Processing of digital mammogram images using optimized ELM with deep transfer learning for breast cancer diagnosis

The mortality of breast cancer is more among women besides lung cancer. However, the survival rates of breast cancer can be increased when there is a promising computer-aided diagnosis tool available for earlier detection and timely diagnosis. To tackle this, several research works are emerging with...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 82; no. 30; pp. 47585 - 47609
Main Authors Chakravarthy, S. R. Sannasi, Bharanidharan, N., Rajaguru, Harikumar
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1380-7501
1573-7721
DOI10.1007/s11042-023-15265-5

Cover

Abstract The mortality of breast cancer is more among women besides lung cancer. However, the survival rates of breast cancer can be increased when there is a promising computer-aided diagnosis tool available for earlier detection and timely diagnosis. To tackle this, several research works are emerging with different methodologies but still accuracy and robustness are the key issues. Hence, a robust framework that incorporates the concept of Extreme Learning Machine (ELM) and Deep Transfer Learning is proposed and the performance of ELM is improved using an Iterative Flight-Length-Based Crow-Search Algorithm (iFLCSA) in this research work. Performance of ELM heavily depends on its parameters and to provide enhanced performance, the optimum parameters of ELM are found through the iFLCSA. When compared to the existing Crow Search Algorithm(CSA), the flight length parameter will be updated iteratively using an appropriate equation in iFLCSA to provide better balance between exploration and exploitation. Digital & full-field digital mammograms from the Mammographic Image Analysis Society (MIAS) and INbreast datasets are used for evaluation. The results obtained are then compared with the existing Support Vector Machine, ELM, Particle Swarm Optimization and CSA optimized ELM algorithms. The proposed iFLCSA-ELM provides a maximum classification accuracy of 98.292% and 98.171% for MIAS & INbreast datasets respectively.
AbstractList The mortality of breast cancer is more among women besides lung cancer. However, the survival rates of breast cancer can be increased when there is a promising computer-aided diagnosis tool available for earlier detection and timely diagnosis. To tackle this, several research works are emerging with different methodologies but still accuracy and robustness are the key issues. Hence, a robust framework that incorporates the concept of Extreme Learning Machine (ELM) and Deep Transfer Learning is proposed and the performance of ELM is improved using an Iterative Flight-Length-Based Crow-Search Algorithm (iFLCSA) in this research work. Performance of ELM heavily depends on its parameters and to provide enhanced performance, the optimum parameters of ELM are found through the iFLCSA. When compared to the existing Crow Search Algorithm(CSA), the flight length parameter will be updated iteratively using an appropriate equation in iFLCSA to provide better balance between exploration and exploitation. Digital & full-field digital mammograms from the Mammographic Image Analysis Society (MIAS) and INbreast datasets are used for evaluation. The results obtained are then compared with the existing Support Vector Machine, ELM, Particle Swarm Optimization and CSA optimized ELM algorithms. The proposed iFLCSA-ELM provides a maximum classification accuracy of 98.292% and 98.171% for MIAS & INbreast datasets respectively.
Author Bharanidharan, N.
Rajaguru, Harikumar
Chakravarthy, S. R. Sannasi
Author_xml – sequence: 1
  givenname: S. R. Sannasi
  surname: Chakravarthy
  fullname: Chakravarthy, S. R. Sannasi
  email: elektroniqz@gmail.com
  organization: Department of ECE, Bannari Amman Institute of Technology
– sequence: 2
  givenname: N.
  surname: Bharanidharan
  fullname: Bharanidharan, N.
  organization: School of Information Technology and Engineering, Vellore Institute of Technology
– sequence: 3
  givenname: Harikumar
  surname: Rajaguru
  fullname: Rajaguru, Harikumar
  organization: Department of ECE, Bannari Amman Institute of Technology
BookMark eNp9kE1LwzAYx4NMcFO_gKeA52pemrY5ypgvMNGDnkOWJjWjTWqSIfrpzawgeNgpD-T_e15-CzBz3mkALjC6wgjV1xFjVJICEVpgRipWsCMwx6ymRV0TPMs1bVBRM4RPwCLGLUK4YqScg_AcvNIxWtdBb2BrO5tkDwc5DL4LcoB2kJ2OcDclxmQH-6VbuFo_wg-b3mCr9QhTkC4aHWCvZXD7pPEBboKWMUElncpfrZWd89HGM3BsZB_1-e97Cl5vVy_L-2L9dPewvFkXimKeik2NlCLccEZLySUpDceKG10p3chSIk4oI21boapsJKaqREbhsuWE1aiRqqWn4HLqOwb_vtMxia3fBZdHCtJwhqqqapqcIlNKBR9j0EaMId8cPgVGYu9WTG5Fdit-3AqWoeYfpLK2ZL3LJmx_GKUTGvMc1-nwt9UB6hvIaZFl
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3339564
crossref_primary_10_1080_10589759_2024_2378908
crossref_primary_10_1088_2631_8695_ad780e
crossref_primary_10_14201_adcaij_31412
crossref_primary_10_1007_s44196_024_00409_8
crossref_primary_10_1016_j_neucom_2024_129298
crossref_primary_10_1016_j_bspc_2024_107410
Cites_doi 10.1109/STCR51658.2021.9588828
10.1148/radiol.2019182716
10.1016/j.enconman.2017.04.007
10.1016/j.cub.2005.01.020
10.1007/s41870-019-00409-4
10.31557/APJCP.2019.20.12.3777
10.1016/j.bspc.2020.101912
10.1016/j.neucom.2015.07.065
10.1016/j.neucom.2014.12.032
10.1109/ICCCNT.2018.8494076
10.1016/j.procs.2015.07.341
10.1016/j.irbm.2020.12.004
10.1109/UBMK.2017.8093429
10.1109/CCWC.2018.8301729
10.30699/acadpub.mci.3.4.13
10.1097/PAS.0000000000001151
10.1016/j.asoc.2015.03.036
10.1016/j.renene.2014.08.075
10.1016/j.compbiomed.2013.03.008
10.3389/fgene.2019.00080
10.1016/j.asoc.2016.04.036
10.1016/j.enconman.2019.02.086
10.1109/ITOEC.2017.8122336
10.1002/ima.22493
10.1007/s10586-019-02929-x
10.1016/j.acra.2011.09.014
10.31557/APJCP.2019.20.7.2159
10.1016/j.compstruc.2016.03.001
10.1002/ima.22364
10.1016/j.asoc.2020.106742
10.1109/WiSPNET.2016.7566558
10.1371/journal.pone.0235236
10.1016/j.eswa.2017.05.062
