An efficient ground segmentation approach for LiDAR point cloud utilizing adjacent grids

Ground segmentation is crucial for guiding mobile robots and identifying nearby objects. However, it should be noted that the ground often presents complex topographical features, such as slopes and rugged terrains, which significantly increase the challenges associated with accurate ground segmenta...

Full description

Saved in:
Bibliographic Details
Published inMachine vision and applications Vol. 35; no. 5; p. 108
Main Authors Dong, Longyu, Liu, Dejun, Dong, Youqiang, Park, Bongrae, Wan, Zhibo
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0932-8092
1432-1769
DOI10.1007/s00138-024-01593-5

Cover

Abstract Ground segmentation is crucial for guiding mobile robots and identifying nearby objects. However, it should be noted that the ground often presents complex topographical features, such as slopes and rugged terrains, which significantly increase the challenges associated with accurate ground segmentation tasks. To address this issue, we propose a novel approach to achieve rapid ground segmentation. The proposed method uses a multi-partition approach to extract ground points for each partition, followed by assessing the correction plane based on geometric characteristics of the ground surface and similarity among adjacent planes. An adaptive threshold is also introduced to enhance efficiency in extracting complex urban pavement. Our method was benchmarked against several contemporary techniques on the SemanticKITTI dataset. The precision was elevated by 1.72 % , and the precision deviation was diminished by 1.02 % , culminating in the most accurate and robust outcomes among the evaluated methods.
AbstractList Ground segmentation is crucial for guiding mobile robots and identifying nearby objects. However, it should be noted that the ground often presents complex topographical features, such as slopes and rugged terrains, which significantly increase the challenges associated with accurate ground segmentation tasks. To address this issue, we propose a novel approach to achieve rapid ground segmentation. The proposed method uses a multi-partition approach to extract ground points for each partition, followed by assessing the correction plane based on geometric characteristics of the ground surface and similarity among adjacent planes. An adaptive threshold is also introduced to enhance efficiency in extracting complex urban pavement. Our method was benchmarked against several contemporary techniques on the SemanticKITTI dataset. The precision was elevated by 1.72%, and the precision deviation was diminished by 1.02%, culminating in the most accurate and robust outcomes among the evaluated methods.
Ground segmentation is crucial for guiding mobile robots and identifying nearby objects. However, it should be noted that the ground often presents complex topographical features, such as slopes and rugged terrains, which significantly increase the challenges associated with accurate ground segmentation tasks. To address this issue, we propose a novel approach to achieve rapid ground segmentation. The proposed method uses a multi-partition approach to extract ground points for each partition, followed by assessing the correction plane based on geometric characteristics of the ground surface and similarity among adjacent planes. An adaptive threshold is also introduced to enhance efficiency in extracting complex urban pavement. Our method was benchmarked against several contemporary techniques on the SemanticKITTI dataset. The precision was elevated by 1.72 % , and the precision deviation was diminished by 1.02 % , culminating in the most accurate and robust outcomes among the evaluated methods.
ArticleNumber 108
Author Park, Bongrae
Dong, Longyu
Liu, Dejun
Dong, Youqiang
Wan, Zhibo
Author_xml – sequence: 1
  givenname: Longyu
  surname: Dong
  fullname: Dong, Longyu
  organization: College of Computer Science and Technology, Qingdao University
– sequence: 2
  givenname: Dejun
  surname: Liu
  fullname: Liu, Dejun
  organization: China Academy of Railway Sciences
– sequence: 3
  givenname: Youqiang
  surname: Dong
  fullname: Dong, Youqiang
  organization: Qingdao Haily Measuring Technologies Co., Ltd
– sequence: 4
  givenname: Bongrae
  surname: Park
  fullname: Park, Bongrae
  organization: Wapa System
– sequence: 5
  givenname: Zhibo
  surname: Wan
  fullname: Wan, Zhibo
  email: wanzhibo@qdu.edu.cn
  organization: College of Computer Science and Technology, Qingdao University
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz6uTZNPsHkv9hIIgCt5CNpusKW1Sk92D_nqjKwgeepoMvM_M5JmhiQ_eIHRO4JIAiKsEQFhVAC0LILxmBT9CU1IyWhCxqCdoCnV-V1DTEzRLaQMApRDlFL0uPTbWOu2M73EXw-BbnEy3y63qXfBY7fcxKP2GbYh47a6XT3gfXA7rbRhaPPRu6z6d77BqN0qPU1ybTtGxVdtkzn7rHL3c3jyv7ov1493DarkuNCN1XzRioSmhFKCx-SPaCkuFaDUQUylWcUabllhuy8bQynBtKeECyko3FEgLLZuji3FuvvJ9MKmXmzBEn1dKBnVWwDgvc4qOKR1DStFYuY9up-KHJCC_DcrRoMwG5Y9ByTNU_YO0G6X0UbntYZSNaMp7fGfi31UHqC9jHodf
CitedBy_id crossref_primary_10_1016_j_optlastec_2025_112665
crossref_primary_10_1109_JSEN_2024_3515137
Cites_doi 10.3390/rs13163239
10.1109/IROS.2018.8594299
10.1109/IROS45743.2020.9340979
10.1109/ICRA48506.2021.9561364
10.1109/ITSC.2018.8569534
10.1109/IROS47612.2022.9981561
10.1109/ICCV48922.2021.01572
10.1109/ICCV.2019.00939
10.1109/JSEN.2022.3225293
10.1109/LRA.2022.3182096
10.1109/UR55393.2022.9826238
10.1109/TIV.2022.3187008
10.1145/358669.358692
10.1109/ICRA.2017.7989591
10.1109/ACCESS.2021.3115664
10.1109/LRA.2021.3061363
10.1109/LRA.2022.3201689
10.1109/ITSC.2015.133
10.1109/LRA.2021.3093009
10.1109/TRO.2020.3033695
10.1109/IVS.2010.5548059
10.1177/02783649231207654
10.1109/ICRA.2011.5979818
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s00138-024-01593-5
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
ProQuest Technology Collection (LUT)
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database (Proquest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1432-1769
ExternalDocumentID 10_1007_s00138_024_01593_5
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62172247
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAS
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P62
P9O
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
YOT
Z45
Z7R
Z7S
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
ZY4
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-b76c212200bf007cf7f277dc01e8a38532bd1f5f4be28e5cf2157048cb201d0d3
IEDL.DBID AGYKE
ISSN 0932-8092
IngestDate Tue Sep 02 03:18:41 EDT 2025
Wed Oct 01 02:40:38 EDT 2025
Thu Apr 24 23:09:56 EDT 2025
Fri Feb 21 02:39:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Mapping
Autonomous driving
Ground segmentation
Field robots
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-b76c212200bf007cf7f277dc01e8a38532bd1f5f4be28e5cf2157048cb201d0d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3091433554
PQPubID 2043753
ParticipantIDs proquest_journals_3091433554
crossref_primary_10_1007_s00138_024_01593_5
crossref_citationtrail_10_1007_s00138_024_01593_5
springer_journals_10_1007_s00138_024_01593_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240900
2024-09-00
20240901
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 9
  year: 2024
  text: 20240900
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: New York
PublicationTitle Machine vision and applications
PublicationTitleAbbrev Machine Vision and Applications
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Shan, T., Englot, B.: Lego-loam: Lightweight and ground-optimized lidar odometry and mapping on variable terrain. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4758–4765. IEEE (2018)
FischlerMABollesRCRandom sample consensus: a paradigm for model fitting with applications to image analysis and automated cartographyCommun. ACM198124638139561815810.1145/358669.358692
LimHKimBKimDMason LeeEMyungHQuatro++: robust global registration exploiting ground segmentation for loop closing in lidar slamInt. J. Robot. Res.202443568571510.1177/02783649231207654
Paigwar, A., Erkent, Ö., Sierra-Gonzalez, D., Laugier, C.: Gndnet: fast ground plane estimation and point cloud segmentation for autonomous vehicles. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2150–2156. IEEE (2020)
ShenZLiangHLinLWangZHuangWYuJFast ground segmentation for 3d lidar point cloud based on jump-convolution-processRemote Sens.20211316323910.3390/rs13163239
QianYWangXChenZWangCYangMHy-seg: a hybrid method for ground segmentation using point cloudsIEEE Trans. Intell. Veh.2022821597160610.1109/TIV.2022.3187008
Pan, Y., Xiao, P., He, Y., Shao, Z., Li, Z.: Mulls: Versatile lidar slam via multi-metric linear least square. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 11633–11640. IEEE (2021)
Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for 3d classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)
Lee, S., Lim, H., Myung, H.: Patchwork++: fast and robust ground segmentation solving partial under-segmentation using 3d point cloud. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 13276–13283. IEEE (2022)
OhMJungELimHSongWHuSLeeEMParkJKimJLeeJMyungHTravel: traversable ground and above-ground object segmentation using graph representation of 3d lidar scansIEEE Robot. Autom. Lett.2022737255726210.1109/LRA.2022.3182096
Zermas, D., Izzat, I., Papanikolopoulos, N.: Fast segmentation of 3d point clouds: a paradigm on lidar data for autonomous vehicle applications. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 5067–5073. IEEE (2017)
Yang, H., Shi, J., Carlone, L.: TEASER: fast and certifiable point cloud registration. IEEE Trans. Robot. (2020)
Himmelsbach, M., Hundelshausen, F.V., Wuensche, H.-J.: Fast segmentation of 3d point clouds for ground vehicles. In: 2010 IEEE Intelligent Vehicles Symposium, pp. 560–565. IEEE (2010)
Narksri, P., Takeuchi, E., Ninomiya, Y., Morales, Y., Akai, N., Kawaguchi, N.: A slope-robust cascaded ground segmentation in 3d point cloud for autonomous vehicles. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC), pp. 497–504. IEEE (2018)
JiménezVGodoyJArtuñedoAVillagraJGround segmentation algorithm for sloped terrain and sparse lidar point cloudIEEE Access2021913291413292710.1109/ACCESS.2021.3115664
Behley, J., Garbade, M., Milioto, A., Quenzel, J., Behnke, S., Stachniss, C., Gall, J.: Semantickitti: a dataset for semantic scene understanding of lidar sequences. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9297–9307 (2019)
LimHOhMMyungHPatchwork: concentric zone-based region-wise ground segmentation with ground likelihood estimation using a 3d lidar sensorIEEE Robot. Autom. Lett.2021646458646510.1109/LRA.2021.3093009
Asvadi, A., Peixoto, P., Nunes, U.: Detection and tracking of moving objects using 2.5 d motion grids. In: 2015 IEEE 18th International Conference on Intelligent Transportation Systems, pp. 788–793. IEEE (2015)
LimHHwangSMyungHErasor: egocentric ratio of pseudo occupancy-based dynamic object removal for static 3d point cloud map buildingIEEE Robot. Autom. Lett.2021622272227910.1109/LRA.2021.3061363
Seo, D.-U., Lim, H., Lee, S., Myung, H.: Pago-loam: robust ground-optimized lidar odometry. In: 2022 19th International Conference on Ubiquitous Robots (UR), pp. 1–7. IEEE (2022)
WangZYangLGaoFWangLFevo-loam: feature extraction and vertical optimized lidar odometry and mappingIEEE Robot. Autom. Lett.202274120861209310.1109/LRA.2022.3201689
Douillard, B., Underwood, J., Kuntz, N., Vlaskine, V., Quadros, A., Morton, P., Frenkel, A.: On the segmentation of 3d lidar point clouds. In: 2011 IEEE International Conference on Robotics and Automation, pp. 2798–2805. IEEE (2011)
Xu, J., Zhang, R., Dou, J., Zhu, Y., Sun, J., Pu, S.: Rpvnet: a deep and efficient range-point-voxel fusion network for lidar point cloud segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 16024–16033 (2021)
GuoDYangGQiBWangCA fast ground segmentation method of lidar point cloud from coarse-to-fineIEEE Sens. J.20222321357136710.1109/JSEN.2022.3225293
1593_CR2
Z Shen (1593_CR7) 2021; 13
1593_CR1
1593_CR6
1593_CR19
1593_CR4
1593_CR16
1593_CR8
1593_CR9
1593_CR18
1593_CR11
Z Wang (1593_CR21) 2022; 7
M Oh (1593_CR17) 2022; 7
1593_CR23
1593_CR24
V Jiménez (1593_CR14) 2021; 9
1593_CR20
1593_CR10
D Guo (1593_CR5) 2022; 23
H Lim (1593_CR22) 2024; 43
MA Fischler (1593_CR12) 1981; 24
H Lim (1593_CR13) 2021; 6
Y Qian (1593_CR15) 2022; 8
H Lim (1593_CR3) 2021; 6
References_xml – reference: QianYWangXChenZWangCYangMHy-seg: a hybrid method for ground segmentation using point cloudsIEEE Trans. Intell. Veh.2022821597160610.1109/TIV.2022.3187008
– reference: Asvadi, A., Peixoto, P., Nunes, U.: Detection and tracking of moving objects using 2.5 d motion grids. In: 2015 IEEE 18th International Conference on Intelligent Transportation Systems, pp. 788–793. IEEE (2015)
– reference: GuoDYangGQiBWangCA fast ground segmentation method of lidar point cloud from coarse-to-fineIEEE Sens. J.20222321357136710.1109/JSEN.2022.3225293
– reference: Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for 3d classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)
– reference: Lee, S., Lim, H., Myung, H.: Patchwork++: fast and robust ground segmentation solving partial under-segmentation using 3d point cloud. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 13276–13283. IEEE (2022)
– reference: Pan, Y., Xiao, P., He, Y., Shao, Z., Li, Z.: Mulls: Versatile lidar slam via multi-metric linear least square. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 11633–11640. IEEE (2021)
– reference: OhMJungELimHSongWHuSLeeEMParkJKimJLeeJMyungHTravel: traversable ground and above-ground object segmentation using graph representation of 3d lidar scansIEEE Robot. Autom. Lett.2022737255726210.1109/LRA.2022.3182096
– reference: LimHHwangSMyungHErasor: egocentric ratio of pseudo occupancy-based dynamic object removal for static 3d point cloud map buildingIEEE Robot. Autom. Lett.2021622272227910.1109/LRA.2021.3061363
– reference: Seo, D.-U., Lim, H., Lee, S., Myung, H.: Pago-loam: robust ground-optimized lidar odometry. In: 2022 19th International Conference on Ubiquitous Robots (UR), pp. 1–7. IEEE (2022)
– reference: Zermas, D., Izzat, I., Papanikolopoulos, N.: Fast segmentation of 3d point clouds: a paradigm on lidar data for autonomous vehicle applications. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 5067–5073. IEEE (2017)
– reference: Shan, T., Englot, B.: Lego-loam: Lightweight and ground-optimized lidar odometry and mapping on variable terrain. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4758–4765. IEEE (2018)
– reference: LimHOhMMyungHPatchwork: concentric zone-based region-wise ground segmentation with ground likelihood estimation using a 3d lidar sensorIEEE Robot. Autom. Lett.2021646458646510.1109/LRA.2021.3093009
– reference: LimHKimBKimDMason LeeEMyungHQuatro++: robust global registration exploiting ground segmentation for loop closing in lidar slamInt. J. Robot. Res.202443568571510.1177/02783649231207654
– reference: Xu, J., Zhang, R., Dou, J., Zhu, Y., Sun, J., Pu, S.: Rpvnet: a deep and efficient range-point-voxel fusion network for lidar point cloud segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 16024–16033 (2021)
– reference: Himmelsbach, M., Hundelshausen, F.V., Wuensche, H.-J.: Fast segmentation of 3d point clouds for ground vehicles. In: 2010 IEEE Intelligent Vehicles Symposium, pp. 560–565. IEEE (2010)
– reference: WangZYangLGaoFWangLFevo-loam: feature extraction and vertical optimized lidar odometry and mappingIEEE Robot. Autom. Lett.202274120861209310.1109/LRA.2022.3201689
– reference: Douillard, B., Underwood, J., Kuntz, N., Vlaskine, V., Quadros, A., Morton, P., Frenkel, A.: On the segmentation of 3d lidar point clouds. In: 2011 IEEE International Conference on Robotics and Automation, pp. 2798–2805. IEEE (2011)
– reference: Yang, H., Shi, J., Carlone, L.: TEASER: fast and certifiable point cloud registration. IEEE Trans. Robot. (2020)
– reference: Behley, J., Garbade, M., Milioto, A., Quenzel, J., Behnke, S., Stachniss, C., Gall, J.: Semantickitti: a dataset for semantic scene understanding of lidar sequences. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9297–9307 (2019)
– reference: FischlerMABollesRCRandom sample consensus: a paradigm for model fitting with applications to image analysis and automated cartographyCommun. ACM198124638139561815810.1145/358669.358692
– reference: JiménezVGodoyJArtuñedoAVillagraJGround segmentation algorithm for sloped terrain and sparse lidar point cloudIEEE Access2021913291413292710.1109/ACCESS.2021.3115664
– reference: ShenZLiangHLinLWangZHuangWYuJFast ground segmentation for 3d lidar point cloud based on jump-convolution-processRemote Sens.20211316323910.3390/rs13163239
– reference: Paigwar, A., Erkent, Ö., Sierra-Gonzalez, D., Laugier, C.: Gndnet: fast ground plane estimation and point cloud segmentation for autonomous vehicles. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2150–2156. IEEE (2020)
– reference: Narksri, P., Takeuchi, E., Ninomiya, Y., Morales, Y., Akai, N., Kawaguchi, N.: A slope-robust cascaded ground segmentation in 3d point cloud for autonomous vehicles. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC), pp. 497–504. IEEE (2018)
– volume: 13
  start-page: 3239
  issue: 16
  year: 2021
  ident: 1593_CR7
  publication-title: Remote Sens.
  doi: 10.3390/rs13163239
– ident: 1593_CR9
– ident: 1593_CR18
  doi: 10.1109/IROS.2018.8594299
– ident: 1593_CR8
  doi: 10.1109/IROS45743.2020.9340979
– ident: 1593_CR19
  doi: 10.1109/ICRA48506.2021.9561364
– ident: 1593_CR24
  doi: 10.1109/ITSC.2018.8569534
– ident: 1593_CR16
  doi: 10.1109/IROS47612.2022.9981561
– ident: 1593_CR6
  doi: 10.1109/ICCV48922.2021.01572
– ident: 1593_CR4
  doi: 10.1109/ICCV.2019.00939
– volume: 23
  start-page: 1357
  issue: 2
  year: 2022
  ident: 1593_CR5
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3225293
– volume: 7
  start-page: 7255
  issue: 3
  year: 2022
  ident: 1593_CR17
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2022.3182096
– ident: 1593_CR20
  doi: 10.1109/UR55393.2022.9826238
– volume: 8
  start-page: 1597
  issue: 2
  year: 2022
  ident: 1593_CR15
  publication-title: IEEE Trans. Intell. Veh.
  doi: 10.1109/TIV.2022.3187008
– volume: 24
  start-page: 381
  issue: 6
  year: 1981
  ident: 1593_CR12
  publication-title: Commun. ACM
  doi: 10.1145/358669.358692
– ident: 1593_CR11
  doi: 10.1109/ICRA.2017.7989591
– volume: 9
  start-page: 132914
  year: 2021
  ident: 1593_CR14
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3115664
– volume: 6
  start-page: 2272
  issue: 2
  year: 2021
  ident: 1593_CR13
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2021.3061363
– volume: 7
  start-page: 12086
  issue: 4
  year: 2022
  ident: 1593_CR21
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2022.3201689
– ident: 1593_CR2
  doi: 10.1109/ITSC.2015.133
– volume: 6
  start-page: 6458
  issue: 4
  year: 2021
  ident: 1593_CR3
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2021.3093009
– ident: 1593_CR23
  doi: 10.1109/TRO.2020.3033695
– ident: 1593_CR10
  doi: 10.1109/IVS.2010.5548059
– volume: 43
  start-page: 685
  issue: 5
  year: 2024
  ident: 1593_CR22
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/02783649231207654
– ident: 1593_CR1
  doi: 10.1109/ICRA.2011.5979818
SSID ssj0004774
Score 2.3962402
Snippet Ground segmentation is crucial for guiding mobile robots and identifying nearby objects. However, it should be noted that the ground often presents complex...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108
SubjectTerms Accuracy
Algorithms
Communications Engineering
Computer Science
Datasets
Efficiency
Image Processing and Computer Vision
Image segmentation
Methods
Networks
Pattern Recognition
Semantics
Task complexity
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ4oXPTg24ii2YM33Ui3LYWDMfggxCgxRBJuzT4NBgtauPjrnV22oCZ67naSzvPb7s43AKdc1JnErQQ1Idc0ikxAbfskZZFWtcgoJhyX3mO33ulH94N4sALdohfGXqsscqJL1Gos7T_yixALWxTa6ng1ead2apQ9XS1GaHA_WkFdOoqxVSgzy4xVgvL1Xfept-yUTOa8zIhaMDc3mW-jcc107tCOYs3C7XXcDGn8s1Qt8eevI1NXidpbsOEhJGnNbb4NKzrbgU0PJ4kP1nwH1r9xDe7CoJUR7fgisMwQ28yRKZLrlzfffJSRgl6cII4lD8PbVo9MxkNcLEfjmSLooaPhJ8oiXL1yOZcyVPke9Nt3zzcd6scqUInxNqUiqaN1GIaHMPjh0iSGJYmStUA3eIjlmwkVmNhEQrOGjqVBVJBgoEuBYEHVVLgPpWyc6QMgiY51aHeIYSwixTkPAllHwIhGDgSviQoEhQZT6TnH7eiLUbpgS3ZaT1HrqdN6GlfgbPHOZM648e_qamGY1Edfni59pQLnhbGWj_-Wdvi_tCNYY84_7BWzKpSmHzN9jJhkKk68o30Bov3btw
  priority: 102
  providerName: ProQuest
Title An efficient ground segmentation approach for LiDAR point cloud utilizing adjacent grids
URI https://link.springer.com/article/10.1007/s00138-024-01593-5
https://www.proquest.com/docview/3091433554
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1432-1769
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0004774
  issn: 0932-8092
  databaseCode: ABDBF
  dateStart: 20030401
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1432-1769
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0004774
  issn: 0932-8092
  databaseCode: ADMLS
  dateStart: 19880101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1432-1769
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004774
  issn: 0932-8092
  databaseCode: AFBBN
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1432-1769
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0004774
  issn: 0932-8092
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1432-1769
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0004774
  issn: 0932-8092
  databaseCode: 8FG
  dateStart: 20110301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1432-1769
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004774
  issn: 0932-8092
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1432-1769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004774
  issn: 0932-8092
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH6CcoHD2GCIDlb5sBsYNU7StMcUWtBgCCEqdafIP1FZl1ZLe-lfvxfHblk1kHqK5DhPsf09v8-y32eAb1y0mMSlBDUh1zSKTEDL9EnKIq2akVFMWC29H_etm0H0fRgPXVJY4U-7-y1JO1Mvk93sphrFmILL37gT0ngbdqzeVg120uuft71VPmRSqS8jN8EZuMNcssz_rfwbkFYsc21j1Mab_j4M_J9Wx0x-Xcxn4kIu1kQcN23KR_jgCChJK8R8gi2dH8C-I6PEuXqBRf6-B192AHuvxAsPYZjmRFsBCoxbpMwOyRUp9PNvl82UE69XTpAYk7vRVfpIppMRVpbjyVwRhPx4tEBbhKsXLisrI1V8hkG_93R5Q909DVSiA8-oSFo43Az9TRhsnjSJYUmiZDPQbR4iH2BCBSY2kdCsrWNpkGYkOHNIgexDNVV4BLV8kutjIImOdVguOcNYRIpzHgSyhQwUURMI3hR1CPxgZdKJmJd3aYyzpfyy7dsM-zazfZvFdThbfjOtJDzerX3qMZA5dy6yEFlVFJbUrA7nfkhXr9-29mWz6iewyywqyjNsp1Cb_Znrr0h6ZqIB2-3-dQOR3r3q9hsO8fjs9u4fHvHtgKV_ASyu-kI
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5ROLQ90JaHGqDgQ3tqLbK2N0sOUZXyUCghqhBIuS1-oqCwCWwi1P64_raOHS9pK8GN83pHq_FnfzNrzzcAH6VqMI2pBHVcWiqES6gvn6RMWFMXzjAVtPROe43OhfjeT_sL8LuqhfHXKqs9MWzUZqT9P_JdjsQmuGfHr-Nb6rtG-dPVqoWGjK0VTCtIjMXCjhP78x5TuLJ1fIDz_Ymxo8Pz_Q6NXQaoRvhNqMoa-LEM0aIcEqZ2mWNZZnQ9sXuSI5sxZRKXOqEs27OpdkiSGeJeK-ROUzcc7b6AJcFFE5O_pW-HvR9n88rMbKYDjVESckGTxbKdULwXDgkpciSm82mT0_RfapzHu_8d0QbmO3oLyzFkJe0Zxt7Bgi1W4E0MX0ncHMoVeP2XtuEq9NsFsUGfAmmN-OKRwpDSXt3EYqeCVHLmBONm0h0ctM_IeDTAwXo4mhqCK2I4-IW2iDTXUs-sDEy5BhfP4uB1WCxGhX0PJLOp5T4j5akSRkqZJLqBASqCKlGyrmqQVB7MddQ49602hvmDOnPweo5ez4PX87QGnx_eGc8UPp4cvVVNTB5Xe5nPsVmDL9VkzR8_bm3jaWs78LJzftrNu8e9k014xQJW_PW2LVic3E3tB4yHJmo7go7A5XPj_A_pqRhE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dT8IwFL1RTIw--IEaUdQ--KaNrOsYPBKRoCIxRhLeln4aDA4i8OKv967bAI2a-Np1N1nPvetp2nMKcC5klSlcSlDrC0M5tx5N5JOUcaMr3GomnZfeQ7fa7vG7ftBfUvG70-75lmSqaUhcmuLp1Vjbq7nwzW2wUZxfcCkc1H0arMIaT4wSMKN7rLFQRoapDzOyFPwX11kmm_k5xtepacE3v22RupmntQNbGWUkjRTjXVgxcRG2M_pIsuKcYFN-Q0PeVoTNJbvBPeg3YmKcZQR-KUn0HLEmE_PylumPYpI7jBOksqQzaDaeyHg0wM5qOJppgkk6HHxgLCL0q1BplIGe7EOvdfN83abZzQpUYclNqQyrCBDDCpEWx0LZ0LIw1KrimZrwcQZnUns2sFwaVjOBsjiyIda6ksgXdEX7B1CIR7E5BBKawPjJItEPJNdCCM9TVeSMiLMnRUWWwMsHNVKZ7Xhy-8UwmhsmOyAiBCJyQERBCS7m74xT040_e5dzrKKsACeRjzyI-wmZKsFljt_i8e_Rjv7X_QzWH5utqHPbvT-GDeayKTmAVobC9H1mTpCxTOWpS8pP6cLfkQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+ground+segmentation+approach+for+LiDAR+point+cloud+utilizing+adjacent+grids&rft.jtitle=Machine+vision+and+applications&rft.au=Dong%2C+Longyu&rft.au=Liu%2C+Dejun&rft.au=Dong%2C+Youqiang&rft.au=Park%2C+Bongrae&rft.date=2024-09-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0932-8092&rft.eissn=1432-1769&rft.volume=35&rft.issue=5&rft_id=info:doi/10.1007%2Fs00138-024-01593-5&rft.externalDocID=10_1007_s00138_024_01593_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0932-8092&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0932-8092&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0932-8092&client=summon