An immune optimization based deterministic dendritic cell algorithm
Anomaly detection is an important issue, which has been deeply studied in different research domains and application fields. The dendritic cell algorithm (DCA) is one of the most popular artificial immune system inspired approaches to handle anomaly detection problems. The performance of DCA depends...
        Saved in:
      
    
          | Published in | Applied intelligence (Dordrecht, Netherlands) Vol. 52; no. 2; pp. 1461 - 1476 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Springer US
    
        01.01.2022
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0924-669X 1573-7497  | 
| DOI | 10.1007/s10489-020-02098-0 | 
Cover
| Abstract | Anomaly detection is an important issue, which has been deeply studied in different research domains and application fields. The dendritic cell algorithm (DCA) is one of the most popular artificial immune system inspired approaches to handle anomaly detection problems. The performance of DCA depends significantly on the parameters used to compute the relationship between input instance and detectors. However, we find that while the DCA’s performance is good in practical applications, it is difficult to analyze due to the empirical based parameters and lacks adaptability. This paper studies how to effectively learn appropriate parameters for deterministic DCA (dDCA) for anomaly detection tasks. In particular, we propose a novel immune optimization based dDCA (IO-dDCA) for anomaly detection. It consists of dDCA classification, T cell (TC) classification, gradient descent optimization and immune nonlinear dynamic optimization. First, the dDCA is regarded as a binary classifier, and the data instances which are labeled as normal will be classified by a T cell inspired classification method, so as to improve the classification performance of dDCA. Then, to improve dDCA’s adaptability, gradient descent is adopted for dDCA parameters’ optimization. Finally, the immune nonlinear model is introduced to adjust learning rate in gradient descent to find the optimal parameters. The theoretical and experimental performance analysis of IO-dDCA show effectiveness of the novel approach through simulations, and the experimental results show that the proposed IO-dDCA has good classification accuracy. | 
    
|---|---|
| AbstractList | Anomaly detection is an important issue, which has been deeply studied in different research domains and application fields. The dendritic cell algorithm (DCA) is one of the most popular artificial immune system inspired approaches to handle anomaly detection problems. The performance of DCA depends significantly on the parameters used to compute the relationship between input instance and detectors. However, we find that while the DCA’s performance is good in practical applications, it is difficult to analyze due to the empirical based parameters and lacks adaptability. This paper studies how to effectively learn appropriate parameters for deterministic DCA (dDCA) for anomaly detection tasks. In particular, we propose a novel immune optimization based dDCA (IO-dDCA) for anomaly detection. It consists of dDCA classification, T cell (TC) classification, gradient descent optimization and immune nonlinear dynamic optimization. First, the dDCA is regarded as a binary classifier, and the data instances which are labeled as normal will be classified by a T cell inspired classification method, so as to improve the classification performance of dDCA. Then, to improve dDCA’s adaptability, gradient descent is adopted for dDCA parameters’ optimization. Finally, the immune nonlinear model is introduced to adjust learning rate in gradient descent to find the optimal parameters. The theoretical and experimental performance analysis of IO-dDCA show effectiveness of the novel approach through simulations, and the experimental results show that the proposed IO-dDCA has good classification accuracy. | 
    
| Author | Liang, Yiwen Zhou, Wen  | 
    
| Author_xml | – sequence: 1 givenname: Wen orcidid: 0000-0002-9705-4421 surname: Zhou fullname: Zhou, Wen email: zw_mmwh@whu.edu.cn organization: School of Computer Science, Wuhan University – sequence: 2 givenname: Yiwen surname: Liang fullname: Liang, Yiwen organization: School of Computer Science, Wuhan University  | 
    
| BookMark | eNp9kE1rwzAMQM3oYG23P7BTYOdssp3Y8bGUfUFhlw12M47jdC6Jk9nuYfv1c5vBYIcehCTQk8RboJkbnEHoGsMtBuB3AUNRiRwIHEJUOZyhOS45zXkh-AzNQZAiZ0y8X6BFCDsAoBTwHK1XLrN9v3cmG8Zoe_utoh1cVqtgmqwx0fjeOhui1alzjbeHSpuuy1S3HVL70V-i81Z1wVz95iV6e7h_XT_lm5fH5_Vqk2uKRcxrzk1FuW5LCsAILSmrWNkWhcGk0lAWhIDhFVGUkVY3mlOmFNU1qWusDBd0iW6mvaMfPvcmRLkb9t6lk5KwBAvBSJmmyDSl_RCCN60cve2V_5IY5EGWnGTJJEoeZUlIUPUP0jYeTUSvbHcapRMa0h23Nf7vqxPUDwTWf-k | 
    
