  year: 2019
  ident: 7789_CR17
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-017-1343-1
– volume: 51
  start-page: 3718
  year: 2021
  ident: 7789_CR21
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2021.101445
– year: 2022
  ident: 7789_CR22
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.105372
– ident: 7789_CR23
  doi: 10.1007/978-3-642-29127-2
– volume: 22
  start-page: 958
  issue: 4
  year: 2014
  ident: 7789_CR27
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2013.2278989
– volume: 41
  start-page: 141
  issue: 1
  year: 2022
  ident: 7789_CR33
  publication-title: Comput. Syst. Sci. Eng.
  doi: 10.32604/csse.2022.020367
– volume: 55
  start-page: 732
  year: 2022
  ident: 7789_CR40
  publication-title: IFAC Paper on Line
  doi: 10.1016/j.ifacol.2022.07.531
– volume: 9
  start-page: 2677
  year: 2008
  ident: 7789_CR39
  publication-title: J. Mach. Learn. Res.
– volume: 438
  start-page: 195
  year: 2021
  ident: 7789_CR9
  publication-title: Neurocomp
  doi: 10.1016/j.neucom.2020.04.159
– volume: 54
  start-page: 2444
  year: 2022
  ident: 7789_CR16
  publication-title: Nuclear Eng. Technol.
  doi: 10.1016/j.net.2022.01.011
– volume: 53
  start-page: 1167
  year: 2021
  ident: 7789_CR14
  publication-title: Nuclear Eng. Technol.
  doi: 10.1016/j.net.2020.09.003
– volume: 17
  start-page: 245
  issue: 3
  year: 1993
  ident: 7789_CR35
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/0098-1354(93)80018-I
– ident: 7789_CR29
  doi: 10.1007/978-3-030-89691-1_20
– volume: 72
  year: 2021
  ident: 7789_CR28
  publication-title: J. Loss Prev. Process Ind.
  doi: 10.1016/j.jlp.2021.104591
– volume: 46
  start-page: 1647
  year: 2021
  ident: 7789_CR4
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-020-04848-1
– volume: 33
  start-page: 14
  year: 2015
  ident: 7789_CR34
  publication-title: J. Process Contr.
  doi: 10.1016/j.jprocont.2015.06.003
SSID ssib048395113
ssj0001916267
ssj0061873
Score 2.301395
Snippet In this paper, a novel approach for improving the performance and robustness of the condition monitoring system in industrial plants is presented. In the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 14731
SubjectTerms Algorithms
Classification
Clustering
Condition monitoring
Engineering
Fuzzy sets
Humanities and Social Sciences
Industrial plants
Matrix partitioning
Monitoring systems
multidisciplinary
Process variables
Research Article-Electrical Engineering
Robustness
Science
Title A Robust Condition Monitoring Approach in Industrial Plants Based on the Pythagorean Membership Grades
URI https://link.springer.com/article/10.1007/s13369-023-07789-7
https://www.proquest.com/docview/2871753052
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCO - Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2191-4281
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0001916267
  issn: 2193-567X
  databaseCode: ABDBF
  dateStart: 20041001
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2191-4281
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061873
  issn: 2193-567X
  databaseCode: GX1
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2191-4281
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001916267
  issn: 2193-567X
  databaseCode: AFBBN
  dateStart: 20110101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 2191-4281
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061873
  issn: 2193-567X
  databaseCode: AGYKE
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 2191-4281
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061873
  issn: 2193-567X
  databaseCode: U2A
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELf28QA8ID5Fx5j8gHgprvLVOH1MoWVCo0PQSn2L7MTdika7tekk9tdzZztxVmACXtLG-VDi-8Vn3_3ujpDXseQCPjTBcu4LFsWFZCIKI5Z7hUpEGHUDgYHCn0bx8ST6OO1Od3bvNVhLm1J28pvfxpX8j1ShDeSKUbL_INn6ptAA_0G-sAUJw_avZJwiMXqzLjFur9DcK_uNalJdatOFo0mjUaEDyxSV63Yf1FdhXQXtzz_Kc3G2XCntusEaIZrE9WElCssx_OZQla4EJiqvPNmaqFgNEWiGb6Q47KA9Xz9XXw-67ohz9BTGWf_-bKNu2Bfx3fD-0mI11-2-C1WbX4t1ewAoA0HZi0S7qjpfm4rmF9cC45iXmBgBz-pHC0M208QjJPeu2VfogzlSUE51bZJbxo8gtFGA28ZPZHajv6UOztFjOcZnJZ6Jq-4o3QbjMyyZA1MlplIAUdIEut8Yzv2IWx2lqn2TrfIXxePZQOwwjHsMH9TjPOkx7tRsRS0YnWbDyclJNh5Mx28urxgWQEOigK0Gs0v2A1BQugrJ1HfmQpjG61phZpIR-4kmT9TvaOPBTFTo9kPcnnO5hdSW719PqcaPyEOLH5oaYD8mO2rxhDxogOQpmaXUQJzWEKcO4rSCOJ0vqIM4NRCnGuIUrgCI0wbEqYM4NRB_RibDwfjdMbOlQVgOb1wyKb0gDosAfkMeqLingkQJr8iDmeIY-52HQe4LDmtHNYMlvSy63I96fiF8FUqYNT8ne4vlQr0g1AtlnCjMrDCD2bWQvaSLNQkUKLMkl6FoEb_qvCy3efOxfMtF5jJ-Y4dn0OGZ7vCMt0i7vubSZI258-zDSiaZHV3WGVoyeBe0cdAibys5ucN_vtvB3Xd7Se67D-mQ7JWrjXoF8-pSHpH9dNjvj4408n4Cl3HLRA
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Robust+Condition+Monitoring+Approach+in+Industrial+Plants+Based+on+the+Pythagorean+Membership+Grades&rft.jtitle=The+Arabian+Journal+for+Science+and+Engineering.+Section+B%2C+Engineering&rft.au=Rodr%C3%ADguez-Ramos%2C+Adri%C3%A1n&rft.au=Rivas+Echeverr%C3%ADa+Franklin&rft.au=Silva+Neto+Ant%C3%B4nio&rft.au=Llanes-Santiago+Orestes&rft.date=2023-11-01&rft.pub=Springer+Nature+B.V&rft.issn=1319-8025&rft.eissn=2191-4281&rft.volume=48&rft.issue=11&rft.spage=14731&rft.epage=14744&rft_id=info:doi/10.1007%2Fs13369-023-07789-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-567X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-567X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-567X&client=summon