10.1016/j.isatra.2016.08.022
10.1109/ACCESS.2018.2797872
10.1016/j.ecolind.2017.06.009
10.1088/1748-0221/12/07/P07009/meta
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s11042-023-15265-5
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection (ProQuest Business Suite) (LAB)
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection (LUT)
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global (ProQuest Business Suite) (LAB)
Computing Database
ProQuest Research library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 47609
ExternalDocumentID 10_1007_s11042_023_15265_5
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-b70cc29f9534a9a24f91c9fe6ce8a4a092352dd60648a13c40fc14d925708acd3
IEDL.DBID BENPR
ISSN 1380-7501
IngestDate Fri Jul 25 22:41:48 EDT 2025
Wed Oct 01 04:51:30 EDT 2025
Thu Apr 24 22:59:04 EDT 2025
Fri Feb 21 02:40:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 30
Keywords Crow-Search
Breast cancer
Transfer-Learning
Extreme Learning Machine
Mammograms
Median filtering
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-b70cc29f9534a9a24f91c9fe6ce8a4a092352dd60648a13c40fc14d925708acd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2895066688
PQPubID 54626
PageCount 25
ParticipantIDs proquest_journals_2895066688
crossref_primary_10_1007_s11042_023_15265_5
crossref_citationtrail_10_1007_s11042_023_15265_5
springer_journals_10_1007_s11042_023_15265_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231200
2023-12-00
20231201
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 20231200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Buciu I, Gacsadi A and Control, undefined 2011, (n.d.) Directional features for automatic tumor classification of mammogram images, Elsevier. https://www.sciencedirect.com/science/article/pii/S1746809410000820. Accessed 05 Dec 2021
Ezzat D, ell Hassanien A, Ella HA (2020) GSA-DenseNet121-COVID-19: a Hybrid Deep Learning Architecture for the Diagnosis of COVID-19 Disease based on Gravitational Search Optimization Algorithm. Appl. Soft Comput. 98 https://doi.org/10.1016/j.asoc.2020.106742
Safdarian N, Hediyehzadeh MR (2019) Detection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods, Mcijournal.Com https://doi.org/10.30699/acadpub.mci.3.4.13
LiuDLiuCFuQLiTImranKMCuiSAbrarFMELM evaluation model of regional groundwater quality based on the crow search algorithmEcol Ind20178130231410.1016/j.ecolind.2017.06.009
Setiawan AS, Elysia, Wesley J, Purnama Y (2015) Mammogram classification using law’s texture energy measure and neural networks. Procedia Comput Sci 59:92–97. https://doi.org/10.1016/j.procs.2015.07.341; https://www.sciencedirect.com/science/article/pii/S1877050915018700. Accessed 05 Dec 2021
Tan M, Le Q (2019) EfficientNet: Rethinking model scaling for convolutional neural networks. In: Proceedings of the 36th International Conference on Machine Learning. Proc Mach Learn Res 97:6105–6114. Available from https://proceedings.mlr.press/v97/tan19a.html; http://proceedings.mlr.press/v97/tan19a/tan19a.pdf
Hu K, Yang W, Gao X. with Applications, undefined 2017 (n.d.) Microcalcification diagnosis in digital mammography using extreme learning machine based on hidden Markov tree model of dual-tree complex wavelet. Elsevier. https://www.sciencedirect.com/science/article/pii/S0957417417303901. Accessed 05 Dec 2021
Abdel-Nasser M, Rashwan H … Puig D. with, undefined 2015 (n.d.) Analysis of tissue abnormality and breast density in mammographic images using a uniform local directional pattern, Elsevier https://www.sciencedirect.com/science/article/pii/S0957417415005321. Accessed 05 Dec 2021
Beura S, Majhi B, Dash R. Neurocomputing, undefined 2015 (n.d.). Mammogram classification using two dimensional discrete wavelet transform and gray-level co-occurrence matrix for detection of breast cancer, Elsevier https://www.sciencedirect.com/science/article/pii/S0925231214016968. Accessed 05 Dec 2021
Hariraj V, Khairunizam W, Vijean V, Ibrahim Z, Vikneswaran, Razlan ZM (2018) Fuzzy multi-layer SVM classification of breast cancer mammogram images Development of Malaysia Driving Cycle (MDC) View project Navigation system using geographical feature elements and Electromyography Signal processing View project FUZZY MULTI-LAYER SVM CLASSIFICATION OF BREAST CANCER MAMMOGRAM IMAGES. Int J Mech Eng Technol (IJMET) 9:1281–1299. http://www.iaeme.com/IJMET/index.asp1281; http://www.iaeme.com/ijmet/issues.asp?JType=IJMET&VType=9&IType=8. Accessed 05 Dec 2021
Raghavendra U, Rajendra Acharya U, Fujita H, Gudigar A, Tan JH, Chokkadi S (2016) Application of Gabor wavelet and Locality Sensitive Discriminant Analysis for automated identification of breast cancer using digitized mammogram images. Appl Soft Comput 46:151–161. https://doi.org/10.1016/j.asoc.2016.04.036. Accessed 05 Dec 2021
ChangYJungCKePSongHHwangJAutomatic Contrast-Limited Adaptive Histogram Equalization with Dual Gamma CorrectionIEEE Access20186117821179210.1109/ACCESS.2018.2797872
S R SC, Rajaguru H (2019) Lung cancer detection using probabilistic neural network with modified crow-search algorithm. Asian Pac J Cancer Prev 20(7):2159–2166. https://doi.org/10.31557/APJCP.2019.20.7.2159
Sannasi Chakravarthy SR, Rajaguru H (2021) A novel improved crow-search algorithm to classify the severity in digital mammograms. Int J Imaging Syst Technol 31:921–954. https://doi.org/10.1002/ima.22493
Yala A, Lehman C, Schuster T, Portnoi T, Barzilay R (2019) A deep learning mammography-based model for improved breast cancer risk prediction. Radiology 292(1):60–66. https://doi.org/10.1148/radiol.2019182716
Zhang Y, Han X, Zhang H, Zhao L (2017) Edge Detection Algorithm of Image Fusion Based on Improved Sobel Operator, in: Proc. 2017 IEEE 3rd Inf. Technol. Mechatronics Eng. Conf. ITOEC 2017, Institute of Electrical and Electronics Engineers Inc. 457–461. https://doi.org/10.1109/ITOEC.2017.8122336.
Rajaguru H, S R SC (2019) Analysis of decision tree and k-nearest neighbor algorithm in the classification of breast cancer, Asian Pac J Cancer Prev 20(12):3777–3781. https://doi.org/10.31557/APJCP.2019.20.12.3777
S R SC, Rajaguru H (2021) A systematic review on screening, examining and classification of breast cancer. In: 2021 Smart Technologies, Communication and Robotics (STCR), Sathyamangalam, India, pp 1–4. https://doi.org/10.1109/STCR51658.2021.9588828
Sannasi Chakravarthy SR, Rajaguru H (2020) Detection and classification of microcalcification from digital mammograms with firefly algorithm, extreme learning machine and non-linear regression models: A comparison. Int J Imaging Syst Technol 30:126–146. https://doi.org/10.1002/ima.22364
Clayton N, Emery N. (2005) Corvid cognition., Curr. Biol. 15 https://doi.org/10.1016/j.cub.2005.01.020
Suckling J, Parker J, Dance D, Astley S, Hutt I (2015) Mammographic image analysis society (mias) database v1. 21, https://www.repository.cam.ac.uk/handle/1810/250394 (accessed March 28, 2021)
Nithya R, Santhi B. of Instrumentation, undefined 2017 (n.d.) Application of texture analysis method for mammogram density classification, Iopscience.Iop.Org https://iopscience.iop.org/article/https://doi.org/10.1088/1748-0221/12/07/P07009/meta
Badawy SM, Hefnawy AA, Zidan HE, Gadallah MT (2017) Breast Cancer Detection with Mammogram Segmentation: A Qualitative Study. www.ijacsa.thesai.org. Accessed 05 Dec 2021
Prathibha G, Mohan B. 2018 9th I.C. on, undefined 2018 (n.d.) Mammograms Classification Using Multiresolution Transforms and Convolution Neural Networks, Ieeexplore.Ieee.Org https://ieeexplore.ieee.org/abstract/document/8494076/. Accessed 05 Dec 2021
IqbalBIqbalWKhanNMahmoodAErradiACanny edge detection and Hough transform for high resolution video streams using Hadoop and SparkCluster Comput20202339740810.1007/s10586-019-02929-x
HuangXLuoMJinHApplication of improved ELM algorithm in the prediction of earthquake casualtiesPlos One2020156e023523610.1371/journal.pone.0235236
Gopi AP, Jyothi RNS, Narayana VL, Sandeep KS. (2020) Classification of tweets data based on polarity using improved RBF kernel of SVM, Int. J. Inf. Technol. pp. 1–16 https://doi.org/10.1007/s41870-019-00409-4
Görgel P, Sertbas A, Ucan ON (2013) Mammographical mass detection and classification using local seed region growing–spherical wavelet transform (lsrg–swt) hybrid scheme. Comput Biol Med 43(6):765–774. https://doi.org/10.1016/j.compbiomed.2013.03.008; https://www.sciencedirect.com/science/article/pii/S0010482513000796. Accessed 05 Dec 2021
Ghiasi G, Lin TY, Le QV (2018) DropBlock: A regularization method for convolutional networks. Adv Neural Inf Process Syst :10727–10737. http://arxiv.org/abs/1810.12890. Accessed 05 Dec 2021
Steiner DF, MacDonald R, Liu Y, Truszkowski P, Hipp JD, Gammage C, Thng F, Peng L, Stumpe MC (2018) Impact of Deep Learning Assistance on the Histopathologic Review of Lymph Nodes for Metastatic Breast Cancer. Am J Surg Pathol 42(12):1636–1646. https://doi.org/10.1097/PAS.0000000000001151
Moreira IC, Amaral I, Domingues I, Cardoso A, João Cardoso M, Cardoso JS (2012) INbreast: Toward a Full-field Digital Mammographic Database, Acad Radiol 19:236–248. https://doi.org/10.1016/j.acra.2011.09.014
Abirami C, Harikumar R, Chakravarthy SRS (2016) Performance analysis and detection of micro calcification in digital mammograms using wavelet features. In: Proc. 2016 IEEE Int. Conf. Wirel. Commun. Signal Process. Networking, WiSPNET 2016, Presses Polytechniques Et Universitaires Romandes, pp. 2327–2331. https://doi.org/10.1109/WiSPNET.2016.7566558
Luo M, Li C, Zhang X, Li R, An X (2016) Compound feature selection and parameter optimization of ELM for fault diagnosis of rolling element bearings. ISA Trans 65:556–566.https://doi.org/10.1016/j.isatra.2016.08.022 . Accessed 05 Dec 2021
Wong PK, Wong KI, Vong CM, Cheung CS (2015) Modeling and optimization of biodiesel engine performance using kernel-based extreme learning machine and cuckoo search. Renew Energy 74:640–647. https://doi.org/10.1016/j.renene.2014.08.075
Fu W, Wang K, Li C, Li C. and Management, undefined 2019 (n.d.) Multi-step short-term wind speed forecasting approach based on multi-scale dominant ingredient chaotic analysis, improved hybrid GWO-SCA optimization, Elsevier. https://www.sciencedirect.com/science/article/pii/S0196890419302985. Accessed 05 Dec 2021
Qassim H, Verma A, Feinzimer D (2018) Compressed residual-VGG16 CNN model for big data places image recognition, In: 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, pp 169–175. https://doi.org/10.1109/CCWC.2018.8301729
Wong SY, Yap KS, Yap HJ (2016) A Constrained Optimization based Extreme Learning Machine for noisy data regression. Neurocomputing 171:1431–1443. https://doi.org/10.1016/j.neucom.2015.07.065; https://www.sciencedirect.com/science/article/abs/pii/S0925231215010723?via%3Dihub. Accessed 05 Dec 2021
Hepsag PU, Özel SA, Yazıcı A (2017) Using deep learning for mammography classification. In: 2017 International Conference on Computer Science and Engineering (UBMK), Antalya, Turkey, pp 418–423. https://doi.org/10.1109/UBMK.2017.8093429
Zhang C, Zhou J, Li C, Fu W, Peng T (2017) A compound structure of ELM based on feature selection and parameter optimization using hybrid backtracking search algorithm for wind speed forecasting. Energy Convers Manag 143:360–376. https://doi.org/10.1016/j.enconman.2017.04.007; https://www.sciencedirect.com/science/article/pii/S0196890417303126. Accessed 05 Dec 2021
ChakravarthySSRajaguruHAutomatic detection and classification of mammograms using improved extreme learning machine with deep l
15265_CR40
15265_CR41
15265_CR42
15265_CR10
B Iqbal (15265_CR20) 2020; 23
15265_CR32
15265_CR11
15265_CR33
15265_CR12
15265_CR34
15265_CR13
15265_CR35
15265_CR14
15265_CR36
15265_CR15
15265_CR37
15265_CR16
15265_CR38
15265_CR17
15265_CR39
15265_CR18
15265_CR2
15265_CR1
15265_CR7
Y Chang (15265_CR9) 2018; 6
15265_CR6
R Ahila (15265_CR3) 2015; 32
15265_CR5
D Liu (15265_CR21) 2017; 81
SS Chakravarthy (15265_CR8) 2022; 43
A Askarzadeh (15265_CR4) 2016; 169
15265_CR30
15265_CR31
15265_CR43
15265_CR22
15265_CR44
15265_CR23
15265_CR45
15265_CR24
15265_CR25
15265_CR26
15265_CR27
15265_CR28
15265_CR29
X Huang (15265_CR19) 2020; 15
References_xml – reference: Fu W, Wang K, Li C, Li C. and Management, undefined 2019 (n.d.) Multi-step short-term wind speed forecasting approach based on multi-scale dominant ingredient chaotic analysis, improved hybrid GWO-SCA optimization, Elsevier. https://www.sciencedirect.com/science/article/pii/S0196890419302985. Accessed 05 Dec 2021
– reference: Prathibha G, Mohan B. 2018 9th I.C. on, undefined 2018 (n.d.) Mammograms Classification Using Multiresolution Transforms and Convolution Neural Networks, Ieeexplore.Ieee.Org https://ieeexplore.ieee.org/abstract/document/8494076/. Accessed 05 Dec 2021
– reference: Hu K, Yang W, Gao X. with Applications, undefined 2017 (n.d.) Microcalcification diagnosis in digital mammography using extreme learning machine based on hidden Markov tree model of dual-tree complex wavelet. Elsevier. https://www.sciencedirect.com/science/article/pii/S0957417417303901. Accessed 05 Dec 2021
– reference: Rajaguru H, S R SC (2019) Analysis of decision tree and k-nearest neighbor algorithm in the classification of breast cancer, Asian Pac J Cancer Prev 20(12):3777–3781. https://doi.org/10.31557/APJCP.2019.20.12.3777
– reference: Steiner DF, MacDonald R, Liu Y, Truszkowski P, Hipp JD, Gammage C, Thng F, Peng L, Stumpe MC (2018) Impact of Deep Learning Assistance on the Histopathologic Review of Lymph Nodes for Metastatic Breast Cancer. Am J Surg Pathol 42(12):1636–1646. https://doi.org/10.1097/PAS.0000000000001151
– reference: Hepsag PU, Özel SA, Yazıcı A (2017) Using deep learning for mammography classification. In: 2017 International Conference on Computer Science and Engineering (UBMK), Antalya, Turkey, pp 418–423. https://doi.org/10.1109/UBMK.2017.8093429
– reference: Tan M, Le Q (2019) EfficientNet: Rethinking model scaling for convolutional neural networks. In: Proceedings of the 36th International Conference on Machine Learning. Proc Mach Learn Res 97:6105–6114. Available from https://proceedings.mlr.press/v97/tan19a.html; http://proceedings.mlr.press/v97/tan19a/tan19a.pdf
– reference: Suckling J, Parker J, Dance D, Astley S, Hutt I (2015) Mammographic image analysis society (mias) database v1. 21, https://www.repository.cam.ac.uk/handle/1810/250394 (accessed March 28, 2021)
– reference: Gopi AP, Jyothi RNS, Narayana VL, Sandeep KS. (2020) Classification of tweets data based on polarity using improved RBF kernel of SVM, Int. J. Inf. Technol. pp. 1–16 https://doi.org/10.1007/s41870-019-00409-4
– reference: Abdel-Nasser M, Rashwan H … Puig D. with, undefined 2015 (n.d.) Analysis of tissue abnormality and breast density in mammographic images using a uniform local directional pattern, Elsevier https://www.sciencedirect.com/science/article/pii/S0957417415005321. Accessed 05 Dec 2021
– reference: Ezzat D, ell Hassanien A, Ella HA (2020) GSA-DenseNet121-COVID-19: a Hybrid Deep Learning Architecture for the Diagnosis of COVID-19 Disease based on Gravitational Search Optimization Algorithm. Appl. Soft Comput. 98 https://doi.org/10.1016/j.asoc.2020.106742
– reference: HuangXLuoMJinHApplication of improved ELM algorithm in the prediction of earthquake casualtiesPlos One2020156e023523610.1371/journal.pone.0235236
– reference: Clayton N, Emery N. (2005) Corvid cognition., Curr. Biol. 15 https://doi.org/10.1016/j.cub.2005.01.020
– reference: Hariraj V, Khairunizam W, Vijean V, Ibrahim Z, Vikneswaran, Razlan ZM (2018) Fuzzy multi-layer SVM classification of breast cancer mammogram images Development of Malaysia Driving Cycle (MDC) View project Navigation system using geographical feature elements and Electromyography Signal processing View project FUZZY MULTI-LAYER SVM CLASSIFICATION OF BREAST CANCER MAMMOGRAM IMAGES. Int J Mech Eng Technol (IJMET) 9:1281–1299. http://www.iaeme.com/IJMET/index.asp1281; http://www.iaeme.com/ijmet/issues.asp?JType=IJMET&VType=9&IType=8. Accessed 05 Dec 2021
– reference: Xie J, Liu R, Luttrell JI, Zhang C (2019) Deep Learning Based Analysis of Histopathological Images of Breast Cancer. Front Genet 10. https://doi.org/10.3389/fgene.2019.00080
– reference: Sannasi Chakravarthy SR, Rajaguru H (2020) Detection and classification of microcalcification from digital mammograms with firefly algorithm, extreme learning machine and non-linear regression models: A comparison. Int J Imaging Syst Technol 30:126–146. https://doi.org/10.1002/ima.22364
– reference: Yala A, Lehman C, Schuster T, Portnoi T, Barzilay R (2019) A deep learning mammography-based model for improved breast cancer risk prediction. Radiology 292(1):60–66. https://doi.org/10.1148/radiol.2019182716
– reference: ChakravarthySSRajaguruHAutomatic detection and classification of mammograms using improved extreme learning machine with deep learningIRBM2022431496110.1016/j.irbm.2020.12.004
– reference: S R SC, Rajaguru H (2019) Lung cancer detection using probabilistic neural network with modified crow-search algorithm. Asian Pac J Cancer Prev 20(7):2159–2166. https://doi.org/10.31557/APJCP.2019.20.7.2159
– reference: S R SC, Rajaguru H (2021) A systematic review on screening, examining and classification of breast cancer. In: 2021 Smart Technologies, Communication and Robotics (STCR), Sathyamangalam, India, pp 1–4. https://doi.org/10.1109/STCR51658.2021.9588828
– reference: ChangYJungCKePSongHHwangJAutomatic Contrast-Limited Adaptive Histogram Equalization with Dual Gamma CorrectionIEEE Access20186117821179210.1109/ACCESS.2018.2797872
– reference: AskarzadehAA novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithmComput Struct201616911210.1016/j.compstruc.2016.03.001
– reference: Nithya R, Santhi B. of Instrumentation, undefined 2017 (n.d.) Application of texture analysis method for mammogram density classification, Iopscience.Iop.Org https://iopscience.iop.org/article/https://doi.org/10.1088/1748-0221/12/07/P07009/meta
– reference: Moreira IC, Amaral I, Domingues I, Cardoso A, João Cardoso M, Cardoso JS (2012) INbreast: Toward a Full-field Digital Mammographic Database, Acad Radiol 19:236–248. https://doi.org/10.1016/j.acra.2011.09.014
– reference: Ghiasi G, Lin TY, Le QV (2018) DropBlock: A regularization method for convolutional networks. Adv Neural Inf Process Syst :10727–10737. http://arxiv.org/abs/1810.12890. Accessed 05 Dec 2021
– reference: Setiawan AS, Elysia, Wesley J, Purnama Y (2015) Mammogram classification using law’s texture energy measure and neural networks. Procedia Comput Sci 59:92–97. https://doi.org/10.1016/j.procs.2015.07.341; https://www.sciencedirect.com/science/article/pii/S1877050915018700. Accessed 05 Dec 2021
– reference: Luo M, Li C, Zhang X, Li R, An X (2016) Compound feature selection and parameter optimization of ELM for fault diagnosis of rolling element bearings. ISA Trans 65:556–566.https://doi.org/10.1016/j.isatra.2016.08.022 . Accessed 05 Dec 2021
– reference: Raghavendra U, Rajendra Acharya U, Fujita H, Gudigar A, Tan JH, Chokkadi S (2016) Application of Gabor wavelet and Locality Sensitive Discriminant Analysis for automated identification of breast cancer using digitized mammogram images. Appl Soft Comput 46:151–161. https://doi.org/10.1016/j.asoc.2016.04.036. Accessed 05 Dec 2021
– reference: Görgel P, Sertbas A, Ucan ON (2013) Mammographical mass detection and classification using local seed region growing–spherical wavelet transform (lsrg–swt) hybrid scheme. Comput Biol Med 43(6):765–774. https://doi.org/10.1016/j.compbiomed.2013.03.008; https://www.sciencedirect.com/science/article/pii/S0010482513000796. Accessed 05 Dec 2021
– reference: Wong SY, Yap KS, Yap HJ (2016) A Constrained Optimization based Extreme Learning Machine for noisy data regression. Neurocomputing 171:1431–1443. https://doi.org/10.1016/j.neucom.2015.07.065; https://www.sciencedirect.com/science/article/abs/pii/S0925231215010723?via%3Dihub. Accessed 05 Dec 2021
– reference: Badawy SM, Hefnawy AA, Zidan HE, Gadallah MT (2017) Breast Cancer Detection with Mammogram Segmentation: A Qualitative Study. www.ijacsa.thesai.org. Accessed 05 Dec 2021
– reference: Zhang Y, Han X, Zhang H, Zhao L (2017) Edge Detection Algorithm of Image Fusion Based on Improved Sobel Operator, in: Proc. 2017 IEEE 3rd Inf. Technol. Mechatronics Eng. Conf. ITOEC 2017, Institute of Electrical and Electronics Engineers Inc. 457–461. https://doi.org/10.1109/ITOEC.2017.8122336.
– reference: Sannasi Chakravarthy SR, Rajaguru H (2021) A novel improved crow-search algorithm to classify the severity in digital mammograms. Int J Imaging Syst Technol 31:921–954. https://doi.org/10.1002/ima.22493
– reference: McKinney M, Sieniek MT, Godbole V, Godwin J, Ashrafian H, Back T, Chesus M, Corrado GC, Darzi A, Etemadi M, Garcia-Vicente F, Gilbert FJ, Halling-Brown M, Jansen S, Karthikesalingam A, Kelly CJ, King D, Ledsam R, Melnick D, Mostofi H, Romera-Paredes B, Peng L, Jay Reicher J, Sidebottom R, Suleyman M, Tse D, De Fauw J, Shetty S (n.d.) International evaluation of an AI system 1 for breast cancer screening 2 3 Scott. https://www.nature.com/articles/s41586-019-1799-6. Accessed 05 Dec 2021
– reference: Qassim H, Verma A, Feinzimer D (2018) Compressed residual-VGG16 CNN model for big data places image recognition, In: 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, pp 169–175. https://doi.org/10.1109/CCWC.2018.8301729
– reference: Safdarian N, Hediyehzadeh MR (2019) Detection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods, Mcijournal.Com https://doi.org/10.30699/acadpub.mci.3.4.13
– reference: Buciu I, Gacsadi A and Control, undefined 2011, (n.d.) Directional features for automatic tumor classification of mammogram images, Elsevier. https://www.sciencedirect.com/science/article/pii/S1746809410000820. Accessed 05 Dec 2021
– reference: Wong PK, Wong KI, Vong CM, Cheung CS (2015) Modeling and optimization of biodiesel engine performance using kernel-based extreme learning machine and cuckoo search. Renew Energy 74:640–647. https://doi.org/10.1016/j.renene.2014.08.075
– reference: Muduli D, Dash R, Majhi B (2020) Automated breast cancer detection in digital mammograms: A moth flame optimization based ELM approach. Biomed Signal Process Control 59:101912. https://doi.org/10.1016/j.bspc.2020.101912; https://www.sciencedirect.com/science/article/pii/S1746809420300689. Accessed 05 Dec 2021
– reference: LiuDLiuCFuQLiTImranKMCuiSAbrarFMELM evaluation model of regional groundwater quality based on the crow search algorithmEcol Ind20178130231410.1016/j.ecolind.2017.06.009
– reference: Abirami C, Harikumar R, Chakravarthy SRS (2016) Performance analysis and detection of micro calcification in digital mammograms using wavelet features. In: Proc. 2016 IEEE Int. Conf. Wirel. Commun. Signal Process. Networking, WiSPNET 2016, Presses Polytechniques Et Universitaires Romandes, pp. 2327–2331. https://doi.org/10.1109/WiSPNET.2016.7566558
– reference: AhilaRSadasivamVManimalaKAn integrated PSO for parameter determination and feature selection of ELM and its application in classification of power system disturbancesAppl Soft Comput J201532233710.1016/j.asoc.2015.03.036
– reference: Zhang C, Zhou J, Li C, Fu W, Peng T (2017) A compound structure of ELM based on feature selection and parameter optimization using hybrid backtracking search algorithm for wind speed forecasting. Energy Convers Manag 143:360–376. https://doi.org/10.1016/j.enconman.2017.04.007; https://www.sciencedirect.com/science/article/pii/S0196890417303126. Accessed 05 Dec 2021
– reference: Beura S, Majhi B, Dash R. Neurocomputing, undefined 2015 (n.d.). Mammogram classification using two dimensional discrete wavelet transform and gray-level co-occurrence matrix for detection of breast cancer, Elsevier https://www.sciencedirect.com/science/article/pii/S0925231214016968. Accessed 05 Dec 2021
– reference: IqbalBIqbalWKhanNMahmoodAErradiACanny edge detection and Hough transform for high resolution video streams using Hadoop and SparkCluster Comput20202339740810.1007/s10586-019-02929-x
– ident: 15265_CR32
  doi: 10.1109/STCR51658.2021.9588828
– ident: 15265_CR43
  doi: 10.1148/radiol.2019182716
– ident: 15265_CR44
  doi: 10.1016/j.enconman.2017.04.007
– ident: 15265_CR10
  doi: 10.1016/j.cub.2005.01.020
– ident: 15265_CR14
  doi: 10.1007/s41870-019-00409-4
– ident: 15265_CR30
  doi: 10.31557/APJCP.2019.20.12.3777
– ident: 15265_CR25
  doi: 10.1016/j.bspc.2020.101912
– ident: 15265_CR40
  doi: 10.1016/j.neucom.2015.07.065
– ident: 15265_CR6
  doi: 10.1016/j.neucom.2014.12.032
– ident: 15265_CR27
  doi: 10.1109/ICCCNT.2018.8494076
– ident: 15265_CR38
– ident: 15265_CR36
  doi: 10.1016/j.procs.2015.07.341
– volume: 43
  start-page: 49
  issue: 1
  year: 2022
  ident: 15265_CR8
  publication-title: IRBM
  doi: 10.1016/j.irbm.2020.12.004
– ident: 15265_CR17
  doi: 10.1109/UBMK.2017.8093429
– ident: 15265_CR28
  doi: 10.1109/CCWC.2018.8301729
– ident: 15265_CR7
– ident: 15265_CR33
  doi: 10.30699/acadpub.mci.3.4.13
– ident: 15265_CR37
  doi: 10.1097/PAS.0000000000001151
– volume: 32
  start-page: 23
  year: 2015
  ident: 15265_CR3
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2015.03.036
– ident: 15265_CR41
  doi: 10.1016/j.renene.2014.08.075
– ident: 15265_CR15
  doi: 10.1016/j.compbiomed.2013.03.008
– ident: 15265_CR42
  doi: 10.3389/fgene.2019.00080
– ident: 15265_CR29
  doi: 10.1016/j.asoc.2016.04.036
– ident: 15265_CR12
  doi: 10.1016/j.enconman.2019.02.086
– ident: 15265_CR13
– ident: 15265_CR45
  doi: 10.1109/ITOEC.2017.8122336
– ident: 15265_CR35
  doi: 10.1002/ima.22493
– volume: 23
  start-page: 397
  year: 2020
  ident: 15265_CR20
  publication-title: Cluster Comput
  doi: 10.1007/s10586-019-02929-x
– ident: 15265_CR5
– ident: 15265_CR24
  doi: 10.1016/j.acra.2011.09.014
– ident: 15265_CR1
– ident: 15265_CR23
– ident: 15265_CR31
  doi: 10.31557/APJCP.2019.20.7.2159
– volume: 169
  start-page: 1
  year: 2016
  ident: 15265_CR4
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2016.03.001
– ident: 15265_CR34
  doi: 10.1002/ima.22364
– ident: 15265_CR11
  doi: 10.1016/j.asoc.2020.106742
– ident: 15265_CR16
– ident: 15265_CR2
  doi: 10.1109/WiSPNET.2016.7566558
– ident: 15265_CR39
– volume: 15
  start-page: e0235236
  issue: 6
  year: 2020
  ident: 15265_CR19
  publication-title: Plos One
  doi: 10.1371/journal.pone.0235236
– ident: 15265_CR18
  doi: 10.1016/j.eswa.2017.05.062
– ident: 15265_CR22
  doi: 10.1016/j.isatra.2016.08.022
– volume: 6
  start-page: 11782
  year: 2018
  ident: 15265_CR9
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2797872
– volume: 81
  start-page: 302
  year: 2017
  ident: 15265_CR21
  publication-title: Ecol Ind
  doi: 10.1016/j.ecolind.2017.06.009
– ident: 15265_CR26
  doi: 10.1088/1748-0221/12/07/P07009/meta
SSID ssj0016524
Score 2.3956876
Snippet The mortality of breast cancer is more among women besides lung cancer. However, the survival rates of breast cancer can be increased when there is a promising...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 47585
SubjectTerms Artificial neural networks
Breast cancer
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Datasets
Diagnosis
Digital imaging
Flight
Image analysis
Iterative methods
Lung cancer
Machine learning
Mammography
Medical imaging
Multimedia Information Systems
Parameters
Particle swarm optimization
Performance enhancement
Search algorithms
Special Purpose and Application-Based Systems
Support vector machines
Track 2: Medical Applications of Multimedia
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWWDgUUAUCvLABpach11nrFBRhSgTlbpFieNUkehDTbrw6zm7TgMIkBijOBcp39n3Xe4FcCsEktQImZuQAaOmwxxN_VzQQLGUadQhabMJRy9iOA6fJnziisLKOtu9Dknak7opdvNMKQnaGOqZnu6U78IeN-28UIvHfn8bOxDcjbKVjKI99FypzM8yvpqjhmN-C4taa_N4DIeOJpL-BtcT2NHzNhzVIxiI25FtOPjUT_AUVi7tHy_IIidZMTUjQcgsQWUzWVikmOHxUZL1ZgWeFrPiXWdk8Dwi5ocsybRekspyWXyLmygxJUhsSWqy1yuijJasULTN0CvKMxg_Dl4fhtQNVaAKd1tF0x5Tyo_yiAdhEiV-mEeeinItlJZJmDAkfNzPMvRrQpl4gQpZrrwwi8y0O5moLDiH1nwx1xdAmI6EQgAYooti0PUxVXMCfbjc66VJ1gGv_raxch3HzeCLt7jplWzwiBGP2OIR8w7cbZ9Zbvpt_Lm6W0MWu71XxuhCcuOVSdmB-xrG5vbv0i7_t_wK9n2rSSa3pQutarXW18hQqvTGKuQHoMPaaA
  priority: 102
  providerName: Springer Nature
Title Processing of digital mammogram images using optimized ELM with deep transfer learning for breast cancer diagnosis
URI https://link.springer.com/article/10.1007/s11042-023-15265-5
https://www.proquest.com/docview/2895066688
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: ADMLS
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-7721
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB5BcqEHoJSK8Ih86K1YeF_Ge0AooATUlqhCjQSnldf2RpHIg2S58OuZ2XgJIJXjvma1O-PxN_bMfAA_pESQmiJykyoSnDrM8TwsJI-MyIVDG1JVNuFNX14P4l93yd0a9OtaGEqrrH1i5ajt1NAa-QkGBglhbaXOZ4-cWKNod7Wm0NCeWsGeVS3G1qEZUmesBjQvuv2_t6_7CjLxNLdKcJwrA19GsyymC6hUBecwHlDPeJ68n6pW-PPDlmk1E_W2YdNDSNZZ6vwrrLnJDmzV9AzMj9Yd-PKm1-A3mPuSADxg04LZ0ZDoQthY45dRhhYbjdG1LNjT8g70JOPRs7Os--eG0WIts87NWFnhXHyLZ5sYMgS9LKfM9pIZsqA5iq6y90aLXRj0uv8ur7knXOAGR2LJ81NhTJgWaRLFOtVhXKSBSQsnjVM61gLBYBJaizFPrHQQmVgUJohtSkx4ShsbfYfGZDpxe8CES6VB9ChQ8ygGwyKqqJMY3xXBaa5tC4L632bGdyMnUoyHbNVHmfSRoT6ySh9Z0oKfr8_Mlr04Pr37sFZZ5sflIltZUQuOazWuLv9f2v7n0g5gI6wsh_JcDqFRzp_cEaKVMm_DuupdtaHZubr_3W17g8Szg7DzAoIv55c
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9RAEJ4gPCgPiqjxEHAf9Ek3btvt0n0gRODIIXcXYyDhrW53t-QS7gd3JUb_OP82ZnpbDknkjcem22myM535pjszH8AHpRCkakRuKksEpwlzvIhLxRMrCuHRhrK6mrDXV50z-e08PV-Cv00vDJVVNj6xdtRubOkf-RdMDFLC2lm2N7nixBpFp6sNhYYJ1Aputx4xFho7TvzvX5jCzXaPD1HfH-P4qH160OGBZYBbNL-KFzvC2liXOk2k0SaWpY6sLr2yPjPSCERAaewcAn2ZmSixUpQ2kk4T_VtmrEtQ7hNYkYnUmPyt7Lf733_cnmOoNNDqZoJjbI5C2868eS-i1hiMmTyiGfU8_Tc0LvDuvSPaOvIdrcHzAFnZ17mNvYQlP1qHFw0dBAveYR1W78w2fAXT0IKAF2xcMje4IHoSNjS4k1QRxgZDdGUzdj1fgZ5rOPjjHWt3e4x-DjPn_YRVNa7GtwR2iwuGIJsVVElfMUsWO0XRdbXgYPYazh5l69_A8mg88m-BCa-VRbQq0NJQDKZh1MGnMJ8so53CuBZEzd7mNkw_JxKOy3wxt5n0kaM-8lofedqCT7fPTOazPx5cvdmoLA9-YJYvrLYFnxs1Lm7_X9rGw9Lew9POaa-bd4_7J-_gWVxbEdXYbMJyNb32W4iUqmI7mCODn4_9BdwAu7kg_w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JSsRAEC1cQPTgLo5rH_SkjZ2tJzmIiDru4kHBW0y6OzLgLM5ERD_Nr7Mq6Tgq6M1jSFKBrkf1q3RVPYANKZGkRsjcZOgJThPmeOpmkntKpMIghsKimvDySp7c-md3wd0QvFe9MFRWWcXEIlDrjqJ_5DuYGATEtTFhy2xZxPVhY6_7xElBik5aKzmNEiLn5vUF07f-7ukh-nrTdRtHNwcn3CoMcIXQy3laF0q5URYFnp9EietnkaOizEhlwsRPBLKfwNUaSb4fJo6nfJEpx9cRSb-FidIe2h2G0TpNcacu9cbx5wmGDKygbig47sqObdgp2_YcaorB3ZI7NJ2eB983xQHT_XE4W-x5jWmYtGSV7ZfomoEh056FqUoIgtm4MAsTX6YazkHPNh_gBetkTDcfSJiEtRJcN6oFY80WBrE-ey6fwJjVar4ZzY4uLhn9FmbamC7LC0aNX7G6Fg8M6TVLqYY-Z4qw2kPTRZ1gsz8Pt_-y8Asw0u60zSIwYSKpkKcKxBiawQSMevckZpKZU08TXQOnWttY2bnnJL_xGA8mNpM_YvRHXPgjDmqw9flOt5z68efTK5XLYhsB-vEArzXYrtw4uP27taW_ra3DGOI-vji9Ol-GcbcAERXXrMBI3ns2q0iR8nStwCKD-_8G_wfIVB6Z
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Processing+of+digital+mammogram+images+using+optimized+ELM+with+deep+transfer+learning+for+breast+cancer+diagnosis&rft.jtitle=Multimedia+tools+and+applications&rft.au=Chakravarthy%2C+S.+R.+Sannasi&rft.au=Bharanidharan%2C+N&rft.au=Rajaguru%2C+Harikumar&rft.date=2023-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=82&rft.issue=30&rft.spage=47585&rft.epage=47609&rft_id=info:doi/10.1007%2Fs11042-023-15265-5&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon