Processing of digital mammogram images using optimized ELM with deep transfer learning for breast cancer diagnosis
The mortality of breast cancer is more among women besides lung cancer. However, the survival rates of breast cancer can be increased when there is a promising computer-aided diagnosis tool available for earlier detection and timely diagnosis. To tackle this, several research works are emerging with...
        Saved in:
      
    
          | Published in | Multimedia tools and applications Vol. 82; no. 30; pp. 47585 - 47609 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Springer US
    
        01.12.2023
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1380-7501 1573-7721  | 
| DOI | 10.1007/s11042-023-15265-5 | 
Cover
| Abstract | The mortality of breast cancer is more among women besides lung cancer. However, the survival rates of breast cancer can be increased when there is a promising computer-aided diagnosis tool available for earlier detection and timely diagnosis. To tackle this, several research works are emerging with different methodologies but still accuracy and robustness are the key issues. Hence, a robust framework that incorporates the concept of Extreme Learning Machine (ELM) and Deep Transfer Learning is proposed and the performance of ELM is improved using an Iterative Flight-Length-Based Crow-Search Algorithm (iFLCSA) in this research work. Performance of ELM heavily depends on its parameters and to provide enhanced performance, the optimum parameters of ELM are found through the iFLCSA. When compared to the existing Crow Search Algorithm(CSA), the flight length parameter will be updated iteratively using an appropriate equation in iFLCSA to provide better balance between exploration and exploitation. Digital & full-field digital mammograms from the Mammographic Image Analysis Society (MIAS) and INbreast datasets are used for evaluation. The results obtained are then compared with the existing Support Vector Machine, ELM, Particle Swarm Optimization and CSA optimized ELM algorithms. The proposed iFLCSA-ELM provides a maximum classification accuracy of 98.292% and 98.171% for MIAS & INbreast datasets respectively. | 
    
|---|---|
| AbstractList | The mortality of breast cancer is more among women besides lung cancer. However, the survival rates of breast cancer can be increased when there is a promising computer-aided diagnosis tool available for earlier detection and timely diagnosis. To tackle this, several research works are emerging with different methodologies but still accuracy and robustness are the key issues. Hence, a robust framework that incorporates the concept of Extreme Learning Machine (ELM) and Deep Transfer Learning is proposed and the performance of ELM is improved using an Iterative Flight-Length-Based Crow-Search Algorithm (iFLCSA) in this research work. Performance of ELM heavily depends on its parameters and to provide enhanced performance, the optimum parameters of ELM are found through the iFLCSA. When compared to the existing Crow Search Algorithm(CSA), the flight length parameter will be updated iteratively using an appropriate equation in iFLCSA to provide better balance between exploration and exploitation. Digital & full-field digital mammograms from the Mammographic Image Analysis Society (MIAS) and INbreast datasets are used for evaluation. The results obtained are then compared with the existing Support Vector Machine, ELM, Particle Swarm Optimization and CSA optimized ELM algorithms. The proposed iFLCSA-ELM provides a maximum classification accuracy of 98.292% and 98.171% for MIAS & INbreast datasets respectively. | 
    
| Author | Bharanidharan, N. Rajaguru, Harikumar Chakravarthy, S. R. Sannasi  | 
    
| Author_xml | – sequence: 1 givenname: S. R. Sannasi surname: Chakravarthy fullname: Chakravarthy, S. R. Sannasi email: elektroniqz@gmail.com organization: Department of ECE, Bannari Amman Institute of Technology – sequence: 2 givenname: N. surname: Bharanidharan fullname: Bharanidharan, N. organization: School of Information Technology and Engineering, Vellore Institute of Technology – sequence: 3 givenname: Harikumar surname: Rajaguru fullname: Rajaguru, Harikumar organization: Department of ECE, Bannari Amman Institute of Technology  | 
    
| BookMark | eNp9kE1LwzAYx4NMcFO_gKeA52pemrY5ypgvMNGDnkOWJjWjTWqSIfrpzawgeNgpD-T_e15-CzBz3mkALjC6wgjV1xFjVJICEVpgRipWsCMwx6ymRV0TPMs1bVBRM4RPwCLGLUK4YqScg_AcvNIxWtdBb2BrO5tkDwc5DL4LcoB2kJ2OcDclxmQH-6VbuFo_wg-b3mCr9QhTkC4aHWCvZXD7pPEBboKWMUElncpfrZWd89HGM3BsZB_1-e97Cl5vVy_L-2L9dPewvFkXimKeik2NlCLccEZLySUpDceKG10p3chSIk4oI21boapsJKaqREbhsuWE1aiRqqWn4HLqOwb_vtMxia3fBZdHCtJwhqqqapqcIlNKBR9j0EaMId8cPgVGYu9WTG5Fdit-3AqWoeYfpLK2ZL3LJmx_GKUTGvMc1-nwt9UB6hvIaZFl | 
    
| CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3339564 crossref_primary_10_1080_10589759_2024_2378908 crossref_primary_10_1088_2631_8695_ad780e crossref_primary_10_14201_adcaij_31412 crossref_primary_10_1007_s44196_024_00409_8 crossref_primary_10_1016_j_neucom_2024_129298 crossref_primary_10_1016_j_bspc_2024_107410  | 
    