| CitedBy_id | crossref_primary_10_1016_j_ijhydene_2024_05_241 crossref_primary_10_32604_cmc_2023_038026 crossref_primary_10_7717_peerj_cs_749  | 
    
| Cites_doi | 10.1109/TETCI.2017.2721449 10.1007/s10489-014-0599-9 10.1016/j.patcog.2016.03.028 10.1016/j.swevo.2018.08.009 10.3233/IDT-170315 10.1002/cnm.3225 10.1145/1541880.1541882 10.1109/ACCESS.2018.2863036 10.1007/s12065-008-0008-6 10.1109/TII.2017.2746761 10.1007/s12145-020-00442-z 10.1109/51.932724 10.1146/annurev.iy.12.040194.005015 10.1023/A:1026195112518 10.1109/CSCloud.2017.12 10.1109/FUZZ-IEEE.2019.8859006 10.1007/978-3-540-85072-4_26 10.1007/978-3-642-14547-6_8 10.1145/2908961.2931662 10.1145/1569901.1570072 10.1007/978-3-642-03246-2_22 10.2139/ssrn.2832054 10.1007/11536444_12 10.1007/978-3-662-43908-1_15 10.1145/1081870.1081917 10.1109/UEMCON.2017.8249054 10.1109/ICDM.2008.151 10.1007/978-3-030-34500-6_8 10.1145/2739480.2754816 10.1109/MMBIA.2001.991693 10.1109/CEC.2017.7969518 10.1007/978-3-319-26532-2_76  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.  | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.  | 
    
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PSYQQ PTHSS Q9U  | 
    
| DOI | 10.1007/s10489-020-02098-0 | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection - QC ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Psychology Engineering Collection ProQuest Central Basic  | 
    
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business ProQuest One Psychology Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing Engineering Database ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni)  | 
    
| DatabaseTitleList | ABI/INFORM Global (Corporate)  | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1573-7497 | 
    
| EndPage | 1476 | 
    
| ExternalDocumentID | 10_1007_s10489_020_02098_0 | 
    
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61877045 funderid: https://doi.org/10.13039/501100001809  | 
    
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 77K 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PSYQQ PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8M Z8N Z8R Z8T Z8U Z8W Z92 ZMTXR ZY4 ~A9 ~EX 77I AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI Q9U  | 
    
| ID | FETCH-LOGICAL-c319t-b77e837cf5300623536865f44e128c054220e782a362fcdc736aa3cb2bb1ae793 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 0924-669X | 
    
| IngestDate | Fri Jul 25 12:15:01 EDT 2025 Thu Apr 24 22:56:16 EDT 2025 Wed Oct 01 04:09:49 EDT 2025 Fri Feb 21 02:46:08 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Keywords | dDCA Gradient descent TC classification Anomaly detection Immune nonlinear dynamic model  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c319t-b77e837cf5300623536865f44e128c054220e782a362fcdc736aa3cb2bb1ae793 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-9705-4421 | 
    
| PQID | 2622099625 | 
    
| PQPubID | 326365 | 
    
| PageCount | 16 | 
    
| ParticipantIDs | proquest_journals_2622099625 crossref_primary_10_1007_s10489_020_02098_0 crossref_citationtrail_10_1007_s10489_020_02098_0 springer_journals_10_1007_s10489_020_02098_0  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20220100 2022-01-00 20220101  | 
    
| PublicationDateYYYYMMDD | 2022-01-01 | 
    
| PublicationDate_xml | – month: 1 year: 2022 text: 20220100  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York – name: Boston  | 
    
| PublicationSubtitle | The International Journal of Research on Intelligent Systems for Real Life Complex Problems | 
    
| PublicationTitle | Applied intelligence (Dordrecht, Netherlands) | 
    
| PublicationTitleAbbrev | Appl Intell | 
    
| PublicationYear | 2022 | 
    
| Publisher | Springer US Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer US – name: Springer Nature B.V  | 
    
| References | Elisa, Yang, Naik (CR9) 2018; 1 CR19 CR18 CR17 Silva, Caminhas, Errico (CR32) 2017; 1 CR16 Moody, Mark (CR27) 2001; 20 Xun, Sicong, Meng, Chengkun, Sida, Peng, Zhenghua, Weishi, Nader (CR37) 2018; 189 Ahmad, Narayanan (CR1) 2018; 12 CR13 CR35 CR34 CR11 CR33 CR10 CR30 Zhou, Dong, Liang (CR38) 2020; 13 Bache, Lichman (CR5) 2013 Sheraz, Yasir, Shehzad, Khawar, Jihun, Munwar, Kijun (CR31) 2018; 6 Alizadeh, Meskin, Khorasani (CR4) 2018; 14 CR2 Chelly (CR8) 2019; 50 González, Dasgupta (CR15) 2003; 4 CR3 CR6 CR29 CR28 Matzinger (CR26) 1994; 12 CR25 CR24 Xiao, Li, Zhang (CR36) 2015; 42 CR23 CR22 CR20 Chandola, Banerjee, Kumar (CR7) 2009; 41 Erfani, Rajasegarar, Karunasekera, Leckie (CR12) 2016; 58 Goceri (CR14) 2019; 35 Greensmith, Feyereisl, Aickelin (CR21) 2008; 1 P Matzinger (2098_CR26) 1994; 12 N Sheraz (2098_CR31) 2018; 6 V Chandola (2098_CR7) 2009; 41 2098_CR20 Z Chelly (2098_CR8) 2019; 50 2098_CR24 2098_CR23 2098_CR22 2098_CR28 W Ahmad (2098_CR1) 2018; 12 2098_CR25 E Alizadeh (2098_CR4) 2018; 14 2098_CR29 K Bache (2098_CR5) 2013 GC Silva (2098_CR32) 2017; 1 E Goceri (2098_CR14) 2019; 35 Z Xun (2098_CR37) 2018; 189 2098_CR3 2098_CR2 2098_CR30 2098_CR6 SM Erfani (2098_CR12) 2016; 58 2098_CR13 2098_CR35 2098_CR34 2098_CR11 FA González (2098_CR15) 2003; 4 2098_CR33 2098_CR10 2098_CR17 2098_CR16 W Zhou (2098_CR38) 2020; 13 2098_CR19 J Greensmith (2098_CR21) 2008; 1 N Elisa (2098_CR9) 2018; 1 2098_CR18 GB Moody (2098_CR27) 2001; 20 X Xiao (2098_CR36) 2015; 42  | 
    
| References_xml | – ident: CR22 – volume: 1 start-page: 236 issue: 4 year: 2017 end-page: 247 ident: CR32 article-title: Dendritic cell algorithm applied to ping scan investigation revisited: detection quality and performance analysis publication-title: IEEE Trans Emerg Topics Comput Intell doi: 10.1109/TETCI.2017.2721449 – volume: 42 start-page: 289 issue: 2 year: 2015 end-page: 302 ident: CR36 article-title: An immune optimization based real-valued negative selection algorithm publication-title: Appl Intell doi: 10.1007/s10489-014-0599-9 – ident: CR18 – volume: 58 start-page: 121 year: 2016 end-page: 134 ident: CR12 article-title: High-dimensional and large-scale anomaly detection using a linear one-class svm with deep learning publication-title: Pattern Recogn doi: 10.1016/j.patcog.2016.03.028 – volume: 189 start-page: 1 issue: 03002 year: 2018 end-page: 15 ident: CR37 article-title: A state of the art survey of data mining-based fraud detection and credit scoring publication-title: MATEC Web of Conf – ident: CR2 – ident: CR16 – volume: 50 start-page: 100,432 year: 2019 ident: CR8 article-title: A scalable and distributed dendritic cell algorithm for big data classification publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2018.08.009 – ident: CR30 – ident: CR10 – volume: 12 start-page: 119 issue: 2 year: 2018 end-page: 135 ident: CR1 article-title: Time series data analysis using artificial immune system publication-title: Intell Decis Technol doi: 10.3233/IDT-170315 – ident: CR33 – year: 2013 ident: CR5 publication-title: Uci machine learning repository. UCI Machine Learning Repository University of California – ident: CR35 – ident: CR6 – ident: CR29 – ident: CR25 – ident: CR23 – volume: 35 start-page: e3225 issue: 7 year: 2019 ident: CR14 article-title: Diagnosis of alzheimer’s disease with sobolev gradient-based optimization and 3d convolutional neural network publication-title: Int J Numer Methods Biomed Eng doi: 10.1002/cnm.3225 – volume: 41 start-page: 1 issue: 3 year: 2009 end-page: 58 ident: CR7 article-title: Anomaly detection: a survey publication-title: Acm Comput Surv doi: 10.1145/1541880.1541882 – ident: CR19 – volume: 6 start-page: 48,231 year: 2018 end-page: 48,246 ident: CR31 article-title: Enhanced network anomaly detection based on deep neural networks publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2863036 – volume: 1 start-page: 85 issue: 2 year: 2008 end-page: 112 ident: CR21 article-title: The dca: some comparison publication-title: Evol Intel doi: 10.1007/s12065-008-0008-6 – volume: 14 start-page: 545 issue: 2 year: 2018 end-page: 555 ident: CR4 article-title: A dendritic cell immune system inspired scheme for sensor fault detection and isolation of wind turbines publication-title: IEEE Trans Industr Inform doi: 10.1109/TII.2017.2746761 – ident: CR3 – ident: CR17 – volume: 13 start-page: 447 issue: 2 year: 2020 end-page: 457 ident: CR38 article-title: The deterministic dendritic cell algorithm with Haskell in earthquake magnitude prediction publication-title: Earth Sci Inform doi: 10.1007/s12145-020-00442-z – ident: CR13 – ident: CR11 – volume: 20 start-page: 45 issue: 3 year: 2001 end-page: 50 ident: CR27 article-title: The impact of the mitbih arrhythmia database publication-title: IEEE Eng Med Biol Mag doi: 10.1109/51.932724 – volume: 12 start-page: 991 issue: 1 year: 1994 end-page: 1045 ident: CR26 article-title: Tolerance, danger, and the extended family publication-title: Annu Rev Immunol doi: 10.1146/annurev.iy.12.040194.005015 – ident: CR34 – volume: 1 start-page: 1 issue: 4 year: 2018 end-page: 8 ident: CR9 article-title: Dendritic cell algorithm with optimised parameters using genetic algorithm publication-title: GECCO – ident: CR28 – volume: 4 start-page: 383 issue: 4 year: 2003 end-page: 403 ident: CR15 article-title: Anomaly detection using real-valued negative selection publication-title: Genet Program Evolvable Mach doi: 10.1023/A:1026195112518 – ident: CR24 – ident: CR20 – volume: 1 start-page: 1 issue: 4 year: 2018 ident: 2098_CR9 publication-title: GECCO – ident: 2098_CR24 – ident: 2098_CR23 doi: 10.1109/CSCloud.2017.12 – volume: 4 start-page: 383 issue: 4 year: 2003 ident: 2098_CR15 publication-title: Genet Program Evolvable Mach doi: 10.1023/A:1026195112518 – ident: 2098_CR10 doi: 10.1109/FUZZ-IEEE.2019.8859006 – ident: 2098_CR30 – ident: 2098_CR18 doi: 10.1007/978-3-540-85072-4_26 – ident: 2098_CR29 doi: 10.1007/978-3-642-14547-6_8 – volume: 58 start-page: 121 year: 2016 ident: 2098_CR12 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2016.03.028 – volume: 189 start-page: 1 issue: 03002 year: 2018 ident: 2098_CR37 publication-title: MATEC Web of Conf – ident: 2098_CR28 doi: 10.1145/2908961.2931662 – ident: 2098_CR11 – volume: 35 start-page: e3225 issue: 7 year: 2019 ident: 2098_CR14 publication-title: Int J Numer Methods Biomed Eng doi: 10.1002/cnm.3225 – volume: 50 start-page: 100,432 year: 2019 ident: 2098_CR8 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2018.08.009 – volume: 14 start-page: 545 issue: 2 year: 2018 ident: 2098_CR4 publication-title: IEEE Trans Industr Inform doi: 10.1109/TII.2017.2746761 – ident: 2098_CR34 doi: 10.1145/1569901.1570072 – volume: 41 start-page: 1 issue: 3 year: 2009 ident: 2098_CR7 publication-title: Acm Comput Surv doi: 10.1145/1541880.1541882 – volume: 42 start-page: 289 issue: 2 year: 2015 ident: 2098_CR36 publication-title: Appl Intell doi: 10.1007/s10489-014-0599-9 – volume: 12 start-page: 119 issue: 2 year: 2018 ident: 2098_CR1 publication-title: Intell Decis Technol doi: 10.3233/IDT-170315 – ident: 2098_CR25 doi: 10.1007/978-3-642-03246-2_22 – ident: 2098_CR2 doi: 10.2139/ssrn.2832054 – ident: 2098_CR20 doi: 10.1007/11536444_12 – ident: 2098_CR35 doi: 10.1007/978-3-662-43908-1_15 – volume: 13 start-page: 447 issue: 2 year: 2020 ident: 2098_CR38 publication-title: Earth Sci Inform doi: 10.1007/s12145-020-00442-z – volume: 6 start-page: 48,231 year: 2018 ident: 2098_CR31 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2863036 – volume: 1 start-page: 85 issue: 2 year: 2008 ident: 2098_CR21 publication-title: Evol Intel doi: 10.1007/s12065-008-0008-6 – volume: 1 start-page: 236 issue: 4 year: 2017 ident: 2098_CR32 publication-title: IEEE Trans Emerg Topics Comput Intell doi: 10.1109/TETCI.2017.2721449 – ident: 2098_CR13 doi: 10.1145/1081870.1081917 – volume: 12 start-page: 991 issue: 1 year: 1994 ident: 2098_CR26 publication-title: Annu Rev Immunol doi: 10.1146/annurev.iy.12.040194.005015 – ident: 2098_CR22 doi: 10.1109/UEMCON.2017.8249054 – volume-title: Uci machine learning repository. UCI Machine Learning Repository University of California year: 2013 ident: 2098_CR5 – ident: 2098_CR6 doi: 10.1109/ICDM.2008.151 – ident: 2098_CR17 doi: 10.1007/978-3-030-34500-6_8 – ident: 2098_CR16 doi: 10.1145/2739480.2754816 – volume: 20 start-page: 45 issue: 3 year: 2001 ident: 2098_CR27 publication-title: IEEE Eng Med Biol Mag doi: 10.1109/51.932724 – ident: 2098_CR33 doi: 10.1109/MMBIA.2001.991693 – ident: 2098_CR19 doi: 10.1109/CEC.2017.7969518 – ident: 2098_CR3 doi: 10.1007/978-3-319-26532-2_76  | 
    
| SSID | ssj0003301 | 
    
| Score | 2.2946193 | 
    
| Snippet | Anomaly detection is an important issue, which has been deeply studied in different research domains and application fields. The dendritic cell algorithm (DCA)... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1461 | 
    
| SubjectTerms | Algorithms Anomalies Artificial Intelligence Classification Computer Science Dendritic cells Dynamical systems Empirical analysis Immune system Lymphocytes Machines Manufacturing Mechanical Engineering Nonlinear dynamics Optimization Parameters Processes  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFH_M7eLFb3E6JQdvGuySNG0PInNsDMEh4mC30qSpCls3tf7_vnTpioI79FDaBvqS95W83_sBXGLGleFEC2r8iFERGk2jSDEqQ99jkce1r22i-DiWo4l4mPrTBowrLIwtq6xsYmmo04W2e-Q3TDKL8sRw_W75QS1rlD1drSg0EketkN6WLca2oMVsZ6wmtO4H46fntW3G7L3k0MOsg0oZTR2MxoHphC0fwnQKLws8--2q6vjzz5Fp6YmGe7DjQkjSW835PjRMfgC7FT0Dcdp6CP1eTt4t_MOQBRqGuUNcEuu4UpK6OpiyUTPe5WlJekDsTj5JZq_478Xb_Agmw8FLf0QdZwLVqEwFVUFgMOfUmc8tPJL7XIbSz4Qw6Ig0xmcoRYNRQYKOK9OpDrhMEq4VU6qbGFTWY2jmi9ycAPE8hXLiLMCsTLCUqVRzpjKWRcKPsiRsQ7cST6xdQ3HLazGL61bIVqQxijMuRRp7bbhaf7NctdPY-HanknrsVOsrrhdCG66rmagf_z_a6ebRzmCbWWhDub3SgWbx-W3OMeAo1IVbRT8ovc6D priority: 102 providerName: ProQuest  | 
    
| Title | An immune optimization based deterministic dendritic cell algorithm | 
    
| URI | https://link.springer.com/article/10.1007/s10489-020-02098-0 https://www.proquest.com/docview/2622099625  | 
    
| Volume | 52 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7497 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-7497 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7497 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7497 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH8RuHjx24gi6cGbNhnduo_jIAyikRgjCZ6WtevUBIYR_P99LR2oURMPS9O06-G1r-_92v7eA7hAxFXgRHtU8YhRL1SSRpFg1A-5wyLHlVxqoHg78odj73rCJ5YUtqheu1dXkman_kR28_TzHoQ7-GliWA0aXIfzwlU8ZvF6_0WEbvLkIbKgvh9NLFXm5zG-mqONj_ntWtRYm2QPdqybSOLVvO7DlioPYLdKwUCsRh5CLy7Ji6Z4KDJH5Z9ZViXRxiknuX3rYoIxY63MTWIDok_rSTZ9mmP1eXYE46T_0BtSmxeBSlSYJRVBoBBXyoK7mgLpctcPfV54nkJjI9EHY8xRaPkzNE6FzGXg-lnmSsGE6GQKFfIY6uW8VCdAHEegnFwWIPLyWM5ELl0mClZEHo-KLGxCpxJPKm3QcJ27Yppuwh1rkaYoztSINHWacLn-53UVMuPP3q1K6qlVn0XKfKYpvYjNmnBVzcSm-ffRTv_X_Qy2maYzmCOVFtSXb-_qHJ2MpWhDLUwGbWjESbc70uXg8aaPZbc_urtvmxX3AcQIynE | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV09T8MwED1V7QAL34hCAQ8wgUWwnaQZEILSqlCoEGqlbiF2HEBq0wJFiD_Hb-McnFYg0Y0hQ5Qv6flyd8_2uwPYQ8aV4EALqt2AUVHVigaBZNSrug4LHK5cZYjiTdtrdsVVz-0V4DPXwphtlblPzBx1PFRmjvyIecyoPDFdPx09U9M1yqyu5i00IttaIT7JSoxZYUdLf7wjhXs9ubzA8d5nrFHv1JrUdhmgCs1vTKXva2RpKnG5ERRyl3tVz02E0Oi6FWY0-F2NcTRCV5-oWPnciyKuJJPyONK-KcaEIaAkuAiQ_JXO6-3bu0ks4DxrwOwgy6GeF_SsbMeK94TZroT0DQ8jdPsZGqf57q8l2izyNZZgwaas5OzbxpahoNMVWMzbQRDrHVahdpaSJyM30WSIjmhgFZ7EBMqYxHbfTVYYGs_SOGuyQMzKAYn6D4j1-HGwBt1_QW8diukw1RtAHEciTpz5yAIFi5mMFWcyYUkg3CCJqmU4zuEJlS1gbvpo9MNp6WUDaYhwhhmkoVOGg8kzo-_yHTPvruSoh_ZXfg2nhleGw3wkppf_ftvm7Lftwlyzc3MdXl-2W1swz4ysIpvaqUBx_PKmtzHZGcsda1EE7v_biL8AZqkKHg | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB5KBfHiW6zPPehJl6a7eTQHEVFr6wsPCr3F7GajQptWWxH_mr_OmXTTomBvHnII2Wzg28k8duebAdjDiCvFhXa58ULB3brRPAyV4H7dc0ToSO1pChRvbv3mg3vZ9tol-Cq4MJRWWejEXFEnPU175FXhC2J5orteTW1axN1Z47j_yqmDFJ20Fu00RiJyZT4_MHwbHLXOcK33hWic3582ue0wwDWK3pCrIDAYoenUk0QmlJ70676Xuq5Bta3Rm8FvGrShMar5VCc6kH4cS62EUrXYBFSICdX_TEBV3Iml3rgYWwEp89bLDsY33PfDtiXsWNqeS4lKGLjhRRS3n0Zx4un-OpzNbV5jEeats8pORtK1BCWTLcNC0QiCWb2wAqcnGXshoolhPVRBXcvtZGQiE5bYjJu8JDTeZUneXoHRmQGLO0-I7PC5uwoP_4LdGpSzXmbWgTmOQpykCDD-c0UiVKKlUKlIQ9cL07hegVoBT6Rt6XLqoNGJJkWXCdII4YxySCOnAgfjd_qjwh1TR28VqEf2Jx5EE5GrwGGxEpPHf8-2MX22XZhF0Y2uW7dXmzAniE-R7-lsQXn49m620csZqp1cnBg8_rf8fgMG2we4 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+immune+optimization+based+deterministic+dendritic+cell+algorithm&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Zhou%2C+Wen&rft.au=Liang%2C+Yiwen&rft.date=2022-01-01&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=52&rft.issue=2&rft.spage=1461&rft.epage=1476&rft_id=info:doi/10.1007%2Fs10489-020-02098-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10489_020_02098_0 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon |