A Robust Condition Monitoring Approach in Industrial Plants Based on the Pythagorean Membership Grades
In this paper, a novel approach for improving the performance and robustness of the condition monitoring system in industrial plants is presented. In the off-line stage of the proposal, the Pythagorean membership grade and its complement of a set of n classification algorithms are used to build the...
Saved in:
| Published in | Arabian journal for science and engineering (2011) Vol. 48; no. 11; pp. 14731 - 14744 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2023
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2193-567X 1319-8025 2191-4281 |
| DOI | 10.1007/s13369-023-07789-7 |
Cover
| Abstract | In this paper, a novel approach for improving the performance and robustness of the condition monitoring system in industrial plants is presented. In the off-line stage of the proposal, the Pythagorean membership grade and its complement of a set of
n
classification algorithms are used to build the rule-based decisions for obtaining an enhanced partition matrix, which allows to improve the positioning of the center of the classes and data clustering. The use of Pythagorean fuzzy sets allow to obtain a larger classification space, and then the robustness of the condition monitoring system with respect to noise and external disturbances is improved. This represents a very powerful advantage in industrial plants, where process variables are affected by such features. The proposal was proven using the kernel fuzzy C-means and Gustafson-Kessel algorithms on experimental data sets and on the Tennessee Eastman process benchmark. The percentages of satisfactory classification obtained with the proposal were greater than 90% in most of the experiments. In all cases, the proposed methodology significantly outperformed the results obtained by other algorithms recently presented in the scientific literature. |
|---|---|
| AbstractList | In this paper, a novel approach for improving the performance and robustness of the condition monitoring system in industrial plants is presented. In the off-line stage of the proposal, the Pythagorean membership grade and its complement of a set of n classification algorithms are used to build the rule-based decisions for obtaining an enhanced partition matrix, which allows to improve the positioning of the center of the classes and data clustering. The use of Pythagorean fuzzy sets allow to obtain a larger classification space, and then the robustness of the condition monitoring system with respect to noise and external disturbances is improved. This represents a very powerful advantage in industrial plants, where process variables are affected by such features. The proposal was proven using the kernel fuzzy C-means and Gustafson-Kessel algorithms on experimental data sets and on the Tennessee Eastman process benchmark. The percentages of satisfactory classification obtained with the proposal were greater than 90% in most of the experiments. In all cases, the proposed methodology significantly outperformed the results obtained by other algorithms recently presented in the scientific literature. In this paper, a novel approach for improving the performance and robustness of the condition monitoring system in industrial plants is presented. In the off-line stage of the proposal, the Pythagorean membership grade and its complement of a set of n classification algorithms are used to build the rule-based decisions for obtaining an enhanced partition matrix, which allows to improve the positioning of the center of the classes and data clustering. The use of Pythagorean fuzzy sets allow to obtain a larger classification space, and then the robustness of the condition monitoring system with respect to noise and external disturbances is improved. This represents a very powerful advantage in industrial plants, where process variables are affected by such features. The proposal was proven using the kernel fuzzy C-means and Gustafson-Kessel algorithms on experimental data sets and on the Tennessee Eastman process benchmark. The percentages of satisfactory classification obtained with the proposal were greater than 90% in most of the experiments. In all cases, the proposed methodology significantly outperformed the results obtained by other algorithms recently presented in the scientific literature. |
| Author | Rodríguez-Ramos, Adrián Llanes-Santiago, Orestes Silva Neto, Antônio Rivas Echeverría, Franklin |
| Author_xml | – sequence: 1 givenname: Adrián surname: Rodríguez-Ramos fullname: Rodríguez-Ramos, Adrián organization: Automation and Computing, Universidad Tecnológica de la Habana José Antonio Echeverría, CUJAE – sequence: 2 givenname: Franklin surname: Rivas Echeverría fullname: Rivas Echeverría, Franklin organization: School of Mathematics and Computational Sciences, Yachay Tech University – sequence: 3 givenname: Antônio surname: Silva Neto fullname: Silva Neto, Antônio organization: Instituto Politécnico do Rio de Janeiro, Universidade do Estado do Rio de Janeiro – sequence: 4 givenname: Orestes orcidid: 0000-0002-6864-9629 surname: Llanes-Santiago fullname: Llanes-Santiago, Orestes email: orestes@tesla.cujae.edu.cu organization: Automation and Computing, Universidad Tecnológica de la Habana José Antonio Echeverría, CUJAE |
| BookMark | eNp9kE1LAzEQhoNUsNb-AU8Bz6v52N1sjrVoLSgWUfAWsptsN9Ima5Ie-u9Nu4LgoacJzPvMTJ5LMLLOagCuMbrFCLG7gCkteYYIzRBjFc_YGRgTzHGWkwqPjm-aFSX7vADTEEyN8oryAmM6Bu0Mvrl6FyKcO6tMNM7CF2dNdN7YNZz1vXey6aCxcGlVynkjN3C1kTYGeC-DVjARsdNwtY-dXDuvZZqgt7X2oTM9XHipdLgC563cBD39rRPw8fjwPn_Knl8Xy_nsOWso5jGra0RKqkiqlBFdck0qLZFqSKtZURHcUNJgyVhqtpyXtSoYzjlWEmtas5xOwM0wN539vdMhii-38zatFKRimBUUFSSlqiHVeBeC161oTJSHv0cvzUZgJA5ixSBWJLHiKFawhJJ_aO_NVvr9aYgOUOgPVrX_u-oE9QP6d42S |
| CitedBy_id | crossref_primary_10_1007_s13369_024_09716_w |
| Cites_doi | 10.1016/j.jprocont.2015.06.003 10.1007/s10462-020-09934-2 10.1007/s10845-022-01923-2 10.1007/s13369-019-03935-2 10.1016/j.eswa.2018.06.055 10.1007/s00170-021-07253-6 10.1016/j.aei.2021.101445 10.1109/TIM.2021.3076841 10.1007/s13369-020-04848-1 10.1016/j.jlp.2021.104591 10.1016/j.enbuild.2021.111069 10.1016/j.neucom.2015.01.106 10.1016/j.isatra.2021.08.040 10.1016/j.ifacol.2022.07.531 10.1007/s10845-017-1343-1 10.1109/TFUZZ.2006.879986 10.1016/j.neucom.2020.04.159 10.1016/j.net.2021.05.006 10.1016/j.engappai.2022.105372 10.1007/s10489-020-01989-6 10.1016/j.eswa.2021.116228 10.1080/0951192X.2015.1130245 10.1002/cben.202000027 10.1016/j.net.2022.01.011 10.1109/ACCESS.2021.3071796 10.1109/TFUZZ.2013.2278989 10.1016/j.neucom.2015.09.127 10.1016/j.net.2020.09.003 10.1109/JIOT.2021.3106898 10.3390/s21041467 10.1002/int.21584 10.32604/csse.2022.020367 10.1016/0098-1354(93)80018-I 10.1016/j.asoc.2022.109052 10.1109/CDC.1978.268028 10.1007/978-3-319-89978-7 10.1007/978-3-642-29127-2 10.1007/978-3-030-89691-1_20 |
| ContentType | Journal Article |
| Copyright | King Fahd University of Petroleum & Minerals 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: King Fahd University of Petroleum & Minerals 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s13369-023-07789-7 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2191-4281 |
| EndPage | 14744 |
| ExternalDocumentID | 10_1007_s13369_023_07789_7 |
| GroupedDBID | -EM 0R~ 203 2KG 406 AAAVM AACDK AAHNG AAIAL AAJBT AANZL AARHV AASML AATNV AATVU AAUYE AAYTO AAYZH ABAKF ABDBF ABDZT ABECU ABFTD ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTKH ABTMW ABXPI ACAOD ACBXY ACDTI ACHSB ACMDZ ACMLO ACOKC ACPIV ACUHS ACZOJ ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AESKC AEVLU AEXYK AFBBN AFLOW AFQWF AGAYW AGJBK AGMZJ AGQEE AGQMX AGRTI AHAVH AHBYD AHSBF AIAKS AIGIU AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF AOCGG AXYYD BGNMA CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESX FERAY FIGPU FINBP FNLPD FSGXE GGCAI GQ6 GQ7 H13 HG6 I-F IKXTQ IWAJR J-C JBSCW JZLTJ L8X LLZTM M4Y MK~ NPVJJ NQJWS NU0 O9J PT4 ROL RSV SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG TUS UOJIU UTJUX UZXMN VFIZW Z5O Z7R Z7V Z7X Z7Y Z7Z Z81 Z83 Z85 Z88 ZMTXR ~8M AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 06D 0VY 23M 29~ 2KM 30V 408 5GY 96X AAJKR AARTL AAYIU AAYQN AAZMS ABTHY ACGFS ACKNC ADHHG ADHIR AEGNC AEJHL AENEX AEPYU AETCA AFWTZ AFZKB AGDGC AGWZB AGYKE AHYZX AIIXL AMKLP AMYQR ANMIH AYJHY ESBYG FFXSO FRRFC FYJPI GGRSB GJIRD GX1 HMJXF HRMNR HZ~ I0C IXD J9A KOV O93 OVT P9P R9I RLLFE S27 S3B SEG SHX T13 U2A UG4 VC2 W48 WK8 ~A9 |
| ID | FETCH-LOGICAL-c319t-bb0263d2bb0372e69e28ea0dc2fe75821c32c1a7772ef996bd571491da1e3b743 |
| ISSN | 2193-567X 1319-8025 |
| IngestDate | Mon Jun 30 09:01:47 EDT 2025 Wed Oct 01 02:18:45 EDT 2025 Thu Apr 24 23:08:04 EDT 2025 Fri Feb 21 02:41:30 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Robust condition monitoring Fuzzy clustering tools Pythagorean membership grades Industrial plants |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c319t-bb0263d2bb0372e69e28ea0dc2fe75821c32c1a7772ef996bd571491da1e3b743 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6864-9629 |
| PQID | 2871753052 |
| PQPubID | 2044268 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_2871753052 crossref_citationtrail_10_1007_s13369_023_07789_7 crossref_primary_10_1007_s13369_023_07789_7 springer_journals_10_1007_s13369_023_07789_7 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-11-01 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Arabian journal for science and engineering (2011) |
| PublicationTitleAbbrev | Arab J Sci Eng |
| PublicationYear | 2023 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Harish, Dimple (CR31) 2022; 191 Prieto Moreno, Llanes Santiago (CR34) 2015; 33 Mardani Shari, Eshraghniaye Jahromi, Houshmand (CR28) 2021; 72 Quiñones-Grueiro, Ares-Milián, Sánchez-Rivero, Silva-Neto, Llanes-Santiago (CR9) 2021; 438 Mayadevi, Mini, Hari Kumar, Prins (CR18) 2020 Shahbazi, Byun (CR2) 2021; 21 Zhang, Wen, Dong, Lin, Huang, Tian, Chen (CR8) 2021; 70 Rodríguez-Ramos, Silva Neto, Lanes-Santiago (CR36) 2018; 113 Yager (CR27) 2014; 22 Abid, Khan, Iqbal (CR5) 2021; 54 Taqvi, Zabiri, Tufa, Uddinn, Fatima, Maulud (CR13) 2021; 8 Efthymiou, Mourtzis, Pagoropoulos, Papakostas, Chryssolouris (CR12) 2016; 29 CR32 Garcia, Herrera (CR39) 2008; 9 Quin, Zhao (CR40) 2022; 55 CR30 Yager, Abbasov (CR26) 2013; 28 Rodríguez-Ramos, Bernal de Lázaro, Silva Neto, Llanes-Santiago (CR17) 2019; 30 Kumar, Mohan Mishra, Kumar (CR15) 2021; 53 Biswas (CR25) 1997; 3 Ompal, Mishra, Kumar (CR16) 2022; 54 Onal (CR33) 2022; 41 Wu, Cai, Chen, Zhang (CR11) 2021; 245 Pimenov, Bustillo, Wojciechowski, Sharma, Gupta, Kuntoglu (CR6) 2022 Kumar, Bansal, Kumar, Devrari, Kumar, Mani (CR14) 2021; 53 CR7 CR29 Li, Song, Ly (CR1) 2021 Mendel, John, Liu (CR24) 2006; 14 Zhou, Tang (CR19) 2021; 115 CR23 Bernal-de-Lázaro, Cruz-Corona, Silva-Neto, Llanes-Santiago (CR10) 2021 Zhang, Yi, Cheng (CR4) 2021; 46 Yupeng, Ruixin, Zhen, Guiyang, Jia, Xiuquan, Qiqiang (CR22) 2022 Zhou, Chen, Philip Chen, Zhang, Li (CR38) 2016; 198 Downs, Vogel (CR35) 1993; 17 Karamti, Lashin, Alrowais, Mahmoud (CR3) 2021; 9 Haiyang, Haifeng, Jin, Jinyu (CR21) 2021; 51 Ding, Fu (CR37) 2016; 188 Fan, Ma, Xiao (CR20) 2021; 51 M Ompal (7789_CR16) 2022; 54 K Zhou (7789_CR19) 2021; 115 7789_CR29 R Biswas (7789_CR25) 1997; 3 DY Pimenov (7789_CR6) 2022 JJ Downs (7789_CR35) 1993; 17 M Zhang (7789_CR4) 2021; 46 M Quiñones-Grueiro (7789_CR9) 2021; 438 A Rodríguez-Ramos (7789_CR36) 2018; 113 Y Fan (7789_CR20) 2021; 51 A Prieto Moreno (7789_CR34) 2015; 33 Z Shahbazi (7789_CR2) 2021; 21 RR Yager (7789_CR26) 2013; 28 R Quin (7789_CR40) 2022; 55 N Mayadevi (7789_CR18) 2020 7789_CR23 SAA Taqvi (7789_CR13) 2021; 8 B Wu (7789_CR11) 2021; 245 Y Onal (7789_CR33) 2022; 41 A Kumar (7789_CR14) 2021; 53 P Haiyang (7789_CR21) 2021; 51 J Bernal-de-Lázaro (7789_CR10) 2021 JM Mendel (7789_CR24) 2006; 14 RR Yager (7789_CR27) 2014; 22 H Karamti (7789_CR3) 2021; 9 N Kumar (7789_CR15) 2021; 53 J Zhou (7789_CR38) 2016; 198 Y Li (7789_CR1) 2021 K Efthymiou (7789_CR12) 2016; 29 A Abid (7789_CR5) 2021; 54 M Mardani Shari (7789_CR28) 2021; 72 G Harish (7789_CR31) 2022; 191 Y Ding (7789_CR37) 2016; 188 P Zhang (7789_CR8) 2021; 70 A Rodríguez-Ramos (7789_CR17) 2019; 30 G Yupeng (7789_CR22) 2022 7789_CR30 7789_CR7 7789_CR32 S Garcia (7789_CR39) 2008; 9 |
| References_xml | – volume: 33 start-page: 14 year: 2015 end-page: 24 ident: CR34 article-title: Principal components selection for dimensionality reduction using discriminat information applied to fault diagnosis publication-title: J. Process Contr. doi: 10.1016/j.jprocont.2015.06.003 – volume: 54 start-page: 3639 year: 2021 end-page: 3664 ident: CR5 article-title: A review on fault detection and diagnosis techniques: basics and beyond publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09934-2 – year: 2022 ident: CR6 article-title: Artificial intelligence systems for tool condition monitoring in machining: analysis and critical review publication-title: J. Intell. Manuf. doi: 10.1007/s10845-022-01923-2 – year: 2020 ident: CR18 article-title: Fuzzy-based intelligent algorithm for diagnosis of drive faults in induction motor drive system publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-019-03935-2 – volume: 113 start-page: 200 year: 2018 end-page: 212 ident: CR36 article-title: An approach to fault diagnosis with online detection of novel faults using fuzzy clustering tools publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.06.055 – volume: 115 start-page: 1005 year: 2021 end-page: 1019 ident: CR19 article-title: Harnessing fuzzy neural network for gear fault diagnosis with limited data labels publication-title: Int. J. Adv. Manuf. Tech. doi: 10.1007/s00170-021-07253-6 – volume: 51 start-page: 3718 year: 2021 end-page: 3735 ident: CR21 article-title: Multi-class fuzzy support matrix machine for classification in roller bearing fault diagnosis publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2021.101445 – volume: 70 start-page: 1 issue: 3518415 year: 2021 end-page: 15 ident: CR8 article-title: A novel multiscale lightweight fault diagnosis model based on the idea of adversarial learning publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2021.3076841 – volume: 46 start-page: 1647 year: 2021 end-page: 1661 ident: CR4 article-title: Multistage condition monitoring of batch process based on multi-boundary hypersphere svdd with modified bat algorithm publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-020-04848-1 – ident: CR30 – volume: 72 year: 2021 ident: CR28 article-title: Failure mode and effect analysis using an integrated approach of clustering and mcdm under pythagorean fuzzy environment publication-title: J. Loss Prev. Process Ind. doi: 10.1016/j.jlp.2021.104591 – volume: 9 start-page: 2677 year: 2008 end-page: 2694 ident: CR39 article-title: An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons publication-title: J. Mach. Learn. Res. – volume: 245 start-page: 1 year: 2021 end-page: 10 ident: CR11 article-title: A hybrid data-driven simultaneous fault diagnosis model for air handling units publication-title: Energy Build. doi: 10.1016/j.enbuild.2021.111069 – volume: 188 start-page: 233 issue: 5 year: 2016 end-page: 238 ident: CR37 article-title: Kernel-based fuzzy c-means clustering algorithm based on genetic algorithm publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.01.106 – year: 2021 ident: CR10 article-title: Criteria for optimizing kernel methods in fault monitoring process: A survey publication-title: ISA Trans. doi: 10.1016/j.isatra.2021.08.040 – volume: 55 start-page: 732 year: 2022 end-page: 737 ident: CR40 article-title: High-Efficiency Generative Adversarial Network Model for Chemical Process Fault Diagnosis publication-title: IFAC Paper on Line doi: 10.1016/j.ifacol.2022.07.531 – volume: 30 start-page: 1601 year: 2019 end-page: 1615 ident: CR17 article-title: An approach to robust fault diagnosis in mechanical systems using computational intelligence publication-title: J. Intell. Manuf. doi: 10.1007/s10845-017-1343-1 – ident: CR29 – volume: 14 start-page: 808 issue: 6 year: 2006 end-page: 821 ident: CR24 article-title: Interval type-2 fuzzy sets made simple publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2006.879986 – volume: 438 start-page: 195 year: 2021 end-page: 208 ident: CR9 article-title: Robust leak localization in water distribution networks using computational intelligence publication-title: Neurocomp doi: 10.1016/j.neucom.2020.04.159 – volume: 53 start-page: 3327 year: 2021 end-page: 3334 ident: CR15 article-title: Smart grid and nuclear power plant security by integrating cryptographic hardware chip publication-title: Nuclear Eng. Technol. doi: 10.1016/j.net.2021.05.006 – year: 2022 ident: CR22 article-title: Mechanical equipment health management method based on improved intuitionistic fuzzy entropy and case reasoning technology publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.105372 – volume: 51 start-page: 3718 year: 2021 end-page: 3735 ident: CR20 article-title: An improved approach to generate generalized basic probability assignment based on fuzzy sets in the open world and its application in multi-source information fusion publication-title: Appl. Intell. doi: 10.1007/s10489-020-01989-6 – ident: CR23 – volume: 191 start-page: 1162 year: 2022 end-page: 1190 ident: CR31 article-title: Novel distance measures for intuitionistic fuzzy sets based on various triangle centers of isosceles triangular fuzzy numbers and their applications publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.116228 – volume: 3 start-page: 3 issue: 1 year: 1997 end-page: 11 ident: CR25 article-title: On fuzzy sets and intuitionistic fuzzy sets publication-title: Notes IFS – volume: 29 start-page: 1025 issue: 9 year: 2016 end-page: 1044 ident: CR12 article-title: Manufacturing systems complexity analysis methods review publication-title: Int. J. Comp. Integ. M doi: 10.1080/0951192X.2015.1130245 – volume: 8 start-page: 239 issue: 3 year: 2021 end-page: 259 ident: CR13 article-title: A review on data-driven learning approaches for fault detection and diagnosis in chemical process publication-title: ChemBioEng. Rev. doi: 10.1002/cben.202000027 – volume: 54 start-page: 2444 year: 2022 end-page: 2452 ident: CR16 article-title: FPGA integrated IEEE 802.15.4 ZigBee wireless sensor nodes performance for industrial plant monitoring and automation publication-title: Nuclear Eng. Technol. doi: 10.1016/j.net.2022.01.011 – volume: 9 start-page: 58838 year: 2021 end-page: 58851 ident: CR3 article-title: A new deep stacked architecture for multi-fault machinery identification with imbalanced samples publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3071796 – volume: 22 start-page: 958 issue: 4 year: 2014 end-page: 965 ident: CR27 article-title: Pythagorean membership grades in multicriteria decision making publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2013.2278989 – ident: CR32 – volume: 198 start-page: 125 issue: 19 year: 2016 end-page: 134 ident: CR38 article-title: Fuzzy clustering with the entropy of attribute weights publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.09.127 – volume: 53 start-page: 1167 year: 2021 end-page: 1175 ident: CR14 article-title: FPGA application for wireless monitoring in power plant publication-title: Nuclear Eng. Technol. doi: 10.1016/j.net.2020.09.003 – ident: CR7 – year: 2021 ident: CR1 article-title: Deep learning in security of internet of things publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2021.3106898 – volume: 21 start-page: 1467 year: 2021 ident: CR2 article-title: Integration of blockchain, IoT and machine learning for multistage quality control and enhancing security in smart manufacturing publication-title: Sensors doi: 10.3390/s21041467 – volume: 28 start-page: 436 year: 2013 end-page: 452 ident: CR26 article-title: Pythagorean membership grades, complex numbers and decision making publication-title: Int. J. Intell. Syst. doi: 10.1002/int.21584 – volume: 41 start-page: 141 issue: 1 year: 2022 end-page: 156 ident: CR33 article-title: Gaussian kernel based svr model for short-term photovoltaic mpp power prediction publication-title: Comput. Syst. Sci. Eng. doi: 10.32604/csse.2022.020367 – volume: 17 start-page: 245 issue: 3 year: 1993 end-page: 255 ident: CR35 article-title: A plant-wide industrial process control problem publication-title: Comput. Chem. Eng. doi: 10.1016/0098-1354(93)80018-I – volume: 115 start-page: 1005 year: 2021 ident: 7789_CR19 publication-title: Int. J. Adv. Manuf. Tech. doi: 10.1007/s00170-021-07253-6 – volume: 191 start-page: 1162 year: 2022 ident: 7789_CR31 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.116228 – volume: 70 start-page: 1 issue: 3518415 year: 2021 ident: 7789_CR8 publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2021.3076841 – volume: 9 start-page: 58838 year: 2021 ident: 7789_CR3 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3071796 – volume: 51 start-page: 3718 year: 2021 ident: 7789_CR20 publication-title: Appl. Intell. doi: 10.1007/s10489-020-01989-6 – volume: 8 start-page: 239 issue: 3 year: 2021 ident: 7789_CR13 publication-title: ChemBioEng. Rev. doi: 10.1002/cben.202000027 – year: 2021 ident: 7789_CR10 publication-title: ISA Trans. doi: 10.1016/j.isatra.2021.08.040 – ident: 7789_CR30 doi: 10.1016/j.asoc.2022.109052 – year: 2022 ident: 7789_CR6 publication-title: J. Intell. Manuf. doi: 10.1007/s10845-022-01923-2 – volume: 53 start-page: 3327 year: 2021 ident: 7789_CR15 publication-title: Nuclear Eng. Technol. doi: 10.1016/j.net.2021.05.006 – volume: 54 start-page: 3639 year: 2021 ident: 7789_CR5 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09934-2 – volume: 14 start-page: 808 issue: 6 year: 2006 ident: 7789_CR24 publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2006.879986 – volume: 28 start-page: 436 year: 2013 ident: 7789_CR26 publication-title: Int. J. Intell. Syst. doi: 10.1002/int.21584 – ident: 7789_CR32 doi: 10.1109/CDC.1978.268028 – volume: 29 start-page: 1025 issue: 9 year: 2016 ident: 7789_CR12 publication-title: Int. J. Comp. Integ. M doi: 10.1080/0951192X.2015.1130245 – volume: 3 start-page: 3 issue: 1 year: 1997 ident: 7789_CR25 publication-title: Notes IFS – volume: 21 start-page: 1467 year: 2021 ident: 7789_CR2 publication-title: Sensors doi: 10.3390/s21041467 – year: 2021 ident: 7789_CR1 publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2021.3106898 – volume: 245 start-page: 1 year: 2021 ident: 7789_CR11 publication-title: Energy Build. doi: 10.1016/j.enbuild.2021.111069 – year: 2020 ident: 7789_CR18 publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-019-03935-2 – volume: 113 start-page: 200 year: 2018 ident: 7789_CR36 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.06.055 – volume: 198 start-page: 125 issue: 19 year: 2016 ident: 7789_CR38 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.09.127 – ident: 7789_CR7 doi: 10.1007/978-3-319-89978-7 – volume: 188 start-page: 233 issue: 5 year: 2016 ident: 7789_CR37 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.01.106 – volume: 30 start-page: 1601 year: 2019 ident: 7789_CR17 publication-title: J. Intell. Manuf. doi: 10.1007/s10845-017-1343-1 – volume: 51 start-page: 3718 year: 2021 ident: 7789_CR21 publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2021.101445 – year: 2022 ident: 7789_CR22 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.105372 – ident: 7789_CR23 doi: 10.1007/978-3-642-29127-2 – volume: 22 start-page: 958 issue: 4 year: 2014 ident: 7789_CR27 publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2013.2278989 – volume: 41 start-page: 141 issue: 1 year: 2022 ident: 7789_CR33 publication-title: Comput. Syst. Sci. Eng. doi: 10.32604/csse.2022.020367 – volume: 55 start-page: 732 year: 2022 ident: 7789_CR40 publication-title: IFAC Paper on Line doi: 10.1016/j.ifacol.2022.07.531 – volume: 9 start-page: 2677 year: 2008 ident: 7789_CR39 publication-title: J. Mach. Learn. Res. – volume: 438 start-page: 195 year: 2021 ident: 7789_CR9 publication-title: Neurocomp doi: 10.1016/j.neucom.2020.04.159 – volume: 54 start-page: 2444 year: 2022 ident: 7789_CR16 publication-title: Nuclear Eng. Technol. doi: 10.1016/j.net.2022.01.011 – volume: 53 start-page: 1167 year: 2021 ident: 7789_CR14 publication-title: Nuclear Eng. Technol. doi: 10.1016/j.net.2020.09.003 – volume: 17 start-page: 245 issue: 3 year: 1993 ident: 7789_CR35 publication-title: Comput. Chem. Eng. doi: 10.1016/0098-1354(93)80018-I – ident: 7789_CR29 doi: 10.1007/978-3-030-89691-1_20 – volume: 72 year: 2021 ident: 7789_CR28 publication-title: J. Loss Prev. Process Ind. doi: 10.1016/j.jlp.2021.104591 – volume: 46 start-page: 1647 year: 2021 ident: 7789_CR4 publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-020-04848-1 – volume: 33 start-page: 14 year: 2015 ident: 7789_CR34 publication-title: J. Process Contr. doi: 10.1016/j.jprocont.2015.06.003 |
| SSID | ssib048395113 ssj0001916267 ssj0061873 |
| Score | 2.301395 |
| Snippet | In this paper, a novel approach for improving the performance and robustness of the condition monitoring system in industrial plants is presented. In the... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 14731 |
| SubjectTerms | Algorithms Classification Clustering Condition monitoring Engineering Fuzzy sets Humanities and Social Sciences Industrial plants Matrix partitioning Monitoring systems multidisciplinary Process variables Research Article-Electrical Engineering Robustness Science |
| Title | A Robust Condition Monitoring Approach in Industrial Plants Based on the Pythagorean Membership Grades |
| URI | https://link.springer.com/article/10.1007/s13369-023-07789-7 https://www.proquest.com/docview/2871753052 |
| Volume | 48 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCO - Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2191-4281 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0001916267 issn: 2193-567X databaseCode: ABDBF dateStart: 20041001 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2191-4281 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061873 issn: 2193-567X databaseCode: GX1 dateStart: 20020101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2191-4281 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001916267 issn: 2193-567X databaseCode: AFBBN dateStart: 20110101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 2191-4281 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061873 issn: 2193-567X databaseCode: AGYKE dateStart: 20110101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 2191-4281 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061873 issn: 2193-567X databaseCode: U2A dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELf28QA8ID5Fx5j8gHgprvLVOH1MoWVCo0PQSn2L7MTdika7tekk9tdzZztxVmACXtLG-VDi-8Vn3_3ujpDXseQCPjTBcu4LFsWFZCIKI5Z7hUpEGHUDgYHCn0bx8ST6OO1Od3bvNVhLm1J28pvfxpX8j1ShDeSKUbL_INn6ptAA_0G-sAUJw_avZJwiMXqzLjFur9DcK_uNalJdatOFo0mjUaEDyxSV63Yf1FdhXQXtzz_Kc3G2XCntusEaIZrE9WElCssx_OZQla4EJiqvPNmaqFgNEWiGb6Q47KA9Xz9XXw-67ohz9BTGWf_-bKNu2Bfx3fD-0mI11-2-C1WbX4t1ewAoA0HZi0S7qjpfm4rmF9cC45iXmBgBz-pHC0M208QjJPeu2VfogzlSUE51bZJbxo8gtFGA28ZPZHajv6UOztFjOcZnJZ6Jq-4o3QbjMyyZA1MlplIAUdIEut8Yzv2IWx2lqn2TrfIXxePZQOwwjHsMH9TjPOkx7tRsRS0YnWbDyclJNh5Mx28urxgWQEOigK0Gs0v2A1BQugrJ1HfmQpjG61phZpIR-4kmT9TvaOPBTFTo9kPcnnO5hdSW719PqcaPyEOLH5oaYD8mO2rxhDxogOQpmaXUQJzWEKcO4rSCOJ0vqIM4NRCnGuIUrgCI0wbEqYM4NRB_RibDwfjdMbOlQVgOb1wyKb0gDosAfkMeqLingkQJr8iDmeIY-52HQe4LDmtHNYMlvSy63I96fiF8FUqYNT8ne4vlQr0g1AtlnCjMrDCD2bWQvaSLNQkUKLMkl6FoEb_qvCy3efOxfMtF5jJ-Y4dn0OGZ7vCMt0i7vubSZI258-zDSiaZHV3WGVoyeBe0cdAibys5ucN_vtvB3Xd7Se67D-mQ7JWrjXoF8-pSHpH9dNjvj4408n4Cl3HLRA |
| linkProvider | Geneva Foundation for Medical Education and Research |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Robust+Condition+Monitoring+Approach+in+Industrial+Plants+Based+on+the+Pythagorean+Membership+Grades&rft.jtitle=The+Arabian+Journal+for+Science+and+Engineering.+Section+B%2C+Engineering&rft.au=Rodr%C3%ADguez-Ramos%2C+Adri%C3%A1n&rft.au=Rivas+Echeverr%C3%ADa+Franklin&rft.au=Silva+Neto+Ant%C3%B4nio&rft.au=Llanes-Santiago+Orestes&rft.date=2023-11-01&rft.pub=Springer+Nature+B.V&rft.issn=1319-8025&rft.eissn=2191-4281&rft.volume=48&rft.issue=11&rft.spage=14731&rft.epage=14744&rft_id=info:doi/10.1007%2Fs13369-023-07789-7&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-567X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-567X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-567X&client=summon |