| Cites_doi | 10.1109/STCR51658.2021.9588828 10.1148/radiol.2019182716 10.1016/j.enconman.2017.04.007 10.1016/j.cub.2005.01.020 10.1007/s41870-019-00409-4 10.31557/APJCP.2019.20.12.3777 10.1016/j.bspc.2020.101912 10.1016/j.neucom.2015.07.065 10.1016/j.neucom.2014.12.032 10.1109/ICCCNT.2018.8494076 10.1016/j.procs.2015.07.341 10.1016/j.irbm.2020.12.004 10.1109/UBMK.2017.8093429 10.1109/CCWC.2018.8301729 10.30699/acadpub.mci.3.4.13 10.1097/PAS.0000000000001151 10.1016/j.asoc.2015.03.036 10.1016/j.renene.2014.08.075 10.1016/j.compbiomed.2013.03.008 10.3389/fgene.2019.00080 10.1016/j.asoc.2016.04.036 10.1016/j.enconman.2019.02.086 10.1109/ITOEC.2017.8122336 10.1002/ima.22493 10.1007/s10586-019-02929-x 10.1016/j.acra.2011.09.014 10.31557/APJCP.2019.20.7.2159 10.1016/j.compstruc.2016.03.001 10.1002/ima.22364 10.1016/j.asoc.2020.106742 10.1109/WiSPNET.2016.7566558 10.1371/journal.pone.0235236 10.1016/j.eswa.2017.05.062 10.1016/j.isatra.2016.08.022 10.1109/ACCESS.2018.2797872 10.1016/j.ecolind.2017.06.009 10.1088/1748-0221/12/07/P07009/meta  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | 
    
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U  | 
    
| DOI | 10.1007/s11042-023-15265-5 | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection (ProQuest Business Suite) (LAB) ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection (LUT) ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global (ProQuest Business Suite) (LAB) Computing Database ProQuest Research library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic  | 
    
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni)  | 
    
| DatabaseTitleList | ABI/INFORM Global (Corporate) | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science  | 
    
| EISSN | 1573-7721 | 
    
| EndPage | 47609 | 
    
| ExternalDocumentID | 10_1007_s11042_023_15265_5 | 
    
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI PRINS Q9U  | 
    
| ID | FETCH-LOGICAL-c319t-b70cc29f9534a9a24f91c9fe6ce8a4a092352dd60648a13c40fc14d925708acd3 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 1380-7501 | 
    
| IngestDate | Fri Jul 25 22:41:48 EDT 2025 Wed Oct 01 04:51:30 EDT 2025 Thu Apr 24 22:59:04 EDT 2025 Fri Feb 21 02:40:58 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 30 | 
    
| Keywords | Crow-Search Breast cancer Transfer-Learning Extreme Learning Machine Mammograms Median filtering  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c319t-b70cc29f9534a9a24f91c9fe6ce8a4a092352dd60648a13c40fc14d925708acd3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 2895066688 | 
    
| PQPubID | 54626 | 
    
| PageCount | 25 | 
    
| ParticipantIDs | proquest_journals_2895066688 crossref_primary_10_1007_s11042_023_15265_5 crossref_citationtrail_10_1007_s11042_023_15265_5 springer_journals_10_1007_s11042_023_15265_5  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20231200 2023-12-00 20231201  | 
    
| PublicationDateYYYYMMDD | 2023-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2023 text: 20231200  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York – name: Dordrecht  | 
    
| PublicationSubtitle | An International Journal | 
    
| PublicationTitle | Multimedia tools and applications | 
    
| PublicationTitleAbbrev | Multimed Tools Appl | 
    
| PublicationYear | 2023 | 
    
| Publisher | Springer US Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer US – name: Springer Nature B.V  | 
    
| References | Buciu I, Gacsadi A and Control, undefined 2011, (n.d.) Directional features for automatic tumor classification of mammogram images, Elsevier. https://www.sciencedirect.com/science/article/pii/S1746809410000820. Accessed 05 Dec 2021 Ezzat D, ell Hassanien A, Ella HA (2020) GSA-DenseNet121-COVID-19: a Hybrid Deep Learning Architecture for the Diagnosis of COVID-19 Disease based on Gravitational Search Optimization Algorithm. Appl. Soft Comput. 98 https://doi.org/10.1016/j.asoc.2020.106742 Safdarian N, Hediyehzadeh MR (2019) Detection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods, Mcijournal.Com https://doi.org/10.30699/acadpub.mci.3.4.13 LiuDLiuCFuQLiTImranKMCuiSAbrarFMELM evaluation model of regional groundwater quality based on the crow search algorithmEcol Ind20178130231410.1016/j.ecolind.2017.06.009 Setiawan AS, Elysia, Wesley J, Purnama Y (2015) Mammogram classification using law’s texture energy measure and neural networks. Procedia Comput Sci 59:92–97. https://doi.org/10.1016/j.procs.2015.07.341; https://www.sciencedirect.com/science/article/pii/S1877050915018700. Accessed 05 Dec 2021 Tan M, Le Q (2019) EfficientNet: Rethinking model scaling for convolutional neural networks. In: Proceedings of the 36th International Conference on Machine Learning. Proc Mach Learn Res 97:6105–6114. Available from https://proceedings.mlr.press/v97/tan19a.html; http://proceedings.mlr.press/v97/tan19a/tan19a.pdf Hu K, Yang W, Gao X. with Applications, undefined 2017 (n.d.) Microcalcification diagnosis in digital mammography using extreme learning machine based on hidden Markov tree model of dual-tree complex wavelet. Elsevier. https://www.sciencedirect.com/science/article/pii/S0957417417303901. Accessed 05 Dec 2021 Abdel-Nasser M, Rashwan H … Puig D. with, undefined 2015 (n.d.) Analysis of tissue abnormality and breast density in mammographic images using a uniform local directional pattern, Elsevier https://www.sciencedirect.com/science/article/pii/S0957417415005321. Accessed 05 Dec 2021 Beura S, Majhi B, Dash R. Neurocomputing, undefined 2015 (n.d.). Mammogram classification using two dimensional discrete wavelet transform and gray-level co-occurrence matrix for detection of breast cancer, Elsevier https://www.sciencedirect.com/science/article/pii/S0925231214016968. Accessed 05 Dec 2021 Hariraj V, Khairunizam W, Vijean V, Ibrahim Z, Vikneswaran, Razlan ZM (2018) Fuzzy multi-layer SVM classification of breast cancer mammogram images Development of Malaysia Driving Cycle (MDC) View project Navigation system using geographical feature elements and Electromyography Signal processing View project FUZZY MULTI-LAYER SVM CLASSIFICATION OF BREAST CANCER MAMMOGRAM IMAGES. Int J Mech Eng Technol (IJMET) 9:1281–1299. http://www.iaeme.com/IJMET/index.asp1281; http://www.iaeme.com/ijmet/issues.asp?JType=IJMET&VType=9&IType=8. Accessed 05 Dec 2021 Raghavendra U, Rajendra Acharya U, Fujita H, Gudigar A, Tan JH, Chokkadi S (2016) Application of Gabor wavelet and Locality Sensitive Discriminant Analysis for automated identification of breast cancer using digitized mammogram images. Appl Soft Comput 46:151–161. https://doi.org/10.1016/j.asoc.2016.04.036. Accessed 05 Dec 2021 ChangYJungCKePSongHHwangJAutomatic Contrast-Limited Adaptive Histogram Equalization with Dual Gamma CorrectionIEEE Access20186117821179210.1109/ACCESS.2018.2797872 S R SC, Rajaguru H (2019) Lung cancer detection using probabilistic neural network with modified crow-search algorithm. Asian Pac J Cancer Prev 20(7):2159–2166. https://doi.org/10.31557/APJCP.2019.20.7.2159 Sannasi Chakravarthy SR, Rajaguru H (2021) A novel improved crow-search algorithm to classify the severity in digital mammograms. Int J Imaging Syst Technol 31:921–954. https://doi.org/10.1002/ima.22493 Yala A, Lehman C, Schuster T, Portnoi T, Barzilay R (2019) A deep learning mammography-based model for improved breast cancer risk prediction. Radiology 292(1):60–66. https://doi.org/10.1148/radiol.2019182716 Zhang Y, Han X, Zhang H, Zhao L (2017) Edge Detection Algorithm of Image Fusion Based on Improved Sobel Operator, in: Proc. 2017 IEEE 3rd Inf. Technol. Mechatronics Eng. Conf. ITOEC 2017, Institute of Electrical and Electronics Engineers Inc. 457–461. https://doi.org/10.1109/ITOEC.2017.8122336. Rajaguru H, S R SC (2019) Analysis of decision tree and k-nearest neighbor algorithm in the classification of breast cancer, Asian Pac J Cancer Prev 20(12):3777–3781. https://doi.org/10.31557/APJCP.2019.20.12.3777 S R SC, Rajaguru H (2021) A systematic review on screening, examining and classification of breast cancer. In: 2021 Smart Technologies, Communication and Robotics (STCR), Sathyamangalam, India, pp 1–4. https://doi.org/10.1109/STCR51658.2021.9588828 Sannasi Chakravarthy SR, Rajaguru H (2020) Detection and classification of microcalcification from digital mammograms with firefly algorithm, extreme learning machine and non-linear regression models: A comparison. Int J Imaging Syst Technol 30:126–146. https://doi.org/10.1002/ima.22364 Clayton N, Emery N. (2005) Corvid cognition., Curr. Biol. 15 https://doi.org/10.1016/j.cub.2005.01.020 Suckling J, Parker J, Dance D, Astley S, Hutt I (2015) Mammographic image analysis society (mias) database v1. 21, https://www.repository.cam.ac.uk/handle/1810/250394 (accessed March 28, 2021) Nithya R, Santhi B. of Instrumentation, undefined 2017 (n.d.) Application of texture analysis method for mammogram density classification, Iopscience.Iop.Org https://iopscience.iop.org/article/https://doi.org/10.1088/1748-0221/12/07/P07009/meta Badawy SM, Hefnawy AA, Zidan HE, Gadallah MT (2017) Breast Cancer Detection with Mammogram Segmentation: A Qualitative Study. www.ijacsa.thesai.org. Accessed 05 Dec 2021 Prathibha G, Mohan B. 2018 9th I.C. on, undefined 2018 (n.d.) Mammograms Classification Using Multiresolution Transforms and Convolution Neural Networks, Ieeexplore.Ieee.Org https://ieeexplore.ieee.org/abstract/document/8494076/. Accessed 05 Dec 2021 IqbalBIqbalWKhanNMahmoodAErradiACanny edge detection and Hough transform for high resolution video streams using Hadoop and SparkCluster Comput20202339740810.1007/s10586-019-02929-x HuangXLuoMJinHApplication of improved ELM algorithm in the prediction of earthquake casualtiesPlos One2020156e023523610.1371/journal.pone.0235236 Gopi AP, Jyothi RNS, Narayana VL, Sandeep KS. (2020) Classification of tweets data based on polarity using improved RBF kernel of SVM, Int. J. Inf. Technol. pp. 1–16 https://doi.org/10.1007/s41870-019-00409-4 Görgel P, Sertbas A, Ucan ON (2013) Mammographical mass detection and classification using local seed region growing–spherical wavelet transform (lsrg–swt) hybrid scheme. Comput Biol Med 43(6):765–774. https://doi.org/10.1016/j.compbiomed.2013.03.008; https://www.sciencedirect.com/science/article/pii/S0010482513000796. Accessed 05 Dec 2021 Ghiasi G, Lin TY, Le QV (2018) DropBlock: A regularization method for convolutional networks. Adv Neural Inf Process Syst :10727–10737. http://arxiv.org/abs/1810.12890. Accessed 05 Dec 2021 Steiner DF, MacDonald R, Liu Y, Truszkowski P, Hipp JD, Gammage C, Thng F, Peng L, Stumpe MC (2018) Impact of Deep Learning Assistance on the Histopathologic Review of Lymph Nodes for Metastatic Breast Cancer. Am J Surg Pathol 42(12):1636–1646. https://doi.org/10.1097/PAS.0000000000001151 Moreira IC, Amaral I, Domingues I, Cardoso A, João Cardoso M, Cardoso JS (2012) INbreast: Toward a Full-field Digital Mammographic Database, Acad Radiol 19:236–248. https://doi.org/10.1016/j.acra.2011.09.014 Abirami C, Harikumar R, Chakravarthy SRS (2016) Performance analysis and detection of micro calcification in digital mammograms using wavelet features. In: Proc. 2016 IEEE Int. Conf. Wirel. Commun. Signal Process. Networking, WiSPNET 2016, Presses Polytechniques Et Universitaires Romandes, pp. 2327–2331. https://doi.org/10.1109/WiSPNET.2016.7566558 Luo M, Li C, Zhang X, Li R, An X (2016) Compound feature selection and parameter optimization of ELM for fault diagnosis of rolling element bearings. ISA Trans 65:556–566.https://doi.org/10.1016/j.isatra.2016.08.022 . Accessed 05 Dec 2021 Wong PK, Wong KI, Vong CM, Cheung CS (2015) Modeling and optimization of biodiesel engine performance using kernel-based extreme learning machine and cuckoo search. Renew Energy 74:640–647. https://doi.org/10.1016/j.renene.2014.08.075 Fu W, Wang K, Li C, Li C. and Management, undefined 2019 (n.d.) Multi-step short-term wind speed forecasting approach based on multi-scale dominant ingredient chaotic analysis, improved hybrid GWO-SCA optimization, Elsevier. https://www.sciencedirect.com/science/article/pii/S0196890419302985. Accessed 05 Dec 2021 Qassim H, Verma A, Feinzimer D (2018) Compressed residual-VGG16 CNN model for big data places image recognition, In: 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, pp 169–175. https://doi.org/10.1109/CCWC.2018.8301729 Wong SY, Yap KS, Yap HJ (2016) A Constrained Optimization based Extreme Learning Machine for noisy data regression. Neurocomputing 171:1431–1443. https://doi.org/10.1016/j.neucom.2015.07.065; https://www.sciencedirect.com/science/article/abs/pii/S0925231215010723?via%3Dihub. Accessed 05 Dec 2021 Hepsag PU, Özel SA, Yazıcı A (2017) Using deep learning for mammography classification. In: 2017 International Conference on Computer Science and Engineering (UBMK), Antalya, Turkey, pp 418–423. https://doi.org/10.1109/UBMK.2017.8093429 Zhang C, Zhou J, Li C, Fu W, Peng T (2017) A compound structure of ELM based on feature selection and parameter optimization using hybrid backtracking search algorithm for wind speed forecasting. Energy Convers Manag 143:360–376. https://doi.org/10.1016/j.enconman.2017.04.007; https://www.sciencedirect.com/science/article/pii/S0196890417303126. Accessed 05 Dec 2021 ChakravarthySSRajaguruHAutomatic detection and classification of mammograms using improved extreme learning machine with deep l 15265_CR40 15265_CR41 15265_CR42 15265_CR10 B Iqbal (15265_CR20) 2020; 23 15265_CR32 15265_CR11 15265_CR33 15265_CR12 15265_CR34 15265_CR13 15265_CR35 15265_CR14 15265_CR36 15265_CR15 15265_CR37 15265_CR16 15265_CR38 15265_CR17 15265_CR39 15265_CR18 15265_CR2 15265_CR1 15265_CR7 Y Chang (15265_CR9) 2018; 6 15265_CR6 R Ahila (15265_CR3) 2015; 32 15265_CR5 D Liu (15265_CR21) 2017; 81 SS Chakravarthy (15265_CR8) 2022; 43 A Askarzadeh (15265_CR4) 2016; 169 15265_CR30 15265_CR31 15265_CR43 15265_CR22 15265_CR44 15265_CR23 15265_CR45 15265_CR24 15265_CR25 15265_CR26 15265_CR27 15265_CR28 15265_CR29 X Huang (15265_CR19) 2020; 15  | 
    
| References_xml | – reference: Fu W, Wang K, Li C, Li C. and Management, undefined 2019 (n.d.) Multi-step short-term wind speed forecasting approach based on multi-scale dominant ingredient chaotic analysis, improved hybrid GWO-SCA optimization, Elsevier. https://www.sciencedirect.com/science/article/pii/S0196890419302985. Accessed 05 Dec 2021 – reference: Prathibha G, Mohan B. 2018 9th I.C. on, undefined 2018 (n.d.) Mammograms Classification Using Multiresolution Transforms and Convolution Neural Networks, Ieeexplore.Ieee.Org https://ieeexplore.ieee.org/abstract/document/8494076/. Accessed 05 Dec 2021 – reference: Hu K, Yang W, Gao X. with Applications, undefined 2017 (n.d.) Microcalcification diagnosis in digital mammography using extreme learning machine based on hidden Markov tree model of dual-tree complex wavelet. Elsevier. https://www.sciencedirect.com/science/article/pii/S0957417417303901. Accessed 05 Dec 2021 – reference: Rajaguru H, S R SC (2019) Analysis of decision tree and k-nearest neighbor algorithm in the classification of breast cancer, Asian Pac J Cancer Prev 20(12):3777–3781. https://doi.org/10.31557/APJCP.2019.20.12.3777 – reference: Steiner DF, MacDonald R, Liu Y, Truszkowski P, Hipp JD, Gammage C, Thng F, Peng L, Stumpe MC (2018) Impact of Deep Learning Assistance on the Histopathologic Review of Lymph Nodes for Metastatic Breast Cancer. Am J Surg Pathol 42(12):1636–1646. https://doi.org/10.1097/PAS.0000000000001151 – reference: Hepsag PU, Özel SA, Yazıcı A (2017) Using deep learning for mammography classification. In: 2017 International Conference on Computer Science and Engineering (UBMK), Antalya, Turkey, pp 418–423. https://doi.org/10.1109/UBMK.2017.8093429 – reference: Tan M, Le Q (2019) EfficientNet: Rethinking model scaling for convolutional neural networks. In: Proceedings of the 36th International Conference on Machine Learning. Proc Mach Learn Res 97:6105–6114. Available from https://proceedings.mlr.press/v97/tan19a.html; http://proceedings.mlr.press/v97/tan19a/tan19a.pdf – reference: Suckling J, Parker J, Dance D, Astley S, Hutt I (2015) Mammographic image analysis society (mias) database v1. 21, https://www.repository.cam.ac.uk/handle/1810/250394 (accessed March 28, 2021) – reference: Gopi AP, Jyothi RNS, Narayana VL, Sandeep KS. (2020) Classification of tweets data based on polarity using improved RBF kernel of SVM, Int. J. Inf. Technol. pp. 1–16 https://doi.org/10.1007/s41870-019-00409-4 – reference: Abdel-Nasser M, Rashwan H … Puig D. with, undefined 2015 (n.d.) Analysis of tissue abnormality and breast density in mammographic images using a uniform local directional pattern, Elsevier https://www.sciencedirect.com/science/article/pii/S0957417415005321. Accessed 05 Dec 2021 – reference: Ezzat D, ell Hassanien A, Ella HA (2020) GSA-DenseNet121-COVID-19: a Hybrid Deep Learning Architecture for the Diagnosis of COVID-19 Disease based on Gravitational Search Optimization Algorithm. Appl. Soft Comput. 98 https://doi.org/10.1016/j.asoc.2020.106742 – reference: HuangXLuoMJinHApplication of improved ELM algorithm in the prediction of earthquake casualtiesPlos One2020156e023523610.1371/journal.pone.0235236 – reference: Clayton N, Emery N. (2005) Corvid cognition., Curr. Biol. 15 https://doi.org/10.1016/j.cub.2005.01.020 – reference: Hariraj V, Khairunizam W, Vijean V, Ibrahim Z, Vikneswaran, Razlan ZM (2018) Fuzzy multi-layer SVM classification of breast cancer mammogram images Development of Malaysia Driving Cycle (MDC) View project Navigation system using geographical feature elements and Electromyography Signal processing View project FUZZY MULTI-LAYER SVM CLASSIFICATION OF BREAST CANCER MAMMOGRAM IMAGES. Int J Mech Eng Technol (IJMET) 9:1281–1299. http://www.iaeme.com/IJMET/index.asp1281; http://www.iaeme.com/ijmet/issues.asp?JType=IJMET&VType=9&IType=8. Accessed 05 Dec 2021 – reference: Xie J, Liu R, Luttrell JI, Zhang C (2019) Deep Learning Based Analysis of Histopathological Images of Breast Cancer. Front Genet 10. https://doi.org/10.3389/fgene.2019.00080 – reference: Sannasi Chakravarthy SR, Rajaguru H (2020) Detection and classification of microcalcification from digital mammograms with firefly algorithm, extreme learning machine and non-linear regression models: A comparison. Int J Imaging Syst Technol 30:126–146. https://doi.org/10.1002/ima.22364 – reference: Yala A, Lehman C, Schuster T, Portnoi T, Barzilay R (2019) A deep learning mammography-based model for improved breast cancer risk prediction. Radiology 292(1):60–66. https://doi.org/10.1148/radiol.2019182716 – reference: ChakravarthySSRajaguruHAutomatic detection and classification of mammograms using improved extreme learning machine with deep learningIRBM2022431496110.1016/j.irbm.2020.12.004 – reference: S R SC, Rajaguru H (2019) Lung cancer detection using probabilistic neural network with modified crow-search algorithm. Asian Pac J Cancer Prev 20(7):2159–2166. https://doi.org/10.31557/APJCP.2019.20.7.2159 – reference: S R SC, Rajaguru H (2021) A systematic review on screening, examining and classification of breast cancer. In: 2021 Smart Technologies, Communication and Robotics (STCR), Sathyamangalam, India, pp 1–4. https://doi.org/10.1109/STCR51658.2021.9588828 – reference: ChangYJungCKePSongHHwangJAutomatic Contrast-Limited Adaptive Histogram Equalization with Dual Gamma CorrectionIEEE Access20186117821179210.1109/ACCESS.2018.2797872 – reference: AskarzadehAA novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithmComput Struct201616911210.1016/j.compstruc.2016.03.001 – reference: Nithya R, Santhi B. of Instrumentation, undefined 2017 (n.d.) Application of texture analysis method for mammogram density classification, Iopscience.Iop.Org https://iopscience.iop.org/article/https://doi.org/10.1088/1748-0221/12/07/P07009/meta – reference: Moreira IC, Amaral I, Domingues I, Cardoso A, João Cardoso M, Cardoso JS (2012) INbreast: Toward a Full-field Digital Mammographic Database, Acad Radiol 19:236–248. https://doi.org/10.1016/j.acra.2011.09.014 – reference: Ghiasi G, Lin TY, Le QV (2018) DropBlock: A regularization method for convolutional networks. Adv Neural Inf Process Syst :10727–10737. http://arxiv.org/abs/1810.12890. Accessed 05 Dec 2021 – reference: Setiawan AS, Elysia, Wesley J, Purnama Y (2015) Mammogram classification using law’s texture energy measure and neural networks. Procedia Comput Sci 59:92–97. https://doi.org/10.1016/j.procs.2015.07.341; https://www.sciencedirect.com/science/article/pii/S1877050915018700. Accessed 05 Dec 2021 – reference: Luo M, Li C, Zhang X, Li R, An X (2016) Compound feature selection and parameter optimization of ELM for fault diagnosis of rolling element bearings. ISA Trans 65:556–566.https://doi.org/10.1016/j.isatra.2016.08.022 . Accessed 05 Dec 2021 – reference: Raghavendra U, Rajendra Acharya U, Fujita H, Gudigar A, Tan JH, Chokkadi S (2016) Application of Gabor wavelet and Locality Sensitive Discriminant Analysis for automated identification of breast cancer using digitized mammogram images. Appl Soft Comput 46:151–161. https://doi.org/10.1016/j.asoc.2016.04.036. Accessed 05 Dec 2021 – reference: Görgel P, Sertbas A, Ucan ON (2013) Mammographical mass detection and classification using local seed region growing–spherical wavelet transform (lsrg–swt) hybrid scheme. Comput Biol Med 43(6):765–774. https://doi.org/10.1016/j.compbiomed.2013.03.008; https://www.sciencedirect.com/science/article/pii/S0010482513000796. Accessed 05 Dec 2021 – reference: Wong SY, Yap KS, Yap HJ (2016) A Constrained Optimization based Extreme Learning Machine for noisy data regression. Neurocomputing 171:1431–1443. https://doi.org/10.1016/j.neucom.2015.07.065; https://www.sciencedirect.com/science/article/abs/pii/S0925231215010723?via%3Dihub. Accessed 05 Dec 2021 – reference: Badawy SM, Hefnawy AA, Zidan HE, Gadallah MT (2017) Breast Cancer Detection with Mammogram Segmentation: A Qualitative Study. www.ijacsa.thesai.org. Accessed 05 Dec 2021 – reference: Zhang Y, Han X, Zhang H, Zhao L (2017) Edge Detection Algorithm of Image Fusion Based on Improved Sobel Operator, in: Proc. 2017 IEEE 3rd Inf. Technol. Mechatronics Eng. Conf. ITOEC 2017, Institute of Electrical and Electronics Engineers Inc. 457–461. https://doi.org/10.1109/ITOEC.2017.8122336. – reference: Sannasi Chakravarthy SR, Rajaguru H (2021) A novel improved crow-search algorithm to classify the severity in digital mammograms. Int J Imaging Syst Technol 31:921–954. https://doi.org/10.1002/ima.22493 – reference: McKinney M, Sieniek MT, Godbole V, Godwin J, Ashrafian H, Back T, Chesus M, Corrado GC, Darzi A, Etemadi M, Garcia-Vicente F, Gilbert FJ, Halling-Brown M, Jansen S, Karthikesalingam A, Kelly CJ, King D, Ledsam R, Melnick D, Mostofi H, Romera-Paredes B, Peng L, Jay Reicher J, Sidebottom R, Suleyman M, Tse D, De Fauw J, Shetty S (n.d.) International evaluation of an AI system 1 for breast cancer screening 2 3 Scott. https://www.nature.com/articles/s41586-019-1799-6. Accessed 05 Dec 2021 – reference: Qassim H, Verma A, Feinzimer D (2018) Compressed residual-VGG16 CNN model for big data places image recognition, In: 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, pp 169–175. https://doi.org/10.1109/CCWC.2018.8301729 – reference: Safdarian N, Hediyehzadeh MR (2019) Detection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods, Mcijournal.Com https://doi.org/10.30699/acadpub.mci.3.4.13 – reference: Buciu I, Gacsadi A and Control, undefined 2011, (n.d.) Directional features for automatic tumor classification of mammogram images, Elsevier. https://www.sciencedirect.com/science/article/pii/S1746809410000820. Accessed 05 Dec 2021 – reference: Wong PK, Wong KI, Vong CM, Cheung CS (2015) Modeling and optimization of biodiesel engine performance using kernel-based extreme learning machine and cuckoo search. Renew Energy 74:640–647. https://doi.org/10.1016/j.renene.2014.08.075 – reference: Muduli D, Dash R, Majhi B (2020) Automated breast cancer detection in digital mammograms: A moth flame optimization based ELM approach. Biomed Signal Process Control 59:101912. https://doi.org/10.1016/j.bspc.2020.101912; https://www.sciencedirect.com/science/article/pii/S1746809420300689. Accessed 05 Dec 2021 – reference: LiuDLiuCFuQLiTImranKMCuiSAbrarFMELM evaluation model of regional groundwater quality based on the crow search algorithmEcol Ind20178130231410.1016/j.ecolind.2017.06.009 – reference: Abirami C, Harikumar R, Chakravarthy SRS (2016) Performance analysis and detection of micro calcification in digital mammograms using wavelet features. In: Proc. 2016 IEEE Int. Conf. Wirel. Commun. Signal Process. Networking, WiSPNET 2016, Presses Polytechniques Et Universitaires Romandes, pp. 2327–2331. https://doi.org/10.1109/WiSPNET.2016.7566558 – reference: AhilaRSadasivamVManimalaKAn integrated PSO for parameter determination and feature selection of ELM and its application in classification of power system disturbancesAppl Soft Comput J201532233710.1016/j.asoc.2015.03.036 – reference: Zhang C, Zhou J, Li C, Fu W, Peng T (2017) A compound structure of ELM based on feature selection and parameter optimization using hybrid backtracking search algorithm for wind speed forecasting. Energy Convers Manag 143:360–376. https://doi.org/10.1016/j.enconman.2017.04.007; https://www.sciencedirect.com/science/article/pii/S0196890417303126. Accessed 05 Dec 2021 – reference: Beura S, Majhi B, Dash R. Neurocomputing, undefined 2015 (n.d.). Mammogram classification using two dimensional discrete wavelet transform and gray-level co-occurrence matrix for detection of breast cancer, Elsevier https://www.sciencedirect.com/science/article/pii/S0925231214016968. Accessed 05 Dec 2021 – reference: IqbalBIqbalWKhanNMahmoodAErradiACanny edge detection and Hough transform for high resolution video streams using Hadoop and SparkCluster Comput20202339740810.1007/s10586-019-02929-x – ident: 15265_CR32 doi: 10.1109/STCR51658.2021.9588828 – ident: 15265_CR43 doi: 10.1148/radiol.2019182716 – ident: 15265_CR44 doi: 10.1016/j.enconman.2017.04.007 – ident: 15265_CR10 doi: 10.1016/j.cub.2005.01.020 – ident: 15265_CR14 doi: 10.1007/s41870-019-00409-4 – ident: 15265_CR30 doi: 10.31557/APJCP.2019.20.12.3777 – ident: 15265_CR25 doi: 10.1016/j.bspc.2020.101912 – ident: 15265_CR40 doi: 10.1016/j.neucom.2015.07.065 – ident: 15265_CR6 doi: 10.1016/j.neucom.2014.12.032 – ident: 15265_CR27 doi: 10.1109/ICCCNT.2018.8494076 – ident: 15265_CR38 – ident: 15265_CR36 doi: 10.1016/j.procs.2015.07.341 – volume: 43 start-page: 49 issue: 1 year: 2022 ident: 15265_CR8 publication-title: IRBM doi: 10.1016/j.irbm.2020.12.004 – ident: 15265_CR17 doi: 10.1109/UBMK.2017.8093429 – ident: 15265_CR28 doi: 10.1109/CCWC.2018.8301729 – ident: 15265_CR7 – ident: 15265_CR33 doi: 10.30699/acadpub.mci.3.4.13 – ident: 15265_CR37 doi: 10.1097/PAS.0000000000001151 – volume: 32 start-page: 23 year: 2015 ident: 15265_CR3 publication-title: Appl Soft Comput J doi: 10.1016/j.asoc.2015.03.036 – ident: 15265_CR41 doi: 10.1016/j.renene.2014.08.075 – ident: 15265_CR15 doi: 10.1016/j.compbiomed.2013.03.008 – ident: 15265_CR42 doi: 10.3389/fgene.2019.00080 – ident: 15265_CR29 doi: 10.1016/j.asoc.2016.04.036 – ident: 15265_CR12 doi: 10.1016/j.enconman.2019.02.086 – ident: 15265_CR13 – ident: 15265_CR45 doi: 10.1109/ITOEC.2017.8122336 – ident: 15265_CR35 doi: 10.1002/ima.22493 – volume: 23 start-page: 397 year: 2020 ident: 15265_CR20 publication-title: Cluster Comput doi: 10.1007/s10586-019-02929-x – ident: 15265_CR5 – ident: 15265_CR24 doi: 10.1016/j.acra.2011.09.014 – ident: 15265_CR1 – ident: 15265_CR23 – ident: 15265_CR31 doi: 10.31557/APJCP.2019.20.7.2159 – volume: 169 start-page: 1 year: 2016 ident: 15265_CR4 publication-title: Comput Struct doi: 10.1016/j.compstruc.2016.03.001 – ident: 15265_CR34 doi: 10.1002/ima.22364 – ident: 15265_CR11 doi: 10.1016/j.asoc.2020.106742 – ident: 15265_CR16 – ident: 15265_CR2 doi: 10.1109/WiSPNET.2016.7566558 – ident: 15265_CR39 – volume: 15 start-page: e0235236 issue: 6 year: 2020 ident: 15265_CR19 publication-title: Plos One doi: 10.1371/journal.pone.0235236 – ident: 15265_CR18 doi: 10.1016/j.eswa.2017.05.062 – ident: 15265_CR22 doi: 10.1016/j.isatra.2016.08.022 – volume: 6 start-page: 11782 year: 2018 ident: 15265_CR9 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2797872 – volume: 81 start-page: 302 year: 2017 ident: 15265_CR21 publication-title: Ecol Ind doi: 10.1016/j.ecolind.2017.06.009 – ident: 15265_CR26 doi: 10.1088/1748-0221/12/07/P07009/meta  | 
    
| SSID | ssj0016524 | 
    
| Score | 2.3956876 | 
    
| Snippet | The mortality of breast cancer is more among women besides lung cancer. However, the survival rates of breast cancer can be increased when there is a promising... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 47585 | 
    
| SubjectTerms | Artificial neural networks Breast cancer Computer Communication Networks Computer Science Data Structures and Information Theory Datasets Diagnosis Digital imaging Flight Image analysis Iterative methods Lung cancer Machine learning Mammography Medical imaging Multimedia Information Systems Parameters Particle swarm optimization Performance enhancement Search algorithms Special Purpose and Application-Based Systems Support vector machines Track 2: Medical Applications of Multimedia  | 
    
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWWDgUUAUCvLABpach11nrFBRhSgTlbpFieNUkehDTbrw6zm7TgMIkBijOBcp39n3Xe4FcCsEktQImZuQAaOmwxxN_VzQQLGUadQhabMJRy9iOA6fJnziisLKOtu9Dknak7opdvNMKQnaGOqZnu6U78IeN-28UIvHfn8bOxDcjbKVjKI99FypzM8yvpqjhmN-C4taa_N4DIeOJpL-BtcT2NHzNhzVIxiI25FtOPjUT_AUVi7tHy_IIidZMTUjQcgsQWUzWVikmOHxUZL1ZgWeFrPiXWdk8Dwi5ocsybRekspyWXyLmygxJUhsSWqy1yuijJasULTN0CvKMxg_Dl4fhtQNVaAKd1tF0x5Tyo_yiAdhEiV-mEeeinItlJZJmDAkfNzPMvRrQpl4gQpZrrwwi8y0O5moLDiH1nwx1xdAmI6EQgAYooti0PUxVXMCfbjc66VJ1gGv_raxch3HzeCLt7jplWzwiBGP2OIR8w7cbZ9Zbvpt_Lm6W0MWu71XxuhCcuOVSdmB-xrG5vbv0i7_t_wK9n2rSSa3pQutarXW18hQqvTGKuQHoMPaaA priority: 102 providerName: Springer Nature  | 
    
| Title | Processing of digital mammogram images using optimized ELM with deep transfer learning for breast cancer diagnosis | 
    
| URI | https://link.springer.com/article/10.1007/s11042-023-15265-5 https://www.proquest.com/docview/2895066688  | 
    
| Volume | 82 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1573-7721 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: ADMLS dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-7721 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-7721 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB5BcqEHoJSK8Ih86K1YeF_Ge0AooATUlqhCjQSnldf2RpHIg2S58OuZ2XgJIJXjvma1O-PxN_bMfAA_pESQmiJykyoSnDrM8TwsJI-MyIVDG1JVNuFNX14P4l93yd0a9OtaGEqrrH1i5ajt1NAa-QkGBglhbaXOZ4-cWKNod7Wm0NCeWsGeVS3G1qEZUmesBjQvuv2_t6_7CjLxNLdKcJwrA19GsyymC6hUBecwHlDPeJ68n6pW-PPDlmk1E_W2YdNDSNZZ6vwrrLnJDmzV9AzMj9Yd-PKm1-A3mPuSADxg04LZ0ZDoQthY45dRhhYbjdG1LNjT8g70JOPRs7Os--eG0WIts87NWFnhXHyLZ5sYMgS9LKfM9pIZsqA5iq6y90aLXRj0uv8ur7knXOAGR2LJ81NhTJgWaRLFOtVhXKSBSQsnjVM61gLBYBJaizFPrHQQmVgUJohtSkx4ShsbfYfGZDpxe8CES6VB9ChQ8ygGwyKqqJMY3xXBaa5tC4L632bGdyMnUoyHbNVHmfSRoT6ySh9Z0oKfr8_Mlr04Pr37sFZZ5sflIltZUQuOazWuLv9f2v7n0g5gI6wsh_JcDqFRzp_cEaKVMm_DuupdtaHZubr_3W17g8Szg7DzAoIv55c | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9RAEJ4gPCgPiqjxEHAf9Ek3btvt0n0gRODIIXcXYyDhrW53t-QS7gd3JUb_OP82ZnpbDknkjcem22myM535pjszH8AHpRCkakRuKksEpwlzvIhLxRMrCuHRhrK6mrDXV50z-e08PV-Cv00vDJVVNj6xdtRubOkf-RdMDFLC2lm2N7nixBpFp6sNhYYJ1Aputx4xFho7TvzvX5jCzXaPD1HfH-P4qH160OGBZYBbNL-KFzvC2liXOk2k0SaWpY6sLr2yPjPSCERAaewcAn2ZmSixUpQ2kk4T_VtmrEtQ7hNYkYnUmPyt7Lf733_cnmOoNNDqZoJjbI5C2868eS-i1hiMmTyiGfU8_Tc0LvDuvSPaOvIdrcHzAFnZ17mNvYQlP1qHFw0dBAveYR1W78w2fAXT0IKAF2xcMje4IHoSNjS4k1QRxgZDdGUzdj1fgZ5rOPjjHWt3e4x-DjPn_YRVNa7GtwR2iwuGIJsVVElfMUsWO0XRdbXgYPYazh5l69_A8mg88m-BCa-VRbQq0NJQDKZh1MGnMJ8so53CuBZEzd7mNkw_JxKOy3wxt5n0kaM-8lofedqCT7fPTOazPx5cvdmoLA9-YJYvrLYFnxs1Lm7_X9rGw9Lew9POaa-bd4_7J-_gWVxbEdXYbMJyNb32W4iUqmI7mCODn4_9BdwAu7kg_w | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JSsRAEC1cQPTgLo5rH_SkjZ2tJzmIiDru4kHBW0y6OzLgLM5ERD_Nr7Mq6Tgq6M1jSFKBrkf1q3RVPYANKZGkRsjcZOgJThPmeOpmkntKpMIghsKimvDySp7c-md3wd0QvFe9MFRWWcXEIlDrjqJ_5DuYGATEtTFhy2xZxPVhY6_7xElBik5aKzmNEiLn5vUF07f-7ukh-nrTdRtHNwcn3CoMcIXQy3laF0q5URYFnp9EietnkaOizEhlwsRPBLKfwNUaSb4fJo6nfJEpx9cRSb-FidIe2h2G0TpNcacu9cbx5wmGDKygbig47sqObdgp2_YcaorB3ZI7NJ2eB983xQHT_XE4W-x5jWmYtGSV7ZfomoEh056FqUoIgtm4MAsTX6YazkHPNh_gBetkTDcfSJiEtRJcN6oFY80WBrE-ey6fwJjVar4ZzY4uLhn9FmbamC7LC0aNX7G6Fg8M6TVLqYY-Z4qw2kPTRZ1gsz8Pt_-y8Asw0u60zSIwYSKpkKcKxBiawQSMevckZpKZU08TXQOnWttY2bnnJL_xGA8mNpM_YvRHXPgjDmqw9flOt5z68efTK5XLYhsB-vEArzXYrtw4uP27taW_ra3DGOI-vji9Ol-GcbcAERXXrMBI3ns2q0iR8nStwCKD-_8G_wfIVB6Z | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Processing+of+digital+mammogram+images+using+optimized+ELM+with+deep+transfer+learning+for+breast+cancer+diagnosis&rft.jtitle=Multimedia+tools+and+applications&rft.au=Chakravarthy%2C+S.+R.+Sannasi&rft.au=Bharanidharan%2C+N&rft.au=Rajaguru%2C+Harikumar&rft.date=2023-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=82&rft.issue=30&rft.spage=47585&rft.epage=47609&rft_id=info:doi/10.1007%2Fs11042-023-15265-5&rft.externalDBID=HAS_PDF_LINK | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |